Don't analyze block if it's not considered for ifcvt anymore.
[llvm/stm8.git] / lib / CodeGen / ScheduleDAGInstrs.cpp
blob446adfc2b626cb4c5b9c9a13934751acd179462d
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
11 // of MachineInstrs.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sched-instrs"
16 #include "ScheduleDAGInstrs.h"
17 #include "llvm/Operator.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/MC/MCInstrItineraries.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include "llvm/Target/TargetSubtargetInfo.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/SmallSet.h"
32 using namespace llvm;
34 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
35 const MachineLoopInfo &mli,
36 const MachineDominatorTree &mdt)
37 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
38 InstrItins(mf.getTarget().getInstrItineraryData()),
39 Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
40 LoopRegs(MLI, MDT), FirstDbgValue(0) {
41 DbgValues.clear();
44 /// Run - perform scheduling.
45 ///
46 void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
47 MachineBasicBlock::iterator begin,
48 MachineBasicBlock::iterator end,
49 unsigned endcount) {
50 BB = bb;
51 Begin = begin;
52 InsertPosIndex = endcount;
54 ScheduleDAG::Run(bb, end);
57 /// getUnderlyingObjectFromInt - This is the function that does the work of
58 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
59 static const Value *getUnderlyingObjectFromInt(const Value *V) {
60 do {
61 if (const Operator *U = dyn_cast<Operator>(V)) {
62 // If we find a ptrtoint, we can transfer control back to the
63 // regular getUnderlyingObjectFromInt.
64 if (U->getOpcode() == Instruction::PtrToInt)
65 return U->getOperand(0);
66 // If we find an add of a constant or a multiplied value, it's
67 // likely that the other operand will lead us to the base
68 // object. We don't have to worry about the case where the
69 // object address is somehow being computed by the multiply,
70 // because our callers only care when the result is an
71 // identifibale object.
72 if (U->getOpcode() != Instruction::Add ||
73 (!isa<ConstantInt>(U->getOperand(1)) &&
74 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
75 return V;
76 V = U->getOperand(0);
77 } else {
78 return V;
80 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
81 } while (1);
84 /// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
85 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
86 static const Value *getUnderlyingObject(const Value *V) {
87 // First just call Value::getUnderlyingObject to let it do what it does.
88 do {
89 V = GetUnderlyingObject(V);
90 // If it found an inttoptr, use special code to continue climing.
91 if (Operator::getOpcode(V) != Instruction::IntToPtr)
92 break;
93 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
94 // If that succeeded in finding a pointer, continue the search.
95 if (!O->getType()->isPointerTy())
96 break;
97 V = O;
98 } while (1);
99 return V;
102 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
103 /// information and it can be tracked to a normal reference to a known
104 /// object, return the Value for that object. Otherwise return null.
105 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
106 const MachineFrameInfo *MFI,
107 bool &MayAlias) {
108 MayAlias = true;
109 if (!MI->hasOneMemOperand() ||
110 !(*MI->memoperands_begin())->getValue() ||
111 (*MI->memoperands_begin())->isVolatile())
112 return 0;
114 const Value *V = (*MI->memoperands_begin())->getValue();
115 if (!V)
116 return 0;
118 V = getUnderlyingObject(V);
119 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
120 // For now, ignore PseudoSourceValues which may alias LLVM IR values
121 // because the code that uses this function has no way to cope with
122 // such aliases.
123 if (PSV->isAliased(MFI))
124 return 0;
126 MayAlias = PSV->mayAlias(MFI);
127 return V;
130 if (isIdentifiedObject(V))
131 return V;
133 return 0;
136 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
137 if (MachineLoop *ML = MLI.getLoopFor(BB))
138 if (BB == ML->getLoopLatch()) {
139 MachineBasicBlock *Header = ML->getHeader();
140 for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
141 E = Header->livein_end(); I != E; ++I)
142 LoopLiveInRegs.insert(*I);
143 LoopRegs.VisitLoop(ML);
147 /// AddSchedBarrierDeps - Add dependencies from instructions in the current
148 /// list of instructions being scheduled to scheduling barrier by adding
149 /// the exit SU to the register defs and use list. This is because we want to
150 /// make sure instructions which define registers that are either used by
151 /// the terminator or are live-out are properly scheduled. This is
152 /// especially important when the definition latency of the return value(s)
153 /// are too high to be hidden by the branch or when the liveout registers
154 /// used by instructions in the fallthrough block.
155 void ScheduleDAGInstrs::AddSchedBarrierDeps() {
156 MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
157 ExitSU.setInstr(ExitMI);
158 bool AllDepKnown = ExitMI &&
159 (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
160 if (ExitMI && AllDepKnown) {
161 // If it's a call or a barrier, add dependencies on the defs and uses of
162 // instruction.
163 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
164 const MachineOperand &MO = ExitMI->getOperand(i);
165 if (!MO.isReg() || MO.isDef()) continue;
166 unsigned Reg = MO.getReg();
167 if (Reg == 0) continue;
169 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
170 Uses[Reg].push_back(&ExitSU);
172 } else {
173 // For others, e.g. fallthrough, conditional branch, assume the exit
174 // uses all the registers that are livein to the successor blocks.
175 SmallSet<unsigned, 8> Seen;
176 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
177 SE = BB->succ_end(); SI != SE; ++SI)
178 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
179 E = (*SI)->livein_end(); I != E; ++I) {
180 unsigned Reg = *I;
181 if (Seen.insert(Reg))
182 Uses[Reg].push_back(&ExitSU);
187 void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
188 // We'll be allocating one SUnit for each instruction, plus one for
189 // the region exit node.
190 SUnits.reserve(BB->size());
192 // We build scheduling units by walking a block's instruction list from bottom
193 // to top.
195 // Remember where a generic side-effecting instruction is as we procede.
196 SUnit *BarrierChain = 0, *AliasChain = 0;
198 // Memory references to specific known memory locations are tracked
199 // so that they can be given more precise dependencies. We track
200 // separately the known memory locations that may alias and those
201 // that are known not to alias
202 std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
203 std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
205 // Check to see if the scheduler cares about latencies.
206 bool UnitLatencies = ForceUnitLatencies();
208 // Ask the target if address-backscheduling is desirable, and if so how much.
209 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
210 unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
212 // Remove any stale debug info; sometimes BuildSchedGraph is called again
213 // without emitting the info from the previous call.
214 DbgValues.clear();
215 FirstDbgValue = NULL;
217 // Model data dependencies between instructions being scheduled and the
218 // ExitSU.
219 AddSchedBarrierDeps();
221 for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
222 assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
225 // Walk the list of instructions, from bottom moving up.
226 MachineInstr *PrevMI = NULL;
227 for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
228 MII != MIE; --MII) {
229 MachineInstr *MI = prior(MII);
230 if (MI && PrevMI) {
231 DbgValues.push_back(std::make_pair(PrevMI, MI));
232 PrevMI = NULL;
235 if (MI->isDebugValue()) {
236 PrevMI = MI;
237 continue;
240 const MCInstrDesc &MCID = MI->getDesc();
241 assert(!MCID.isTerminator() && !MI->isLabel() &&
242 "Cannot schedule terminators or labels!");
243 // Create the SUnit for this MI.
244 SUnit *SU = NewSUnit(MI);
245 SU->isCall = MCID.isCall();
246 SU->isCommutable = MCID.isCommutable();
248 // Assign the Latency field of SU using target-provided information.
249 if (UnitLatencies)
250 SU->Latency = 1;
251 else
252 ComputeLatency(SU);
254 // Add register-based dependencies (data, anti, and output).
255 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
256 const MachineOperand &MO = MI->getOperand(j);
257 if (!MO.isReg()) continue;
258 unsigned Reg = MO.getReg();
259 if (Reg == 0) continue;
261 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
263 std::vector<SUnit *> &UseList = Uses[Reg];
264 // Defs are push in the order they are visited and never reordered.
265 std::vector<SUnit *> &DefList = Defs[Reg];
266 // Optionally add output and anti dependencies. For anti
267 // dependencies we use a latency of 0 because for a multi-issue
268 // target we want to allow the defining instruction to issue
269 // in the same cycle as the using instruction.
270 // TODO: Using a latency of 1 here for output dependencies assumes
271 // there's no cost for reusing registers.
272 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
273 unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
274 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
275 SUnit *DefSU = DefList[i];
276 if (DefSU == &ExitSU)
277 continue;
278 if (DefSU != SU &&
279 (Kind != SDep::Output || !MO.isDead() ||
280 !DefSU->getInstr()->registerDefIsDead(Reg)))
281 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
283 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
284 std::vector<SUnit *> &MemDefList = Defs[*Alias];
285 for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) {
286 SUnit *DefSU = MemDefList[i];
287 if (DefSU == &ExitSU)
288 continue;
289 if (DefSU != SU &&
290 (Kind != SDep::Output || !MO.isDead() ||
291 !DefSU->getInstr()->registerDefIsDead(*Alias)))
292 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
296 if (MO.isDef()) {
297 // Add any data dependencies.
298 unsigned DataLatency = SU->Latency;
299 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
300 SUnit *UseSU = UseList[i];
301 if (UseSU == SU)
302 continue;
303 unsigned LDataLatency = DataLatency;
304 // Optionally add in a special extra latency for nodes that
305 // feed addresses.
306 // TODO: Do this for register aliases too.
307 // TODO: Perhaps we should get rid of
308 // SpecialAddressLatency and just move this into
309 // adjustSchedDependency for the targets that care about it.
310 if (SpecialAddressLatency != 0 && !UnitLatencies &&
311 UseSU != &ExitSU) {
312 MachineInstr *UseMI = UseSU->getInstr();
313 const MCInstrDesc &UseMCID = UseMI->getDesc();
314 int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
315 assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
316 if (RegUseIndex >= 0 &&
317 (UseMCID.mayLoad() || UseMCID.mayStore()) &&
318 (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
319 UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
320 LDataLatency += SpecialAddressLatency;
322 // Adjust the dependence latency using operand def/use
323 // information (if any), and then allow the target to
324 // perform its own adjustments.
325 const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
326 if (!UnitLatencies) {
327 ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
328 ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
330 UseSU->addPred(dep);
332 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
333 std::vector<SUnit *> &UseList = Uses[*Alias];
334 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
335 SUnit *UseSU = UseList[i];
336 if (UseSU == SU)
337 continue;
338 const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
339 if (!UnitLatencies) {
340 ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
341 ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
343 UseSU->addPred(dep);
347 // If a def is going to wrap back around to the top of the loop,
348 // backschedule it.
349 if (!UnitLatencies && DefList.empty()) {
350 LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
351 if (I != LoopRegs.Deps.end()) {
352 const MachineOperand *UseMO = I->second.first;
353 unsigned Count = I->second.second;
354 const MachineInstr *UseMI = UseMO->getParent();
355 unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
356 const MCInstrDesc &UseMCID = UseMI->getDesc();
357 // TODO: If we knew the total depth of the region here, we could
358 // handle the case where the whole loop is inside the region but
359 // is large enough that the isScheduleHigh trick isn't needed.
360 if (UseMOIdx < UseMCID.getNumOperands()) {
361 // Currently, we only support scheduling regions consisting of
362 // single basic blocks. Check to see if the instruction is in
363 // the same region by checking to see if it has the same parent.
364 if (UseMI->getParent() != MI->getParent()) {
365 unsigned Latency = SU->Latency;
366 if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
367 Latency += SpecialAddressLatency;
368 // This is a wild guess as to the portion of the latency which
369 // will be overlapped by work done outside the current
370 // scheduling region.
371 Latency -= std::min(Latency, Count);
372 // Add the artificial edge.
373 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
374 /*Reg=*/0, /*isNormalMemory=*/false,
375 /*isMustAlias=*/false,
376 /*isArtificial=*/true));
377 } else if (SpecialAddressLatency > 0 &&
378 UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
379 // The entire loop body is within the current scheduling region
380 // and the latency of this operation is assumed to be greater
381 // than the latency of the loop.
382 // TODO: Recursively mark data-edge predecessors as
383 // isScheduleHigh too.
384 SU->isScheduleHigh = true;
387 LoopRegs.Deps.erase(I);
391 UseList.clear();
392 if (!MO.isDead())
393 DefList.clear();
395 // Calls will not be reordered because of chain dependencies (see
396 // below). Since call operands are dead, calls may continue to be added
397 // to the DefList making dependence checking quadratic in the size of
398 // the block. Instead, we leave only one call at the back of the
399 // DefList.
400 if (SU->isCall) {
401 while (!DefList.empty() && DefList.back()->isCall)
402 DefList.pop_back();
404 DefList.push_back(SU);
405 } else {
406 UseList.push_back(SU);
410 // Add chain dependencies.
411 // Chain dependencies used to enforce memory order should have
412 // latency of 0 (except for true dependency of Store followed by
413 // aliased Load... we estimate that with a single cycle of latency
414 // assuming the hardware will bypass)
415 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
416 // after stack slots are lowered to actual addresses.
417 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
418 // produce more precise dependence information.
419 #define STORE_LOAD_LATENCY 1
420 unsigned TrueMemOrderLatency = 0;
421 if (MCID.isCall() || MI->hasUnmodeledSideEffects() ||
422 (MI->hasVolatileMemoryRef() &&
423 (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) {
424 // Be conservative with these and add dependencies on all memory
425 // references, even those that are known to not alias.
426 for (std::map<const Value *, SUnit *>::iterator I =
427 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
428 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
430 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
431 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
432 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
433 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
435 NonAliasMemDefs.clear();
436 NonAliasMemUses.clear();
437 // Add SU to the barrier chain.
438 if (BarrierChain)
439 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
440 BarrierChain = SU;
442 // fall-through
443 new_alias_chain:
444 // Chain all possibly aliasing memory references though SU.
445 if (AliasChain)
446 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
447 AliasChain = SU;
448 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
449 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
450 for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
451 E = AliasMemDefs.end(); I != E; ++I) {
452 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
454 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
455 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
456 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
457 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
459 PendingLoads.clear();
460 AliasMemDefs.clear();
461 AliasMemUses.clear();
462 } else if (MCID.mayStore()) {
463 bool MayAlias = true;
464 TrueMemOrderLatency = STORE_LOAD_LATENCY;
465 if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
466 // A store to a specific PseudoSourceValue. Add precise dependencies.
467 // Record the def in MemDefs, first adding a dep if there is
468 // an existing def.
469 std::map<const Value *, SUnit *>::iterator I =
470 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
471 std::map<const Value *, SUnit *>::iterator IE =
472 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
473 if (I != IE) {
474 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
475 /*isNormalMemory=*/true));
476 I->second = SU;
477 } else {
478 if (MayAlias)
479 AliasMemDefs[V] = SU;
480 else
481 NonAliasMemDefs[V] = SU;
483 // Handle the uses in MemUses, if there are any.
484 std::map<const Value *, std::vector<SUnit *> >::iterator J =
485 ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
486 std::map<const Value *, std::vector<SUnit *> >::iterator JE =
487 ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
488 if (J != JE) {
489 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
490 J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
491 /*Reg=*/0, /*isNormalMemory=*/true));
492 J->second.clear();
494 if (MayAlias) {
495 // Add dependencies from all the PendingLoads, i.e. loads
496 // with no underlying object.
497 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
498 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
499 // Add dependence on alias chain, if needed.
500 if (AliasChain)
501 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
503 // Add dependence on barrier chain, if needed.
504 if (BarrierChain)
505 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
506 } else {
507 // Treat all other stores conservatively.
508 goto new_alias_chain;
511 if (!ExitSU.isPred(SU))
512 // Push store's up a bit to avoid them getting in between cmp
513 // and branches.
514 ExitSU.addPred(SDep(SU, SDep::Order, 0,
515 /*Reg=*/0, /*isNormalMemory=*/false,
516 /*isMustAlias=*/false,
517 /*isArtificial=*/true));
518 } else if (MCID.mayLoad()) {
519 bool MayAlias = true;
520 TrueMemOrderLatency = 0;
521 if (MI->isInvariantLoad(AA)) {
522 // Invariant load, no chain dependencies needed!
523 } else {
524 if (const Value *V =
525 getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
526 // A load from a specific PseudoSourceValue. Add precise dependencies.
527 std::map<const Value *, SUnit *>::iterator I =
528 ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
529 std::map<const Value *, SUnit *>::iterator IE =
530 ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
531 if (I != IE)
532 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
533 /*isNormalMemory=*/true));
534 if (MayAlias)
535 AliasMemUses[V].push_back(SU);
536 else
537 NonAliasMemUses[V].push_back(SU);
538 } else {
539 // A load with no underlying object. Depend on all
540 // potentially aliasing stores.
541 for (std::map<const Value *, SUnit *>::iterator I =
542 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
543 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
545 PendingLoads.push_back(SU);
546 MayAlias = true;
549 // Add dependencies on alias and barrier chains, if needed.
550 if (MayAlias && AliasChain)
551 AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
552 if (BarrierChain)
553 BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
557 if (PrevMI)
558 FirstDbgValue = PrevMI;
560 for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
561 Defs[i].clear();
562 Uses[i].clear();
564 PendingLoads.clear();
567 void ScheduleDAGInstrs::FinishBlock() {
568 // Nothing to do.
571 void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
572 // Compute the latency for the node.
573 if (!InstrItins || InstrItins->isEmpty()) {
574 SU->Latency = 1;
576 // Simplistic target-independent heuristic: assume that loads take
577 // extra time.
578 if (SU->getInstr()->getDesc().mayLoad())
579 SU->Latency += 2;
580 } else {
581 SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
585 void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
586 SDep& dep) const {
587 if (!InstrItins || InstrItins->isEmpty())
588 return;
590 // For a data dependency with a known register...
591 if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
592 return;
594 const unsigned Reg = dep.getReg();
596 // ... find the definition of the register in the defining
597 // instruction
598 MachineInstr *DefMI = Def->getInstr();
599 int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
600 if (DefIdx != -1) {
601 const MachineOperand &MO = DefMI->getOperand(DefIdx);
602 if (MO.isReg() && MO.isImplicit() &&
603 DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
604 // This is an implicit def, getOperandLatency() won't return the correct
605 // latency. e.g.
606 // %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
607 // %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
608 // What we want is to compute latency between def of %D6/%D7 and use of
609 // %Q3 instead.
610 DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
612 MachineInstr *UseMI = Use->getInstr();
613 // For all uses of the register, calculate the maxmimum latency
614 int Latency = -1;
615 if (UseMI) {
616 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
617 const MachineOperand &MO = UseMI->getOperand(i);
618 if (!MO.isReg() || !MO.isUse())
619 continue;
620 unsigned MOReg = MO.getReg();
621 if (MOReg != Reg)
622 continue;
624 int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
625 UseMI, i);
626 Latency = std::max(Latency, UseCycle);
628 } else {
629 // UseMI is null, then it must be a scheduling barrier.
630 if (!InstrItins || InstrItins->isEmpty())
631 return;
632 unsigned DefClass = DefMI->getDesc().getSchedClass();
633 Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
636 // If we found a latency, then replace the existing dependence latency.
637 if (Latency >= 0)
638 dep.setLatency(Latency);
642 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
643 SU->getInstr()->dump();
646 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
647 std::string s;
648 raw_string_ostream oss(s);
649 if (SU == &EntrySU)
650 oss << "<entry>";
651 else if (SU == &ExitSU)
652 oss << "<exit>";
653 else
654 SU->getInstr()->print(oss);
655 return oss.str();
658 // EmitSchedule - Emit the machine code in scheduled order.
659 MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
660 // For MachineInstr-based scheduling, we're rescheduling the instructions in
661 // the block, so start by removing them from the block.
662 while (Begin != InsertPos) {
663 MachineBasicBlock::iterator I = Begin;
664 ++Begin;
665 BB->remove(I);
668 // If first instruction was a DBG_VALUE then put it back.
669 if (FirstDbgValue)
670 BB->insert(InsertPos, FirstDbgValue);
672 // Then re-insert them according to the given schedule.
673 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
674 if (SUnit *SU = Sequence[i])
675 BB->insert(InsertPos, SU->getInstr());
676 else
677 // Null SUnit* is a noop.
678 EmitNoop();
681 // Update the Begin iterator, as the first instruction in the block
682 // may have been scheduled later.
683 if (!Sequence.empty())
684 Begin = Sequence[0]->getInstr();
686 // Reinsert any remaining debug_values.
687 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
688 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
689 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
690 MachineInstr *DbgValue = P.first;
691 MachineInstr *OrigPrivMI = P.second;
692 BB->insertAfter(OrigPrivMI, DbgValue);
694 DbgValues.clear();
695 FirstDbgValue = NULL;
696 return BB;