1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "llvm/CodeGen/ScheduleDAG.h"
17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18 #include "llvm/CodeGen/SelectionDAGNodes.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
29 cl::opt
<bool> StressSchedOpt(
30 "stress-sched", cl::Hidden
, cl::init(false),
31 cl::desc("Stress test instruction scheduling"));
34 ScheduleDAG::ScheduleDAG(MachineFunction
&mf
)
36 TII(TM
.getInstrInfo()),
37 TRI(TM
.getRegisterInfo()),
38 MF(mf
), MRI(mf
.getRegInfo()),
41 StressSched
= StressSchedOpt
;
45 ScheduleDAG::~ScheduleDAG() {}
47 /// getInstrDesc helper to handle SDNodes.
48 const MCInstrDesc
*ScheduleDAG::getNodeDesc(const SDNode
*Node
) const {
49 if (!Node
|| !Node
->isMachineOpcode()) return NULL
;
50 return &TII
->get(Node
->getMachineOpcode());
53 /// dump - dump the schedule.
54 void ScheduleDAG::dumpSchedule() const {
55 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; i
++) {
56 if (SUnit
*SU
= Sequence
[i
])
59 dbgs() << "**** NOOP ****\n";
64 /// Run - perform scheduling.
66 void ScheduleDAG::Run(MachineBasicBlock
*bb
,
67 MachineBasicBlock::iterator insertPos
) {
69 InsertPos
= insertPos
;
79 dbgs() << "*** Final schedule ***\n";
85 /// addPred - This adds the specified edge as a pred of the current node if
86 /// not already. It also adds the current node as a successor of the
88 bool SUnit::addPred(const SDep
&D
) {
89 // If this node already has this depenence, don't add a redundant one.
90 for (SmallVector
<SDep
, 4>::const_iterator I
= Preds
.begin(), E
= Preds
.end();
94 // Now add a corresponding succ to N.
97 SUnit
*N
= D
.getSUnit();
98 // Update the bookkeeping.
99 if (D
.getKind() == SDep::Data
) {
100 assert(NumPreds
< UINT_MAX
&& "NumPreds will overflow!");
101 assert(N
->NumSuccs
< UINT_MAX
&& "NumSuccs will overflow!");
105 if (!N
->isScheduled
) {
106 assert(NumPredsLeft
< UINT_MAX
&& "NumPredsLeft will overflow!");
110 assert(N
->NumSuccsLeft
< UINT_MAX
&& "NumSuccsLeft will overflow!");
114 N
->Succs
.push_back(P
);
115 if (P
.getLatency() != 0) {
116 this->setDepthDirty();
122 /// removePred - This removes the specified edge as a pred of the current
123 /// node if it exists. It also removes the current node as a successor of
124 /// the specified node.
125 void SUnit::removePred(const SDep
&D
) {
126 // Find the matching predecessor.
127 for (SmallVector
<SDep
, 4>::iterator I
= Preds
.begin(), E
= Preds
.end();
130 bool FoundSucc
= false;
131 // Find the corresponding successor in N.
134 SUnit
*N
= D
.getSUnit();
135 for (SmallVector
<SDep
, 4>::iterator II
= N
->Succs
.begin(),
136 EE
= N
->Succs
.end(); II
!= EE
; ++II
)
142 assert(FoundSucc
&& "Mismatching preds / succs lists!");
144 // Update the bookkeeping.
145 if (P
.getKind() == SDep::Data
) {
146 assert(NumPreds
> 0 && "NumPreds will underflow!");
147 assert(N
->NumSuccs
> 0 && "NumSuccs will underflow!");
151 if (!N
->isScheduled
) {
152 assert(NumPredsLeft
> 0 && "NumPredsLeft will underflow!");
156 assert(N
->NumSuccsLeft
> 0 && "NumSuccsLeft will underflow!");
159 if (P
.getLatency() != 0) {
160 this->setDepthDirty();
167 void SUnit::setDepthDirty() {
168 if (!isDepthCurrent
) return;
169 SmallVector
<SUnit
*, 8> WorkList
;
170 WorkList
.push_back(this);
172 SUnit
*SU
= WorkList
.pop_back_val();
173 SU
->isDepthCurrent
= false;
174 for (SUnit::const_succ_iterator I
= SU
->Succs
.begin(),
175 E
= SU
->Succs
.end(); I
!= E
; ++I
) {
176 SUnit
*SuccSU
= I
->getSUnit();
177 if (SuccSU
->isDepthCurrent
)
178 WorkList
.push_back(SuccSU
);
180 } while (!WorkList
.empty());
183 void SUnit::setHeightDirty() {
184 if (!isHeightCurrent
) return;
185 SmallVector
<SUnit
*, 8> WorkList
;
186 WorkList
.push_back(this);
188 SUnit
*SU
= WorkList
.pop_back_val();
189 SU
->isHeightCurrent
= false;
190 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(),
191 E
= SU
->Preds
.end(); I
!= E
; ++I
) {
192 SUnit
*PredSU
= I
->getSUnit();
193 if (PredSU
->isHeightCurrent
)
194 WorkList
.push_back(PredSU
);
196 } while (!WorkList
.empty());
199 /// setDepthToAtLeast - Update this node's successors to reflect the
200 /// fact that this node's depth just increased.
202 void SUnit::setDepthToAtLeast(unsigned NewDepth
) {
203 if (NewDepth
<= getDepth())
207 isDepthCurrent
= true;
210 /// setHeightToAtLeast - Update this node's predecessors to reflect the
211 /// fact that this node's height just increased.
213 void SUnit::setHeightToAtLeast(unsigned NewHeight
) {
214 if (NewHeight
<= getHeight())
218 isHeightCurrent
= true;
221 /// ComputeDepth - Calculate the maximal path from the node to the exit.
223 void SUnit::ComputeDepth() {
224 SmallVector
<SUnit
*, 8> WorkList
;
225 WorkList
.push_back(this);
227 SUnit
*Cur
= WorkList
.back();
230 unsigned MaxPredDepth
= 0;
231 for (SUnit::const_pred_iterator I
= Cur
->Preds
.begin(),
232 E
= Cur
->Preds
.end(); I
!= E
; ++I
) {
233 SUnit
*PredSU
= I
->getSUnit();
234 if (PredSU
->isDepthCurrent
)
235 MaxPredDepth
= std::max(MaxPredDepth
,
236 PredSU
->Depth
+ I
->getLatency());
239 WorkList
.push_back(PredSU
);
245 if (MaxPredDepth
!= Cur
->Depth
) {
246 Cur
->setDepthDirty();
247 Cur
->Depth
= MaxPredDepth
;
249 Cur
->isDepthCurrent
= true;
251 } while (!WorkList
.empty());
254 /// ComputeHeight - Calculate the maximal path from the node to the entry.
256 void SUnit::ComputeHeight() {
257 SmallVector
<SUnit
*, 8> WorkList
;
258 WorkList
.push_back(this);
260 SUnit
*Cur
= WorkList
.back();
263 unsigned MaxSuccHeight
= 0;
264 for (SUnit::const_succ_iterator I
= Cur
->Succs
.begin(),
265 E
= Cur
->Succs
.end(); I
!= E
; ++I
) {
266 SUnit
*SuccSU
= I
->getSUnit();
267 if (SuccSU
->isHeightCurrent
)
268 MaxSuccHeight
= std::max(MaxSuccHeight
,
269 SuccSU
->Height
+ I
->getLatency());
272 WorkList
.push_back(SuccSU
);
278 if (MaxSuccHeight
!= Cur
->Height
) {
279 Cur
->setHeightDirty();
280 Cur
->Height
= MaxSuccHeight
;
282 Cur
->isHeightCurrent
= true;
284 } while (!WorkList
.empty());
287 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
288 /// a group of nodes flagged together.
289 void SUnit::dump(const ScheduleDAG
*G
) const {
290 dbgs() << "SU(" << NodeNum
<< "): ";
294 void SUnit::dumpAll(const ScheduleDAG
*G
) const {
297 dbgs() << " # preds left : " << NumPredsLeft
<< "\n";
298 dbgs() << " # succs left : " << NumSuccsLeft
<< "\n";
299 dbgs() << " # rdefs left : " << NumRegDefsLeft
<< "\n";
300 dbgs() << " Latency : " << Latency
<< "\n";
301 dbgs() << " Depth : " << Depth
<< "\n";
302 dbgs() << " Height : " << Height
<< "\n";
304 if (Preds
.size() != 0) {
305 dbgs() << " Predecessors:\n";
306 for (SUnit::const_succ_iterator I
= Preds
.begin(), E
= Preds
.end();
309 switch (I
->getKind()) {
310 case SDep::Data
: dbgs() << "val "; break;
311 case SDep::Anti
: dbgs() << "anti"; break;
312 case SDep::Output
: dbgs() << "out "; break;
313 case SDep::Order
: dbgs() << "ch "; break;
316 dbgs() << I
->getSUnit() << " - SU(" << I
->getSUnit()->NodeNum
<< ")";
317 if (I
->isArtificial())
319 dbgs() << ": Latency=" << I
->getLatency();
320 if (I
->isAssignedRegDep())
321 dbgs() << " Reg=" << G
->TRI
->getName(I
->getReg());
325 if (Succs
.size() != 0) {
326 dbgs() << " Successors:\n";
327 for (SUnit::const_succ_iterator I
= Succs
.begin(), E
= Succs
.end();
330 switch (I
->getKind()) {
331 case SDep::Data
: dbgs() << "val "; break;
332 case SDep::Anti
: dbgs() << "anti"; break;
333 case SDep::Output
: dbgs() << "out "; break;
334 case SDep::Order
: dbgs() << "ch "; break;
337 dbgs() << I
->getSUnit() << " - SU(" << I
->getSUnit()->NodeNum
<< ")";
338 if (I
->isArtificial())
340 dbgs() << ": Latency=" << I
->getLatency();
348 /// VerifySchedule - Verify that all SUnits were scheduled and that
349 /// their state is consistent.
351 void ScheduleDAG::VerifySchedule(bool isBottomUp
) {
352 bool AnyNotSched
= false;
353 unsigned DeadNodes
= 0;
355 for (unsigned i
= 0, e
= SUnits
.size(); i
!= e
; ++i
) {
356 if (!SUnits
[i
].isScheduled
) {
357 if (SUnits
[i
].NumPreds
== 0 && SUnits
[i
].NumSuccs
== 0) {
362 dbgs() << "*** Scheduling failed! ***\n";
363 SUnits
[i
].dump(this);
364 dbgs() << "has not been scheduled!\n";
367 if (SUnits
[i
].isScheduled
&&
368 (isBottomUp
? SUnits
[i
].getHeight() : SUnits
[i
].getDepth()) >
371 dbgs() << "*** Scheduling failed! ***\n";
372 SUnits
[i
].dump(this);
373 dbgs() << "has an unexpected "
374 << (isBottomUp
? "Height" : "Depth") << " value!\n";
378 if (SUnits
[i
].NumSuccsLeft
!= 0) {
380 dbgs() << "*** Scheduling failed! ***\n";
381 SUnits
[i
].dump(this);
382 dbgs() << "has successors left!\n";
386 if (SUnits
[i
].NumPredsLeft
!= 0) {
388 dbgs() << "*** Scheduling failed! ***\n";
389 SUnits
[i
].dump(this);
390 dbgs() << "has predecessors left!\n";
395 for (unsigned i
= 0, e
= Sequence
.size(); i
!= e
; ++i
)
398 assert(!AnyNotSched
);
399 assert(Sequence
.size() + DeadNodes
- Noops
== SUnits
.size() &&
400 "The number of nodes scheduled doesn't match the expected number!");
404 /// InitDAGTopologicalSorting - create the initial topological
405 /// ordering from the DAG to be scheduled.
407 /// The idea of the algorithm is taken from
408 /// "Online algorithms for managing the topological order of
409 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
410 /// This is the MNR algorithm, which was first introduced by
411 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
412 /// "Maintaining a topological order under edge insertions".
414 /// Short description of the algorithm:
416 /// Topological ordering, ord, of a DAG maps each node to a topological
417 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
419 /// This means that if there is a path from the node X to the node Z,
420 /// then ord(X) < ord(Z).
422 /// This property can be used to check for reachability of nodes:
423 /// if Z is reachable from X, then an insertion of the edge Z->X would
426 /// The algorithm first computes a topological ordering for the DAG by
427 /// initializing the Index2Node and Node2Index arrays and then tries to keep
428 /// the ordering up-to-date after edge insertions by reordering the DAG.
430 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
431 /// the nodes reachable from Y, and then shifts them using Shift to lie
432 /// immediately after X in Index2Node.
433 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
434 unsigned DAGSize
= SUnits
.size();
435 std::vector
<SUnit
*> WorkList
;
436 WorkList
.reserve(DAGSize
);
438 Index2Node
.resize(DAGSize
);
439 Node2Index
.resize(DAGSize
);
441 // Initialize the data structures.
442 for (unsigned i
= 0, e
= DAGSize
; i
!= e
; ++i
) {
443 SUnit
*SU
= &SUnits
[i
];
444 int NodeNum
= SU
->NodeNum
;
445 unsigned Degree
= SU
->Succs
.size();
446 // Temporarily use the Node2Index array as scratch space for degree counts.
447 Node2Index
[NodeNum
] = Degree
;
449 // Is it a node without dependencies?
451 assert(SU
->Succs
.empty() && "SUnit should have no successors");
452 // Collect leaf nodes.
453 WorkList
.push_back(SU
);
458 while (!WorkList
.empty()) {
459 SUnit
*SU
= WorkList
.back();
461 Allocate(SU
->NodeNum
, --Id
);
462 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
464 SUnit
*SU
= I
->getSUnit();
465 if (!--Node2Index
[SU
->NodeNum
])
466 // If all dependencies of the node are processed already,
467 // then the node can be computed now.
468 WorkList
.push_back(SU
);
472 Visited
.resize(DAGSize
);
475 // Check correctness of the ordering
476 for (unsigned i
= 0, e
= DAGSize
; i
!= e
; ++i
) {
477 SUnit
*SU
= &SUnits
[i
];
478 for (SUnit::const_pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
480 assert(Node2Index
[SU
->NodeNum
] > Node2Index
[I
->getSUnit()->NodeNum
] &&
481 "Wrong topological sorting");
487 /// AddPred - Updates the topological ordering to accommodate an edge
488 /// to be added from SUnit X to SUnit Y.
489 void ScheduleDAGTopologicalSort::AddPred(SUnit
*Y
, SUnit
*X
) {
490 int UpperBound
, LowerBound
;
491 LowerBound
= Node2Index
[Y
->NodeNum
];
492 UpperBound
= Node2Index
[X
->NodeNum
];
493 bool HasLoop
= false;
494 // Is Ord(X) < Ord(Y) ?
495 if (LowerBound
< UpperBound
) {
496 // Update the topological order.
498 DFS(Y
, UpperBound
, HasLoop
);
499 assert(!HasLoop
&& "Inserted edge creates a loop!");
500 // Recompute topological indexes.
501 Shift(Visited
, LowerBound
, UpperBound
);
505 /// RemovePred - Updates the topological ordering to accommodate an
506 /// an edge to be removed from the specified node N from the predecessors
507 /// of the current node M.
508 void ScheduleDAGTopologicalSort::RemovePred(SUnit
*M
, SUnit
*N
) {
509 // InitDAGTopologicalSorting();
512 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
513 /// all nodes affected by the edge insertion. These nodes will later get new
514 /// topological indexes by means of the Shift method.
515 void ScheduleDAGTopologicalSort::DFS(const SUnit
*SU
, int UpperBound
,
517 std::vector
<const SUnit
*> WorkList
;
518 WorkList
.reserve(SUnits
.size());
520 WorkList
.push_back(SU
);
522 SU
= WorkList
.back();
524 Visited
.set(SU
->NodeNum
);
525 for (int I
= SU
->Succs
.size()-1; I
>= 0; --I
) {
526 int s
= SU
->Succs
[I
].getSUnit()->NodeNum
;
527 if (Node2Index
[s
] == UpperBound
) {
531 // Visit successors if not already and in affected region.
532 if (!Visited
.test(s
) && Node2Index
[s
] < UpperBound
) {
533 WorkList
.push_back(SU
->Succs
[I
].getSUnit());
536 } while (!WorkList
.empty());
539 /// Shift - Renumber the nodes so that the topological ordering is
541 void ScheduleDAGTopologicalSort::Shift(BitVector
& Visited
, int LowerBound
,
547 for (i
= LowerBound
; i
<= UpperBound
; ++i
) {
548 // w is node at topological index i.
549 int w
= Index2Node
[i
];
550 if (Visited
.test(w
)) {
556 Allocate(w
, i
- shift
);
560 for (unsigned j
= 0; j
< L
.size(); ++j
) {
561 Allocate(L
[j
], i
- shift
);
567 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
569 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit
*SU
, SUnit
*TargetSU
) {
570 if (IsReachable(TargetSU
, SU
))
572 for (SUnit::pred_iterator I
= SU
->Preds
.begin(), E
= SU
->Preds
.end();
574 if (I
->isAssignedRegDep() &&
575 IsReachable(TargetSU
, I
->getSUnit()))
580 /// IsReachable - Checks if SU is reachable from TargetSU.
581 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit
*SU
,
582 const SUnit
*TargetSU
) {
583 // If insertion of the edge SU->TargetSU would create a cycle
584 // then there is a path from TargetSU to SU.
585 int UpperBound
, LowerBound
;
586 LowerBound
= Node2Index
[TargetSU
->NodeNum
];
587 UpperBound
= Node2Index
[SU
->NodeNum
];
588 bool HasLoop
= false;
589 // Is Ord(TargetSU) < Ord(SU) ?
590 if (LowerBound
< UpperBound
) {
592 // There may be a path from TargetSU to SU. Check for it.
593 DFS(TargetSU
, UpperBound
, HasLoop
);
598 /// Allocate - assign the topological index to the node n.
599 void ScheduleDAGTopologicalSort::Allocate(int n
, int index
) {
600 Node2Index
[n
] = index
;
601 Index2Node
[index
] = n
;
604 ScheduleDAGTopologicalSort::
605 ScheduleDAGTopologicalSort(std::vector
<SUnit
> &sunits
) : SUnits(sunits
) {}
607 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}