1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the generic RegisterCoalescer interface which
11 // is used as the common interface used by all clients and
12 // implementations of register coalescing.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "regcoalescing"
17 #include "RegisterCoalescer.h"
18 #include "VirtRegMap.h"
19 #include "LiveDebugVariables.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Value.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Target/TargetOptions.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/OwningPtr.h"
43 #include "llvm/ADT/SmallSet.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/STLExtras.h"
50 STATISTIC(numJoins
, "Number of interval joins performed");
51 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
52 STATISTIC(numCommutes
, "Number of instruction commuting performed");
53 STATISTIC(numExtends
, "Number of copies extended");
54 STATISTIC(NumReMats
, "Number of instructions re-materialized");
55 STATISTIC(numPeep
, "Number of identity moves eliminated after coalescing");
56 STATISTIC(numAborts
, "Number of times interval joining aborted");
59 EnableJoining("join-liveintervals",
60 cl::desc("Coalesce copies (default=true)"),
64 DisableCrossClassJoin("disable-cross-class-join",
65 cl::desc("Avoid coalescing cross register class copies"),
66 cl::init(false), cl::Hidden
);
69 EnablePhysicalJoin("join-physregs",
70 cl::desc("Join physical register copies"),
71 cl::init(false), cl::Hidden
);
74 VerifyCoalescing("verify-coalescing",
75 cl::desc("Verify machine instrs before and after register coalescing"),
78 INITIALIZE_PASS_BEGIN(RegisterCoalescer
, "simple-register-coalescing",
79 "Simple Register Coalescing", false, false)
80 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
81 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables
)
82 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
83 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
84 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination
)
85 INITIALIZE_PASS_DEPENDENCY(PHIElimination
)
86 INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass
)
87 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
88 INITIALIZE_PASS_END(RegisterCoalescer
, "simple-register-coalescing",
89 "Simple Register Coalescing", false, false)
91 char RegisterCoalescer::ID
= 0;
93 static unsigned compose(const TargetRegisterInfo
&tri
, unsigned a
, unsigned b
) {
96 return tri
.composeSubRegIndices(a
, b
);
99 static bool isMoveInstr(const TargetRegisterInfo
&tri
, const MachineInstr
*MI
,
100 unsigned &Src
, unsigned &Dst
,
101 unsigned &SrcSub
, unsigned &DstSub
) {
103 Dst
= MI
->getOperand(0).getReg();
104 DstSub
= MI
->getOperand(0).getSubReg();
105 Src
= MI
->getOperand(1).getReg();
106 SrcSub
= MI
->getOperand(1).getSubReg();
107 } else if (MI
->isSubregToReg()) {
108 Dst
= MI
->getOperand(0).getReg();
109 DstSub
= compose(tri
, MI
->getOperand(0).getSubReg(),
110 MI
->getOperand(3).getImm());
111 Src
= MI
->getOperand(2).getReg();
112 SrcSub
= MI
->getOperand(2).getSubReg();
118 bool CoalescerPair::setRegisters(const MachineInstr
*MI
) {
119 srcReg_
= dstReg_
= subIdx_
= 0;
121 flipped_
= crossClass_
= false;
123 unsigned Src
, Dst
, SrcSub
, DstSub
;
124 if (!isMoveInstr(tri_
, MI
, Src
, Dst
, SrcSub
, DstSub
))
126 partial_
= SrcSub
|| DstSub
;
128 // If one register is a physreg, it must be Dst.
129 if (TargetRegisterInfo::isPhysicalRegister(Src
)) {
130 if (TargetRegisterInfo::isPhysicalRegister(Dst
))
133 std::swap(SrcSub
, DstSub
);
137 const MachineRegisterInfo
&MRI
= MI
->getParent()->getParent()->getRegInfo();
139 if (TargetRegisterInfo::isPhysicalRegister(Dst
)) {
140 // Eliminate DstSub on a physreg.
142 Dst
= tri_
.getSubReg(Dst
, DstSub
);
143 if (!Dst
) return false;
147 // Eliminate SrcSub by picking a corresponding Dst superregister.
149 Dst
= tri_
.getMatchingSuperReg(Dst
, SrcSub
, MRI
.getRegClass(Src
));
150 if (!Dst
) return false;
152 } else if (!MRI
.getRegClass(Src
)->contains(Dst
)) {
156 // Both registers are virtual.
158 // Both registers have subreg indices.
159 if (SrcSub
&& DstSub
) {
160 // For now we only handle the case of identical indices in commensurate
161 // registers: Dreg:ssub_1 + Dreg:ssub_1 -> Dreg
162 // FIXME: Handle Qreg:ssub_3 + Dreg:ssub_1 as QReg:dsub_1 + Dreg.
163 if (SrcSub
!= DstSub
)
165 const TargetRegisterClass
*SrcRC
= MRI
.getRegClass(Src
);
166 const TargetRegisterClass
*DstRC
= MRI
.getRegClass(Dst
);
167 if (!getCommonSubClass(DstRC
, SrcRC
))
172 // There can be no SrcSub.
177 assert(!flipped_
&& "Unexpected flip");
181 // Find the new register class.
182 const TargetRegisterClass
*SrcRC
= MRI
.getRegClass(Src
);
183 const TargetRegisterClass
*DstRC
= MRI
.getRegClass(Dst
);
185 newRC_
= tri_
.getMatchingSuperRegClass(DstRC
, SrcRC
, DstSub
);
187 newRC_
= getCommonSubClass(DstRC
, SrcRC
);
190 crossClass_
= newRC_
!= DstRC
|| newRC_
!= SrcRC
;
192 // Check our invariants
193 assert(TargetRegisterInfo::isVirtualRegister(Src
) && "Src must be virtual");
194 assert(!(TargetRegisterInfo::isPhysicalRegister(Dst
) && DstSub
) &&
195 "Cannot have a physical SubIdx");
202 bool CoalescerPair::flip() {
203 if (subIdx_
|| TargetRegisterInfo::isPhysicalRegister(dstReg_
))
205 std::swap(srcReg_
, dstReg_
);
206 flipped_
= !flipped_
;
210 bool CoalescerPair::isCoalescable(const MachineInstr
*MI
) const {
213 unsigned Src
, Dst
, SrcSub
, DstSub
;
214 if (!isMoveInstr(tri_
, MI
, Src
, Dst
, SrcSub
, DstSub
))
217 // Find the virtual register that is srcReg_.
218 if (Dst
== srcReg_
) {
220 std::swap(SrcSub
, DstSub
);
221 } else if (Src
!= srcReg_
) {
225 // Now check that Dst matches dstReg_.
226 if (TargetRegisterInfo::isPhysicalRegister(dstReg_
)) {
227 if (!TargetRegisterInfo::isPhysicalRegister(Dst
))
229 assert(!subIdx_
&& "Inconsistent CoalescerPair state.");
230 // DstSub could be set for a physreg from INSERT_SUBREG.
232 Dst
= tri_
.getSubReg(Dst
, DstSub
);
235 return dstReg_
== Dst
;
236 // This is a partial register copy. Check that the parts match.
237 return tri_
.getSubReg(dstReg_
, SrcSub
) == Dst
;
239 // dstReg_ is virtual.
242 // Registers match, do the subregisters line up?
243 return compose(tri_
, subIdx_
, SrcSub
) == DstSub
;
247 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage
&AU
) const {
248 AU
.setPreservesCFG();
249 AU
.addRequired
<AliasAnalysis
>();
250 AU
.addRequired
<LiveIntervals
>();
251 AU
.addPreserved
<LiveIntervals
>();
252 AU
.addRequired
<LiveDebugVariables
>();
253 AU
.addPreserved
<LiveDebugVariables
>();
254 AU
.addPreserved
<SlotIndexes
>();
255 AU
.addRequired
<MachineLoopInfo
>();
256 AU
.addPreserved
<MachineLoopInfo
>();
257 AU
.addPreservedID(MachineDominatorsID
);
258 AU
.addPreservedID(StrongPHIEliminationID
);
259 AU
.addPreservedID(PHIEliminationID
);
260 AU
.addPreservedID(TwoAddressInstructionPassID
);
261 MachineFunctionPass::getAnalysisUsage(AU
);
264 void RegisterCoalescer::markAsJoined(MachineInstr
*CopyMI
) {
265 /// Joined copies are not deleted immediately, but kept in JoinedCopies.
266 JoinedCopies
.insert(CopyMI
);
268 /// Mark all register operands of CopyMI as <undef> so they won't affect dead
269 /// code elimination.
270 for (MachineInstr::mop_iterator I
= CopyMI
->operands_begin(),
271 E
= CopyMI
->operands_end(); I
!= E
; ++I
)
276 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
277 /// being the source and IntB being the dest, thus this defines a value number
278 /// in IntB. If the source value number (in IntA) is defined by a copy from B,
279 /// see if we can merge these two pieces of B into a single value number,
280 /// eliminating a copy. For example:
284 /// B1 = A3 <- this copy
286 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
287 /// value number to be replaced with B0 (which simplifies the B liveinterval).
289 /// This returns true if an interval was modified.
291 bool RegisterCoalescer::AdjustCopiesBackFrom(const CoalescerPair
&CP
,
292 MachineInstr
*CopyMI
) {
293 // Bail if there is no dst interval - can happen when merging physical subreg
295 if (!li_
->hasInterval(CP
.getDstReg()))
299 li_
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
301 li_
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
302 SlotIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
).getDefIndex();
304 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
305 // the example above.
306 LiveInterval::iterator BLR
= IntB
.FindLiveRangeContaining(CopyIdx
);
307 if (BLR
== IntB
.end()) return false;
308 VNInfo
*BValNo
= BLR
->valno
;
310 // Get the location that B is defined at. Two options: either this value has
311 // an unknown definition point or it is defined at CopyIdx. If unknown, we
313 if (!BValNo
->isDefByCopy()) return false;
314 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
316 // AValNo is the value number in A that defines the copy, A3 in the example.
317 SlotIndex CopyUseIdx
= CopyIdx
.getUseIndex();
318 LiveInterval::iterator ALR
= IntA
.FindLiveRangeContaining(CopyUseIdx
);
319 // The live range might not exist after fun with physreg coalescing.
320 if (ALR
== IntA
.end()) return false;
321 VNInfo
*AValNo
= ALR
->valno
;
322 // If it's re-defined by an early clobber somewhere in the live range, then
323 // it's not safe to eliminate the copy. FIXME: This is a temporary workaround.
325 // 172 %ECX<def> = MOV32rr %reg1039<kill>
326 // 180 INLINEASM <es:subl $5,$1
327 // sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9,
329 // 36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
330 // 188 %EAX<def> = MOV32rr %EAX<kill>
331 // 196 %ECX<def> = MOV32rr %ECX<kill>
332 // 204 %ECX<def> = MOV32rr %ECX<kill>
333 // 212 %EAX<def> = MOV32rr %EAX<kill>
334 // 220 %EAX<def> = MOV32rr %EAX
335 // 228 %reg1039<def> = MOV32rr %ECX<kill>
336 // The early clobber operand ties ECX input to the ECX def.
338 // The live interval of ECX is represented as this:
339 // %reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
340 // The coalescer has no idea there was a def in the middle of [174,230].
341 if (AValNo
->hasRedefByEC())
344 // If AValNo is defined as a copy from IntB, we can potentially process this.
345 // Get the instruction that defines this value number.
346 if (!CP
.isCoalescable(AValNo
->getCopy()))
349 // Get the LiveRange in IntB that this value number starts with.
350 LiveInterval::iterator ValLR
=
351 IntB
.FindLiveRangeContaining(AValNo
->def
.getPrevSlot());
352 if (ValLR
== IntB
.end())
355 // Make sure that the end of the live range is inside the same block as
357 MachineInstr
*ValLREndInst
=
358 li_
->getInstructionFromIndex(ValLR
->end
.getPrevSlot());
359 if (!ValLREndInst
|| ValLREndInst
->getParent() != CopyMI
->getParent())
362 // Okay, we now know that ValLR ends in the same block that the CopyMI
363 // live-range starts. If there are no intervening live ranges between them in
364 // IntB, we can merge them.
365 if (ValLR
+1 != BLR
) return false;
367 // If a live interval is a physical register, conservatively check if any
368 // of its aliases is overlapping the live interval of the virtual register.
369 // If so, do not coalesce.
370 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
371 for (const unsigned *AS
= tri_
->getAliasSet(IntB
.reg
); *AS
; ++AS
)
372 if (li_
->hasInterval(*AS
) && IntA
.overlaps(li_
->getInterval(*AS
))) {
374 dbgs() << "\t\tInterfere with alias ";
375 li_
->getInterval(*AS
).print(dbgs(), tri_
);
382 dbgs() << "Extending: ";
383 IntB
.print(dbgs(), tri_
);
386 SlotIndex FillerStart
= ValLR
->end
, FillerEnd
= BLR
->start
;
387 // We are about to delete CopyMI, so need to remove it as the 'instruction
388 // that defines this value #'. Update the valnum with the new defining
390 BValNo
->def
= FillerStart
;
393 // Okay, we can merge them. We need to insert a new liverange:
394 // [ValLR.end, BLR.begin) of either value number, then we merge the
395 // two value numbers.
396 IntB
.addRange(LiveRange(FillerStart
, FillerEnd
, BValNo
));
398 // If the IntB live range is assigned to a physical register, and if that
399 // physreg has sub-registers, update their live intervals as well.
400 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
)) {
401 for (const unsigned *SR
= tri_
->getSubRegisters(IntB
.reg
); *SR
; ++SR
) {
402 if (!li_
->hasInterval(*SR
))
404 LiveInterval
&SRLI
= li_
->getInterval(*SR
);
405 SRLI
.addRange(LiveRange(FillerStart
, FillerEnd
,
406 SRLI
.getNextValue(FillerStart
, 0,
407 li_
->getVNInfoAllocator())));
411 // Okay, merge "B1" into the same value number as "B0".
412 if (BValNo
!= ValLR
->valno
) {
413 // If B1 is killed by a PHI, then the merged live range must also be killed
414 // by the same PHI, as B0 and B1 can not overlap.
415 bool HasPHIKill
= BValNo
->hasPHIKill();
416 IntB
.MergeValueNumberInto(BValNo
, ValLR
->valno
);
418 ValLR
->valno
->setHasPHIKill(true);
421 dbgs() << " result = ";
422 IntB
.print(dbgs(), tri_
);
426 // If the source instruction was killing the source register before the
427 // merge, unset the isKill marker given the live range has been extended.
428 int UIdx
= ValLREndInst
->findRegisterUseOperandIdx(IntB
.reg
, true);
430 ValLREndInst
->getOperand(UIdx
).setIsKill(false);
433 // If the copy instruction was killing the destination register before the
434 // merge, find the last use and trim the live range. That will also add the
436 if (ALR
->end
== CopyIdx
)
437 li_
->shrinkToUses(&IntA
);
443 /// HasOtherReachingDefs - Return true if there are definitions of IntB
444 /// other than BValNo val# that can reach uses of AValno val# of IntA.
445 bool RegisterCoalescer::HasOtherReachingDefs(LiveInterval
&IntA
,
449 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
451 if (AI
->valno
!= AValNo
) continue;
452 LiveInterval::Ranges::iterator BI
=
453 std::upper_bound(IntB
.ranges
.begin(), IntB
.ranges
.end(), AI
->start
);
454 if (BI
!= IntB
.ranges
.begin())
456 for (; BI
!= IntB
.ranges
.end() && AI
->end
>= BI
->start
; ++BI
) {
457 if (BI
->valno
== BValNo
)
459 if (BI
->start
<= AI
->start
&& BI
->end
> AI
->start
)
461 if (BI
->start
> AI
->start
&& BI
->start
< AI
->end
)
468 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy with
469 /// IntA being the source and IntB being the dest, thus this defines a value
470 /// number in IntB. If the source value number (in IntA) is defined by a
471 /// commutable instruction and its other operand is coalesced to the copy dest
472 /// register, see if we can transform the copy into a noop by commuting the
473 /// definition. For example,
475 /// A3 = op A2 B0<kill>
477 /// B1 = A3 <- this copy
479 /// = op A3 <- more uses
483 /// B2 = op B0 A2<kill>
485 /// B1 = B2 <- now an identify copy
487 /// = op B2 <- more uses
489 /// This returns true if an interval was modified.
491 bool RegisterCoalescer::RemoveCopyByCommutingDef(const CoalescerPair
&CP
,
492 MachineInstr
*CopyMI
) {
493 // FIXME: For now, only eliminate the copy by commuting its def when the
494 // source register is a virtual register. We want to guard against cases
495 // where the copy is a back edge copy and commuting the def lengthen the
496 // live interval of the source register to the entire loop.
497 if (CP
.isPhys() && CP
.isFlipped())
500 // Bail if there is no dst interval.
501 if (!li_
->hasInterval(CP
.getDstReg()))
504 SlotIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
).getDefIndex();
507 li_
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
509 li_
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
511 // BValNo is a value number in B that is defined by a copy from A. 'B3' in
512 // the example above.
513 VNInfo
*BValNo
= IntB
.getVNInfoAt(CopyIdx
);
514 if (!BValNo
|| !BValNo
->isDefByCopy())
517 assert(BValNo
->def
== CopyIdx
&& "Copy doesn't define the value?");
519 // AValNo is the value number in A that defines the copy, A3 in the example.
520 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
.getUseIndex());
521 assert(AValNo
&& "COPY source not live");
523 // If other defs can reach uses of this def, then it's not safe to perform
525 if (AValNo
->isPHIDef() || AValNo
->isUnused() || AValNo
->hasPHIKill())
527 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(AValNo
->def
);
530 const MCInstrDesc
&MCID
= DefMI
->getDesc();
531 if (!MCID
.isCommutable())
533 // If DefMI is a two-address instruction then commuting it will change the
534 // destination register.
535 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg
);
536 assert(DefIdx
!= -1);
538 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
540 unsigned Op1
, Op2
, NewDstIdx
;
541 if (!tii_
->findCommutedOpIndices(DefMI
, Op1
, Op2
))
545 else if (Op2
== UseOpIdx
)
550 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
551 unsigned NewReg
= NewDstMO
.getReg();
552 if (NewReg
!= IntB
.reg
|| !NewDstMO
.isKill())
555 // Make sure there are no other definitions of IntB that would reach the
556 // uses which the new definition can reach.
557 if (HasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
560 // Abort if the aliases of IntB.reg have values that are not simply the
561 // clobbers from the superreg.
562 if (TargetRegisterInfo::isPhysicalRegister(IntB
.reg
))
563 for (const unsigned *AS
= tri_
->getAliasSet(IntB
.reg
); *AS
; ++AS
)
564 if (li_
->hasInterval(*AS
) &&
565 HasOtherReachingDefs(IntA
, li_
->getInterval(*AS
), AValNo
, 0))
568 // If some of the uses of IntA.reg is already coalesced away, return false.
569 // It's not possible to determine whether it's safe to perform the coalescing.
570 for (MachineRegisterInfo::use_nodbg_iterator UI
=
571 mri_
->use_nodbg_begin(IntA
.reg
),
572 UE
= mri_
->use_nodbg_end(); UI
!= UE
; ++UI
) {
573 MachineInstr
*UseMI
= &*UI
;
574 SlotIndex UseIdx
= li_
->getInstructionIndex(UseMI
);
575 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
576 if (ULR
== IntA
.end())
578 if (ULR
->valno
== AValNo
&& JoinedCopies
.count(UseMI
))
582 DEBUG(dbgs() << "\tRemoveCopyByCommutingDef: " << AValNo
->def
<< '\t'
585 // At this point we have decided that it is legal to do this
586 // transformation. Start by commuting the instruction.
587 MachineBasicBlock
*MBB
= DefMI
->getParent();
588 MachineInstr
*NewMI
= tii_
->commuteInstruction(DefMI
);
591 if (TargetRegisterInfo::isVirtualRegister(IntA
.reg
) &&
592 TargetRegisterInfo::isVirtualRegister(IntB
.reg
) &&
593 !mri_
->constrainRegClass(IntB
.reg
, mri_
->getRegClass(IntA
.reg
)))
595 if (NewMI
!= DefMI
) {
596 li_
->ReplaceMachineInstrInMaps(DefMI
, NewMI
);
597 MBB
->insert(DefMI
, NewMI
);
600 unsigned OpIdx
= NewMI
->findRegisterUseOperandIdx(IntA
.reg
, false);
601 NewMI
->getOperand(OpIdx
).setIsKill();
603 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
612 // Update uses of IntA of the specific Val# with IntB.
613 for (MachineRegisterInfo::use_iterator UI
= mri_
->use_begin(IntA
.reg
),
614 UE
= mri_
->use_end(); UI
!= UE
;) {
615 MachineOperand
&UseMO
= UI
.getOperand();
616 MachineInstr
*UseMI
= &*UI
;
618 if (JoinedCopies
.count(UseMI
))
620 if (UseMI
->isDebugValue()) {
621 // FIXME These don't have an instruction index. Not clear we have enough
622 // info to decide whether to do this replacement or not. For now do it.
623 UseMO
.setReg(NewReg
);
626 SlotIndex UseIdx
= li_
->getInstructionIndex(UseMI
).getUseIndex();
627 LiveInterval::iterator ULR
= IntA
.FindLiveRangeContaining(UseIdx
);
628 if (ULR
== IntA
.end() || ULR
->valno
!= AValNo
)
630 if (TargetRegisterInfo::isPhysicalRegister(NewReg
))
631 UseMO
.substPhysReg(NewReg
, *tri_
);
633 UseMO
.setReg(NewReg
);
636 if (!UseMI
->isCopy())
638 if (UseMI
->getOperand(0).getReg() != IntB
.reg
||
639 UseMI
->getOperand(0).getSubReg())
642 // This copy will become a noop. If it's defining a new val#, merge it into
644 SlotIndex DefIdx
= UseIdx
.getDefIndex();
645 VNInfo
*DVNI
= IntB
.getVNInfoAt(DefIdx
);
648 DEBUG(dbgs() << "\t\tnoop: " << DefIdx
<< '\t' << *UseMI
);
649 assert(DVNI
->def
== DefIdx
);
650 BValNo
= IntB
.MergeValueNumberInto(BValNo
, DVNI
);
654 // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
656 VNInfo
*ValNo
= BValNo
;
657 ValNo
->def
= AValNo
->def
;
659 for (LiveInterval::iterator AI
= IntA
.begin(), AE
= IntA
.end();
661 if (AI
->valno
!= AValNo
) continue;
662 IntB
.addRange(LiveRange(AI
->start
, AI
->end
, ValNo
));
664 DEBUG(dbgs() << "\t\textended: " << IntB
<< '\n');
666 IntA
.removeValNo(AValNo
);
667 DEBUG(dbgs() << "\t\ttrimmed: " << IntA
<< '\n');
672 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
673 /// computation, replace the copy by rematerialize the definition.
674 bool RegisterCoalescer::ReMaterializeTrivialDef(LiveInterval
&SrcInt
,
678 MachineInstr
*CopyMI
) {
679 SlotIndex CopyIdx
= li_
->getInstructionIndex(CopyMI
).getUseIndex();
680 LiveInterval::iterator SrcLR
= SrcInt
.FindLiveRangeContaining(CopyIdx
);
681 assert(SrcLR
!= SrcInt
.end() && "Live range not found!");
682 VNInfo
*ValNo
= SrcLR
->valno
;
683 // If other defs can reach uses of this def, then it's not safe to perform
685 if (ValNo
->isPHIDef() || ValNo
->isUnused() || ValNo
->hasPHIKill())
687 MachineInstr
*DefMI
= li_
->getInstructionFromIndex(ValNo
->def
);
690 assert(DefMI
&& "Defining instruction disappeared");
691 const MCInstrDesc
&MCID
= DefMI
->getDesc();
692 if (!MCID
.isAsCheapAsAMove())
694 if (!tii_
->isTriviallyReMaterializable(DefMI
, AA
))
696 bool SawStore
= false;
697 if (!DefMI
->isSafeToMove(tii_
, AA
, SawStore
))
699 if (MCID
.getNumDefs() != 1)
701 if (!DefMI
->isImplicitDef()) {
702 // Make sure the copy destination register class fits the instruction
703 // definition register class. The mismatch can happen as a result of earlier
704 // extract_subreg, insert_subreg, subreg_to_reg coalescing.
705 const TargetRegisterClass
*RC
= tii_
->getRegClass(MCID
, 0, tri_
);
706 if (TargetRegisterInfo::isVirtualRegister(DstReg
)) {
707 if (mri_
->getRegClass(DstReg
) != RC
)
709 } else if (!RC
->contains(DstReg
))
713 // If destination register has a sub-register index on it, make sure it
714 // matches the instruction register class.
716 const MCInstrDesc
&MCID
= DefMI
->getDesc();
717 if (MCID
.getNumDefs() != 1)
719 const TargetRegisterClass
*DstRC
= mri_
->getRegClass(DstReg
);
720 const TargetRegisterClass
*DstSubRC
=
721 DstRC
->getSubRegisterRegClass(DstSubIdx
);
722 const TargetRegisterClass
*DefRC
= tii_
->getRegClass(MCID
, 0, tri_
);
725 else if (DefRC
!= DstSubRC
)
729 RemoveCopyFlag(DstReg
, CopyMI
);
731 MachineBasicBlock
*MBB
= CopyMI
->getParent();
732 MachineBasicBlock::iterator MII
=
733 llvm::next(MachineBasicBlock::iterator(CopyMI
));
734 tii_
->reMaterialize(*MBB
, MII
, DstReg
, DstSubIdx
, DefMI
, *tri_
);
735 MachineInstr
*NewMI
= prior(MII
);
737 // CopyMI may have implicit operands, transfer them over to the newly
738 // rematerialized instruction. And update implicit def interval valnos.
739 for (unsigned i
= CopyMI
->getDesc().getNumOperands(),
740 e
= CopyMI
->getNumOperands(); i
!= e
; ++i
) {
741 MachineOperand
&MO
= CopyMI
->getOperand(i
);
742 if (MO
.isReg() && MO
.isImplicit())
743 NewMI
->addOperand(MO
);
745 RemoveCopyFlag(MO
.getReg(), CopyMI
);
748 NewMI
->copyImplicitOps(CopyMI
);
749 li_
->ReplaceMachineInstrInMaps(CopyMI
, NewMI
);
750 CopyMI
->eraseFromParent();
751 ReMatCopies
.insert(CopyMI
);
752 ReMatDefs
.insert(DefMI
);
753 DEBUG(dbgs() << "Remat: " << *NewMI
);
756 // The source interval can become smaller because we removed a use.
758 li_
->shrinkToUses(&SrcInt
);
763 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
764 /// update the subregister number if it is not zero. If DstReg is a
765 /// physical register and the existing subregister number of the def / use
766 /// being updated is not zero, make sure to set it to the correct physical
769 RegisterCoalescer::UpdateRegDefsUses(const CoalescerPair
&CP
) {
770 bool DstIsPhys
= CP
.isPhys();
771 unsigned SrcReg
= CP
.getSrcReg();
772 unsigned DstReg
= CP
.getDstReg();
773 unsigned SubIdx
= CP
.getSubIdx();
775 // Update LiveDebugVariables.
776 ldv_
->renameRegister(SrcReg
, DstReg
, SubIdx
);
778 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(SrcReg
);
779 MachineInstr
*UseMI
= I
.skipInstruction();) {
780 // A PhysReg copy that won't be coalesced can perhaps be rematerialized
783 if (UseMI
->isCopy() &&
784 !UseMI
->getOperand(1).getSubReg() &&
785 !UseMI
->getOperand(0).getSubReg() &&
786 UseMI
->getOperand(1).getReg() == SrcReg
&&
787 UseMI
->getOperand(0).getReg() != SrcReg
&&
788 UseMI
->getOperand(0).getReg() != DstReg
&&
789 !JoinedCopies
.count(UseMI
) &&
790 ReMaterializeTrivialDef(li_
->getInterval(SrcReg
), false,
791 UseMI
->getOperand(0).getReg(), 0, UseMI
))
795 SmallVector
<unsigned,8> Ops
;
797 tie(Reads
, Writes
) = UseMI
->readsWritesVirtualRegister(SrcReg
, &Ops
);
798 bool Kills
= false, Deads
= false;
800 // Replace SrcReg with DstReg in all UseMI operands.
801 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
802 MachineOperand
&MO
= UseMI
->getOperand(Ops
[i
]);
803 Kills
|= MO
.isKill();
804 Deads
|= MO
.isDead();
807 MO
.substPhysReg(DstReg
, *tri_
);
809 MO
.substVirtReg(DstReg
, SubIdx
, *tri_
);
812 // This instruction is a copy that will be removed.
813 if (JoinedCopies
.count(UseMI
))
817 // If UseMI was a simple SrcReg def, make sure we didn't turn it into a
818 // read-modify-write of DstReg.
820 UseMI
->addRegisterDead(DstReg
, tri_
);
821 else if (!Reads
&& Writes
)
822 UseMI
->addRegisterDefined(DstReg
, tri_
);
824 // Kill flags apply to the whole physical register.
825 if (DstIsPhys
&& Kills
)
826 UseMI
->addRegisterKilled(DstReg
, tri_
);
830 dbgs() << "\t\tupdated: ";
831 if (!UseMI
->isDebugValue())
832 dbgs() << li_
->getInstructionIndex(UseMI
) << "\t";
838 /// removeIntervalIfEmpty - Check if the live interval of a physical register
839 /// is empty, if so remove it and also remove the empty intervals of its
840 /// sub-registers. Return true if live interval is removed.
841 static bool removeIntervalIfEmpty(LiveInterval
&li
, LiveIntervals
*li_
,
842 const TargetRegisterInfo
*tri_
) {
844 if (TargetRegisterInfo::isPhysicalRegister(li
.reg
))
845 for (const unsigned* SR
= tri_
->getSubRegisters(li
.reg
); *SR
; ++SR
) {
846 if (!li_
->hasInterval(*SR
))
848 LiveInterval
&sli
= li_
->getInterval(*SR
);
850 li_
->removeInterval(*SR
);
852 li_
->removeInterval(li
.reg
);
858 /// RemoveDeadDef - If a def of a live interval is now determined dead, remove
859 /// the val# it defines. If the live interval becomes empty, remove it as well.
860 bool RegisterCoalescer::RemoveDeadDef(LiveInterval
&li
,
861 MachineInstr
*DefMI
) {
862 SlotIndex DefIdx
= li_
->getInstructionIndex(DefMI
).getDefIndex();
863 LiveInterval::iterator MLR
= li
.FindLiveRangeContaining(DefIdx
);
864 if (DefIdx
!= MLR
->valno
->def
)
866 li
.removeValNo(MLR
->valno
);
867 return removeIntervalIfEmpty(li
, li_
, tri_
);
870 void RegisterCoalescer::RemoveCopyFlag(unsigned DstReg
,
871 const MachineInstr
*CopyMI
) {
872 SlotIndex DefIdx
= li_
->getInstructionIndex(CopyMI
).getDefIndex();
873 if (li_
->hasInterval(DstReg
)) {
874 LiveInterval
&LI
= li_
->getInterval(DstReg
);
875 if (const LiveRange
*LR
= LI
.getLiveRangeContaining(DefIdx
))
876 if (LR
->valno
->def
== DefIdx
)
877 LR
->valno
->setCopy(0);
879 if (!TargetRegisterInfo::isPhysicalRegister(DstReg
))
881 for (const unsigned* AS
= tri_
->getAliasSet(DstReg
); *AS
; ++AS
) {
882 if (!li_
->hasInterval(*AS
))
884 LiveInterval
&LI
= li_
->getInterval(*AS
);
885 if (const LiveRange
*LR
= LI
.getLiveRangeContaining(DefIdx
))
886 if (LR
->valno
->def
== DefIdx
)
887 LR
->valno
->setCopy(0);
891 /// shouldJoinPhys - Return true if a copy involving a physreg should be joined.
892 /// We need to be careful about coalescing a source physical register with a
893 /// virtual register. Once the coalescing is done, it cannot be broken and these
894 /// are not spillable! If the destination interval uses are far away, think
895 /// twice about coalescing them!
896 bool RegisterCoalescer::shouldJoinPhys(CoalescerPair
&CP
) {
897 bool Allocatable
= li_
->isAllocatable(CP
.getDstReg());
898 LiveInterval
&JoinVInt
= li_
->getInterval(CP
.getSrcReg());
900 /// Always join simple intervals that are defined by a single copy from a
901 /// reserved register. This doesn't increase register pressure, so it is
902 /// always beneficial.
903 if (!Allocatable
&& CP
.isFlipped() && JoinVInt
.containsOneValue())
906 if (!EnablePhysicalJoin
) {
907 DEBUG(dbgs() << "\tPhysreg joins disabled.\n");
911 // Only coalesce to allocatable physreg, we don't want to risk modifying
912 // reserved registers.
914 DEBUG(dbgs() << "\tRegister is an unallocatable physreg.\n");
915 return false; // Not coalescable.
918 // Don't join with physregs that have a ridiculous number of live
919 // ranges. The data structure performance is really bad when that
921 if (li_
->hasInterval(CP
.getDstReg()) &&
922 li_
->getInterval(CP
.getDstReg()).ranges
.size() > 1000) {
925 << "\tPhysical register live interval too complicated, abort!\n");
929 // FIXME: Why are we skipping this test for partial copies?
930 // CodeGen/X86/phys_subreg_coalesce-3.ll needs it.
931 if (!CP
.isPartial()) {
932 const TargetRegisterClass
*RC
= mri_
->getRegClass(CP
.getSrcReg());
933 unsigned Threshold
= RegClassInfo
.getNumAllocatableRegs(RC
) * 2;
934 unsigned Length
= li_
->getApproximateInstructionCount(JoinVInt
);
935 if (Length
> Threshold
) {
937 DEBUG(dbgs() << "\tMay tie down a physical register, abort!\n");
944 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
945 /// two virtual registers from different register classes.
947 RegisterCoalescer::isWinToJoinCrossClass(unsigned SrcReg
,
949 const TargetRegisterClass
*SrcRC
,
950 const TargetRegisterClass
*DstRC
,
951 const TargetRegisterClass
*NewRC
) {
952 unsigned NewRCCount
= RegClassInfo
.getNumAllocatableRegs(NewRC
);
953 // This heuristics is good enough in practice, but it's obviously not *right*.
954 // 4 is a magic number that works well enough for x86, ARM, etc. It filter
955 // out all but the most restrictive register classes.
956 if (NewRCCount
> 4 ||
957 // Early exit if the function is fairly small, coalesce aggressively if
958 // that's the case. For really special register classes with 3 or
959 // fewer registers, be a bit more careful.
960 (li_
->getFuncInstructionCount() / NewRCCount
) < 8)
962 LiveInterval
&SrcInt
= li_
->getInterval(SrcReg
);
963 LiveInterval
&DstInt
= li_
->getInterval(DstReg
);
964 unsigned SrcSize
= li_
->getApproximateInstructionCount(SrcInt
);
965 unsigned DstSize
= li_
->getApproximateInstructionCount(DstInt
);
967 // Coalesce aggressively if the intervals are small compared to the number of
968 // registers in the new class. The number 4 is fairly arbitrary, chosen to be
969 // less aggressive than the 8 used for the whole function size.
970 const unsigned ThresSize
= 4 * NewRCCount
;
971 if (SrcSize
<= ThresSize
&& DstSize
<= ThresSize
)
974 // Estimate *register use density*. If it doubles or more, abort.
975 unsigned SrcUses
= std::distance(mri_
->use_nodbg_begin(SrcReg
),
976 mri_
->use_nodbg_end());
977 unsigned DstUses
= std::distance(mri_
->use_nodbg_begin(DstReg
),
978 mri_
->use_nodbg_end());
979 unsigned NewUses
= SrcUses
+ DstUses
;
980 unsigned NewSize
= SrcSize
+ DstSize
;
981 if (SrcRC
!= NewRC
&& SrcSize
> ThresSize
) {
982 unsigned SrcRCCount
= RegClassInfo
.getNumAllocatableRegs(SrcRC
);
983 if (NewUses
*SrcSize
*SrcRCCount
> 2*SrcUses
*NewSize
*NewRCCount
)
986 if (DstRC
!= NewRC
&& DstSize
> ThresSize
) {
987 unsigned DstRCCount
= RegClassInfo
.getNumAllocatableRegs(DstRC
);
988 if (NewUses
*DstSize
*DstRCCount
> 2*DstUses
*NewSize
*NewRCCount
)
995 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
996 /// which are the src/dst of the copy instruction CopyMI. This returns true
997 /// if the copy was successfully coalesced away. If it is not currently
998 /// possible to coalesce this interval, but it may be possible if other
999 /// things get coalesced, then it returns true by reference in 'Again'.
1000 bool RegisterCoalescer::JoinCopy(MachineInstr
*CopyMI
, bool &Again
) {
1003 if (JoinedCopies
.count(CopyMI
) || ReMatCopies
.count(CopyMI
))
1004 return false; // Already done.
1006 DEBUG(dbgs() << li_
->getInstructionIndex(CopyMI
) << '\t' << *CopyMI
);
1008 CoalescerPair
CP(*tii_
, *tri_
);
1009 if (!CP
.setRegisters(CopyMI
)) {
1010 DEBUG(dbgs() << "\tNot coalescable.\n");
1014 // If they are already joined we continue.
1015 if (CP
.getSrcReg() == CP
.getDstReg()) {
1016 markAsJoined(CopyMI
);
1017 DEBUG(dbgs() << "\tCopy already coalesced.\n");
1018 return false; // Not coalescable.
1021 DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP
.getSrcReg(), tri_
)
1022 << " with " << PrintReg(CP
.getDstReg(), tri_
, CP
.getSubIdx())
1025 // Enforce policies.
1027 if (!shouldJoinPhys(CP
)) {
1028 // Before giving up coalescing, if definition of source is defined by
1029 // trivial computation, try rematerializing it.
1030 if (!CP
.isFlipped() &&
1031 ReMaterializeTrivialDef(li_
->getInterval(CP
.getSrcReg()), true,
1032 CP
.getDstReg(), 0, CopyMI
))
1037 // Avoid constraining virtual register regclass too much.
1038 if (CP
.isCrossClass()) {
1039 DEBUG(dbgs() << "\tCross-class to " << CP
.getNewRC()->getName() << ".\n");
1040 if (DisableCrossClassJoin
) {
1041 DEBUG(dbgs() << "\tCross-class joins disabled.\n");
1044 if (!isWinToJoinCrossClass(CP
.getSrcReg(), CP
.getDstReg(),
1045 mri_
->getRegClass(CP
.getSrcReg()),
1046 mri_
->getRegClass(CP
.getDstReg()),
1048 DEBUG(dbgs() << "\tAvoid coalescing to constrained register class.\n");
1049 Again
= true; // May be possible to coalesce later.
1054 // When possible, let DstReg be the larger interval.
1055 if (!CP
.getSubIdx() && li_
->getInterval(CP
.getSrcReg()).ranges
.size() >
1056 li_
->getInterval(CP
.getDstReg()).ranges
.size())
1060 // Okay, attempt to join these two intervals. On failure, this returns false.
1061 // Otherwise, if one of the intervals being joined is a physreg, this method
1062 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
1063 // been modified, so we can use this information below to update aliases.
1064 if (!JoinIntervals(CP
)) {
1065 // Coalescing failed.
1067 // If definition of source is defined by trivial computation, try
1068 // rematerializing it.
1069 if (!CP
.isFlipped() &&
1070 ReMaterializeTrivialDef(li_
->getInterval(CP
.getSrcReg()), true,
1071 CP
.getDstReg(), 0, CopyMI
))
1074 // If we can eliminate the copy without merging the live ranges, do so now.
1075 if (!CP
.isPartial()) {
1076 if (AdjustCopiesBackFrom(CP
, CopyMI
) ||
1077 RemoveCopyByCommutingDef(CP
, CopyMI
)) {
1078 markAsJoined(CopyMI
);
1079 DEBUG(dbgs() << "\tTrivial!\n");
1084 // Otherwise, we are unable to join the intervals.
1085 DEBUG(dbgs() << "\tInterference!\n");
1086 Again
= true; // May be possible to coalesce later.
1090 // Coalescing to a virtual register that is of a sub-register class of the
1091 // other. Make sure the resulting register is set to the right register class.
1092 if (CP
.isCrossClass()) {
1094 mri_
->setRegClass(CP
.getDstReg(), CP
.getNewRC());
1097 // Remember to delete the copy instruction.
1098 markAsJoined(CopyMI
);
1100 UpdateRegDefsUses(CP
);
1102 // If we have extended the live range of a physical register, make sure we
1103 // update live-in lists as well.
1105 SmallVector
<MachineBasicBlock
*, 16> BlockSeq
;
1106 // JoinIntervals invalidates the VNInfos in SrcInt, but we only need the
1107 // ranges for this, and they are preserved.
1108 LiveInterval
&SrcInt
= li_
->getInterval(CP
.getSrcReg());
1109 for (LiveInterval::const_iterator I
= SrcInt
.begin(), E
= SrcInt
.end();
1111 li_
->findLiveInMBBs(I
->start
, I
->end
, BlockSeq
);
1112 for (unsigned idx
= 0, size
= BlockSeq
.size(); idx
!= size
; ++idx
) {
1113 MachineBasicBlock
&block
= *BlockSeq
[idx
];
1114 if (!block
.isLiveIn(CP
.getDstReg()))
1115 block
.addLiveIn(CP
.getDstReg());
1121 // SrcReg is guarateed to be the register whose live interval that is
1123 li_
->removeInterval(CP
.getSrcReg());
1125 // Update regalloc hint.
1126 tri_
->UpdateRegAllocHint(CP
.getSrcReg(), CP
.getDstReg(), *mf_
);
1129 LiveInterval
&DstInt
= li_
->getInterval(CP
.getDstReg());
1130 dbgs() << "\tJoined. Result = ";
1131 DstInt
.print(dbgs(), tri_
);
1139 /// ComputeUltimateVN - Assuming we are going to join two live intervals,
1140 /// compute what the resultant value numbers for each value in the input two
1141 /// ranges will be. This is complicated by copies between the two which can
1142 /// and will commonly cause multiple value numbers to be merged into one.
1144 /// VN is the value number that we're trying to resolve. InstDefiningValue
1145 /// keeps track of the new InstDefiningValue assignment for the result
1146 /// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
1147 /// whether a value in this or other is a copy from the opposite set.
1148 /// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1149 /// already been assigned.
1151 /// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1152 /// contains the value number the copy is from.
1154 static unsigned ComputeUltimateVN(VNInfo
*VNI
,
1155 SmallVector
<VNInfo
*, 16> &NewVNInfo
,
1156 DenseMap
<VNInfo
*, VNInfo
*> &ThisFromOther
,
1157 DenseMap
<VNInfo
*, VNInfo
*> &OtherFromThis
,
1158 SmallVector
<int, 16> &ThisValNoAssignments
,
1159 SmallVector
<int, 16> &OtherValNoAssignments
) {
1160 unsigned VN
= VNI
->id
;
1162 // If the VN has already been computed, just return it.
1163 if (ThisValNoAssignments
[VN
] >= 0)
1164 return ThisValNoAssignments
[VN
];
1165 assert(ThisValNoAssignments
[VN
] != -2 && "Cyclic value numbers");
1167 // If this val is not a copy from the other val, then it must be a new value
1168 // number in the destination.
1169 DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= ThisFromOther
.find(VNI
);
1170 if (I
== ThisFromOther
.end()) {
1171 NewVNInfo
.push_back(VNI
);
1172 return ThisValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1174 VNInfo
*OtherValNo
= I
->second
;
1176 // Otherwise, this *is* a copy from the RHS. If the other side has already
1177 // been computed, return it.
1178 if (OtherValNoAssignments
[OtherValNo
->id
] >= 0)
1179 return ThisValNoAssignments
[VN
] = OtherValNoAssignments
[OtherValNo
->id
];
1181 // Mark this value number as currently being computed, then ask what the
1182 // ultimate value # of the other value is.
1183 ThisValNoAssignments
[VN
] = -2;
1184 unsigned UltimateVN
=
1185 ComputeUltimateVN(OtherValNo
, NewVNInfo
, OtherFromThis
, ThisFromOther
,
1186 OtherValNoAssignments
, ThisValNoAssignments
);
1187 return ThisValNoAssignments
[VN
] = UltimateVN
;
1191 // Find out if we have something like
1194 // if so, we can pretend this is actually
1197 // which allows us to coalesce A and B.
1198 // VNI is the definition of B. LR is the life range of A that includes
1199 // the slot just before B. If we return true, we add "B = X" to DupCopies.
1200 static bool RegistersDefinedFromSameValue(LiveIntervals
&li
,
1201 const TargetRegisterInfo
&tri
,
1205 SmallVector
<MachineInstr
*, 8> &DupCopies
) {
1206 // FIXME: This is very conservative. For example, we don't handle
1207 // physical registers.
1209 MachineInstr
*MI
= VNI
->getCopy();
1211 if (!MI
->isFullCopy() || CP
.isPartial() || CP
.isPhys())
1214 unsigned Dst
= MI
->getOperand(0).getReg();
1215 unsigned Src
= MI
->getOperand(1).getReg();
1217 if (!TargetRegisterInfo::isVirtualRegister(Src
) ||
1218 !TargetRegisterInfo::isVirtualRegister(Dst
))
1221 unsigned A
= CP
.getDstReg();
1222 unsigned B
= CP
.getSrcReg();
1228 VNInfo
*Other
= LR
->valno
;
1229 if (!Other
->isDefByCopy())
1231 const MachineInstr
*OtherMI
= Other
->getCopy();
1233 if (!OtherMI
->isFullCopy())
1236 unsigned OtherDst
= OtherMI
->getOperand(0).getReg();
1237 unsigned OtherSrc
= OtherMI
->getOperand(1).getReg();
1239 if (!TargetRegisterInfo::isVirtualRegister(OtherSrc
) ||
1240 !TargetRegisterInfo::isVirtualRegister(OtherDst
))
1243 assert(OtherDst
== B
);
1245 if (Src
!= OtherSrc
)
1248 // If the copies use two different value numbers of X, we cannot merge
1250 LiveInterval
&SrcInt
= li
.getInterval(Src
);
1251 if (SrcInt
.getVNInfoAt(Other
->def
) != SrcInt
.getVNInfoAt(VNI
->def
))
1254 DupCopies
.push_back(MI
);
1259 /// JoinIntervals - Attempt to join these two intervals. On failure, this
1261 bool RegisterCoalescer::JoinIntervals(CoalescerPair
&CP
) {
1262 LiveInterval
&RHS
= li_
->getInterval(CP
.getSrcReg());
1263 DEBUG({ dbgs() << "\t\tRHS = "; RHS
.print(dbgs(), tri_
); dbgs() << "\n"; });
1265 // If a live interval is a physical register, check for interference with any
1266 // aliases. The interference check implemented here is a bit more conservative
1267 // than the full interfeence check below. We allow overlapping live ranges
1268 // only when one is a copy of the other.
1270 for (const unsigned *AS
= tri_
->getAliasSet(CP
.getDstReg()); *AS
; ++AS
){
1271 if (!li_
->hasInterval(*AS
))
1273 const LiveInterval
&LHS
= li_
->getInterval(*AS
);
1274 LiveInterval::const_iterator LI
= LHS
.begin();
1275 for (LiveInterval::const_iterator RI
= RHS
.begin(), RE
= RHS
.end();
1277 LI
= std::lower_bound(LI
, LHS
.end(), RI
->start
);
1278 // Does LHS have an overlapping live range starting before RI?
1279 if ((LI
!= LHS
.begin() && LI
[-1].end
> RI
->start
) &&
1280 (RI
->start
!= RI
->valno
->def
||
1281 !CP
.isCoalescable(li_
->getInstructionFromIndex(RI
->start
)))) {
1283 dbgs() << "\t\tInterference from alias: ";
1284 LHS
.print(dbgs(), tri_
);
1285 dbgs() << "\n\t\tOverlap at " << RI
->start
<< " and no copy.\n";
1290 // Check that LHS ranges beginning in this range are copies.
1291 for (; LI
!= LHS
.end() && LI
->start
< RI
->end
; ++LI
) {
1292 if (LI
->start
!= LI
->valno
->def
||
1293 !CP
.isCoalescable(li_
->getInstructionFromIndex(LI
->start
))) {
1295 dbgs() << "\t\tInterference from alias: ";
1296 LHS
.print(dbgs(), tri_
);
1297 dbgs() << "\n\t\tDef at " << LI
->start
<< " is not a copy.\n";
1306 // Compute the final value assignment, assuming that the live ranges can be
1308 SmallVector
<int, 16> LHSValNoAssignments
;
1309 SmallVector
<int, 16> RHSValNoAssignments
;
1310 DenseMap
<VNInfo
*, VNInfo
*> LHSValsDefinedFromRHS
;
1311 DenseMap
<VNInfo
*, VNInfo
*> RHSValsDefinedFromLHS
;
1312 SmallVector
<VNInfo
*, 16> NewVNInfo
;
1314 SmallVector
<MachineInstr
*, 8> DupCopies
;
1316 LiveInterval
&LHS
= li_
->getOrCreateInterval(CP
.getDstReg());
1317 DEBUG({ dbgs() << "\t\tLHS = "; LHS
.print(dbgs(), tri_
); dbgs() << "\n"; });
1319 // Loop over the value numbers of the LHS, seeing if any are defined from
1321 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
1324 if (VNI
->isUnused() || !VNI
->isDefByCopy()) // Src not defined by a copy?
1327 // Never join with a register that has EarlyClobber redefs.
1328 if (VNI
->hasRedefByEC())
1331 // Figure out the value # from the RHS.
1332 LiveRange
*lr
= RHS
.getLiveRangeContaining(VNI
->def
.getPrevSlot());
1333 // The copy could be to an aliased physreg.
1336 // DstReg is known to be a register in the LHS interval. If the src is
1337 // from the RHS interval, we can use its value #.
1338 MachineInstr
*MI
= VNI
->getCopy();
1339 if (!CP
.isCoalescable(MI
) &&
1340 !RegistersDefinedFromSameValue(*li_
, *tri_
, CP
, VNI
, lr
, DupCopies
))
1343 LHSValsDefinedFromRHS
[VNI
] = lr
->valno
;
1346 // Loop over the value numbers of the RHS, seeing if any are defined from
1348 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
1351 if (VNI
->isUnused() || !VNI
->isDefByCopy()) // Src not defined by a copy?
1354 // Never join with a register that has EarlyClobber redefs.
1355 if (VNI
->hasRedefByEC())
1358 // Figure out the value # from the LHS.
1359 LiveRange
*lr
= LHS
.getLiveRangeContaining(VNI
->def
.getPrevSlot());
1360 // The copy could be to an aliased physreg.
1363 // DstReg is known to be a register in the RHS interval. If the src is
1364 // from the LHS interval, we can use its value #.
1365 MachineInstr
*MI
= VNI
->getCopy();
1366 if (!CP
.isCoalescable(MI
) &&
1367 !RegistersDefinedFromSameValue(*li_
, *tri_
, CP
, VNI
, lr
, DupCopies
))
1370 RHSValsDefinedFromLHS
[VNI
] = lr
->valno
;
1373 LHSValNoAssignments
.resize(LHS
.getNumValNums(), -1);
1374 RHSValNoAssignments
.resize(RHS
.getNumValNums(), -1);
1375 NewVNInfo
.reserve(LHS
.getNumValNums() + RHS
.getNumValNums());
1377 for (LiveInterval::vni_iterator i
= LHS
.vni_begin(), e
= LHS
.vni_end();
1380 unsigned VN
= VNI
->id
;
1381 if (LHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
1383 ComputeUltimateVN(VNI
, NewVNInfo
,
1384 LHSValsDefinedFromRHS
, RHSValsDefinedFromLHS
,
1385 LHSValNoAssignments
, RHSValNoAssignments
);
1387 for (LiveInterval::vni_iterator i
= RHS
.vni_begin(), e
= RHS
.vni_end();
1390 unsigned VN
= VNI
->id
;
1391 if (RHSValNoAssignments
[VN
] >= 0 || VNI
->isUnused())
1393 // If this value number isn't a copy from the LHS, it's a new number.
1394 if (RHSValsDefinedFromLHS
.find(VNI
) == RHSValsDefinedFromLHS
.end()) {
1395 NewVNInfo
.push_back(VNI
);
1396 RHSValNoAssignments
[VN
] = NewVNInfo
.size()-1;
1400 ComputeUltimateVN(VNI
, NewVNInfo
,
1401 RHSValsDefinedFromLHS
, LHSValsDefinedFromRHS
,
1402 RHSValNoAssignments
, LHSValNoAssignments
);
1405 // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1406 // interval lists to see if these intervals are coalescable.
1407 LiveInterval::const_iterator I
= LHS
.begin();
1408 LiveInterval::const_iterator IE
= LHS
.end();
1409 LiveInterval::const_iterator J
= RHS
.begin();
1410 LiveInterval::const_iterator JE
= RHS
.end();
1412 // Skip ahead until the first place of potential sharing.
1413 if (I
!= IE
&& J
!= JE
) {
1414 if (I
->start
< J
->start
) {
1415 I
= std::upper_bound(I
, IE
, J
->start
);
1416 if (I
!= LHS
.begin()) --I
;
1417 } else if (J
->start
< I
->start
) {
1418 J
= std::upper_bound(J
, JE
, I
->start
);
1419 if (J
!= RHS
.begin()) --J
;
1423 while (I
!= IE
&& J
!= JE
) {
1424 // Determine if these two live ranges overlap.
1426 if (I
->start
< J
->start
) {
1427 Overlaps
= I
->end
> J
->start
;
1429 Overlaps
= J
->end
> I
->start
;
1432 // If so, check value # info to determine if they are really different.
1434 // If the live range overlap will map to the same value number in the
1435 // result liverange, we can still coalesce them. If not, we can't.
1436 if (LHSValNoAssignments
[I
->valno
->id
] !=
1437 RHSValNoAssignments
[J
->valno
->id
])
1439 // If it's re-defined by an early clobber somewhere in the live range,
1440 // then conservatively abort coalescing.
1441 if (NewVNInfo
[LHSValNoAssignments
[I
->valno
->id
]]->hasRedefByEC())
1445 if (I
->end
< J
->end
)
1451 // Update kill info. Some live ranges are extended due to copy coalescing.
1452 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= LHSValsDefinedFromRHS
.begin(),
1453 E
= LHSValsDefinedFromRHS
.end(); I
!= E
; ++I
) {
1454 VNInfo
*VNI
= I
->first
;
1455 unsigned LHSValID
= LHSValNoAssignments
[VNI
->id
];
1456 if (VNI
->hasPHIKill())
1457 NewVNInfo
[LHSValID
]->setHasPHIKill(true);
1460 // Update kill info. Some live ranges are extended due to copy coalescing.
1461 for (DenseMap
<VNInfo
*, VNInfo
*>::iterator I
= RHSValsDefinedFromLHS
.begin(),
1462 E
= RHSValsDefinedFromLHS
.end(); I
!= E
; ++I
) {
1463 VNInfo
*VNI
= I
->first
;
1464 unsigned RHSValID
= RHSValNoAssignments
[VNI
->id
];
1465 if (VNI
->hasPHIKill())
1466 NewVNInfo
[RHSValID
]->setHasPHIKill(true);
1469 if (LHSValNoAssignments
.empty())
1470 LHSValNoAssignments
.push_back(-1);
1471 if (RHSValNoAssignments
.empty())
1472 RHSValNoAssignments
.push_back(-1);
1474 SmallVector
<unsigned, 8> SourceRegisters
;
1475 for (SmallVector
<MachineInstr
*, 8>::iterator I
= DupCopies
.begin(),
1476 E
= DupCopies
.end(); I
!= E
; ++I
) {
1477 MachineInstr
*MI
= *I
;
1479 // We have pretended that the assignment to B in
1482 // was actually a copy from A. Now that we decided to coalesce A and B,
1483 // transform the code into
1486 // and mark the X as coalesced to keep the illusion.
1487 unsigned Src
= MI
->getOperand(1).getReg();
1488 SourceRegisters
.push_back(Src
);
1489 MI
->getOperand(0).substVirtReg(Src
, 0, *tri_
);
1494 // If B = X was the last use of X in a liverange, we have to shrink it now
1495 // that B = X is gone.
1496 for (SmallVector
<unsigned, 8>::iterator I
= SourceRegisters
.begin(),
1497 E
= SourceRegisters
.end(); I
!= E
; ++I
) {
1498 li_
->shrinkToUses(&li_
->getInterval(*I
));
1501 // If we get here, we know that we can coalesce the live ranges. Ask the
1502 // intervals to coalesce themselves now.
1503 LHS
.join(RHS
, &LHSValNoAssignments
[0], &RHSValNoAssignments
[0], NewVNInfo
,
1509 // DepthMBBCompare - Comparison predicate that sort first based on the loop
1510 // depth of the basic block (the unsigned), and then on the MBB number.
1511 struct DepthMBBCompare
{
1512 typedef std::pair
<unsigned, MachineBasicBlock
*> DepthMBBPair
;
1513 bool operator()(const DepthMBBPair
&LHS
, const DepthMBBPair
&RHS
) const {
1514 // Deeper loops first
1515 if (LHS
.first
!= RHS
.first
)
1516 return LHS
.first
> RHS
.first
;
1518 // Prefer blocks that are more connected in the CFG. This takes care of
1519 // the most difficult copies first while intervals are short.
1520 unsigned cl
= LHS
.second
->pred_size() + LHS
.second
->succ_size();
1521 unsigned cr
= RHS
.second
->pred_size() + RHS
.second
->succ_size();
1525 // As a last resort, sort by block number.
1526 return LHS
.second
->getNumber() < RHS
.second
->getNumber();
1531 void RegisterCoalescer::CopyCoalesceInMBB(MachineBasicBlock
*MBB
,
1532 std::vector
<MachineInstr
*> &TryAgain
) {
1533 DEBUG(dbgs() << MBB
->getName() << ":\n");
1535 SmallVector
<MachineInstr
*, 8> VirtCopies
;
1536 SmallVector
<MachineInstr
*, 8> PhysCopies
;
1537 SmallVector
<MachineInstr
*, 8> ImpDefCopies
;
1538 for (MachineBasicBlock::iterator MII
= MBB
->begin(), E
= MBB
->end();
1540 MachineInstr
*Inst
= MII
++;
1542 // If this isn't a copy nor a extract_subreg, we can't join intervals.
1543 unsigned SrcReg
, DstReg
;
1544 if (Inst
->isCopy()) {
1545 DstReg
= Inst
->getOperand(0).getReg();
1546 SrcReg
= Inst
->getOperand(1).getReg();
1547 } else if (Inst
->isSubregToReg()) {
1548 DstReg
= Inst
->getOperand(0).getReg();
1549 SrcReg
= Inst
->getOperand(2).getReg();
1553 bool SrcIsPhys
= TargetRegisterInfo::isPhysicalRegister(SrcReg
);
1554 bool DstIsPhys
= TargetRegisterInfo::isPhysicalRegister(DstReg
);
1555 if (li_
->hasInterval(SrcReg
) && li_
->getInterval(SrcReg
).empty())
1556 ImpDefCopies
.push_back(Inst
);
1557 else if (SrcIsPhys
|| DstIsPhys
)
1558 PhysCopies
.push_back(Inst
);
1560 VirtCopies
.push_back(Inst
);
1563 // Try coalescing implicit copies and insert_subreg <undef> first,
1564 // followed by copies to / from physical registers, then finally copies
1565 // from virtual registers to virtual registers.
1566 for (unsigned i
= 0, e
= ImpDefCopies
.size(); i
!= e
; ++i
) {
1567 MachineInstr
*TheCopy
= ImpDefCopies
[i
];
1569 if (!JoinCopy(TheCopy
, Again
))
1571 TryAgain
.push_back(TheCopy
);
1573 for (unsigned i
= 0, e
= PhysCopies
.size(); i
!= e
; ++i
) {
1574 MachineInstr
*TheCopy
= PhysCopies
[i
];
1576 if (!JoinCopy(TheCopy
, Again
))
1578 TryAgain
.push_back(TheCopy
);
1580 for (unsigned i
= 0, e
= VirtCopies
.size(); i
!= e
; ++i
) {
1581 MachineInstr
*TheCopy
= VirtCopies
[i
];
1583 if (!JoinCopy(TheCopy
, Again
))
1585 TryAgain
.push_back(TheCopy
);
1589 void RegisterCoalescer::joinIntervals() {
1590 DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
1592 std::vector
<MachineInstr
*> TryAgainList
;
1593 if (loopInfo
->empty()) {
1594 // If there are no loops in the function, join intervals in function order.
1595 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();
1597 CopyCoalesceInMBB(I
, TryAgainList
);
1599 // Otherwise, join intervals in inner loops before other intervals.
1600 // Unfortunately we can't just iterate over loop hierarchy here because
1601 // there may be more MBB's than BB's. Collect MBB's for sorting.
1603 // Join intervals in the function prolog first. We want to join physical
1604 // registers with virtual registers before the intervals got too long.
1605 std::vector
<std::pair
<unsigned, MachineBasicBlock
*> > MBBs
;
1606 for (MachineFunction::iterator I
= mf_
->begin(), E
= mf_
->end();I
!= E
;++I
){
1607 MachineBasicBlock
*MBB
= I
;
1608 MBBs
.push_back(std::make_pair(loopInfo
->getLoopDepth(MBB
), I
));
1611 // Sort by loop depth.
1612 std::sort(MBBs
.begin(), MBBs
.end(), DepthMBBCompare());
1614 // Finally, join intervals in loop nest order.
1615 for (unsigned i
= 0, e
= MBBs
.size(); i
!= e
; ++i
)
1616 CopyCoalesceInMBB(MBBs
[i
].second
, TryAgainList
);
1619 // Joining intervals can allow other intervals to be joined. Iteratively join
1620 // until we make no progress.
1621 bool ProgressMade
= true;
1622 while (ProgressMade
) {
1623 ProgressMade
= false;
1625 for (unsigned i
= 0, e
= TryAgainList
.size(); i
!= e
; ++i
) {
1626 MachineInstr
*&TheCopy
= TryAgainList
[i
];
1631 bool Success
= JoinCopy(TheCopy
, Again
);
1632 if (Success
|| !Again
) {
1633 TheCopy
= 0; // Mark this one as done.
1634 ProgressMade
= true;
1640 void RegisterCoalescer::releaseMemory() {
1641 JoinedCopies
.clear();
1642 ReMatCopies
.clear();
1646 bool RegisterCoalescer::runOnMachineFunction(MachineFunction
&fn
) {
1648 mri_
= &fn
.getRegInfo();
1649 tm_
= &fn
.getTarget();
1650 tri_
= tm_
->getRegisterInfo();
1651 tii_
= tm_
->getInstrInfo();
1652 li_
= &getAnalysis
<LiveIntervals
>();
1653 ldv_
= &getAnalysis
<LiveDebugVariables
>();
1654 AA
= &getAnalysis
<AliasAnalysis
>();
1655 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
1657 DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
1658 << "********** Function: "
1659 << ((Value
*)mf_
->getFunction())->getName() << '\n');
1661 if (VerifyCoalescing
)
1662 mf_
->verify(this, "Before register coalescing");
1664 RegClassInfo
.runOnMachineFunction(fn
);
1666 // Join (coalesce) intervals if requested.
1667 if (EnableJoining
) {
1670 dbgs() << "********** INTERVALS POST JOINING **********\n";
1671 for (LiveIntervals::iterator I
= li_
->begin(), E
= li_
->end();
1673 I
->second
->print(dbgs(), tri_
);
1679 // Perform a final pass over the instructions and compute spill weights
1680 // and remove identity moves.
1681 SmallVector
<unsigned, 4> DeadDefs
;
1682 for (MachineFunction::iterator mbbi
= mf_
->begin(), mbbe
= mf_
->end();
1683 mbbi
!= mbbe
; ++mbbi
) {
1684 MachineBasicBlock
* mbb
= mbbi
;
1685 for (MachineBasicBlock::iterator mii
= mbb
->begin(), mie
= mbb
->end();
1687 MachineInstr
*MI
= mii
;
1688 if (JoinedCopies
.count(MI
)) {
1689 // Delete all coalesced copies.
1690 bool DoDelete
= true;
1691 assert(MI
->isCopyLike() && "Unrecognized copy instruction");
1692 unsigned SrcReg
= MI
->getOperand(MI
->isSubregToReg() ? 2 : 1).getReg();
1693 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
) &&
1694 MI
->getNumOperands() > 2)
1695 // Do not delete extract_subreg, insert_subreg of physical
1696 // registers unless the definition is dead. e.g.
1697 // %DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
1698 // or else the scavenger may complain. LowerSubregs will
1699 // delete them later.
1702 if (MI
->allDefsAreDead()) {
1703 if (TargetRegisterInfo::isVirtualRegister(SrcReg
) &&
1704 li_
->hasInterval(SrcReg
))
1705 li_
->shrinkToUses(&li_
->getInterval(SrcReg
));
1709 // We need the instruction to adjust liveness, so make it a KILL.
1710 if (MI
->isSubregToReg()) {
1711 MI
->RemoveOperand(3);
1712 MI
->RemoveOperand(1);
1714 MI
->setDesc(tii_
->get(TargetOpcode::KILL
));
1715 mii
= llvm::next(mii
);
1717 li_
->RemoveMachineInstrFromMaps(MI
);
1718 mii
= mbbi
->erase(mii
);
1724 // Now check if this is a remat'ed def instruction which is now dead.
1725 if (ReMatDefs
.count(MI
)) {
1727 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1728 const MachineOperand
&MO
= MI
->getOperand(i
);
1731 unsigned Reg
= MO
.getReg();
1734 if (TargetRegisterInfo::isVirtualRegister(Reg
))
1735 DeadDefs
.push_back(Reg
);
1738 if (TargetRegisterInfo::isPhysicalRegister(Reg
) ||
1739 !mri_
->use_nodbg_empty(Reg
)) {
1745 while (!DeadDefs
.empty()) {
1746 unsigned DeadDef
= DeadDefs
.back();
1747 DeadDefs
.pop_back();
1748 RemoveDeadDef(li_
->getInterval(DeadDef
), MI
);
1750 li_
->RemoveMachineInstrFromMaps(mii
);
1751 mii
= mbbi
->erase(mii
);
1759 // Check for now unnecessary kill flags.
1760 if (li_
->isNotInMIMap(MI
)) continue;
1761 SlotIndex DefIdx
= li_
->getInstructionIndex(MI
).getDefIndex();
1762 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1763 MachineOperand
&MO
= MI
->getOperand(i
);
1764 if (!MO
.isReg() || !MO
.isKill()) continue;
1765 unsigned reg
= MO
.getReg();
1766 if (!reg
|| !li_
->hasInterval(reg
)) continue;
1767 if (!li_
->getInterval(reg
).killedAt(DefIdx
)) {
1768 MO
.setIsKill(false);
1771 // When leaving a kill flag on a physreg, check if any subregs should
1773 if (!TargetRegisterInfo::isPhysicalRegister(reg
))
1775 for (const unsigned *SR
= tri_
->getSubRegisters(reg
);
1776 unsigned S
= *SR
; ++SR
)
1777 if (li_
->hasInterval(S
) && li_
->getInterval(S
).liveAt(DefIdx
))
1778 MI
->addRegisterDefined(S
, tri_
);
1784 DEBUG(ldv_
->dump());
1785 if (VerifyCoalescing
)
1786 mf_
->verify(this, "After register coalescing");
1790 /// print - Implement the dump method.
1791 void RegisterCoalescer::print(raw_ostream
&O
, const Module
* m
) const {
1795 RegisterCoalescer
*llvm::createRegisterCoalescer() {
1796 return new RegisterCoalescer();