Don't analyze block if it's not considered for ifcvt anymore.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / LegalizeIntegerTypes.cpp
blobe7c77dd10cb60cdff49e9b3deeed19ea50e4cc34
1 //===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements integer type expansion and promotion for LegalizeTypes.
11 // Promotion is the act of changing a computation in an illegal type into a
12 // computation in a larger type. For example, implementing i8 arithmetic in an
13 // i32 register (often needed on powerpc).
14 // Expansion is the act of changing a computation in an illegal type into a
15 // computation in two identical registers of a smaller type. For example,
16 // implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17 // targets).
19 //===----------------------------------------------------------------------===//
21 #include "LegalizeTypes.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
28 //===----------------------------------------------------------------------===//
29 // Integer Result Promotion
30 //===----------------------------------------------------------------------===//
32 /// PromoteIntegerResult - This method is called when a result of a node is
33 /// found to be in need of promotion to a larger type. At this point, the node
34 /// may also have invalid operands or may have other results that need
35 /// expansion, we just know that (at least) one result needs promotion.
36 void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
37 DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
38 SDValue Res = SDValue();
40 // See if the target wants to custom expand this node.
41 if (CustomLowerNode(N, N->getValueType(ResNo), true))
42 return;
44 switch (N->getOpcode()) {
45 default:
46 #ifndef NDEBUG
47 dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
48 N->dump(&DAG); dbgs() << "\n";
49 #endif
50 llvm_unreachable("Do not know how to promote this operator!");
51 case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break;
52 case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break;
53 case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break;
54 case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break;
55 case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break;
56 case ISD::Constant: Res = PromoteIntRes_Constant(N); break;
57 case ISD::CONVERT_RNDSAT:
58 Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
59 case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break;
60 case ISD::CTPOP: Res = PromoteIntRes_CTPOP(N); break;
61 case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break;
62 case ISD::EXTRACT_VECTOR_ELT:
63 Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
64 case ISD::LOAD: Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
65 case ISD::SELECT: Res = PromoteIntRes_SELECT(N); break;
66 case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break;
67 case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break;
68 case ISD::SHL: Res = PromoteIntRes_SHL(N); break;
69 case ISD::SIGN_EXTEND_INREG:
70 Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
71 case ISD::SRA: Res = PromoteIntRes_SRA(N); break;
72 case ISD::SRL: Res = PromoteIntRes_SRL(N); break;
73 case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break;
74 case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break;
75 case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break;
77 case ISD::EXTRACT_SUBVECTOR:
78 Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
79 case ISD::VECTOR_SHUFFLE:
80 Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
81 case ISD::INSERT_VECTOR_ELT:
82 Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
83 case ISD::BUILD_VECTOR:
84 Res = PromoteIntRes_BUILD_VECTOR(N); break;
85 case ISD::SCALAR_TO_VECTOR:
86 Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
88 case ISD::SIGN_EXTEND:
89 case ISD::ZERO_EXTEND:
90 case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break;
92 case ISD::FP_TO_SINT:
93 case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break;
95 case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break;
97 case ISD::AND:
98 case ISD::OR:
99 case ISD::XOR:
100 case ISD::ADD:
101 case ISD::SUB:
102 case ISD::MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break;
104 case ISD::SDIV:
105 case ISD::SREM: Res = PromoteIntRes_SDIV(N); break;
107 case ISD::UDIV:
108 case ISD::UREM: Res = PromoteIntRes_UDIV(N); break;
110 case ISD::SADDO:
111 case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
112 case ISD::UADDO:
113 case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
114 case ISD::SMULO:
115 case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break;
117 case ISD::ATOMIC_LOAD_ADD:
118 case ISD::ATOMIC_LOAD_SUB:
119 case ISD::ATOMIC_LOAD_AND:
120 case ISD::ATOMIC_LOAD_OR:
121 case ISD::ATOMIC_LOAD_XOR:
122 case ISD::ATOMIC_LOAD_NAND:
123 case ISD::ATOMIC_LOAD_MIN:
124 case ISD::ATOMIC_LOAD_MAX:
125 case ISD::ATOMIC_LOAD_UMIN:
126 case ISD::ATOMIC_LOAD_UMAX:
127 case ISD::ATOMIC_SWAP:
128 Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
130 case ISD::ATOMIC_CMP_SWAP:
131 Res = PromoteIntRes_Atomic2(cast<AtomicSDNode>(N)); break;
134 // If the result is null then the sub-method took care of registering it.
135 if (Res.getNode())
136 SetPromotedInteger(SDValue(N, ResNo), Res);
139 SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
140 // Sign-extend the new bits, and continue the assertion.
141 SDValue Op = SExtPromotedInteger(N->getOperand(0));
142 return DAG.getNode(ISD::AssertSext, N->getDebugLoc(),
143 Op.getValueType(), Op, N->getOperand(1));
146 SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
147 // Zero the new bits, and continue the assertion.
148 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
149 return DAG.getNode(ISD::AssertZext, N->getDebugLoc(),
150 Op.getValueType(), Op, N->getOperand(1));
153 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
154 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
155 SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
156 N->getMemoryVT(),
157 N->getChain(), N->getBasePtr(),
158 Op2, N->getMemOperand());
159 // Legalized the chain result - switch anything that used the old chain to
160 // use the new one.
161 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
162 return Res;
165 SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) {
166 SDValue Op2 = GetPromotedInteger(N->getOperand(2));
167 SDValue Op3 = GetPromotedInteger(N->getOperand(3));
168 SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
169 N->getMemoryVT(), N->getChain(), N->getBasePtr(),
170 Op2, Op3, N->getMemOperand());
171 // Legalized the chain result - switch anything that used the old chain to
172 // use the new one.
173 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
174 return Res;
177 SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
178 SDValue InOp = N->getOperand(0);
179 EVT InVT = InOp.getValueType();
180 EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
181 EVT OutVT = N->getValueType(0);
182 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
183 DebugLoc dl = N->getDebugLoc();
185 switch (getTypeAction(InVT)) {
186 default:
187 assert(false && "Unknown type action!");
188 break;
189 case TargetLowering::TypeLegal:
190 break;
191 case TargetLowering::TypePromoteInteger:
192 if (NOutVT.bitsEq(NInVT))
193 // The input promotes to the same size. Convert the promoted value.
194 return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
195 break;
196 case TargetLowering::TypeSoftenFloat:
197 // Promote the integer operand by hand.
198 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
199 case TargetLowering::TypeExpandInteger:
200 case TargetLowering::TypeExpandFloat:
201 break;
202 case TargetLowering::TypeScalarizeVector:
203 // Convert the element to an integer and promote it by hand.
204 if (!NOutVT.isVector())
205 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
206 BitConvertToInteger(GetScalarizedVector(InOp)));
207 break;
208 case TargetLowering::TypeSplitVector: {
209 // For example, i32 = BITCAST v2i16 on alpha. Convert the split
210 // pieces of the input into integers and reassemble in the final type.
211 SDValue Lo, Hi;
212 GetSplitVector(N->getOperand(0), Lo, Hi);
213 Lo = BitConvertToInteger(Lo);
214 Hi = BitConvertToInteger(Hi);
216 if (TLI.isBigEndian())
217 std::swap(Lo, Hi);
219 InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
220 EVT::getIntegerVT(*DAG.getContext(),
221 NOutVT.getSizeInBits()),
222 JoinIntegers(Lo, Hi));
223 return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
225 case TargetLowering::TypeWidenVector:
226 if (OutVT.bitsEq(NInVT))
227 // The input is widened to the same size. Convert to the widened value.
228 return DAG.getNode(ISD::BITCAST, dl, OutVT, GetWidenedVector(InOp));
231 return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
232 CreateStackStoreLoad(InOp, OutVT));
235 SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
236 SDValue Op = GetPromotedInteger(N->getOperand(0));
237 EVT OVT = N->getValueType(0);
238 EVT NVT = Op.getValueType();
239 DebugLoc dl = N->getDebugLoc();
241 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
242 return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
243 DAG.getConstant(DiffBits, TLI.getPointerTy()));
246 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
247 // The pair element type may be legal, or may not promote to the same type as
248 // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases.
249 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(),
250 TLI.getTypeToTransformTo(*DAG.getContext(),
251 N->getValueType(0)), JoinIntegers(N->getOperand(0),
252 N->getOperand(1)));
255 SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
256 EVT VT = N->getValueType(0);
257 // FIXME there is no actual debug info here
258 DebugLoc dl = N->getDebugLoc();
259 // Zero extend things like i1, sign extend everything else. It shouldn't
260 // matter in theory which one we pick, but this tends to give better code?
261 unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
262 SDValue Result = DAG.getNode(Opc, dl,
263 TLI.getTypeToTransformTo(*DAG.getContext(), VT),
264 SDValue(N, 0));
265 assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
266 return Result;
269 SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
270 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
271 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
272 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
273 CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
274 "can only promote integers");
275 EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
276 return DAG.getConvertRndSat(OutVT, N->getDebugLoc(), N->getOperand(0),
277 N->getOperand(1), N->getOperand(2),
278 N->getOperand(3), N->getOperand(4), CvtCode);
281 SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
282 // Zero extend to the promoted type and do the count there.
283 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
284 DebugLoc dl = N->getDebugLoc();
285 EVT OVT = N->getValueType(0);
286 EVT NVT = Op.getValueType();
287 Op = DAG.getNode(ISD::CTLZ, dl, NVT, Op);
288 // Subtract off the extra leading bits in the bigger type.
289 return DAG.getNode(ISD::SUB, dl, NVT, Op,
290 DAG.getConstant(NVT.getSizeInBits() -
291 OVT.getSizeInBits(), NVT));
294 SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
295 // Zero extend to the promoted type and do the count there.
296 SDValue Op = ZExtPromotedInteger(N->getOperand(0));
297 return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), Op.getValueType(), Op);
300 SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
301 SDValue Op = GetPromotedInteger(N->getOperand(0));
302 EVT OVT = N->getValueType(0);
303 EVT NVT = Op.getValueType();
304 DebugLoc dl = N->getDebugLoc();
305 // The count is the same in the promoted type except if the original
306 // value was zero. This can be handled by setting the bit just off
307 // the top of the original type.
308 APInt TopBit(NVT.getSizeInBits(), 0);
309 TopBit.setBit(OVT.getSizeInBits());
310 Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
311 return DAG.getNode(ISD::CTTZ, dl, NVT, Op);
314 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
315 DebugLoc dl = N->getDebugLoc();
316 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
317 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
318 N->getOperand(1));
321 SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
322 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
323 unsigned NewOpc = N->getOpcode();
324 DebugLoc dl = N->getDebugLoc();
326 // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
327 // not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT
328 // and SINT conversions are Custom, there is no way to tell which is
329 // preferable. We choose SINT because that's the right thing on PPC.)
330 if (N->getOpcode() == ISD::FP_TO_UINT &&
331 !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
332 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
333 NewOpc = ISD::FP_TO_SINT;
335 SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
337 // Assert that the converted value fits in the original type. If it doesn't
338 // (eg: because the value being converted is too big), then the result of the
339 // original operation was undefined anyway, so the assert is still correct.
340 return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
341 ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
342 DAG.getValueType(N->getValueType(0).getScalarType()));
345 SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) {
346 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
347 DebugLoc dl = N->getDebugLoc();
349 SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
351 return DAG.getNode(ISD::AssertZext, dl,
352 NVT, Res, DAG.getValueType(N->getValueType(0)));
355 SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
356 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
357 DebugLoc dl = N->getDebugLoc();
359 if (getTypeAction(N->getOperand(0).getValueType())
360 == TargetLowering::TypePromoteInteger) {
361 SDValue Res = GetPromotedInteger(N->getOperand(0));
362 assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
364 // If the result and operand types are the same after promotion, simplify
365 // to an in-register extension.
366 if (NVT == Res.getValueType()) {
367 // The high bits are not guaranteed to be anything. Insert an extend.
368 if (N->getOpcode() == ISD::SIGN_EXTEND)
369 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
370 DAG.getValueType(N->getOperand(0).getValueType()));
371 if (N->getOpcode() == ISD::ZERO_EXTEND)
372 return DAG.getZeroExtendInReg(Res, dl,
373 N->getOperand(0).getValueType().getScalarType());
374 assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
375 return Res;
379 // Otherwise, just extend the original operand all the way to the larger type.
380 return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
383 SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
384 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
385 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
386 ISD::LoadExtType ExtType =
387 ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
388 DebugLoc dl = N->getDebugLoc();
389 SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
390 N->getPointerInfo(),
391 N->getMemoryVT(), N->isVolatile(),
392 N->isNonTemporal(), N->getAlignment());
394 // Legalized the chain result - switch anything that used the old chain to
395 // use the new one.
396 ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
397 return Res;
400 /// Promote the overflow flag of an overflowing arithmetic node.
401 SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
402 // Simply change the return type of the boolean result.
403 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
404 EVT ValueVTs[] = { N->getValueType(0), NVT };
405 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
406 SDValue Res = DAG.getNode(N->getOpcode(), N->getDebugLoc(),
407 DAG.getVTList(ValueVTs, 2), Ops, 2);
409 // Modified the sum result - switch anything that used the old sum to use
410 // the new one.
411 ReplaceValueWith(SDValue(N, 0), Res);
413 return SDValue(Res.getNode(), 1);
416 SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
417 if (ResNo == 1)
418 return PromoteIntRes_Overflow(N);
420 // The operation overflowed iff the result in the larger type is not the
421 // sign extension of its truncation to the original type.
422 SDValue LHS = SExtPromotedInteger(N->getOperand(0));
423 SDValue RHS = SExtPromotedInteger(N->getOperand(1));
424 EVT OVT = N->getOperand(0).getValueType();
425 EVT NVT = LHS.getValueType();
426 DebugLoc dl = N->getDebugLoc();
428 // Do the arithmetic in the larger type.
429 unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
430 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
432 // Calculate the overflow flag: sign extend the arithmetic result from
433 // the original type.
434 SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
435 DAG.getValueType(OVT));
436 // Overflowed if and only if this is not equal to Res.
437 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
439 // Use the calculated overflow everywhere.
440 ReplaceValueWith(SDValue(N, 1), Ofl);
442 return Res;
445 SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
446 // Sign extend the input.
447 SDValue LHS = SExtPromotedInteger(N->getOperand(0));
448 SDValue RHS = SExtPromotedInteger(N->getOperand(1));
449 return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
450 LHS.getValueType(), LHS, RHS);
453 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
454 SDValue LHS = GetPromotedInteger(N->getOperand(1));
455 SDValue RHS = GetPromotedInteger(N->getOperand(2));
456 return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
457 LHS.getValueType(), N->getOperand(0),LHS,RHS);
460 SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
461 SDValue LHS = GetPromotedInteger(N->getOperand(2));
462 SDValue RHS = GetPromotedInteger(N->getOperand(3));
463 return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
464 LHS.getValueType(), N->getOperand(0),
465 N->getOperand(1), LHS, RHS, N->getOperand(4));
468 SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
469 EVT SVT = TLI.getSetCCResultType(N->getOperand(0).getValueType());
470 assert(isTypeLegal(SVT) && "Illegal SetCC type!");
471 DebugLoc dl = N->getDebugLoc();
473 // Get the SETCC result using the canonical SETCC type.
474 SDValue SetCC = DAG.getNode(ISD::SETCC, dl, SVT, N->getOperand(0),
475 N->getOperand(1), N->getOperand(2));
477 // Convert to the expected type.
478 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
479 assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
480 return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
483 SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
484 return DAG.getNode(ISD::SHL, N->getDebugLoc(),
485 TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)),
486 GetPromotedInteger(N->getOperand(0)), N->getOperand(1));
489 SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
490 SDValue Op = GetPromotedInteger(N->getOperand(0));
491 return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(),
492 Op.getValueType(), Op, N->getOperand(1));
495 SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
496 // The input may have strange things in the top bits of the registers, but
497 // these operations don't care. They may have weird bits going out, but
498 // that too is okay if they are integer operations.
499 SDValue LHS = GetPromotedInteger(N->getOperand(0));
500 SDValue RHS = GetPromotedInteger(N->getOperand(1));
501 return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
502 LHS.getValueType(), LHS, RHS);
505 SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
506 // The input value must be properly sign extended.
507 SDValue Res = SExtPromotedInteger(N->getOperand(0));
508 return DAG.getNode(ISD::SRA, N->getDebugLoc(),
509 Res.getValueType(), Res, N->getOperand(1));
512 SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
513 // The input value must be properly zero extended.
514 EVT VT = N->getValueType(0);
515 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
516 SDValue Res = ZExtPromotedInteger(N->getOperand(0));
517 return DAG.getNode(ISD::SRL, N->getDebugLoc(), NVT, Res, N->getOperand(1));
520 SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
521 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
522 SDValue Res;
523 SDValue InOp = N->getOperand(0);
524 DebugLoc dl = N->getDebugLoc();
526 switch (getTypeAction(InOp.getValueType())) {
527 default: llvm_unreachable("Unknown type action!");
528 case TargetLowering::TypeLegal:
529 case TargetLowering::TypeExpandInteger:
530 Res = InOp;
531 break;
532 case TargetLowering::TypePromoteInteger:
533 Res = GetPromotedInteger(InOp);
534 break;
535 case TargetLowering::TypeSplitVector:
536 EVT InVT = InOp.getValueType();
537 assert(InVT.isVector() && "Cannot split scalar types");
538 unsigned NumElts = InVT.getVectorNumElements();
539 assert(NumElts == NVT.getVectorNumElements() &&
540 "Dst and Src must have the same number of elements");
541 EVT EltVT = InVT.getScalarType();
542 assert(isPowerOf2_32(NumElts) &&
543 "Promoted vector type must be a power of two");
545 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts/2);
546 EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
547 NumElts/2);
549 SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, InOp,
550 DAG.getIntPtrConstant(0));
551 SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HalfVT, InOp,
552 DAG.getIntPtrConstant(NumElts/2));
553 EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
554 EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
556 return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
559 // Truncate to NVT instead of VT
560 return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
563 SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
564 if (ResNo == 1)
565 return PromoteIntRes_Overflow(N);
567 // The operation overflowed iff the result in the larger type is not the
568 // zero extension of its truncation to the original type.
569 SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
570 SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
571 EVT OVT = N->getOperand(0).getValueType();
572 EVT NVT = LHS.getValueType();
573 DebugLoc dl = N->getDebugLoc();
575 // Do the arithmetic in the larger type.
576 unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
577 SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
579 // Calculate the overflow flag: zero extend the arithmetic result from
580 // the original type.
581 SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
582 // Overflowed if and only if this is not equal to Res.
583 Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
585 // Use the calculated overflow everywhere.
586 ReplaceValueWith(SDValue(N, 1), Ofl);
588 return Res;
591 SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
592 // Promote the overflow bit trivially.
593 if (ResNo == 1)
594 return PromoteIntRes_Overflow(N);
596 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
597 DebugLoc DL = N->getDebugLoc();
598 EVT SmallVT = LHS.getValueType();
600 // To determine if the result overflowed in a larger type, we extend the
601 // input to the larger type, do the multiply, then check the high bits of
602 // the result to see if the overflow happened.
603 if (N->getOpcode() == ISD::SMULO) {
604 LHS = SExtPromotedInteger(LHS);
605 RHS = SExtPromotedInteger(RHS);
606 } else {
607 LHS = ZExtPromotedInteger(LHS);
608 RHS = ZExtPromotedInteger(RHS);
610 SDValue Mul = DAG.getNode(ISD::MUL, DL, LHS.getValueType(), LHS, RHS);
612 // Overflow occurred iff the high part of the result does not
613 // zero/sign-extend the low part.
614 SDValue Overflow;
615 if (N->getOpcode() == ISD::UMULO) {
616 // Unsigned overflow occurred iff the high part is non-zero.
617 SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
618 DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
619 Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
620 DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
621 } else {
622 // Signed overflow occurred iff the high part does not sign extend the low.
623 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
624 Mul, DAG.getValueType(SmallVT));
625 Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
628 // Use the calculated overflow everywhere.
629 ReplaceValueWith(SDValue(N, 1), Overflow);
630 return Mul;
633 SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
634 // Zero extend the input.
635 SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
636 SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
637 return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
638 LHS.getValueType(), LHS, RHS);
641 SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
642 return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
643 N->getValueType(0)));
646 SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
647 SDValue Chain = N->getOperand(0); // Get the chain.
648 SDValue Ptr = N->getOperand(1); // Get the pointer.
649 EVT VT = N->getValueType(0);
650 DebugLoc dl = N->getDebugLoc();
652 EVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
653 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
654 // The argument is passed as NumRegs registers of type RegVT.
656 SmallVector<SDValue, 8> Parts(NumRegs);
657 for (unsigned i = 0; i < NumRegs; ++i) {
658 Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
659 N->getConstantOperandVal(3));
660 Chain = Parts[i].getValue(1);
663 // Handle endianness of the load.
664 if (TLI.isBigEndian())
665 std::reverse(Parts.begin(), Parts.end());
667 // Assemble the parts in the promoted type.
668 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
669 SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
670 for (unsigned i = 1; i < NumRegs; ++i) {
671 SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
672 // Shift it to the right position and "or" it in.
673 Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
674 DAG.getConstant(i * RegVT.getSizeInBits(),
675 TLI.getPointerTy()));
676 Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
679 // Modified the chain result - switch anything that used the old chain to
680 // use the new one.
681 ReplaceValueWith(SDValue(N, 1), Chain);
683 return Res;
686 //===----------------------------------------------------------------------===//
687 // Integer Operand Promotion
688 //===----------------------------------------------------------------------===//
690 /// PromoteIntegerOperand - This method is called when the specified operand of
691 /// the specified node is found to need promotion. At this point, all of the
692 /// result types of the node are known to be legal, but other operands of the
693 /// node may need promotion or expansion as well as the specified one.
694 bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
695 DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
696 SDValue Res = SDValue();
698 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
699 return false;
701 switch (N->getOpcode()) {
702 default:
703 #ifndef NDEBUG
704 dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
705 N->dump(&DAG); dbgs() << "\n";
706 #endif
707 llvm_unreachable("Do not know how to promote this operator's operand!");
709 case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break;
710 case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break;
711 case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break;
712 case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break;
713 case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break;
714 case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
715 case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
716 case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
717 case ISD::CONVERT_RNDSAT:
718 Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
719 case ISD::INSERT_VECTOR_ELT:
720 Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
721 case ISD::MEMBARRIER: Res = PromoteIntOp_MEMBARRIER(N); break;
722 case ISD::SCALAR_TO_VECTOR:
723 Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
724 case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break;
725 case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
726 case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break;
727 case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break;
728 case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break;
729 case ISD::STORE: Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
730 OpNo); break;
731 case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break;
732 case ISD::FP16_TO_FP32:
733 case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break;
734 case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break;
736 case ISD::SHL:
737 case ISD::SRA:
738 case ISD::SRL:
739 case ISD::ROTL:
740 case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
743 // If the result is null, the sub-method took care of registering results etc.
744 if (!Res.getNode()) return false;
746 // If the result is N, the sub-method updated N in place. Tell the legalizer
747 // core about this.
748 if (Res.getNode() == N)
749 return true;
751 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
752 "Invalid operand expansion");
754 ReplaceValueWith(SDValue(N, 0), Res);
755 return false;
758 /// PromoteSetCCOperands - Promote the operands of a comparison. This code is
759 /// shared among BR_CC, SELECT_CC, and SETCC handlers.
760 void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
761 ISD::CondCode CCCode) {
762 // We have to insert explicit sign or zero extends. Note that we could
763 // insert sign extends for ALL conditions, but zero extend is cheaper on
764 // many machines (an AND instead of two shifts), so prefer it.
765 switch (CCCode) {
766 default: llvm_unreachable("Unknown integer comparison!");
767 case ISD::SETEQ:
768 case ISD::SETNE:
769 case ISD::SETUGE:
770 case ISD::SETUGT:
771 case ISD::SETULE:
772 case ISD::SETULT:
773 // ALL of these operations will work if we either sign or zero extend
774 // the operands (including the unsigned comparisons!). Zero extend is
775 // usually a simpler/cheaper operation, so prefer it.
776 NewLHS = ZExtPromotedInteger(NewLHS);
777 NewRHS = ZExtPromotedInteger(NewRHS);
778 break;
779 case ISD::SETGE:
780 case ISD::SETGT:
781 case ISD::SETLT:
782 case ISD::SETLE:
783 NewLHS = SExtPromotedInteger(NewLHS);
784 NewRHS = SExtPromotedInteger(NewRHS);
785 break;
789 SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
790 SDValue Op = GetPromotedInteger(N->getOperand(0));
791 return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0), Op);
794 SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
795 // This should only occur in unusual situations like bitcasting to an
796 // x86_fp80, so just turn it into a store+load
797 return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
800 SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
801 assert(OpNo == 2 && "Don't know how to promote this operand!");
803 SDValue LHS = N->getOperand(2);
804 SDValue RHS = N->getOperand(3);
805 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
807 // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
808 // legal types.
809 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
810 N->getOperand(1), LHS, RHS, N->getOperand(4)),
814 SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
815 assert(OpNo == 1 && "only know how to promote condition");
817 // Promote all the way up to the canonical SetCC type.
818 EVT SVT = TLI.getSetCCResultType(MVT::Other);
819 SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT);
821 // The chain (Op#0) and basic block destination (Op#2) are always legal types.
822 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
823 N->getOperand(2)), 0);
826 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
827 // Since the result type is legal, the operands must promote to it.
828 EVT OVT = N->getOperand(0).getValueType();
829 SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
830 SDValue Hi = GetPromotedInteger(N->getOperand(1));
831 assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
832 DebugLoc dl = N->getDebugLoc();
834 Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
835 DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
836 return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
839 SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
840 // The vector type is legal but the element type is not. This implies
841 // that the vector is a power-of-two in length and that the element
842 // type does not have a strange size (eg: it is not i1).
843 EVT VecVT = N->getValueType(0);
844 unsigned NumElts = VecVT.getVectorNumElements();
845 assert(!(NumElts & 1) && "Legal vector of one illegal element?");
847 // Promote the inserted value. The type does not need to match the
848 // vector element type. Check that any extra bits introduced will be
849 // truncated away.
850 assert(N->getOperand(0).getValueType().getSizeInBits() >=
851 N->getValueType(0).getVectorElementType().getSizeInBits() &&
852 "Type of inserted value narrower than vector element type!");
854 SmallVector<SDValue, 16> NewOps;
855 for (unsigned i = 0; i < NumElts; ++i)
856 NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
858 return SDValue(DAG.UpdateNodeOperands(N, &NewOps[0], NumElts), 0);
861 SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
862 ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
863 assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
864 CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
865 CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
866 "can only promote integer arguments");
867 SDValue InOp = GetPromotedInteger(N->getOperand(0));
868 return DAG.getConvertRndSat(N->getValueType(0), N->getDebugLoc(), InOp,
869 N->getOperand(1), N->getOperand(2),
870 N->getOperand(3), N->getOperand(4), CvtCode);
873 SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
874 unsigned OpNo) {
875 if (OpNo == 1) {
876 // Promote the inserted value. This is valid because the type does not
877 // have to match the vector element type.
879 // Check that any extra bits introduced will be truncated away.
880 assert(N->getOperand(1).getValueType().getSizeInBits() >=
881 N->getValueType(0).getVectorElementType().getSizeInBits() &&
882 "Type of inserted value narrower than vector element type!");
883 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
884 GetPromotedInteger(N->getOperand(1)),
885 N->getOperand(2)),
889 assert(OpNo == 2 && "Different operand and result vector types?");
891 // Promote the index.
892 SDValue Idx = ZExtPromotedInteger(N->getOperand(2));
893 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
894 N->getOperand(1), Idx), 0);
897 SDValue DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) {
898 SDValue NewOps[6];
899 DebugLoc dl = N->getDebugLoc();
900 NewOps[0] = N->getOperand(0);
901 for (unsigned i = 1; i < array_lengthof(NewOps); ++i) {
902 SDValue Flag = GetPromotedInteger(N->getOperand(i));
903 NewOps[i] = DAG.getZeroExtendInReg(Flag, dl, MVT::i1);
905 return SDValue(DAG.UpdateNodeOperands(N, NewOps, array_lengthof(NewOps)), 0);
908 SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
909 // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
910 // the operand in place.
911 return SDValue(DAG.UpdateNodeOperands(N,
912 GetPromotedInteger(N->getOperand(0))), 0);
915 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
916 assert(OpNo == 0 && "Only know how to promote condition");
918 // Promote all the way up to the canonical SetCC type.
919 EVT SVT = TLI.getSetCCResultType(N->getOperand(1).getValueType());
920 SDValue Cond = PromoteTargetBoolean(N->getOperand(0), SVT);
922 return SDValue(DAG.UpdateNodeOperands(N, Cond,
923 N->getOperand(1), N->getOperand(2)), 0);
926 SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
927 assert(OpNo == 0 && "Don't know how to promote this operand!");
929 SDValue LHS = N->getOperand(0);
930 SDValue RHS = N->getOperand(1);
931 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
933 // The CC (#4) and the possible return values (#2 and #3) have legal types.
934 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
935 N->getOperand(3), N->getOperand(4)), 0);
938 SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
939 assert(OpNo == 0 && "Don't know how to promote this operand!");
941 SDValue LHS = N->getOperand(0);
942 SDValue RHS = N->getOperand(1);
943 PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
945 // The CC (#2) is always legal.
946 return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
949 SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
950 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
951 ZExtPromotedInteger(N->getOperand(1))), 0);
954 SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
955 SDValue Op = GetPromotedInteger(N->getOperand(0));
956 DebugLoc dl = N->getDebugLoc();
957 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
958 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
959 Op, DAG.getValueType(N->getOperand(0).getValueType()));
962 SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
963 return SDValue(DAG.UpdateNodeOperands(N,
964 SExtPromotedInteger(N->getOperand(0))), 0);
967 SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
968 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
969 SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
970 unsigned Alignment = N->getAlignment();
971 bool isVolatile = N->isVolatile();
972 bool isNonTemporal = N->isNonTemporal();
973 DebugLoc dl = N->getDebugLoc();
975 SDValue Val = GetPromotedInteger(N->getValue()); // Get promoted value.
977 // Truncate the value and store the result.
978 return DAG.getTruncStore(Ch, dl, Val, Ptr, N->getPointerInfo(),
979 N->getMemoryVT(),
980 isVolatile, isNonTemporal, Alignment);
983 SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
984 SDValue Op = GetPromotedInteger(N->getOperand(0));
985 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), Op);
988 SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
989 return SDValue(DAG.UpdateNodeOperands(N,
990 ZExtPromotedInteger(N->getOperand(0))), 0);
993 SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
994 DebugLoc dl = N->getDebugLoc();
995 SDValue Op = GetPromotedInteger(N->getOperand(0));
996 Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
997 return DAG.getZeroExtendInReg(Op, dl,
998 N->getOperand(0).getValueType().getScalarType());
1002 //===----------------------------------------------------------------------===//
1003 // Integer Result Expansion
1004 //===----------------------------------------------------------------------===//
1006 /// ExpandIntegerResult - This method is called when the specified result of the
1007 /// specified node is found to need expansion. At this point, the node may also
1008 /// have invalid operands or may have other results that need promotion, we just
1009 /// know that (at least) one result needs expansion.
1010 void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1011 DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
1012 SDValue Lo, Hi;
1013 Lo = Hi = SDValue();
1015 // See if the target wants to custom expand this node.
1016 if (CustomLowerNode(N, N->getValueType(ResNo), true))
1017 return;
1019 switch (N->getOpcode()) {
1020 default:
1021 #ifndef NDEBUG
1022 dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1023 N->dump(&DAG); dbgs() << "\n";
1024 #endif
1025 llvm_unreachable("Do not know how to expand the result of this operator!");
1027 case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, Lo, Hi); break;
1028 case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
1029 case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
1030 case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
1032 case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break;
1033 case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1034 case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1035 case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1036 case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break;
1038 case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1039 case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break;
1040 case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break;
1041 case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break;
1042 case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break;
1043 case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break;
1044 case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break;
1045 case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break;
1046 case ISD::FP_TO_SINT: ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1047 case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1048 case ISD::LOAD: ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1049 case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break;
1050 case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break;
1051 case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1052 case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1053 case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break;
1054 case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1055 case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break;
1056 case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break;
1057 case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1059 case ISD::ATOMIC_LOAD_ADD:
1060 case ISD::ATOMIC_LOAD_SUB:
1061 case ISD::ATOMIC_LOAD_AND:
1062 case ISD::ATOMIC_LOAD_OR:
1063 case ISD::ATOMIC_LOAD_XOR:
1064 case ISD::ATOMIC_LOAD_NAND:
1065 case ISD::ATOMIC_LOAD_MIN:
1066 case ISD::ATOMIC_LOAD_MAX:
1067 case ISD::ATOMIC_LOAD_UMIN:
1068 case ISD::ATOMIC_LOAD_UMAX:
1069 case ISD::ATOMIC_SWAP: {
1070 std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1071 SplitInteger(Tmp.first, Lo, Hi);
1072 ReplaceValueWith(SDValue(N, 1), Tmp.second);
1073 break;
1076 case ISD::AND:
1077 case ISD::OR:
1078 case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1080 case ISD::ADD:
1081 case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1083 case ISD::ADDC:
1084 case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1086 case ISD::ADDE:
1087 case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1089 case ISD::SHL:
1090 case ISD::SRA:
1091 case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1093 case ISD::SADDO:
1094 case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1095 case ISD::UADDO:
1096 case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1097 case ISD::UMULO:
1098 case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1101 // If Lo/Hi is null, the sub-method took care of registering results etc.
1102 if (Lo.getNode())
1103 SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1106 /// Lower an atomic node to the appropriate builtin call.
1107 std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1108 unsigned Opc = Node->getOpcode();
1109 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1110 RTLIB::Libcall LC;
1112 switch (Opc) {
1113 default:
1114 llvm_unreachable("Unhandled atomic intrinsic Expand!");
1115 break;
1116 case ISD::ATOMIC_SWAP:
1117 switch (VT.SimpleTy) {
1118 default: llvm_unreachable("Unexpected value type for atomic!");
1119 case MVT::i8: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
1120 case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
1121 case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
1122 case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1124 break;
1125 case ISD::ATOMIC_CMP_SWAP:
1126 switch (VT.SimpleTy) {
1127 default: llvm_unreachable("Unexpected value type for atomic!");
1128 case MVT::i8: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
1129 case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
1130 case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
1131 case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1133 break;
1134 case ISD::ATOMIC_LOAD_ADD:
1135 switch (VT.SimpleTy) {
1136 default: llvm_unreachable("Unexpected value type for atomic!");
1137 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
1138 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
1139 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
1140 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1142 break;
1143 case ISD::ATOMIC_LOAD_SUB:
1144 switch (VT.SimpleTy) {
1145 default: llvm_unreachable("Unexpected value type for atomic!");
1146 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
1147 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
1148 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
1149 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1151 break;
1152 case ISD::ATOMIC_LOAD_AND:
1153 switch (VT.SimpleTy) {
1154 default: llvm_unreachable("Unexpected value type for atomic!");
1155 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
1156 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
1157 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
1158 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1160 break;
1161 case ISD::ATOMIC_LOAD_OR:
1162 switch (VT.SimpleTy) {
1163 default: llvm_unreachable("Unexpected value type for atomic!");
1164 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
1165 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
1166 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
1167 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1169 break;
1170 case ISD::ATOMIC_LOAD_XOR:
1171 switch (VT.SimpleTy) {
1172 default: llvm_unreachable("Unexpected value type for atomic!");
1173 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
1174 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
1175 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
1176 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1178 break;
1179 case ISD::ATOMIC_LOAD_NAND:
1180 switch (VT.SimpleTy) {
1181 default: llvm_unreachable("Unexpected value type for atomic!");
1182 case MVT::i8: LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
1183 case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
1184 case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
1185 case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1187 break;
1190 return ExpandChainLibCall(LC, Node, false);
1193 /// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1194 /// and the shift amount is a constant 'Amt'. Expand the operation.
1195 void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1196 SDValue &Lo, SDValue &Hi) {
1197 DebugLoc DL = N->getDebugLoc();
1198 // Expand the incoming operand to be shifted, so that we have its parts
1199 SDValue InL, InH;
1200 GetExpandedInteger(N->getOperand(0), InL, InH);
1202 EVT NVT = InL.getValueType();
1203 unsigned VTBits = N->getValueType(0).getSizeInBits();
1204 unsigned NVTBits = NVT.getSizeInBits();
1205 EVT ShTy = N->getOperand(1).getValueType();
1207 if (N->getOpcode() == ISD::SHL) {
1208 if (Amt > VTBits) {
1209 Lo = Hi = DAG.getConstant(0, NVT);
1210 } else if (Amt > NVTBits) {
1211 Lo = DAG.getConstant(0, NVT);
1212 Hi = DAG.getNode(ISD::SHL, DL,
1213 NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy));
1214 } else if (Amt == NVTBits) {
1215 Lo = DAG.getConstant(0, NVT);
1216 Hi = InL;
1217 } else if (Amt == 1 &&
1218 TLI.isOperationLegalOrCustom(ISD::ADDC,
1219 TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1220 // Emit this X << 1 as X+X.
1221 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1222 SDValue LoOps[2] = { InL, InL };
1223 Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps, 2);
1224 SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1225 Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps, 3);
1226 } else {
1227 Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy));
1228 Hi = DAG.getNode(ISD::OR, DL, NVT,
1229 DAG.getNode(ISD::SHL, DL, NVT, InH,
1230 DAG.getConstant(Amt, ShTy)),
1231 DAG.getNode(ISD::SRL, DL, NVT, InL,
1232 DAG.getConstant(NVTBits-Amt, ShTy)));
1234 return;
1237 if (N->getOpcode() == ISD::SRL) {
1238 if (Amt > VTBits) {
1239 Lo = DAG.getConstant(0, NVT);
1240 Hi = DAG.getConstant(0, NVT);
1241 } else if (Amt > NVTBits) {
1242 Lo = DAG.getNode(ISD::SRL, DL,
1243 NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1244 Hi = DAG.getConstant(0, NVT);
1245 } else if (Amt == NVTBits) {
1246 Lo = InH;
1247 Hi = DAG.getConstant(0, NVT);
1248 } else {
1249 Lo = DAG.getNode(ISD::OR, DL, NVT,
1250 DAG.getNode(ISD::SRL, DL, NVT, InL,
1251 DAG.getConstant(Amt, ShTy)),
1252 DAG.getNode(ISD::SHL, DL, NVT, InH,
1253 DAG.getConstant(NVTBits-Amt, ShTy)));
1254 Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1256 return;
1259 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1260 if (Amt > VTBits) {
1261 Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1262 DAG.getConstant(NVTBits-1, ShTy));
1263 } else if (Amt > NVTBits) {
1264 Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1265 DAG.getConstant(Amt-NVTBits, ShTy));
1266 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1267 DAG.getConstant(NVTBits-1, ShTy));
1268 } else if (Amt == NVTBits) {
1269 Lo = InH;
1270 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1271 DAG.getConstant(NVTBits-1, ShTy));
1272 } else {
1273 Lo = DAG.getNode(ISD::OR, DL, NVT,
1274 DAG.getNode(ISD::SRL, DL, NVT, InL,
1275 DAG.getConstant(Amt, ShTy)),
1276 DAG.getNode(ISD::SHL, DL, NVT, InH,
1277 DAG.getConstant(NVTBits-Amt, ShTy)));
1278 Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1282 /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1283 /// this shift based on knowledge of the high bit of the shift amount. If we
1284 /// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1285 /// shift amount.
1286 bool DAGTypeLegalizer::
1287 ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1288 SDValue Amt = N->getOperand(1);
1289 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1290 EVT ShTy = Amt.getValueType();
1291 unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1292 unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1293 assert(isPowerOf2_32(NVTBits) &&
1294 "Expanded integer type size not a power of two!");
1295 DebugLoc dl = N->getDebugLoc();
1297 APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1298 APInt KnownZero, KnownOne;
1299 DAG.ComputeMaskedBits(N->getOperand(1), HighBitMask, KnownZero, KnownOne);
1301 // If we don't know anything about the high bits, exit.
1302 if (((KnownZero|KnownOne) & HighBitMask) == 0)
1303 return false;
1305 // Get the incoming operand to be shifted.
1306 SDValue InL, InH;
1307 GetExpandedInteger(N->getOperand(0), InL, InH);
1309 // If we know that any of the high bits of the shift amount are one, then we
1310 // can do this as a couple of simple shifts.
1311 if (KnownOne.intersects(HighBitMask)) {
1312 // Mask out the high bit, which we know is set.
1313 Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1314 DAG.getConstant(~HighBitMask, ShTy));
1316 switch (N->getOpcode()) {
1317 default: llvm_unreachable("Unknown shift");
1318 case ISD::SHL:
1319 Lo = DAG.getConstant(0, NVT); // Low part is zero.
1320 Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1321 return true;
1322 case ISD::SRL:
1323 Hi = DAG.getConstant(0, NVT); // Hi part is zero.
1324 Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1325 return true;
1326 case ISD::SRA:
1327 Hi = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign extend high part.
1328 DAG.getConstant(NVTBits-1, ShTy));
1329 Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1330 return true;
1334 #if 0
1335 // FIXME: This code is broken for shifts with a zero amount!
1336 // If we know that all of the high bits of the shift amount are zero, then we
1337 // can do this as a couple of simple shifts.
1338 if ((KnownZero & HighBitMask) == HighBitMask) {
1339 // Compute 32-amt.
1340 SDValue Amt2 = DAG.getNode(ISD::SUB, ShTy,
1341 DAG.getConstant(NVTBits, ShTy),
1342 Amt);
1343 unsigned Op1, Op2;
1344 switch (N->getOpcode()) {
1345 default: llvm_unreachable("Unknown shift");
1346 case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1347 case ISD::SRL:
1348 case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1351 Lo = DAG.getNode(N->getOpcode(), NVT, InL, Amt);
1352 Hi = DAG.getNode(ISD::OR, NVT,
1353 DAG.getNode(Op1, NVT, InH, Amt),
1354 DAG.getNode(Op2, NVT, InL, Amt2));
1355 return true;
1357 #endif
1359 return false;
1362 /// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1363 /// of any size.
1364 bool DAGTypeLegalizer::
1365 ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1366 SDValue Amt = N->getOperand(1);
1367 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1368 EVT ShTy = Amt.getValueType();
1369 unsigned NVTBits = NVT.getSizeInBits();
1370 assert(isPowerOf2_32(NVTBits) &&
1371 "Expanded integer type size not a power of two!");
1372 DebugLoc dl = N->getDebugLoc();
1374 // Get the incoming operand to be shifted.
1375 SDValue InL, InH;
1376 GetExpandedInteger(N->getOperand(0), InL, InH);
1378 SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy);
1379 SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1380 SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1381 SDValue isShort = DAG.getSetCC(dl, TLI.getSetCCResultType(ShTy),
1382 Amt, NVBitsNode, ISD::SETULT);
1384 SDValue LoS, HiS, LoL, HiL;
1385 switch (N->getOpcode()) {
1386 default: llvm_unreachable("Unknown shift");
1387 case ISD::SHL:
1388 // Short: ShAmt < NVTBits
1389 LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1390 HiS = DAG.getNode(ISD::OR, dl, NVT,
1391 DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1392 // FIXME: If Amt is zero, the following shift generates an undefined result
1393 // on some architectures.
1394 DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1396 // Long: ShAmt >= NVTBits
1397 LoL = DAG.getConstant(0, NVT); // Lo part is zero.
1398 HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1400 Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1401 Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1402 return true;
1403 case ISD::SRL:
1404 // Short: ShAmt < NVTBits
1405 HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1406 LoS = DAG.getNode(ISD::OR, dl, NVT,
1407 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1408 // FIXME: If Amt is zero, the following shift generates an undefined result
1409 // on some architectures.
1410 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1412 // Long: ShAmt >= NVTBits
1413 HiL = DAG.getConstant(0, NVT); // Hi part is zero.
1414 LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1416 Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1417 Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1418 return true;
1419 case ISD::SRA:
1420 // Short: ShAmt < NVTBits
1421 HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1422 LoS = DAG.getNode(ISD::OR, dl, NVT,
1423 DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1424 // FIXME: If Amt is zero, the following shift generates an undefined result
1425 // on some architectures.
1426 DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1428 // Long: ShAmt >= NVTBits
1429 HiL = DAG.getNode(ISD::SRA, dl, NVT, InH, // Sign of Hi part.
1430 DAG.getConstant(NVTBits-1, ShTy));
1431 LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1433 Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1434 Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1435 return true;
1438 return false;
1441 void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1442 SDValue &Lo, SDValue &Hi) {
1443 DebugLoc dl = N->getDebugLoc();
1444 // Expand the subcomponents.
1445 SDValue LHSL, LHSH, RHSL, RHSH;
1446 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1447 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1449 EVT NVT = LHSL.getValueType();
1450 SDValue LoOps[2] = { LHSL, RHSL };
1451 SDValue HiOps[3] = { LHSH, RHSH };
1453 // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1454 // them. TODO: Teach operation legalization how to expand unsupported
1455 // ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate
1456 // a carry of type MVT::Glue, but there doesn't seem to be any way to
1457 // generate a value of this type in the expanded code sequence.
1458 bool hasCarry =
1459 TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1460 ISD::ADDC : ISD::SUBC,
1461 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1463 if (hasCarry) {
1464 SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1465 if (N->getOpcode() == ISD::ADD) {
1466 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1467 HiOps[2] = Lo.getValue(1);
1468 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1469 } else {
1470 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1471 HiOps[2] = Lo.getValue(1);
1472 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1474 return;
1477 if (N->getOpcode() == ISD::ADD) {
1478 Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2);
1479 Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2);
1480 SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[0],
1481 ISD::SETULT);
1482 SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1,
1483 DAG.getConstant(1, NVT),
1484 DAG.getConstant(0, NVT));
1485 SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[1],
1486 ISD::SETULT);
1487 SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2,
1488 DAG.getConstant(1, NVT), Carry1);
1489 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1490 } else {
1491 Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2);
1492 Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2);
1493 SDValue Cmp =
1494 DAG.getSetCC(dl, TLI.getSetCCResultType(LoOps[0].getValueType()),
1495 LoOps[0], LoOps[1], ISD::SETULT);
1496 SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp,
1497 DAG.getConstant(1, NVT),
1498 DAG.getConstant(0, NVT));
1499 Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1503 void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1504 SDValue &Lo, SDValue &Hi) {
1505 // Expand the subcomponents.
1506 SDValue LHSL, LHSH, RHSL, RHSH;
1507 DebugLoc dl = N->getDebugLoc();
1508 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1509 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1510 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1511 SDValue LoOps[2] = { LHSL, RHSL };
1512 SDValue HiOps[3] = { LHSH, RHSH };
1514 if (N->getOpcode() == ISD::ADDC) {
1515 Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1516 HiOps[2] = Lo.getValue(1);
1517 Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1518 } else {
1519 Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1520 HiOps[2] = Lo.getValue(1);
1521 Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1524 // Legalized the flag result - switch anything that used the old flag to
1525 // use the new one.
1526 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1529 void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1530 SDValue &Lo, SDValue &Hi) {
1531 // Expand the subcomponents.
1532 SDValue LHSL, LHSH, RHSL, RHSH;
1533 DebugLoc dl = N->getDebugLoc();
1534 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1535 GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1536 SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1537 SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1538 SDValue HiOps[3] = { LHSH, RHSH };
1540 Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps, 3);
1541 HiOps[2] = Lo.getValue(1);
1542 Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps, 3);
1544 // Legalized the flag result - switch anything that used the old flag to
1545 // use the new one.
1546 ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1549 void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1550 SDValue &Lo, SDValue &Hi) {
1551 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1552 DebugLoc dl = N->getDebugLoc();
1553 SDValue Op = N->getOperand(0);
1554 if (Op.getValueType().bitsLE(NVT)) {
1555 // The low part is any extension of the input (which degenerates to a copy).
1556 Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1557 Hi = DAG.getUNDEF(NVT); // The high part is undefined.
1558 } else {
1559 // For example, extension of an i48 to an i64. The operand type necessarily
1560 // promotes to the result type, so will end up being expanded too.
1561 assert(getTypeAction(Op.getValueType()) ==
1562 TargetLowering::TypePromoteInteger &&
1563 "Only know how to promote this result!");
1564 SDValue Res = GetPromotedInteger(Op);
1565 assert(Res.getValueType() == N->getValueType(0) &&
1566 "Operand over promoted?");
1567 // Split the promoted operand. This will simplify when it is expanded.
1568 SplitInteger(Res, Lo, Hi);
1572 void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1573 SDValue &Lo, SDValue &Hi) {
1574 DebugLoc dl = N->getDebugLoc();
1575 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1576 EVT NVT = Lo.getValueType();
1577 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1578 unsigned NVTBits = NVT.getSizeInBits();
1579 unsigned EVTBits = EVT.getSizeInBits();
1581 if (NVTBits < EVTBits) {
1582 Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1583 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1584 EVTBits - NVTBits)));
1585 } else {
1586 Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1587 // The high part replicates the sign bit of Lo, make it explicit.
1588 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1589 DAG.getConstant(NVTBits-1, TLI.getPointerTy()));
1593 void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1594 SDValue &Lo, SDValue &Hi) {
1595 DebugLoc dl = N->getDebugLoc();
1596 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1597 EVT NVT = Lo.getValueType();
1598 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1599 unsigned NVTBits = NVT.getSizeInBits();
1600 unsigned EVTBits = EVT.getSizeInBits();
1602 if (NVTBits < EVTBits) {
1603 Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1604 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1605 EVTBits - NVTBits)));
1606 } else {
1607 Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1608 // The high part must be zero, make it explicit.
1609 Hi = DAG.getConstant(0, NVT);
1613 void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1614 SDValue &Lo, SDValue &Hi) {
1615 DebugLoc dl = N->getDebugLoc();
1616 GetExpandedInteger(N->getOperand(0), Hi, Lo); // Note swapped operands.
1617 Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1618 Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1621 void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1622 SDValue &Lo, SDValue &Hi) {
1623 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1624 unsigned NBitWidth = NVT.getSizeInBits();
1625 const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
1626 Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT);
1627 Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT);
1630 void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1631 SDValue &Lo, SDValue &Hi) {
1632 DebugLoc dl = N->getDebugLoc();
1633 // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1634 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1635 EVT NVT = Lo.getValueType();
1637 SDValue HiNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Hi,
1638 DAG.getConstant(0, NVT), ISD::SETNE);
1640 SDValue LoLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Lo);
1641 SDValue HiLZ = DAG.getNode(ISD::CTLZ, dl, NVT, Hi);
1643 Lo = DAG.getNode(ISD::SELECT, dl, NVT, HiNotZero, HiLZ,
1644 DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1645 DAG.getConstant(NVT.getSizeInBits(), NVT)));
1646 Hi = DAG.getConstant(0, NVT);
1649 void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1650 SDValue &Lo, SDValue &Hi) {
1651 DebugLoc dl = N->getDebugLoc();
1652 // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1653 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1654 EVT NVT = Lo.getValueType();
1655 Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1656 DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1657 Hi = DAG.getConstant(0, NVT);
1660 void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1661 SDValue &Lo, SDValue &Hi) {
1662 DebugLoc dl = N->getDebugLoc();
1663 // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1664 GetExpandedInteger(N->getOperand(0), Lo, Hi);
1665 EVT NVT = Lo.getValueType();
1667 SDValue LoNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo,
1668 DAG.getConstant(0, NVT), ISD::SETNE);
1670 SDValue LoLZ = DAG.getNode(ISD::CTTZ, dl, NVT, Lo);
1671 SDValue HiLZ = DAG.getNode(ISD::CTTZ, dl, NVT, Hi);
1673 Lo = DAG.getNode(ISD::SELECT, dl, NVT, LoNotZero, LoLZ,
1674 DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1675 DAG.getConstant(NVT.getSizeInBits(), NVT)));
1676 Hi = DAG.getConstant(0, NVT);
1679 void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1680 SDValue &Hi) {
1681 DebugLoc dl = N->getDebugLoc();
1682 EVT VT = N->getValueType(0);
1683 SDValue Op = N->getOperand(0);
1684 RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1685 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1686 SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*irrelevant*/, dl), Lo, Hi);
1689 void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1690 SDValue &Hi) {
1691 DebugLoc dl = N->getDebugLoc();
1692 EVT VT = N->getValueType(0);
1693 SDValue Op = N->getOperand(0);
1694 RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1695 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1696 SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*irrelevant*/, dl), Lo, Hi);
1699 void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1700 SDValue &Lo, SDValue &Hi) {
1701 if (ISD::isNormalLoad(N)) {
1702 ExpandRes_NormalLoad(N, Lo, Hi);
1703 return;
1706 assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1708 EVT VT = N->getValueType(0);
1709 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1710 SDValue Ch = N->getChain();
1711 SDValue Ptr = N->getBasePtr();
1712 ISD::LoadExtType ExtType = N->getExtensionType();
1713 unsigned Alignment = N->getAlignment();
1714 bool isVolatile = N->isVolatile();
1715 bool isNonTemporal = N->isNonTemporal();
1716 DebugLoc dl = N->getDebugLoc();
1718 assert(NVT.isByteSized() && "Expanded type not byte sized!");
1720 if (N->getMemoryVT().bitsLE(NVT)) {
1721 EVT MemVT = N->getMemoryVT();
1723 Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1724 MemVT, isVolatile, isNonTemporal, Alignment);
1726 // Remember the chain.
1727 Ch = Lo.getValue(1);
1729 if (ExtType == ISD::SEXTLOAD) {
1730 // The high part is obtained by SRA'ing all but one of the bits of the
1731 // lo part.
1732 unsigned LoSize = Lo.getValueType().getSizeInBits();
1733 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1734 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
1735 } else if (ExtType == ISD::ZEXTLOAD) {
1736 // The high part is just a zero.
1737 Hi = DAG.getConstant(0, NVT);
1738 } else {
1739 assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
1740 // The high part is undefined.
1741 Hi = DAG.getUNDEF(NVT);
1743 } else if (TLI.isLittleEndian()) {
1744 // Little-endian - low bits are at low addresses.
1745 Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
1746 isVolatile, isNonTemporal, Alignment);
1748 unsigned ExcessBits =
1749 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
1750 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
1752 // Increment the pointer to the other half.
1753 unsigned IncrementSize = NVT.getSizeInBits()/8;
1754 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1755 DAG.getIntPtrConstant(IncrementSize));
1756 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
1757 N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
1758 isVolatile, isNonTemporal,
1759 MinAlign(Alignment, IncrementSize));
1761 // Build a factor node to remember that this load is independent of the
1762 // other one.
1763 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1764 Hi.getValue(1));
1765 } else {
1766 // Big-endian - high bits are at low addresses. Favor aligned loads at
1767 // the cost of some bit-fiddling.
1768 EVT MemVT = N->getMemoryVT();
1769 unsigned EBytes = MemVT.getStoreSize();
1770 unsigned IncrementSize = NVT.getSizeInBits()/8;
1771 unsigned ExcessBits = (EBytes - IncrementSize)*8;
1773 // Load both the high bits and maybe some of the low bits.
1774 Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1775 EVT::getIntegerVT(*DAG.getContext(),
1776 MemVT.getSizeInBits() - ExcessBits),
1777 isVolatile, isNonTemporal, Alignment);
1779 // Increment the pointer to the other half.
1780 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1781 DAG.getIntPtrConstant(IncrementSize));
1782 // Load the rest of the low bits.
1783 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
1784 N->getPointerInfo().getWithOffset(IncrementSize),
1785 EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
1786 isVolatile, isNonTemporal,
1787 MinAlign(Alignment, IncrementSize));
1789 // Build a factor node to remember that this load is independent of the
1790 // other one.
1791 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1792 Hi.getValue(1));
1794 if (ExcessBits < NVT.getSizeInBits()) {
1795 // Transfer low bits from the bottom of Hi to the top of Lo.
1796 Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
1797 DAG.getNode(ISD::SHL, dl, NVT, Hi,
1798 DAG.getConstant(ExcessBits,
1799 TLI.getPointerTy())));
1800 // Move high bits to the right position in Hi.
1801 Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl,
1802 NVT, Hi,
1803 DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
1804 TLI.getPointerTy()));
1808 // Legalized the chain result - switch anything that used the old chain to
1809 // use the new one.
1810 ReplaceValueWith(SDValue(N, 1), Ch);
1813 void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
1814 SDValue &Lo, SDValue &Hi) {
1815 DebugLoc dl = N->getDebugLoc();
1816 SDValue LL, LH, RL, RH;
1817 GetExpandedInteger(N->getOperand(0), LL, LH);
1818 GetExpandedInteger(N->getOperand(1), RL, RH);
1819 Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
1820 Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
1823 void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
1824 SDValue &Lo, SDValue &Hi) {
1825 EVT VT = N->getValueType(0);
1826 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1827 DebugLoc dl = N->getDebugLoc();
1829 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
1830 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT);
1831 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT);
1832 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT);
1833 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
1834 SDValue LL, LH, RL, RH;
1835 GetExpandedInteger(N->getOperand(0), LL, LH);
1836 GetExpandedInteger(N->getOperand(1), RL, RH);
1837 unsigned OuterBitSize = VT.getSizeInBits();
1838 unsigned InnerBitSize = NVT.getSizeInBits();
1839 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
1840 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
1842 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
1843 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
1844 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
1845 // The inputs are both zero-extended.
1846 if (HasUMUL_LOHI) {
1847 // We can emit a umul_lohi.
1848 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1849 Hi = SDValue(Lo.getNode(), 1);
1850 return;
1852 if (HasMULHU) {
1853 // We can emit a mulhu+mul.
1854 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1855 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1856 return;
1859 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
1860 // The input values are both sign-extended.
1861 if (HasSMUL_LOHI) {
1862 // We can emit a smul_lohi.
1863 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1864 Hi = SDValue(Lo.getNode(), 1);
1865 return;
1867 if (HasMULHS) {
1868 // We can emit a mulhs+mul.
1869 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1870 Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL);
1871 return;
1874 if (HasUMUL_LOHI) {
1875 // Lo,Hi = umul LHS, RHS.
1876 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
1877 DAG.getVTList(NVT, NVT), LL, RL);
1878 Lo = UMulLOHI;
1879 Hi = UMulLOHI.getValue(1);
1880 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1881 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1882 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1883 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1884 return;
1886 if (HasMULHU) {
1887 Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1888 Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1889 RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1890 LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1891 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1892 Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1893 return;
1897 // If nothing else, we can make a libcall.
1898 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1899 if (VT == MVT::i16)
1900 LC = RTLIB::MUL_I16;
1901 else if (VT == MVT::i32)
1902 LC = RTLIB::MUL_I32;
1903 else if (VT == MVT::i64)
1904 LC = RTLIB::MUL_I64;
1905 else if (VT == MVT::i128)
1906 LC = RTLIB::MUL_I128;
1907 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
1909 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1910 SplitInteger(MakeLibCall(LC, VT, Ops, 2, true/*irrelevant*/, dl), Lo, Hi);
1913 void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
1914 SDValue &Lo, SDValue &Hi) {
1915 SDValue LHS = Node->getOperand(0);
1916 SDValue RHS = Node->getOperand(1);
1917 DebugLoc dl = Node->getDebugLoc();
1919 // Expand the result by simply replacing it with the equivalent
1920 // non-overflow-checking operation.
1921 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
1922 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
1923 LHS, RHS);
1924 SplitInteger(Sum, Lo, Hi);
1926 // Compute the overflow.
1928 // LHSSign -> LHS >= 0
1929 // RHSSign -> RHS >= 0
1930 // SumSign -> Sum >= 0
1932 // Add:
1933 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
1934 // Sub:
1935 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
1937 EVT OType = Node->getValueType(1);
1938 SDValue Zero = DAG.getConstant(0, LHS.getValueType());
1940 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
1941 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
1942 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
1943 Node->getOpcode() == ISD::SADDO ?
1944 ISD::SETEQ : ISD::SETNE);
1946 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
1947 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
1949 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
1951 // Use the calculated overflow everywhere.
1952 ReplaceValueWith(SDValue(Node, 1), Cmp);
1955 void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
1956 SDValue &Lo, SDValue &Hi) {
1957 EVT VT = N->getValueType(0);
1958 DebugLoc dl = N->getDebugLoc();
1960 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1961 if (VT == MVT::i16)
1962 LC = RTLIB::SDIV_I16;
1963 else if (VT == MVT::i32)
1964 LC = RTLIB::SDIV_I32;
1965 else if (VT == MVT::i64)
1966 LC = RTLIB::SDIV_I64;
1967 else if (VT == MVT::i128)
1968 LC = RTLIB::SDIV_I128;
1969 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1971 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1972 SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
1975 void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
1976 SDValue &Lo, SDValue &Hi) {
1977 EVT VT = N->getValueType(0);
1978 DebugLoc dl = N->getDebugLoc();
1980 // If we can emit an efficient shift operation, do so now. Check to see if
1981 // the RHS is a constant.
1982 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1983 return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi);
1985 // If we can determine that the high bit of the shift is zero or one, even if
1986 // the low bits are variable, emit this shift in an optimized form.
1987 if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
1988 return;
1990 // If this target supports shift_PARTS, use it. First, map to the _PARTS opc.
1991 unsigned PartsOpc;
1992 if (N->getOpcode() == ISD::SHL) {
1993 PartsOpc = ISD::SHL_PARTS;
1994 } else if (N->getOpcode() == ISD::SRL) {
1995 PartsOpc = ISD::SRL_PARTS;
1996 } else {
1997 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1998 PartsOpc = ISD::SRA_PARTS;
2001 // Next check to see if the target supports this SHL_PARTS operation or if it
2002 // will custom expand it.
2003 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2004 TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
2005 if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
2006 Action == TargetLowering::Custom) {
2007 // Expand the subcomponents.
2008 SDValue LHSL, LHSH;
2009 GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2011 SDValue Ops[] = { LHSL, LHSH, N->getOperand(1) };
2012 EVT VT = LHSL.getValueType();
2013 Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3);
2014 Hi = Lo.getValue(1);
2015 return;
2018 // Otherwise, emit a libcall.
2019 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2020 bool isSigned;
2021 if (N->getOpcode() == ISD::SHL) {
2022 isSigned = false; /*sign irrelevant*/
2023 if (VT == MVT::i16)
2024 LC = RTLIB::SHL_I16;
2025 else if (VT == MVT::i32)
2026 LC = RTLIB::SHL_I32;
2027 else if (VT == MVT::i64)
2028 LC = RTLIB::SHL_I64;
2029 else if (VT == MVT::i128)
2030 LC = RTLIB::SHL_I128;
2031 } else if (N->getOpcode() == ISD::SRL) {
2032 isSigned = false;
2033 if (VT == MVT::i16)
2034 LC = RTLIB::SRL_I16;
2035 else if (VT == MVT::i32)
2036 LC = RTLIB::SRL_I32;
2037 else if (VT == MVT::i64)
2038 LC = RTLIB::SRL_I64;
2039 else if (VT == MVT::i128)
2040 LC = RTLIB::SRL_I128;
2041 } else {
2042 assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2043 isSigned = true;
2044 if (VT == MVT::i16)
2045 LC = RTLIB::SRA_I16;
2046 else if (VT == MVT::i32)
2047 LC = RTLIB::SRA_I32;
2048 else if (VT == MVT::i64)
2049 LC = RTLIB::SRA_I64;
2050 else if (VT == MVT::i128)
2051 LC = RTLIB::SRA_I128;
2054 if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2055 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2056 SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned, dl), Lo, Hi);
2057 return;
2060 if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2061 llvm_unreachable("Unsupported shift!");
2064 void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2065 SDValue &Lo, SDValue &Hi) {
2066 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2067 DebugLoc dl = N->getDebugLoc();
2068 SDValue Op = N->getOperand(0);
2069 if (Op.getValueType().bitsLE(NVT)) {
2070 // The low part is sign extension of the input (degenerates to a copy).
2071 Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2072 // The high part is obtained by SRA'ing all but one of the bits of low part.
2073 unsigned LoSize = NVT.getSizeInBits();
2074 Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2075 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
2076 } else {
2077 // For example, extension of an i48 to an i64. The operand type necessarily
2078 // promotes to the result type, so will end up being expanded too.
2079 assert(getTypeAction(Op.getValueType()) ==
2080 TargetLowering::TypePromoteInteger &&
2081 "Only know how to promote this result!");
2082 SDValue Res = GetPromotedInteger(Op);
2083 assert(Res.getValueType() == N->getValueType(0) &&
2084 "Operand over promoted?");
2085 // Split the promoted operand. This will simplify when it is expanded.
2086 SplitInteger(Res, Lo, Hi);
2087 unsigned ExcessBits =
2088 Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2089 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2090 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2091 ExcessBits)));
2095 void DAGTypeLegalizer::
2096 ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2097 DebugLoc dl = N->getDebugLoc();
2098 GetExpandedInteger(N->getOperand(0), Lo, Hi);
2099 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2101 if (EVT.bitsLE(Lo.getValueType())) {
2102 // sext_inreg the low part if needed.
2103 Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2104 N->getOperand(1));
2106 // The high part gets the sign extension from the lo-part. This handles
2107 // things like sextinreg V:i64 from i8.
2108 Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2109 DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
2110 TLI.getPointerTy()));
2111 } else {
2112 // For example, extension of an i48 to an i64. Leave the low part alone,
2113 // sext_inreg the high part.
2114 unsigned ExcessBits =
2115 EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2116 Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2117 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2118 ExcessBits)));
2122 void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2123 SDValue &Lo, SDValue &Hi) {
2124 EVT VT = N->getValueType(0);
2125 DebugLoc dl = N->getDebugLoc();
2127 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2128 if (VT == MVT::i16)
2129 LC = RTLIB::SREM_I16;
2130 else if (VT == MVT::i32)
2131 LC = RTLIB::SREM_I32;
2132 else if (VT == MVT::i64)
2133 LC = RTLIB::SREM_I64;
2134 else if (VT == MVT::i128)
2135 LC = RTLIB::SREM_I128;
2136 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2138 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2139 SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2142 void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2143 SDValue &Lo, SDValue &Hi) {
2144 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2145 DebugLoc dl = N->getDebugLoc();
2146 Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2147 Hi = DAG.getNode(ISD::SRL, dl,
2148 N->getOperand(0).getValueType(), N->getOperand(0),
2149 DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy()));
2150 Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2153 void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2154 SDValue &Lo, SDValue &Hi) {
2155 SDValue LHS = N->getOperand(0);
2156 SDValue RHS = N->getOperand(1);
2157 DebugLoc dl = N->getDebugLoc();
2159 // Expand the result by simply replacing it with the equivalent
2160 // non-overflow-checking operation.
2161 SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2162 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2163 LHS, RHS);
2164 SplitInteger(Sum, Lo, Hi);
2166 // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2167 // overflows iff a - b > a.
2168 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2169 N->getOpcode () == ISD::UADDO ?
2170 ISD::SETULT : ISD::SETUGT);
2172 // Use the calculated overflow everywhere.
2173 ReplaceValueWith(SDValue(N, 1), Ofl);
2176 void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2177 SDValue &Lo, SDValue &Hi) {
2178 EVT VT = N->getValueType(0);
2179 const Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2180 EVT PtrVT = TLI.getPointerTy();
2181 const Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2182 DebugLoc dl = N->getDebugLoc();
2184 // A divide for UMULO should be faster than a function call.
2185 if (N->getOpcode() == ISD::UMULO) {
2186 SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
2187 DebugLoc DL = N->getDebugLoc();
2189 SDValue MUL = DAG.getNode(ISD::MUL, DL, LHS.getValueType(), LHS, RHS);
2190 SplitInteger(MUL, Lo, Hi);
2192 // A divide for UMULO will be faster than a function call. Select to
2193 // make sure we aren't using 0.
2194 SDValue isZero = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2195 RHS, DAG.getConstant(0, VT), ISD::SETNE);
2196 SDValue NotZero = DAG.getNode(ISD::SELECT, dl, VT, isZero,
2197 DAG.getConstant(1, VT), RHS);
2198 SDValue DIV = DAG.getNode(ISD::UDIV, DL, LHS.getValueType(), MUL, NotZero);
2199 SDValue Overflow;
2200 Overflow = DAG.getSetCC(DL, N->getValueType(1), DIV, LHS, ISD::SETNE);
2201 ReplaceValueWith(SDValue(N, 1), Overflow);
2202 return;
2205 // Replace this with a libcall that will check overflow.
2206 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2207 if (VT == MVT::i32)
2208 LC = RTLIB::MULO_I32;
2209 else if (VT == MVT::i64)
2210 LC = RTLIB::MULO_I64;
2211 else if (VT == MVT::i128)
2212 LC = RTLIB::MULO_I128;
2213 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2215 SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2216 // Temporary for the overflow value, default it to zero.
2217 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2218 DAG.getConstant(0, PtrVT), Temp,
2219 MachinePointerInfo(), false, false, 0);
2221 TargetLowering::ArgListTy Args;
2222 TargetLowering::ArgListEntry Entry;
2223 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2224 EVT ArgVT = N->getOperand(i).getValueType();
2225 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2226 Entry.Node = N->getOperand(i);
2227 Entry.Ty = ArgTy;
2228 Entry.isSExt = true;
2229 Entry.isZExt = false;
2230 Args.push_back(Entry);
2233 // Also pass the address of the overflow check.
2234 Entry.Node = Temp;
2235 Entry.Ty = PtrTy->getPointerTo();
2236 Entry.isSExt = true;
2237 Entry.isZExt = false;
2238 Args.push_back(Entry);
2240 SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2241 std::pair<SDValue, SDValue> CallInfo =
2242 TLI.LowerCallTo(Chain, RetTy, true, false, false, false,
2243 0, TLI.getLibcallCallingConv(LC), false,
2244 true, Func, Args, DAG, dl);
2246 SplitInteger(CallInfo.first, Lo, Hi);
2247 SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2248 MachinePointerInfo(), false, false, 0);
2249 SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2250 DAG.getConstant(0, PtrVT),
2251 ISD::SETNE);
2252 // Use the overflow from the libcall everywhere.
2253 ReplaceValueWith(SDValue(N, 1), Ofl);
2256 void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2257 SDValue &Lo, SDValue &Hi) {
2258 EVT VT = N->getValueType(0);
2259 DebugLoc dl = N->getDebugLoc();
2261 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2262 if (VT == MVT::i16)
2263 LC = RTLIB::UDIV_I16;
2264 else if (VT == MVT::i32)
2265 LC = RTLIB::UDIV_I32;
2266 else if (VT == MVT::i64)
2267 LC = RTLIB::UDIV_I64;
2268 else if (VT == MVT::i128)
2269 LC = RTLIB::UDIV_I128;
2270 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2272 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2273 SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2276 void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2277 SDValue &Lo, SDValue &Hi) {
2278 EVT VT = N->getValueType(0);
2279 DebugLoc dl = N->getDebugLoc();
2281 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2282 if (VT == MVT::i16)
2283 LC = RTLIB::UREM_I16;
2284 else if (VT == MVT::i32)
2285 LC = RTLIB::UREM_I32;
2286 else if (VT == MVT::i64)
2287 LC = RTLIB::UREM_I64;
2288 else if (VT == MVT::i128)
2289 LC = RTLIB::UREM_I128;
2290 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2292 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2293 SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2296 void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2297 SDValue &Lo, SDValue &Hi) {
2298 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2299 DebugLoc dl = N->getDebugLoc();
2300 SDValue Op = N->getOperand(0);
2301 if (Op.getValueType().bitsLE(NVT)) {
2302 // The low part is zero extension of the input (degenerates to a copy).
2303 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2304 Hi = DAG.getConstant(0, NVT); // The high part is just a zero.
2305 } else {
2306 // For example, extension of an i48 to an i64. The operand type necessarily
2307 // promotes to the result type, so will end up being expanded too.
2308 assert(getTypeAction(Op.getValueType()) ==
2309 TargetLowering::TypePromoteInteger &&
2310 "Only know how to promote this result!");
2311 SDValue Res = GetPromotedInteger(Op);
2312 assert(Res.getValueType() == N->getValueType(0) &&
2313 "Operand over promoted?");
2314 // Split the promoted operand. This will simplify when it is expanded.
2315 SplitInteger(Res, Lo, Hi);
2316 unsigned ExcessBits =
2317 Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2318 Hi = DAG.getZeroExtendInReg(Hi, dl,
2319 EVT::getIntegerVT(*DAG.getContext(),
2320 ExcessBits));
2325 //===----------------------------------------------------------------------===//
2326 // Integer Operand Expansion
2327 //===----------------------------------------------------------------------===//
2329 /// ExpandIntegerOperand - This method is called when the specified operand of
2330 /// the specified node is found to need expansion. At this point, all of the
2331 /// result types of the node are known to be legal, but other operands of the
2332 /// node may need promotion or expansion as well as the specified one.
2333 bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2334 DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2335 SDValue Res = SDValue();
2337 if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2338 return false;
2340 switch (N->getOpcode()) {
2341 default:
2342 #ifndef NDEBUG
2343 dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2344 N->dump(&DAG); dbgs() << "\n";
2345 #endif
2346 llvm_unreachable("Do not know how to expand this operator's operand!");
2348 case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break;
2349 case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break;
2350 case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break;
2351 case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2352 case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2353 case ISD::SCALAR_TO_VECTOR: Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2354 case ISD::SELECT_CC: Res = ExpandIntOp_SELECT_CC(N); break;
2355 case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break;
2356 case ISD::SINT_TO_FP: Res = ExpandIntOp_SINT_TO_FP(N); break;
2357 case ISD::STORE: Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2358 case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break;
2359 case ISD::UINT_TO_FP: Res = ExpandIntOp_UINT_TO_FP(N); break;
2361 case ISD::SHL:
2362 case ISD::SRA:
2363 case ISD::SRL:
2364 case ISD::ROTL:
2365 case ISD::ROTR: Res = ExpandIntOp_Shift(N); break;
2366 case ISD::RETURNADDR:
2367 case ISD::FRAMEADDR: Res = ExpandIntOp_RETURNADDR(N); break;
2370 // If the result is null, the sub-method took care of registering results etc.
2371 if (!Res.getNode()) return false;
2373 // If the result is N, the sub-method updated N in place. Tell the legalizer
2374 // core about this.
2375 if (Res.getNode() == N)
2376 return true;
2378 assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2379 "Invalid operand expansion");
2381 ReplaceValueWith(SDValue(N, 0), Res);
2382 return false;
2385 /// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code
2386 /// is shared among BR_CC, SELECT_CC, and SETCC handlers.
2387 void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2388 SDValue &NewRHS,
2389 ISD::CondCode &CCCode,
2390 DebugLoc dl) {
2391 SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2392 GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2393 GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2395 if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2396 if (RHSLo == RHSHi) {
2397 if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2398 if (RHSCST->isAllOnesValue()) {
2399 // Equality comparison to -1.
2400 NewLHS = DAG.getNode(ISD::AND, dl,
2401 LHSLo.getValueType(), LHSLo, LHSHi);
2402 NewRHS = RHSLo;
2403 return;
2408 NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2409 NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2410 NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2411 NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2412 return;
2415 // If this is a comparison of the sign bit, just look at the top part.
2416 // X > -1, x < 0
2417 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2418 if ((CCCode == ISD::SETLT && CST->isNullValue()) || // X < 0
2419 (CCCode == ISD::SETGT && CST->isAllOnesValue())) { // X > -1
2420 NewLHS = LHSHi;
2421 NewRHS = RHSHi;
2422 return;
2425 // FIXME: This generated code sucks.
2426 ISD::CondCode LowCC;
2427 switch (CCCode) {
2428 default: llvm_unreachable("Unknown integer setcc!");
2429 case ISD::SETLT:
2430 case ISD::SETULT: LowCC = ISD::SETULT; break;
2431 case ISD::SETGT:
2432 case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2433 case ISD::SETLE:
2434 case ISD::SETULE: LowCC = ISD::SETULE; break;
2435 case ISD::SETGE:
2436 case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2439 // Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
2440 // Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
2441 // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2443 // NOTE: on targets without efficient SELECT of bools, we can always use
2444 // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2445 TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, true, NULL);
2446 SDValue Tmp1, Tmp2;
2447 Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()),
2448 LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2449 if (!Tmp1.getNode())
2450 Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()),
2451 LHSLo, RHSLo, LowCC);
2452 Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2453 LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2454 if (!Tmp2.getNode())
2455 Tmp2 = DAG.getNode(ISD::SETCC, dl,
2456 TLI.getSetCCResultType(LHSHi.getValueType()),
2457 LHSHi, RHSHi, DAG.getCondCode(CCCode));
2459 ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2460 ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2461 if ((Tmp1C && Tmp1C->isNullValue()) ||
2462 (Tmp2C && Tmp2C->isNullValue() &&
2463 (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2464 CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2465 (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2466 (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2467 CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2468 // low part is known false, returns high part.
2469 // For LE / GE, if high part is known false, ignore the low part.
2470 // For LT / GT, if high part is known true, ignore the low part.
2471 NewLHS = Tmp2;
2472 NewRHS = SDValue();
2473 return;
2476 NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2477 LHSHi, RHSHi, ISD::SETEQ, false,
2478 DagCombineInfo, dl);
2479 if (!NewLHS.getNode())
2480 NewLHS = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
2481 LHSHi, RHSHi, ISD::SETEQ);
2482 NewLHS = DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(),
2483 NewLHS, Tmp1, Tmp2);
2484 NewRHS = SDValue();
2487 SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2488 SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2489 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2490 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2492 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2493 // against zero to select between true and false values.
2494 if (NewRHS.getNode() == 0) {
2495 NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2496 CCCode = ISD::SETNE;
2499 // Update N to have the operands specified.
2500 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2501 DAG.getCondCode(CCCode), NewLHS, NewRHS,
2502 N->getOperand(4)), 0);
2505 SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2506 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2507 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2508 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2510 // If ExpandSetCCOperands returned a scalar, we need to compare the result
2511 // against zero to select between true and false values.
2512 if (NewRHS.getNode() == 0) {
2513 NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2514 CCCode = ISD::SETNE;
2517 // Update N to have the operands specified.
2518 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2519 N->getOperand(2), N->getOperand(3),
2520 DAG.getCondCode(CCCode)), 0);
2523 SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2524 SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2525 ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2526 IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2528 // If ExpandSetCCOperands returned a scalar, use it.
2529 if (NewRHS.getNode() == 0) {
2530 assert(NewLHS.getValueType() == N->getValueType(0) &&
2531 "Unexpected setcc expansion!");
2532 return NewLHS;
2535 // Otherwise, update N to have the operands specified.
2536 return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2537 DAG.getCondCode(CCCode)), 0);
2540 SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2541 // The value being shifted is legal, but the shift amount is too big.
2542 // It follows that either the result of the shift is undefined, or the
2543 // upper half of the shift amount is zero. Just use the lower half.
2544 SDValue Lo, Hi;
2545 GetExpandedInteger(N->getOperand(1), Lo, Hi);
2546 return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2549 SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2550 // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant. This
2551 // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2552 // constant to valid type.
2553 SDValue Lo, Hi;
2554 GetExpandedInteger(N->getOperand(0), Lo, Hi);
2555 return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2558 SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2559 SDValue Op = N->getOperand(0);
2560 EVT DstVT = N->getValueType(0);
2561 RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2562 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2563 "Don't know how to expand this SINT_TO_FP!");
2564 return MakeLibCall(LC, DstVT, &Op, 1, true, N->getDebugLoc());
2567 SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2568 if (ISD::isNormalStore(N))
2569 return ExpandOp_NormalStore(N, OpNo);
2571 assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2572 assert(OpNo == 1 && "Can only expand the stored value so far");
2574 EVT VT = N->getOperand(1).getValueType();
2575 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2576 SDValue Ch = N->getChain();
2577 SDValue Ptr = N->getBasePtr();
2578 unsigned Alignment = N->getAlignment();
2579 bool isVolatile = N->isVolatile();
2580 bool isNonTemporal = N->isNonTemporal();
2581 DebugLoc dl = N->getDebugLoc();
2582 SDValue Lo, Hi;
2584 assert(NVT.isByteSized() && "Expanded type not byte sized!");
2586 if (N->getMemoryVT().bitsLE(NVT)) {
2587 GetExpandedInteger(N->getValue(), Lo, Hi);
2588 return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2589 N->getMemoryVT(), isVolatile, isNonTemporal,
2590 Alignment);
2593 if (TLI.isLittleEndian()) {
2594 // Little-endian - low bits are at low addresses.
2595 GetExpandedInteger(N->getValue(), Lo, Hi);
2597 Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2598 isVolatile, isNonTemporal, Alignment);
2600 unsigned ExcessBits =
2601 N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2602 EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2604 // Increment the pointer to the other half.
2605 unsigned IncrementSize = NVT.getSizeInBits()/8;
2606 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2607 DAG.getIntPtrConstant(IncrementSize));
2608 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2609 N->getPointerInfo().getWithOffset(IncrementSize),
2610 NEVT, isVolatile, isNonTemporal,
2611 MinAlign(Alignment, IncrementSize));
2612 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2615 // Big-endian - high bits are at low addresses. Favor aligned stores at
2616 // the cost of some bit-fiddling.
2617 GetExpandedInteger(N->getValue(), Lo, Hi);
2619 EVT ExtVT = N->getMemoryVT();
2620 unsigned EBytes = ExtVT.getStoreSize();
2621 unsigned IncrementSize = NVT.getSizeInBits()/8;
2622 unsigned ExcessBits = (EBytes - IncrementSize)*8;
2623 EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
2624 ExtVT.getSizeInBits() - ExcessBits);
2626 if (ExcessBits < NVT.getSizeInBits()) {
2627 // Transfer high bits from the top of Lo to the bottom of Hi.
2628 Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
2629 DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
2630 TLI.getPointerTy()));
2631 Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2632 DAG.getNode(ISD::SRL, dl, NVT, Lo,
2633 DAG.getConstant(ExcessBits,
2634 TLI.getPointerTy())));
2637 // Store both the high bits and maybe some of the low bits.
2638 Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
2639 HiVT, isVolatile, isNonTemporal, Alignment);
2641 // Increment the pointer to the other half.
2642 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2643 DAG.getIntPtrConstant(IncrementSize));
2644 // Store the lowest ExcessBits bits in the second half.
2645 Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
2646 N->getPointerInfo().getWithOffset(IncrementSize),
2647 EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2648 isVolatile, isNonTemporal,
2649 MinAlign(Alignment, IncrementSize));
2650 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2653 SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
2654 SDValue InL, InH;
2655 GetExpandedInteger(N->getOperand(0), InL, InH);
2656 // Just truncate the low part of the source.
2657 return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), InL);
2660 static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
2661 switch (VT.getSimpleVT().SimpleTy) {
2662 default: llvm_unreachable("Unknown FP format");
2663 case MVT::f32: return &APFloat::IEEEsingle;
2664 case MVT::f64: return &APFloat::IEEEdouble;
2665 case MVT::f80: return &APFloat::x87DoubleExtended;
2666 case MVT::f128: return &APFloat::IEEEquad;
2667 case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
2671 SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
2672 SDValue Op = N->getOperand(0);
2673 EVT SrcVT = Op.getValueType();
2674 EVT DstVT = N->getValueType(0);
2675 DebugLoc dl = N->getDebugLoc();
2677 // The following optimization is valid only if every value in SrcVT (when
2678 // treated as signed) is representable in DstVT. Check that the mantissa
2679 // size of DstVT is >= than the number of bits in SrcVT -1.
2680 const fltSemantics *sem = EVTToAPFloatSemantics(DstVT);
2681 if (APFloat::semanticsPrecision(*sem) >= SrcVT.getSizeInBits()-1 &&
2682 TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
2683 // Do a signed conversion then adjust the result.
2684 SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
2685 SignedConv = TLI.LowerOperation(SignedConv, DAG);
2687 // The result of the signed conversion needs adjusting if the 'sign bit' of
2688 // the incoming integer was set. To handle this, we dynamically test to see
2689 // if it is set, and, if so, add a fudge factor.
2691 const uint64_t F32TwoE32 = 0x4F800000ULL;
2692 const uint64_t F32TwoE64 = 0x5F800000ULL;
2693 const uint64_t F32TwoE128 = 0x7F800000ULL;
2695 APInt FF(32, 0);
2696 if (SrcVT == MVT::i32)
2697 FF = APInt(32, F32TwoE32);
2698 else if (SrcVT == MVT::i64)
2699 FF = APInt(32, F32TwoE64);
2700 else if (SrcVT == MVT::i128)
2701 FF = APInt(32, F32TwoE128);
2702 else
2703 assert(false && "Unsupported UINT_TO_FP!");
2705 // Check whether the sign bit is set.
2706 SDValue Lo, Hi;
2707 GetExpandedInteger(Op, Lo, Hi);
2708 SDValue SignSet = DAG.getSetCC(dl,
2709 TLI.getSetCCResultType(Hi.getValueType()),
2710 Hi, DAG.getConstant(0, Hi.getValueType()),
2711 ISD::SETLT);
2713 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2714 SDValue FudgePtr = DAG.getConstantPool(
2715 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
2716 TLI.getPointerTy());
2718 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2719 SDValue Zero = DAG.getIntPtrConstant(0);
2720 SDValue Four = DAG.getIntPtrConstant(4);
2721 if (TLI.isBigEndian()) std::swap(Zero, Four);
2722 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
2723 Zero, Four);
2724 unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
2725 FudgePtr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), FudgePtr, Offset);
2726 Alignment = std::min(Alignment, 4u);
2728 // Load the value out, extending it from f32 to the destination float type.
2729 // FIXME: Avoid the extend by constructing the right constant pool?
2730 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(),
2731 FudgePtr,
2732 MachinePointerInfo::getConstantPool(),
2733 MVT::f32,
2734 false, false, Alignment);
2735 return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
2738 // Otherwise, use a libcall.
2739 RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
2740 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2741 "Don't know how to expand this UINT_TO_FP!");
2742 return MakeLibCall(LC, DstVT, &Op, 1, true, dl);
2745 SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
2746 SDValue InOp0 = N->getOperand(0);
2747 EVT InVT = InOp0.getValueType();
2749 EVT OutVT = N->getValueType(0);
2750 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2751 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2752 unsigned OutNumElems = OutVT.getVectorNumElements();
2753 EVT NOutVTElem = NOutVT.getVectorElementType();
2755 DebugLoc dl = N->getDebugLoc();
2756 SDValue BaseIdx = N->getOperand(1);
2758 SmallVector<SDValue, 8> Ops;
2759 Ops.reserve(OutNumElems);
2760 for (unsigned i = 0; i != OutNumElems; ++i) {
2762 // Extract the element from the original vector.
2763 SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
2764 BaseIdx, DAG.getIntPtrConstant(i));
2765 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2766 InVT.getVectorElementType(), N->getOperand(0), Index);
2768 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
2769 // Insert the converted element to the new vector.
2770 Ops.push_back(Op);
2773 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2777 SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
2779 ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
2780 EVT VT = N->getValueType(0);
2781 DebugLoc dl = N->getDebugLoc();
2783 unsigned NumElts = VT.getVectorNumElements();
2784 SmallVector<int, 8> NewMask;
2785 for (unsigned i = 0; i != NumElts; ++i) {
2786 NewMask.push_back(SV->getMaskElt(i));
2789 SDValue V0 = GetPromotedInteger(N->getOperand(0));
2790 SDValue V1 = GetPromotedInteger(N->getOperand(1));
2791 EVT OutVT = V0.getValueType();
2793 return DAG.getVectorShuffle(OutVT, dl, V0, V1, &NewMask[0]);
2797 SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
2798 EVT OutVT = N->getValueType(0);
2799 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2800 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2801 unsigned NumElems = N->getNumOperands();
2802 EVT NOutVTElem = NOutVT.getVectorElementType();
2804 DebugLoc dl = N->getDebugLoc();
2806 SmallVector<SDValue, 8> Ops;
2807 Ops.reserve(NumElems);
2808 for (unsigned i = 0; i != NumElems; ++i) {
2809 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
2810 Ops.push_back(Op);
2813 return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2816 SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
2818 DebugLoc dl = N->getDebugLoc();
2820 assert(!N->getOperand(0).getValueType().isVector() &&
2821 "Input must be a scalar");
2823 EVT OutVT = N->getValueType(0);
2824 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2825 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2826 EVT NOutVTElem = NOutVT.getVectorElementType();
2828 SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
2830 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
2833 SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
2834 EVT OutVT = N->getValueType(0);
2835 EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2836 assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2838 EVT NOutVTElem = NOutVT.getVectorElementType();
2840 DebugLoc dl = N->getDebugLoc();
2842 SDValue ConvertedVector = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
2843 N->getOperand(0));
2845 SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
2846 NOutVTElem, N->getOperand(1));
2847 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,NOutVT,
2848 ConvertedVector, ConvElem, N->getOperand(2));
2851 SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2852 DebugLoc dl = N->getDebugLoc();
2853 SDValue V0 = GetPromotedInteger(N->getOperand(0));
2854 SDValue V1 = N->getOperand(1);
2855 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2856 V0->getValueType(0).getScalarType(), V0, V1);
2858 return DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), Ext);
2862 SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
2864 DebugLoc dl = N->getDebugLoc();
2866 EVT RetSclrTy = N->getValueType(0).getVectorElementType();
2868 SmallVector<SDValue, 8> NewOps;
2870 // For each incoming vector
2871 for (unsigned VecIdx = 0, E = N->getNumOperands(); VecIdx!= E; ++VecIdx) {
2872 SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
2873 EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
2874 unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
2876 for (unsigned i=0; i<NumElem; ++i) {
2877 // Extract element from incoming vector
2878 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SclrTy,
2879 Incoming, DAG.getIntPtrConstant(i));
2880 SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
2881 NewOps.push_back(Tr);
2885 return DAG.getNode(ISD::BUILD_VECTOR, dl, N->getValueType(0),
2886 &NewOps[0], NewOps.size());