Fold assert-only-used variable into the assert.
[llvm/stm8.git] / utils / TableGen / ARMDecoderEmitter.cpp
blob62bd1c65e4b1f9fa72ed4c25ed34c89f3493e26b
1 //===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the ARM Disassembler.
11 // It contains the tablegen backend that emits the decoder functions for ARM and
12 // Thumb. The disassembler core includes the auto-generated file, invokes the
13 // decoder functions, and builds up the MCInst based on the decoded Opcode.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "arm-decoder-emitter"
19 #include "ARMDecoderEmitter.h"
20 #include "CodeGenTarget.h"
21 #include "Record.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
26 #include <vector>
27 #include <map>
28 #include <string>
30 using namespace llvm;
32 /////////////////////////////////////////////////////
33 // //
34 // Enums and Utilities for ARM Instruction Format //
35 // //
36 /////////////////////////////////////////////////////
38 #define ARM_FORMATS \
39 ENTRY(ARM_FORMAT_PSEUDO, 0) \
40 ENTRY(ARM_FORMAT_MULFRM, 1) \
41 ENTRY(ARM_FORMAT_BRFRM, 2) \
42 ENTRY(ARM_FORMAT_BRMISCFRM, 3) \
43 ENTRY(ARM_FORMAT_DPFRM, 4) \
44 ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \
45 ENTRY(ARM_FORMAT_LDFRM, 6) \
46 ENTRY(ARM_FORMAT_STFRM, 7) \
47 ENTRY(ARM_FORMAT_LDMISCFRM, 8) \
48 ENTRY(ARM_FORMAT_STMISCFRM, 9) \
49 ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \
50 ENTRY(ARM_FORMAT_LDSTEXFRM, 11) \
51 ENTRY(ARM_FORMAT_ARITHMISCFRM, 12) \
52 ENTRY(ARM_FORMAT_SATFRM, 13) \
53 ENTRY(ARM_FORMAT_EXTFRM, 14) \
54 ENTRY(ARM_FORMAT_VFPUNARYFRM, 15) \
55 ENTRY(ARM_FORMAT_VFPBINARYFRM, 16) \
56 ENTRY(ARM_FORMAT_VFPCONV1FRM, 17) \
57 ENTRY(ARM_FORMAT_VFPCONV2FRM, 18) \
58 ENTRY(ARM_FORMAT_VFPCONV3FRM, 19) \
59 ENTRY(ARM_FORMAT_VFPCONV4FRM, 20) \
60 ENTRY(ARM_FORMAT_VFPCONV5FRM, 21) \
61 ENTRY(ARM_FORMAT_VFPLDSTFRM, 22) \
62 ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 23) \
63 ENTRY(ARM_FORMAT_VFPMISCFRM, 24) \
64 ENTRY(ARM_FORMAT_THUMBFRM, 25) \
65 ENTRY(ARM_FORMAT_MISCFRM, 26) \
66 ENTRY(ARM_FORMAT_NEONGETLNFRM, 27) \
67 ENTRY(ARM_FORMAT_NEONSETLNFRM, 28) \
68 ENTRY(ARM_FORMAT_NEONDUPFRM, 29) \
69 ENTRY(ARM_FORMAT_NLdSt, 30) \
70 ENTRY(ARM_FORMAT_N1RegModImm, 31) \
71 ENTRY(ARM_FORMAT_N2Reg, 32) \
72 ENTRY(ARM_FORMAT_NVCVT, 33) \
73 ENTRY(ARM_FORMAT_NVecDupLn, 34) \
74 ENTRY(ARM_FORMAT_N2RegVecShL, 35) \
75 ENTRY(ARM_FORMAT_N2RegVecShR, 36) \
76 ENTRY(ARM_FORMAT_N3Reg, 37) \
77 ENTRY(ARM_FORMAT_N3RegVecSh, 38) \
78 ENTRY(ARM_FORMAT_NVecExtract, 39) \
79 ENTRY(ARM_FORMAT_NVecMulScalar, 40) \
80 ENTRY(ARM_FORMAT_NVTBL, 41)
82 // ARM instruction format specifies the encoding used by the instruction.
83 #define ENTRY(n, v) n = v,
84 typedef enum {
85 ARM_FORMATS
86 ARM_FORMAT_NA
87 } ARMFormat;
88 #undef ENTRY
90 // Converts enum to const char*.
91 static const char *stringForARMFormat(ARMFormat form) {
92 #define ENTRY(n, v) case n: return #n;
93 switch(form) {
94 ARM_FORMATS
95 case ARM_FORMAT_NA:
96 default:
97 return "";
99 #undef ENTRY
102 enum {
103 IndexModeNone = 0,
104 IndexModePre = 1,
105 IndexModePost = 2,
106 IndexModeUpd = 3
109 /////////////////////////
110 // //
111 // Utility functions //
112 // //
113 /////////////////////////
115 /// byteFromBitsInit - Return the byte value from a BitsInit.
116 /// Called from getByteField().
117 static uint8_t byteFromBitsInit(BitsInit &init) {
118 int width = init.getNumBits();
120 assert(width <= 8 && "Field is too large for uint8_t!");
122 int index;
123 uint8_t mask = 0x01;
125 uint8_t ret = 0;
127 for (index = 0; index < width; index++) {
128 if (static_cast<BitInit*>(init.getBit(index))->getValue())
129 ret |= mask;
131 mask <<= 1;
134 return ret;
137 static uint8_t getByteField(const Record &def, const char *str) {
138 BitsInit *bits = def.getValueAsBitsInit(str);
139 return byteFromBitsInit(*bits);
142 static BitsInit &getBitsField(const Record &def, const char *str) {
143 BitsInit *bits = def.getValueAsBitsInit(str);
144 return *bits;
147 /// sameStringExceptSuffix - Return true if the two strings differ only in RHS's
148 /// suffix. ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true.
149 static
150 bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS,
151 const StringRef Suffix) {
153 if (RHS.startswith(LHS) && RHS.endswith(Suffix))
154 return RHS.size() == LHS.size() + Suffix.size();
156 return false;
159 /// thumbInstruction - Determine whether we have a Thumb instruction.
160 /// See also ARMInstrFormats.td.
161 static bool thumbInstruction(uint8_t Form) {
162 return Form == ARM_FORMAT_THUMBFRM;
165 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
166 // for a bit value.
168 // BIT_UNFILTERED is used as the init value for a filter position. It is used
169 // only for filter processings.
170 typedef enum {
171 BIT_TRUE, // '1'
172 BIT_FALSE, // '0'
173 BIT_UNSET, // '?'
174 BIT_UNFILTERED // unfiltered
175 } bit_value_t;
177 static bool ValueSet(bit_value_t V) {
178 return (V == BIT_TRUE || V == BIT_FALSE);
180 static bool ValueNotSet(bit_value_t V) {
181 return (V == BIT_UNSET);
183 static int Value(bit_value_t V) {
184 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
186 static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
187 if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
188 return bit->getValue() ? BIT_TRUE : BIT_FALSE;
190 // The bit is uninitialized.
191 return BIT_UNSET;
193 // Prints the bit value for each position.
194 static void dumpBits(raw_ostream &o, BitsInit &bits) {
195 unsigned index;
197 for (index = bits.getNumBits(); index > 0; index--) {
198 switch (bitFromBits(bits, index - 1)) {
199 case BIT_TRUE:
200 o << "1";
201 break;
202 case BIT_FALSE:
203 o << "0";
204 break;
205 case BIT_UNSET:
206 o << "_";
207 break;
208 default:
209 assert(0 && "unexpected return value from bitFromBits");
214 // Enums for the available target names.
215 typedef enum {
216 TARGET_ARM = 0,
217 TARGET_THUMB
218 } TARGET_NAME_t;
220 // FIXME: Possibly auto-detected?
221 #define BIT_WIDTH 32
223 // Forward declaration.
224 class ARMFilterChooser;
226 // Representation of the instruction to work on.
227 typedef bit_value_t insn_t[BIT_WIDTH];
229 /// Filter - Filter works with FilterChooser to produce the decoding tree for
230 /// the ISA.
232 /// It is useful to think of a Filter as governing the switch stmts of the
233 /// decoding tree in a certain level. Each case stmt delegates to an inferior
234 /// FilterChooser to decide what further decoding logic to employ, or in another
235 /// words, what other remaining bits to look at. The FilterChooser eventually
236 /// chooses a best Filter to do its job.
238 /// This recursive scheme ends when the number of Opcodes assigned to the
239 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
240 /// the Filter/FilterChooser combo does not know how to distinguish among the
241 /// Opcodes assigned.
243 /// An example of a conflict is
245 /// Conflict:
246 /// 111101000.00........00010000....
247 /// 111101000.00........0001........
248 /// 1111010...00........0001........
249 /// 1111010...00....................
250 /// 1111010.........................
251 /// 1111............................
252 /// ................................
253 /// VST4q8a 111101000_00________00010000____
254 /// VST4q8b 111101000_00________00010000____
256 /// The Debug output shows the path that the decoding tree follows to reach the
257 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
258 /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
260 /// The encoding info in the .td files does not specify this meta information,
261 /// which could have been used by the decoder to resolve the conflict. The
262 /// decoder could try to decode the even/odd register numbering and assign to
263 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
264 /// version and return the Opcode since the two have the same Asm format string.
265 class ARMFilter {
266 protected:
267 ARMFilterChooser *Owner; // points to the FilterChooser who owns this filter
268 unsigned StartBit; // the starting bit position
269 unsigned NumBits; // number of bits to filter
270 bool Mixed; // a mixed region contains both set and unset bits
272 // Map of well-known segment value to the set of uid's with that value.
273 std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
275 // Set of uid's with non-constant segment values.
276 std::vector<unsigned> VariableInstructions;
278 // Map of well-known segment value to its delegate.
279 std::map<unsigned, ARMFilterChooser*> FilterChooserMap;
281 // Number of instructions which fall under FilteredInstructions category.
282 unsigned NumFiltered;
284 // Keeps track of the last opcode in the filtered bucket.
285 unsigned LastOpcFiltered;
287 // Number of instructions which fall under VariableInstructions category.
288 unsigned NumVariable;
290 public:
291 unsigned getNumFiltered() { return NumFiltered; }
292 unsigned getNumVariable() { return NumVariable; }
293 unsigned getSingletonOpc() {
294 assert(NumFiltered == 1);
295 return LastOpcFiltered;
297 // Return the filter chooser for the group of instructions without constant
298 // segment values.
299 ARMFilterChooser &getVariableFC() {
300 assert(NumFiltered == 1);
301 assert(FilterChooserMap.size() == 1);
302 return *(FilterChooserMap.find((unsigned)-1)->second);
305 ARMFilter(const ARMFilter &f);
306 ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
307 bool mixed);
309 ~ARMFilter();
311 // Divides the decoding task into sub tasks and delegates them to the
312 // inferior FilterChooser's.
314 // A special case arises when there's only one entry in the filtered
315 // instructions. In order to unambiguously decode the singleton, we need to
316 // match the remaining undecoded encoding bits against the singleton.
317 void recurse();
319 // Emit code to decode instructions given a segment or segments of bits.
320 void emit(raw_ostream &o, unsigned &Indentation);
322 // Returns the number of fanout produced by the filter. More fanout implies
323 // the filter distinguishes more categories of instructions.
324 unsigned usefulness() const;
325 }; // End of class Filter
327 // These are states of our finite state machines used in FilterChooser's
328 // filterProcessor() which produces the filter candidates to use.
329 typedef enum {
330 ATTR_NONE,
331 ATTR_FILTERED,
332 ATTR_ALL_SET,
333 ATTR_ALL_UNSET,
334 ATTR_MIXED
335 } bitAttr_t;
337 /// ARMFilterChooser - FilterChooser chooses the best filter among a set of Filters
338 /// in order to perform the decoding of instructions at the current level.
340 /// Decoding proceeds from the top down. Based on the well-known encoding bits
341 /// of instructions available, FilterChooser builds up the possible Filters that
342 /// can further the task of decoding by distinguishing among the remaining
343 /// candidate instructions.
345 /// Once a filter has been chosen, it is called upon to divide the decoding task
346 /// into sub-tasks and delegates them to its inferior FilterChoosers for further
347 /// processings.
349 /// It is useful to think of a Filter as governing the switch stmts of the
350 /// decoding tree. And each case is delegated to an inferior FilterChooser to
351 /// decide what further remaining bits to look at.
352 class ARMFilterChooser {
353 static TARGET_NAME_t TargetName;
355 protected:
356 friend class ARMFilter;
358 // Vector of codegen instructions to choose our filter.
359 const std::vector<const CodeGenInstruction*> &AllInstructions;
361 // Vector of uid's for this filter chooser to work on.
362 const std::vector<unsigned> Opcodes;
364 // Vector of candidate filters.
365 std::vector<ARMFilter> Filters;
367 // Array of bit values passed down from our parent.
368 // Set to all BIT_UNFILTERED's for Parent == NULL.
369 bit_value_t FilterBitValues[BIT_WIDTH];
371 // Links to the FilterChooser above us in the decoding tree.
372 ARMFilterChooser *Parent;
374 // Index of the best filter from Filters.
375 int BestIndex;
377 public:
378 static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; }
380 ARMFilterChooser(const ARMFilterChooser &FC) :
381 AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
382 Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) {
383 memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues));
386 ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
387 const std::vector<unsigned> &IDs) :
388 AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL),
389 BestIndex(-1) {
390 for (unsigned i = 0; i < BIT_WIDTH; ++i)
391 FilterBitValues[i] = BIT_UNFILTERED;
393 doFilter();
396 ARMFilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
397 const std::vector<unsigned> &IDs,
398 bit_value_t (&ParentFilterBitValues)[BIT_WIDTH],
399 ARMFilterChooser &parent) :
400 AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent),
401 BestIndex(-1) {
402 for (unsigned i = 0; i < BIT_WIDTH; ++i)
403 FilterBitValues[i] = ParentFilterBitValues[i];
405 doFilter();
408 // The top level filter chooser has NULL as its parent.
409 bool isTopLevel() { return Parent == NULL; }
411 // This provides an opportunity for target specific code emission.
412 void emitTopHook(raw_ostream &o);
414 // Emit the top level typedef and decodeInstruction() function.
415 void emitTop(raw_ostream &o, unsigned &Indentation);
417 // This provides an opportunity for target specific code emission after
418 // emitTop().
419 void emitBot(raw_ostream &o, unsigned &Indentation);
421 protected:
422 // Populates the insn given the uid.
423 void insnWithID(insn_t &Insn, unsigned Opcode) const {
424 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
426 for (unsigned i = 0; i < BIT_WIDTH; ++i)
427 Insn[i] = bitFromBits(Bits, i);
429 // Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd.
430 Record *R = AllInstructions[Opcode]->TheDef;
431 if (R->getValue("IndexModeBits") &&
432 getByteField(*R, "IndexModeBits") == IndexModeUpd)
433 Insn[21] = BIT_TRUE;
436 // Returns the record name.
437 const std::string &nameWithID(unsigned Opcode) const {
438 return AllInstructions[Opcode]->TheDef->getName();
441 // Populates the field of the insn given the start position and the number of
442 // consecutive bits to scan for.
444 // Returns false if there exists any uninitialized bit value in the range.
445 // Returns true, otherwise.
446 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
447 unsigned NumBits) const;
449 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
450 /// filter array as a series of chars.
451 void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]);
453 /// dumpStack - dumpStack traverses the filter chooser chain and calls
454 /// dumpFilterArray on each filter chooser up to the top level one.
455 void dumpStack(raw_ostream &o, const char *prefix);
457 ARMFilter &bestFilter() {
458 assert(BestIndex != -1 && "BestIndex not set");
459 return Filters[BestIndex];
462 // Called from Filter::recurse() when singleton exists. For debug purpose.
463 void SingletonExists(unsigned Opc);
465 bool PositionFiltered(unsigned i) {
466 return ValueSet(FilterBitValues[i]);
469 // Calculates the island(s) needed to decode the instruction.
470 // This returns a lit of undecoded bits of an instructions, for example,
471 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
472 // decoded bits in order to verify that the instruction matches the Opcode.
473 unsigned getIslands(std::vector<unsigned> &StartBits,
474 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
475 insn_t &Insn);
477 // The purpose of this function is for the API client to detect possible
478 // Load/Store Coprocessor instructions. If the coprocessor number is of
479 // the instruction is either 10 or 11, the decoder should not report the
480 // instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or
481 // VFP instructions.
482 bool LdStCopEncoding1(unsigned Opc) {
483 const std::string &Name = nameWithID(Opc);
484 if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" ||
485 Name == "LDC_POST" || Name == "LDC_PRE" ||
486 Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" ||
487 Name == "LDCL_POST" || Name == "LDCL_PRE" ||
488 Name == "STC_OFFSET" || Name == "STC_OPTION" ||
489 Name == "STC_POST" || Name == "STC_PRE" ||
490 Name == "STCL_OFFSET" || Name == "STCL_OPTION" ||
491 Name == "STCL_POST" || Name == "STCL_PRE")
492 return true;
493 else
494 return false;
497 // Emits code to decode the singleton. Return true if we have matched all the
498 // well-known bits.
499 bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
501 // Emits code to decode the singleton, and then to decode the rest.
502 void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
503 ARMFilter &Best);
505 // Assign a single filter and run with it.
506 void runSingleFilter(ARMFilterChooser &owner, unsigned startBit,
507 unsigned numBit, bool mixed);
509 // reportRegion is a helper function for filterProcessor to mark a region as
510 // eligible for use as a filter region.
511 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
512 bool AllowMixed);
514 // FilterProcessor scans the well-known encoding bits of the instructions and
515 // builds up a list of candidate filters. It chooses the best filter and
516 // recursively descends down the decoding tree.
517 bool filterProcessor(bool AllowMixed, bool Greedy = true);
519 // Decides on the best configuration of filter(s) to use in order to decode
520 // the instructions. A conflict of instructions may occur, in which case we
521 // dump the conflict set to the standard error.
522 void doFilter();
524 // Emits code to decode our share of instructions. Returns true if the
525 // emitted code causes a return, which occurs if we know how to decode
526 // the instruction at this level or the instruction is not decodeable.
527 bool emit(raw_ostream &o, unsigned &Indentation);
530 ///////////////////////////
531 // //
532 // Filter Implmenetation //
533 // //
534 ///////////////////////////
536 ARMFilter::ARMFilter(const ARMFilter &f) :
537 Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
538 FilteredInstructions(f.FilteredInstructions),
539 VariableInstructions(f.VariableInstructions),
540 FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
541 LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
544 ARMFilter::ARMFilter(ARMFilterChooser &owner, unsigned startBit, unsigned numBits,
545 bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
546 Mixed(mixed) {
547 assert(StartBit + NumBits - 1 < BIT_WIDTH);
549 NumFiltered = 0;
550 LastOpcFiltered = 0;
551 NumVariable = 0;
553 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
554 insn_t Insn;
556 // Populates the insn given the uid.
557 Owner->insnWithID(Insn, Owner->Opcodes[i]);
559 uint64_t Field;
560 // Scans the segment for possibly well-specified encoding bits.
561 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
563 if (ok) {
564 // The encoding bits are well-known. Lets add the uid of the
565 // instruction into the bucket keyed off the constant field value.
566 LastOpcFiltered = Owner->Opcodes[i];
567 FilteredInstructions[Field].push_back(LastOpcFiltered);
568 ++NumFiltered;
569 } else {
570 // Some of the encoding bit(s) are unspecfied. This contributes to
571 // one additional member of "Variable" instructions.
572 VariableInstructions.push_back(Owner->Opcodes[i]);
573 ++NumVariable;
577 assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
578 && "Filter returns no instruction categories");
581 ARMFilter::~ARMFilter() {
582 std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
583 for (filterIterator = FilterChooserMap.begin();
584 filterIterator != FilterChooserMap.end();
585 filterIterator++) {
586 delete filterIterator->second;
590 // Divides the decoding task into sub tasks and delegates them to the
591 // inferior FilterChooser's.
593 // A special case arises when there's only one entry in the filtered
594 // instructions. In order to unambiguously decode the singleton, we need to
595 // match the remaining undecoded encoding bits against the singleton.
596 void ARMFilter::recurse() {
597 std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
599 bit_value_t BitValueArray[BIT_WIDTH];
600 // Starts by inheriting our parent filter chooser's filter bit values.
601 memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray));
603 unsigned bitIndex;
605 if (VariableInstructions.size()) {
606 // Conservatively marks each segment position as BIT_UNSET.
607 for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
608 BitValueArray[StartBit + bitIndex] = BIT_UNSET;
610 // Delegates to an inferior filter chooser for further processing on this
611 // group of instructions whose segment values are variable.
612 FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
613 (unsigned)-1,
614 new ARMFilterChooser(Owner->AllInstructions,
615 VariableInstructions,
616 BitValueArray,
617 *Owner)
621 // No need to recurse for a singleton filtered instruction.
622 // See also Filter::emit().
623 if (getNumFiltered() == 1) {
624 //Owner->SingletonExists(LastOpcFiltered);
625 assert(FilterChooserMap.size() == 1);
626 return;
629 // Otherwise, create sub choosers.
630 for (mapIterator = FilteredInstructions.begin();
631 mapIterator != FilteredInstructions.end();
632 mapIterator++) {
634 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
635 for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
636 if (mapIterator->first & (1ULL << bitIndex))
637 BitValueArray[StartBit + bitIndex] = BIT_TRUE;
638 else
639 BitValueArray[StartBit + bitIndex] = BIT_FALSE;
642 // Delegates to an inferior filter chooser for further processing on this
643 // category of instructions.
644 FilterChooserMap.insert(std::pair<unsigned, ARMFilterChooser*>(
645 mapIterator->first,
646 new ARMFilterChooser(Owner->AllInstructions,
647 mapIterator->second,
648 BitValueArray,
649 *Owner)
654 // Emit code to decode instructions given a segment or segments of bits.
655 void ARMFilter::emit(raw_ostream &o, unsigned &Indentation) {
656 o.indent(Indentation) << "// Check Inst{";
658 if (NumBits > 1)
659 o << (StartBit + NumBits - 1) << '-';
661 o << StartBit << "} ...\n";
663 o.indent(Indentation) << "switch (fieldFromInstruction(insn, "
664 << StartBit << ", " << NumBits << ")) {\n";
666 std::map<unsigned, ARMFilterChooser*>::iterator filterIterator;
668 bool DefaultCase = false;
669 for (filterIterator = FilterChooserMap.begin();
670 filterIterator != FilterChooserMap.end();
671 filterIterator++) {
673 // Field value -1 implies a non-empty set of variable instructions.
674 // See also recurse().
675 if (filterIterator->first == (unsigned)-1) {
676 DefaultCase = true;
678 o.indent(Indentation) << "default:\n";
679 o.indent(Indentation) << " break; // fallthrough\n";
681 // Closing curly brace for the switch statement.
682 // This is unconventional because we want the default processing to be
683 // performed for the fallthrough cases as well, i.e., when the "cases"
684 // did not prove a decoded instruction.
685 o.indent(Indentation) << "}\n";
687 } else
688 o.indent(Indentation) << "case " << filterIterator->first << ":\n";
690 // We arrive at a category of instructions with the same segment value.
691 // Now delegate to the sub filter chooser for further decodings.
692 // The case may fallthrough, which happens if the remaining well-known
693 // encoding bits do not match exactly.
694 if (!DefaultCase) { ++Indentation; ++Indentation; }
696 bool finished = filterIterator->second->emit(o, Indentation);
697 // For top level default case, there's no need for a break statement.
698 if (Owner->isTopLevel() && DefaultCase)
699 break;
700 if (!finished)
701 o.indent(Indentation) << "break;\n";
703 if (!DefaultCase) { --Indentation; --Indentation; }
706 // If there is no default case, we still need to supply a closing brace.
707 if (!DefaultCase) {
708 // Closing curly brace for the switch statement.
709 o.indent(Indentation) << "}\n";
713 // Returns the number of fanout produced by the filter. More fanout implies
714 // the filter distinguishes more categories of instructions.
715 unsigned ARMFilter::usefulness() const {
716 if (VariableInstructions.size())
717 return FilteredInstructions.size();
718 else
719 return FilteredInstructions.size() + 1;
722 //////////////////////////////////
723 // //
724 // Filterchooser Implementation //
725 // //
726 //////////////////////////////////
728 // Define the symbol here.
729 TARGET_NAME_t ARMFilterChooser::TargetName;
731 // This provides an opportunity for target specific code emission.
732 void ARMFilterChooser::emitTopHook(raw_ostream &o) {
733 if (TargetName == TARGET_ARM) {
734 // Emit code that references the ARMFormat data type.
735 o << "static const ARMFormat ARMFormats[] = {\n";
736 for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) {
737 const Record &Def = *(AllInstructions[i]->TheDef);
738 const std::string &Name = Def.getName();
739 if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb"))
740 o.indent(2) <<
741 stringForARMFormat((ARMFormat)getByteField(Def, "Form"));
742 else
743 o << " ARM_FORMAT_NA";
745 o << ",\t// Inst #" << i << " = " << Name << '\n';
747 o << " ARM_FORMAT_NA\t// Unreachable.\n";
748 o << "};\n\n";
752 // Emit the top level typedef and decodeInstruction() function.
753 void ARMFilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) {
754 // Run the target specific emit hook.
755 emitTopHook(o);
757 switch (BIT_WIDTH) {
758 case 8:
759 o.indent(Indentation) << "typedef uint8_t field_t;\n";
760 break;
761 case 16:
762 o.indent(Indentation) << "typedef uint16_t field_t;\n";
763 break;
764 case 32:
765 o.indent(Indentation) << "typedef uint32_t field_t;\n";
766 break;
767 case 64:
768 o.indent(Indentation) << "typedef uint64_t field_t;\n";
769 break;
770 default:
771 assert(0 && "Unexpected instruction size!");
774 o << '\n';
776 o.indent(Indentation) << "static field_t " <<
777 "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n";
779 o.indent(Indentation) << "{\n";
781 ++Indentation; ++Indentation;
782 o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH
783 << " && \"Instruction field out of bounds!\");\n";
784 o << '\n';
785 o.indent(Indentation) << "field_t fieldMask;\n";
786 o << '\n';
787 o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n";
789 ++Indentation; ++Indentation;
790 o.indent(Indentation) << "fieldMask = (field_t)-1;\n";
791 --Indentation; --Indentation;
793 o.indent(Indentation) << "else\n";
795 ++Indentation; ++Indentation;
796 o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
797 --Indentation; --Indentation;
799 o << '\n';
800 o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
801 --Indentation; --Indentation;
803 o.indent(Indentation) << "}\n";
805 o << '\n';
807 o.indent(Indentation) <<"static uint16_t decodeInstruction(field_t insn) {\n";
809 ++Indentation; ++Indentation;
810 // Emits code to decode the instructions.
811 emit(o, Indentation);
813 o << '\n';
814 o.indent(Indentation) << "return 0;\n";
815 --Indentation; --Indentation;
817 o.indent(Indentation) << "}\n";
819 o << '\n';
822 // This provides an opportunity for target specific code emission after
823 // emitTop().
824 void ARMFilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) {
825 if (TargetName != TARGET_THUMB) return;
827 // Emit code that decodes the Thumb ISA.
828 o.indent(Indentation)
829 << "static uint16_t decodeThumbInstruction(field_t insn) {\n";
831 ++Indentation; ++Indentation;
833 // Emits code to decode the instructions.
834 emit(o, Indentation);
836 o << '\n';
837 o.indent(Indentation) << "return 0;\n";
839 --Indentation; --Indentation;
841 o.indent(Indentation) << "}\n";
844 // Populates the field of the insn given the start position and the number of
845 // consecutive bits to scan for.
847 // Returns false if and on the first uninitialized bit value encountered.
848 // Returns true, otherwise.
849 bool ARMFilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
850 unsigned StartBit, unsigned NumBits) const {
851 Field = 0;
853 for (unsigned i = 0; i < NumBits; ++i) {
854 if (Insn[StartBit + i] == BIT_UNSET)
855 return false;
857 if (Insn[StartBit + i] == BIT_TRUE)
858 Field = Field | (1ULL << i);
861 return true;
864 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given
865 /// filter array as a series of chars.
866 void ARMFilterChooser::dumpFilterArray(raw_ostream &o,
867 bit_value_t (&filter)[BIT_WIDTH]) {
868 unsigned bitIndex;
870 for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) {
871 switch (filter[bitIndex - 1]) {
872 case BIT_UNFILTERED:
873 o << ".";
874 break;
875 case BIT_UNSET:
876 o << "_";
877 break;
878 case BIT_TRUE:
879 o << "1";
880 break;
881 case BIT_FALSE:
882 o << "0";
883 break;
888 /// dumpStack - dumpStack traverses the filter chooser chain and calls
889 /// dumpFilterArray on each filter chooser up to the top level one.
890 void ARMFilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
891 ARMFilterChooser *current = this;
893 while (current) {
894 o << prefix;
895 dumpFilterArray(o, current->FilterBitValues);
896 o << '\n';
897 current = current->Parent;
901 // Called from Filter::recurse() when singleton exists. For debug purpose.
902 void ARMFilterChooser::SingletonExists(unsigned Opc) {
903 insn_t Insn0;
904 insnWithID(Insn0, Opc);
906 errs() << "Singleton exists: " << nameWithID(Opc)
907 << " with its decoding dominating ";
908 for (unsigned i = 0; i < Opcodes.size(); ++i) {
909 if (Opcodes[i] == Opc) continue;
910 errs() << nameWithID(Opcodes[i]) << ' ';
912 errs() << '\n';
914 dumpStack(errs(), "\t\t");
915 for (unsigned i = 0; i < Opcodes.size(); i++) {
916 const std::string &Name = nameWithID(Opcodes[i]);
918 errs() << '\t' << Name << " ";
919 dumpBits(errs(),
920 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
921 errs() << '\n';
925 // Calculates the island(s) needed to decode the instruction.
926 // This returns a list of undecoded bits of an instructions, for example,
927 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
928 // decoded bits in order to verify that the instruction matches the Opcode.
929 unsigned ARMFilterChooser::getIslands(std::vector<unsigned> &StartBits,
930 std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
931 insn_t &Insn) {
932 unsigned Num, BitNo;
933 Num = BitNo = 0;
935 uint64_t FieldVal = 0;
937 // 0: Init
938 // 1: Water (the bit value does not affect decoding)
939 // 2: Island (well-known bit value needed for decoding)
940 int State = 0;
941 int Val = -1;
943 for (unsigned i = 0; i < BIT_WIDTH; ++i) {
944 Val = Value(Insn[i]);
945 bool Filtered = PositionFiltered(i);
946 switch (State) {
947 default:
948 assert(0 && "Unreachable code!");
949 break;
950 case 0:
951 case 1:
952 if (Filtered || Val == -1)
953 State = 1; // Still in Water
954 else {
955 State = 2; // Into the Island
956 BitNo = 0;
957 StartBits.push_back(i);
958 FieldVal = Val;
960 break;
961 case 2:
962 if (Filtered || Val == -1) {
963 State = 1; // Into the Water
964 EndBits.push_back(i - 1);
965 FieldVals.push_back(FieldVal);
966 ++Num;
967 } else {
968 State = 2; // Still in Island
969 ++BitNo;
970 FieldVal = FieldVal | Val << BitNo;
972 break;
975 // If we are still in Island after the loop, do some housekeeping.
976 if (State == 2) {
977 EndBits.push_back(BIT_WIDTH - 1);
978 FieldVals.push_back(FieldVal);
979 ++Num;
982 assert(StartBits.size() == Num && EndBits.size() == Num &&
983 FieldVals.size() == Num);
984 return Num;
987 // Emits code to decode the singleton. Return true if we have matched all the
988 // well-known bits.
989 bool ARMFilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
990 unsigned Opc) {
991 std::vector<unsigned> StartBits;
992 std::vector<unsigned> EndBits;
993 std::vector<uint64_t> FieldVals;
994 insn_t Insn;
995 insnWithID(Insn, Opc);
997 // This provides a good opportunity to check for possible Ld/St Coprocessor
998 // Opcode and escapes if the coproc # is either 10 or 11. It is a NEON/VFP
999 // instruction is disguise.
1000 if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) {
1001 o.indent(Indentation);
1002 // A8.6.51 & A8.6.188
1003 // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape.
1004 o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n";
1007 // Look for islands of undecoded bits of the singleton.
1008 getIslands(StartBits, EndBits, FieldVals, Insn);
1010 unsigned Size = StartBits.size();
1011 unsigned I, NumBits;
1013 // If we have matched all the well-known bits, just issue a return.
1014 if (Size == 0) {
1015 o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc)
1016 << '\n';
1017 return true;
1020 // Otherwise, there are more decodings to be done!
1022 // Emit code to match the island(s) for the singleton.
1023 o.indent(Indentation) << "// Check ";
1025 for (I = Size; I != 0; --I) {
1026 o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
1027 if (I > 1)
1028 o << "&& ";
1029 else
1030 o << "for singleton decoding...\n";
1033 o.indent(Indentation) << "if (";
1035 for (I = Size; I != 0; --I) {
1036 NumBits = EndBits[I-1] - StartBits[I-1] + 1;
1037 o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits
1038 << ") == " << FieldVals[I-1];
1039 if (I > 1)
1040 o << " && ";
1041 else
1042 o << ")\n";
1045 o.indent(Indentation) << " return " << Opc << "; // " << nameWithID(Opc)
1046 << '\n';
1048 return false;
1051 // Emits code to decode the singleton, and then to decode the rest.
1052 void ARMFilterChooser::emitSingletonDecoder(raw_ostream &o,
1053 unsigned &Indentation,
1054 ARMFilter &Best) {
1056 unsigned Opc = Best.getSingletonOpc();
1058 emitSingletonDecoder(o, Indentation, Opc);
1060 // Emit code for the rest.
1061 o.indent(Indentation) << "else\n";
1063 Indentation += 2;
1064 Best.getVariableFC().emit(o, Indentation);
1065 Indentation -= 2;
1068 // Assign a single filter and run with it. Top level API client can initialize
1069 // with a single filter to start the filtering process.
1070 void ARMFilterChooser::runSingleFilter(ARMFilterChooser &owner,
1071 unsigned startBit,
1072 unsigned numBit, bool mixed) {
1073 Filters.clear();
1074 ARMFilter F(*this, startBit, numBit, true);
1075 Filters.push_back(F);
1076 BestIndex = 0; // Sole Filter instance to choose from.
1077 bestFilter().recurse();
1080 // reportRegion is a helper function for filterProcessor to mark a region as
1081 // eligible for use as a filter region.
1082 void ARMFilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
1083 unsigned BitIndex, bool AllowMixed) {
1084 if (RA == ATTR_MIXED && AllowMixed)
1085 Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, true));
1086 else if (RA == ATTR_ALL_SET && !AllowMixed)
1087 Filters.push_back(ARMFilter(*this, StartBit, BitIndex - StartBit, false));
1090 // FilterProcessor scans the well-known encoding bits of the instructions and
1091 // builds up a list of candidate filters. It chooses the best filter and
1092 // recursively descends down the decoding tree.
1093 bool ARMFilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
1094 Filters.clear();
1095 BestIndex = -1;
1096 unsigned numInstructions = Opcodes.size();
1098 assert(numInstructions && "Filter created with no instructions");
1100 // No further filtering is necessary.
1101 if (numInstructions == 1)
1102 return true;
1104 // Heuristics. See also doFilter()'s "Heuristics" comment when num of
1105 // instructions is 3.
1106 if (AllowMixed && !Greedy) {
1107 assert(numInstructions == 3);
1109 for (unsigned i = 0; i < Opcodes.size(); ++i) {
1110 std::vector<unsigned> StartBits;
1111 std::vector<unsigned> EndBits;
1112 std::vector<uint64_t> FieldVals;
1113 insn_t Insn;
1115 insnWithID(Insn, Opcodes[i]);
1117 // Look for islands of undecoded bits of any instruction.
1118 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
1119 // Found an instruction with island(s). Now just assign a filter.
1120 runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
1121 true);
1122 return true;
1127 unsigned BitIndex, InsnIndex;
1129 // We maintain BIT_WIDTH copies of the bitAttrs automaton.
1130 // The automaton consumes the corresponding bit from each
1131 // instruction.
1133 // Input symbols: 0, 1, and _ (unset).
1134 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
1135 // Initial state: NONE.
1137 // (NONE) ------- [01] -> (ALL_SET)
1138 // (NONE) ------- _ ----> (ALL_UNSET)
1139 // (ALL_SET) ---- [01] -> (ALL_SET)
1140 // (ALL_SET) ---- _ ----> (MIXED)
1141 // (ALL_UNSET) -- [01] -> (MIXED)
1142 // (ALL_UNSET) -- _ ----> (ALL_UNSET)
1143 // (MIXED) ------ . ----> (MIXED)
1144 // (FILTERED)---- . ----> (FILTERED)
1146 bitAttr_t bitAttrs[BIT_WIDTH];
1148 // FILTERED bit positions provide no entropy and are not worthy of pursuing.
1149 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
1150 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex)
1151 if (FilterBitValues[BitIndex] == BIT_TRUE ||
1152 FilterBitValues[BitIndex] == BIT_FALSE)
1153 bitAttrs[BitIndex] = ATTR_FILTERED;
1154 else
1155 bitAttrs[BitIndex] = ATTR_NONE;
1157 for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
1158 insn_t insn;
1160 insnWithID(insn, Opcodes[InsnIndex]);
1162 for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) {
1163 switch (bitAttrs[BitIndex]) {
1164 case ATTR_NONE:
1165 if (insn[BitIndex] == BIT_UNSET)
1166 bitAttrs[BitIndex] = ATTR_ALL_UNSET;
1167 else
1168 bitAttrs[BitIndex] = ATTR_ALL_SET;
1169 break;
1170 case ATTR_ALL_SET:
1171 if (insn[BitIndex] == BIT_UNSET)
1172 bitAttrs[BitIndex] = ATTR_MIXED;
1173 break;
1174 case ATTR_ALL_UNSET:
1175 if (insn[BitIndex] != BIT_UNSET)
1176 bitAttrs[BitIndex] = ATTR_MIXED;
1177 break;
1178 case ATTR_MIXED:
1179 case ATTR_FILTERED:
1180 break;
1185 // The regionAttr automaton consumes the bitAttrs automatons' state,
1186 // lowest-to-highest.
1188 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
1189 // States: NONE, ALL_SET, MIXED
1190 // Initial state: NONE
1192 // (NONE) ----- F --> (NONE)
1193 // (NONE) ----- S --> (ALL_SET) ; and set region start
1194 // (NONE) ----- U --> (NONE)
1195 // (NONE) ----- M --> (MIXED) ; and set region start
1196 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
1197 // (ALL_SET) -- S --> (ALL_SET)
1198 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
1199 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
1200 // (MIXED) ---- F --> (NONE) ; and report a MIXED region
1201 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
1202 // (MIXED) ---- U --> (NONE) ; and report a MIXED region
1203 // (MIXED) ---- M --> (MIXED)
1205 bitAttr_t RA = ATTR_NONE;
1206 unsigned StartBit = 0;
1208 for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) {
1209 bitAttr_t bitAttr = bitAttrs[BitIndex];
1211 assert(bitAttr != ATTR_NONE && "Bit without attributes");
1213 switch (RA) {
1214 case ATTR_NONE:
1215 switch (bitAttr) {
1216 case ATTR_FILTERED:
1217 break;
1218 case ATTR_ALL_SET:
1219 StartBit = BitIndex;
1220 RA = ATTR_ALL_SET;
1221 break;
1222 case ATTR_ALL_UNSET:
1223 break;
1224 case ATTR_MIXED:
1225 StartBit = BitIndex;
1226 RA = ATTR_MIXED;
1227 break;
1228 default:
1229 assert(0 && "Unexpected bitAttr!");
1231 break;
1232 case ATTR_ALL_SET:
1233 switch (bitAttr) {
1234 case ATTR_FILTERED:
1235 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1236 RA = ATTR_NONE;
1237 break;
1238 case ATTR_ALL_SET:
1239 break;
1240 case ATTR_ALL_UNSET:
1241 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1242 RA = ATTR_NONE;
1243 break;
1244 case ATTR_MIXED:
1245 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1246 StartBit = BitIndex;
1247 RA = ATTR_MIXED;
1248 break;
1249 default:
1250 assert(0 && "Unexpected bitAttr!");
1252 break;
1253 case ATTR_MIXED:
1254 switch (bitAttr) {
1255 case ATTR_FILTERED:
1256 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1257 StartBit = BitIndex;
1258 RA = ATTR_NONE;
1259 break;
1260 case ATTR_ALL_SET:
1261 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1262 StartBit = BitIndex;
1263 RA = ATTR_ALL_SET;
1264 break;
1265 case ATTR_ALL_UNSET:
1266 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1267 RA = ATTR_NONE;
1268 break;
1269 case ATTR_MIXED:
1270 break;
1271 default:
1272 assert(0 && "Unexpected bitAttr!");
1274 break;
1275 case ATTR_ALL_UNSET:
1276 assert(0 && "regionAttr state machine has no ATTR_UNSET state");
1277 case ATTR_FILTERED:
1278 assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
1282 // At the end, if we're still in ALL_SET or MIXED states, report a region
1283 switch (RA) {
1284 case ATTR_NONE:
1285 break;
1286 case ATTR_FILTERED:
1287 break;
1288 case ATTR_ALL_SET:
1289 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1290 break;
1291 case ATTR_ALL_UNSET:
1292 break;
1293 case ATTR_MIXED:
1294 reportRegion(RA, StartBit, BitIndex, AllowMixed);
1295 break;
1298 // We have finished with the filter processings. Now it's time to choose
1299 // the best performing filter.
1300 BestIndex = 0;
1301 bool AllUseless = true;
1302 unsigned BestScore = 0;
1304 for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
1305 unsigned Usefulness = Filters[i].usefulness();
1307 if (Usefulness)
1308 AllUseless = false;
1310 if (Usefulness > BestScore) {
1311 BestIndex = i;
1312 BestScore = Usefulness;
1316 if (!AllUseless)
1317 bestFilter().recurse();
1319 return !AllUseless;
1320 } // end of FilterChooser::filterProcessor(bool)
1322 // Decides on the best configuration of filter(s) to use in order to decode
1323 // the instructions. A conflict of instructions may occur, in which case we
1324 // dump the conflict set to the standard error.
1325 void ARMFilterChooser::doFilter() {
1326 unsigned Num = Opcodes.size();
1327 assert(Num && "FilterChooser created with no instructions");
1329 // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA.
1330 if (TargetName == TARGET_ARM && Parent == NULL) {
1331 runSingleFilter(*this, 28, 4, false);
1332 return;
1335 // Try regions of consecutive known bit values first.
1336 if (filterProcessor(false))
1337 return;
1339 // Then regions of mixed bits (both known and unitialized bit values allowed).
1340 if (filterProcessor(true))
1341 return;
1343 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
1344 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
1345 // well-known encoding pattern. In such case, we backtrack and scan for the
1346 // the very first consecutive ATTR_ALL_SET region and assign a filter to it.
1347 if (Num == 3 && filterProcessor(true, false))
1348 return;
1350 // If we come to here, the instruction decoding has failed.
1351 // Set the BestIndex to -1 to indicate so.
1352 BestIndex = -1;
1355 // Emits code to decode our share of instructions. Returns true if the
1356 // emitted code causes a return, which occurs if we know how to decode
1357 // the instruction at this level or the instruction is not decodeable.
1358 bool ARMFilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
1359 if (Opcodes.size() == 1)
1360 // There is only one instruction in the set, which is great!
1361 // Call emitSingletonDecoder() to see whether there are any remaining
1362 // encodings bits.
1363 return emitSingletonDecoder(o, Indentation, Opcodes[0]);
1365 // Choose the best filter to do the decodings!
1366 if (BestIndex != -1) {
1367 ARMFilter &Best = bestFilter();
1368 if (Best.getNumFiltered() == 1)
1369 emitSingletonDecoder(o, Indentation, Best);
1370 else
1371 bestFilter().emit(o, Indentation);
1372 return false;
1375 // If we reach here, there is a conflict in decoding. Let's resolve the known
1376 // conflicts!
1377 if ((TargetName == TARGET_ARM || TargetName == TARGET_THUMB) &&
1378 Opcodes.size() == 2) {
1379 // Resolve the known conflict sets:
1381 // 1. source registers are identical => VMOVDneon; otherwise => VORRd
1382 // 2. source registers are identical => VMOVQ; otherwise => VORRq
1383 // 3. LDR, LDRcp => return LDR for now.
1384 // FIXME: How can we distinguish between LDR and LDRcp? Do we need to?
1385 // 4. tLDMIA, tLDMIA_UPD => Rn = Inst{10-8}, reglist = Inst{7-0},
1386 // wback = registers<Rn> = 0
1387 // NOTE: (tLDM, tLDM_UPD) resolution must come before Advanced SIMD
1388 // addressing mode resolution!!!
1389 // 5. VLD[234]LN*/VST[234]LN* vs. VLD[234]LN*_UPD/VST[234]LN*_UPD conflicts
1390 // are resolved returning the non-UPD versions of the instructions if the
1391 // Rm field, i.e., Inst{3-0} is 0b1111. This is specified in A7.7.1
1392 // Advanced SIMD addressing mode.
1393 const std::string &name1 = nameWithID(Opcodes[0]);
1394 const std::string &name2 = nameWithID(Opcodes[1]);
1395 if ((name1 == "VMOVDneon" && name2 == "VORRd") ||
1396 (name1 == "VMOVQ" && name2 == "VORRq")) {
1397 // Inserting the opening curly brace for this case block.
1398 --Indentation; --Indentation;
1399 o.indent(Indentation) << "{\n";
1400 ++Indentation; ++Indentation;
1402 o.indent(Indentation)
1403 << "field_t N = fieldFromInstruction(insn, 7, 1), "
1404 << "M = fieldFromInstruction(insn, 5, 1);\n";
1405 o.indent(Indentation)
1406 << "field_t Vn = fieldFromInstruction(insn, 16, 4), "
1407 << "Vm = fieldFromInstruction(insn, 0, 4);\n";
1408 o.indent(Indentation)
1409 << "return (N == M && Vn == Vm) ? "
1410 << Opcodes[0] << " /* " << name1 << " */ : "
1411 << Opcodes[1] << " /* " << name2 << " */ ;\n";
1413 // Inserting the closing curly brace for this case block.
1414 --Indentation; --Indentation;
1415 o.indent(Indentation) << "}\n";
1416 ++Indentation; ++Indentation;
1418 return true;
1420 if (name1 == "LDR" && name2 == "LDRcp") {
1421 o.indent(Indentation)
1422 << "return " << Opcodes[0]
1423 << "; // Returning LDR for {LDR, LDRcp}\n";
1424 return true;
1426 if (name1 == "tLDMIA" && name2 == "tLDMIA_UPD") {
1427 // Inserting the opening curly brace for this case block.
1428 --Indentation; --Indentation;
1429 o.indent(Indentation) << "{\n";
1430 ++Indentation; ++Indentation;
1432 o.indent(Indentation)
1433 << "unsigned Rn = fieldFromInstruction(insn, 8, 3), "
1434 << "list = fieldFromInstruction(insn, 0, 8);\n";
1435 o.indent(Indentation)
1436 << "return ((list >> Rn) & 1) == 0 ? "
1437 << Opcodes[1] << " /* " << name2 << " */ : "
1438 << Opcodes[0] << " /* " << name1 << " */ ;\n";
1440 // Inserting the closing curly brace for this case block.
1441 --Indentation; --Indentation;
1442 o.indent(Indentation) << "}\n";
1443 ++Indentation; ++Indentation;
1445 return true;
1447 if (sameStringExceptSuffix(name1, name2, "_UPD")) {
1448 o.indent(Indentation)
1449 << "return fieldFromInstruction(insn, 0, 4) == 15 ? " << Opcodes[0]
1450 << " /* " << name1 << " */ : " << Opcodes[1] << "/* " << name2
1451 << " */ ; // Advanced SIMD addressing mode\n";
1452 return true;
1455 // Otherwise, it does not belong to the known conflict sets.
1458 // We don't know how to decode these instructions! Return 0 and dump the
1459 // conflict set!
1460 o.indent(Indentation) << "return 0;" << " // Conflict set: ";
1461 for (int i = 0, N = Opcodes.size(); i < N; ++i) {
1462 o << nameWithID(Opcodes[i]);
1463 if (i < (N - 1))
1464 o << ", ";
1465 else
1466 o << '\n';
1469 // Print out useful conflict information for postmortem analysis.
1470 errs() << "Decoding Conflict:\n";
1472 dumpStack(errs(), "\t\t");
1474 for (unsigned i = 0; i < Opcodes.size(); i++) {
1475 const std::string &Name = nameWithID(Opcodes[i]);
1477 errs() << '\t' << Name << " ";
1478 dumpBits(errs(),
1479 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
1480 errs() << '\n';
1483 return true;
1487 ////////////////////////////////////////////
1488 // //
1489 // ARMDEBackend //
1490 // (Helper class for ARMDecoderEmitter) //
1491 // //
1492 ////////////////////////////////////////////
1494 class ARMDecoderEmitter::ARMDEBackend {
1495 public:
1496 ARMDEBackend(ARMDecoderEmitter &frontend, RecordKeeper &Records) :
1497 NumberedInstructions(),
1498 Opcodes(),
1499 Frontend(frontend),
1500 Target(Records),
1501 FC(NULL)
1503 if (Target.getName() == "ARM")
1504 TargetName = TARGET_ARM;
1505 else {
1506 errs() << "Target name " << Target.getName() << " not recognized\n";
1507 assert(0 && "Unknown target");
1510 // Populate the instructions for our TargetName.
1511 populateInstructions();
1514 ~ARMDEBackend() {
1515 if (FC) {
1516 delete FC;
1517 FC = NULL;
1521 void getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
1522 &NumberedInstructions) {
1523 // We must emit the PHI opcode first...
1524 std::string Namespace = Target.getInstNamespace();
1525 assert(!Namespace.empty() && "No instructions defined.");
1527 NumberedInstructions = Target.getInstructionsByEnumValue();
1530 bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN);
1532 void populateInstructions();
1534 // Emits disassembler code for instruction decoding. This delegates to the
1535 // FilterChooser instance to do the heavy lifting.
1536 void emit(raw_ostream &o);
1538 protected:
1539 std::vector<const CodeGenInstruction*> NumberedInstructions;
1540 std::vector<unsigned> Opcodes;
1541 // Special case for the ARM chip, which supports ARM and Thumb ISAs.
1542 // Opcodes2 will be populated with the Thumb opcodes.
1543 std::vector<unsigned> Opcodes2;
1544 ARMDecoderEmitter &Frontend;
1545 CodeGenTarget Target;
1546 ARMFilterChooser *FC;
1548 TARGET_NAME_t TargetName;
1551 bool ARMDecoderEmitter::
1552 ARMDEBackend::populateInstruction(const CodeGenInstruction &CGI,
1553 TARGET_NAME_t TN) {
1554 const Record &Def = *CGI.TheDef;
1555 const StringRef Name = Def.getName();
1556 uint8_t Form = getByteField(Def, "Form");
1558 BitsInit &Bits = getBitsField(Def, "Inst");
1560 // If all the bit positions are not specified; do not decode this instruction.
1561 // We are bound to fail! For proper disassembly, the well-known encoding bits
1562 // of the instruction must be fully specified.
1564 // This also removes pseudo instructions from considerations of disassembly,
1565 // which is a better design and less fragile than the name matchings.
1566 if (Bits.allInComplete()) return false;
1568 // Ignore "asm parser only" instructions.
1569 if (Def.getValueAsBit("isAsmParserOnly"))
1570 return false;
1572 if (TN == TARGET_ARM) {
1573 if (Form == ARM_FORMAT_PSEUDO)
1574 return false;
1575 if (thumbInstruction(Form))
1576 return false;
1578 // Tail calls are other patterns that generate existing instructions.
1579 if (Name == "TCRETURNdi" || Name == "TCRETURNdiND" ||
1580 Name == "TCRETURNri" || Name == "TCRETURNriND" ||
1581 Name == "TAILJMPd" || Name == "TAILJMPdt" ||
1582 Name == "TAILJMPdND" || Name == "TAILJMPdNDt" ||
1583 Name == "TAILJMPr" || Name == "TAILJMPrND" ||
1584 Name == "MOVr_TC")
1585 return false;
1587 // Delegate ADR disassembly to the more generic ADDri/SUBri instructions.
1588 if (Name == "ADR")
1589 return false;
1592 // The following special cases are for conflict resolutions.
1595 // RSCSri and RSCSrs set the 's' bit, but are not predicated. We are
1596 // better off using the generic RSCri and RSCrs instructions.
1597 if (Name == "RSCSri" || Name == "RSCSrs") return false;
1599 // A8-598: VEXT
1600 // Vector Extract extracts elements from the bottom end of the second
1601 // operand vector and the top end of the first, concatenates them and
1602 // places the result in the destination vector. The elements of the
1603 // vectors are treated as being 8-bit bitfields. There is no distinction
1604 // between data types. The size of the operation can be specified in
1605 // assembler as vext.size. If the value is 16, 32, or 64, the syntax is
1606 // a pseudo-instruction for a VEXT instruction specifying the equivalent
1607 // number of bytes.
1609 // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8;
1610 // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8.
1611 if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" ||
1612 Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf")
1613 return false;
1614 } else if (TN == TARGET_THUMB) {
1615 if (!thumbInstruction(Form))
1616 return false;
1618 // A8.6.189 STM / STMIA / STMEA -- Encoding T1
1619 // There's only STMIA_UPD for Thumb1.
1620 if (Name == "tSTMIA")
1621 return false;
1623 // On Darwin R9 is call-clobbered. Ignore the non-Darwin counterparts.
1624 if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr")
1625 return false;
1627 // A8.6.25 BX. Use the generic tBX_Rm, ignore tBX_RET and tBX_RET_vararg.
1628 if (Name == "tBX_RET" || Name == "tBX_RET_vararg")
1629 return false;
1631 // Ignore the TPsoft (TLS) instructions, which conflict with tBLr9.
1632 if (Name == "tTPsoft" || Name == "t2TPsoft")
1633 return false;
1635 // Ignore tADR, prefer tADDrPCi.
1636 if (Name == "tADR")
1637 return false;
1639 // Delegate t2ADR disassembly to the more generic t2ADDri12/t2SUBri12
1640 // instructions.
1641 if (Name == "t2ADR")
1642 return false;
1644 // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr.
1645 // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s].
1646 // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s].
1647 // Ignore t2ADDrSPi/t2SUBrSPi, which have more generic couterparts.
1648 // Ignore t2ADDrSPi12/t2SUBrSPi12, which have more generic couterparts
1649 if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" ||
1650 Name == "t2SUBrSPs" || Name == "t2ADDrSPs" ||
1651 Name == "t2ADDrSPi" || Name == "t2SUBrSPi" ||
1652 Name == "t2ADDrSPi12" || Name == "t2SUBrSPi12")
1653 return false;
1655 // FIXME: Use ldr.n to work around a Darwin assembler bug.
1656 // Introduce a workaround with tLDRpciDIS opcode.
1657 if (Name == "tLDRpci")
1658 return false;
1660 // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST.
1661 if (Name == "t2LDRDpci")
1662 return false;
1664 // Resolve conflicts:
1666 // tBfar conflicts with tBLr9
1667 // tPOP_RET/t2LDMIA_RET conflict with tPOP/t2LDM (ditto)
1668 // tMOVCCi conflicts with tMOVi8
1669 // tMOVCCr conflicts with tMOVgpr2gpr
1670 // tSpill conflicts with tSTRspi
1671 // tLDRcp conflicts with tLDRspi
1672 // tRestore conflicts with tLDRspi
1673 // t2MOVCCi16 conflicts with tMOVi16
1674 if (Name == "tBfar" ||
1675 Name == "tPOP_RET" || Name == "t2LDMIA_RET" ||
1676 Name == "tMOVCCi" || Name == "tMOVCCr" ||
1677 Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" ||
1678 Name == "t2MOVCCi16")
1679 return false;
1682 DEBUG({
1683 // Dumps the instruction encoding format.
1684 switch (TargetName) {
1685 case TARGET_ARM:
1686 case TARGET_THUMB:
1687 errs() << Name << " " << stringForARMFormat((ARMFormat)Form);
1688 break;
1691 errs() << " ";
1693 // Dumps the instruction encoding bits.
1694 dumpBits(errs(), Bits);
1696 errs() << '\n';
1698 // Dumps the list of operand info.
1699 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1700 const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
1701 const std::string &OperandName = Info.Name;
1702 const Record &OperandDef = *Info.Rec;
1704 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
1708 return true;
1711 void ARMDecoderEmitter::ARMDEBackend::populateInstructions() {
1712 getInstructionsByEnumValue(NumberedInstructions);
1714 unsigned numUIDs = NumberedInstructions.size();
1715 if (TargetName == TARGET_ARM) {
1716 for (unsigned uid = 0; uid < numUIDs; uid++) {
1717 // filter out intrinsics
1718 if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM"))
1719 continue;
1721 if (populateInstruction(*NumberedInstructions[uid], TargetName))
1722 Opcodes.push_back(uid);
1725 // Special handling for the ARM chip, which supports two modes of execution.
1726 // This branch handles the Thumb opcodes.
1727 for (unsigned uid = 0; uid < numUIDs; uid++) {
1728 // filter out intrinsics
1729 if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM")
1730 && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb"))
1731 continue;
1733 if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB))
1734 Opcodes2.push_back(uid);
1737 return;
1740 // For other targets.
1741 for (unsigned uid = 0; uid < numUIDs; uid++) {
1742 Record *R = NumberedInstructions[uid]->TheDef;
1743 if (R->getValueAsString("Namespace") == "TargetOpcode")
1744 continue;
1746 if (populateInstruction(*NumberedInstructions[uid], TargetName))
1747 Opcodes.push_back(uid);
1751 // Emits disassembler code for instruction decoding. This delegates to the
1752 // FilterChooser instance to do the heavy lifting.
1753 void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) {
1754 switch (TargetName) {
1755 case TARGET_ARM:
1756 Frontend.EmitSourceFileHeader("ARM/Thumb Decoders", o);
1757 break;
1758 default:
1759 assert(0 && "Unreachable code!");
1762 o << "#include \"llvm/Support/DataTypes.h\"\n";
1763 o << "#include <assert.h>\n";
1764 o << '\n';
1765 o << "namespace llvm {\n\n";
1767 ARMFilterChooser::setTargetName(TargetName);
1769 switch (TargetName) {
1770 case TARGET_ARM: {
1771 // Emit common utility and ARM ISA decoder.
1772 FC = new ARMFilterChooser(NumberedInstructions, Opcodes);
1773 // Reset indentation level.
1774 unsigned Indentation = 0;
1775 FC->emitTop(o, Indentation);
1776 delete FC;
1778 // Emit Thumb ISA decoder as well.
1779 ARMFilterChooser::setTargetName(TARGET_THUMB);
1780 FC = new ARMFilterChooser(NumberedInstructions, Opcodes2);
1781 // Reset indentation level.
1782 Indentation = 0;
1783 FC->emitBot(o, Indentation);
1784 break;
1786 default:
1787 assert(0 && "Unreachable code!");
1790 o << "\n} // End llvm namespace \n";
1793 /////////////////////////
1794 // Backend interface //
1795 /////////////////////////
1797 void ARMDecoderEmitter::initBackend()
1799 Backend = new ARMDEBackend(*this, Records);
1802 void ARMDecoderEmitter::run(raw_ostream &o)
1804 Backend->emit(o);
1807 void ARMDecoderEmitter::shutdownBackend()
1809 delete Backend;
1810 Backend = NULL;