1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
13 //===----------------------------------------------------------------------===//
15 #include "CodeGenDAGPatterns.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Support/Debug.h"
24 //===----------------------------------------------------------------------===//
25 // EEVT::TypeSet Implementation
26 //===----------------------------------------------------------------------===//
28 static inline bool isInteger(MVT::SimpleValueType VT
) {
29 return EVT(VT
).isInteger();
31 static inline bool isFloatingPoint(MVT::SimpleValueType VT
) {
32 return EVT(VT
).isFloatingPoint();
34 static inline bool isVector(MVT::SimpleValueType VT
) {
35 return EVT(VT
).isVector();
37 static inline bool isScalar(MVT::SimpleValueType VT
) {
38 return !EVT(VT
).isVector();
41 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT
, TreePattern
&TP
) {
44 else if (VT
== MVT::fAny
)
45 EnforceFloatingPoint(TP
);
46 else if (VT
== MVT::vAny
)
49 assert((VT
< MVT::LAST_VALUETYPE
|| VT
== MVT::iPTR
||
50 VT
== MVT::iPTRAny
) && "Not a concrete type!");
51 TypeVec
.push_back(VT
);
56 EEVT::TypeSet::TypeSet(const std::vector
<MVT::SimpleValueType
> &VTList
) {
57 assert(!VTList
.empty() && "empty list?");
58 TypeVec
.append(VTList
.begin(), VTList
.end());
61 assert(VTList
[0] != MVT::iAny
&& VTList
[0] != MVT::vAny
&&
62 VTList
[0] != MVT::fAny
);
64 // Verify no duplicates.
65 array_pod_sort(TypeVec
.begin(), TypeVec
.end());
66 assert(std::unique(TypeVec
.begin(), TypeVec
.end()) == TypeVec
.end());
69 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
70 /// on completely unknown type sets.
71 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern
&TP
,
72 bool (*Pred
)(MVT::SimpleValueType
),
73 const char *PredicateName
) {
74 assert(isCompletelyUnknown());
75 const std::vector
<MVT::SimpleValueType
> &LegalTypes
=
76 TP
.getDAGPatterns().getTargetInfo().getLegalValueTypes();
78 for (unsigned i
= 0, e
= LegalTypes
.size(); i
!= e
; ++i
)
79 if (Pred
== 0 || Pred(LegalTypes
[i
]))
80 TypeVec
.push_back(LegalTypes
[i
]);
82 // If we have nothing that matches the predicate, bail out.
84 TP
.error("Type inference contradiction found, no " +
85 std::string(PredicateName
) + " types found");
86 // No need to sort with one element.
87 if (TypeVec
.size() == 1) return true;
90 array_pod_sort(TypeVec
.begin(), TypeVec
.end());
91 TypeVec
.erase(std::unique(TypeVec
.begin(), TypeVec
.end()), TypeVec
.end());
96 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
97 /// integer value type.
98 bool EEVT::TypeSet::hasIntegerTypes() const {
99 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
100 if (isInteger(TypeVec
[i
]))
105 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
106 /// a floating point value type.
107 bool EEVT::TypeSet::hasFloatingPointTypes() const {
108 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
109 if (isFloatingPoint(TypeVec
[i
]))
114 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
116 bool EEVT::TypeSet::hasVectorTypes() const {
117 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
118 if (isVector(TypeVec
[i
]))
124 std::string
EEVT::TypeSet::getName() const {
125 if (TypeVec
.empty()) return "<empty>";
129 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
) {
130 std::string VTName
= llvm::getEnumName(TypeVec
[i
]);
131 // Strip off MVT:: prefix if present.
132 if (VTName
.substr(0,5) == "MVT::")
133 VTName
= VTName
.substr(5);
134 if (i
) Result
+= ':';
138 if (TypeVec
.size() == 1)
140 return "{" + Result
+ "}";
143 /// MergeInTypeInfo - This merges in type information from the specified
144 /// argument. If 'this' changes, it returns true. If the two types are
145 /// contradictory (e.g. merge f32 into i32) then this throws an exception.
146 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet
&InVT
, TreePattern
&TP
){
147 if (InVT
.isCompletelyUnknown() || *this == InVT
)
150 if (isCompletelyUnknown()) {
155 assert(TypeVec
.size() >= 1 && InVT
.TypeVec
.size() >= 1 && "No unknowns");
157 // Handle the abstract cases, seeing if we can resolve them better.
158 switch (TypeVec
[0]) {
162 if (InVT
.hasIntegerTypes()) {
163 EEVT::TypeSet
InCopy(InVT
);
164 InCopy
.EnforceInteger(TP
);
165 InCopy
.EnforceScalar(TP
);
167 if (InCopy
.isConcrete()) {
168 // If the RHS has one integer type, upgrade iPTR to i32.
169 TypeVec
[0] = InVT
.TypeVec
[0];
173 // If the input has multiple scalar integers, this doesn't add any info.
174 if (!InCopy
.isCompletelyUnknown())
180 // If the input constraint is iAny/iPTR and this is an integer type list,
181 // remove non-integer types from the list.
182 if ((InVT
.TypeVec
[0] == MVT::iPTR
|| InVT
.TypeVec
[0] == MVT::iPTRAny
) &&
184 bool MadeChange
= EnforceInteger(TP
);
186 // If we're merging in iPTR/iPTRAny and the node currently has a list of
187 // multiple different integer types, replace them with a single iPTR.
188 if ((InVT
.TypeVec
[0] == MVT::iPTR
|| InVT
.TypeVec
[0] == MVT::iPTRAny
) &&
189 TypeVec
.size() != 1) {
191 TypeVec
[0] = InVT
.TypeVec
[0];
198 // If this is a type list and the RHS is a typelist as well, eliminate entries
199 // from this list that aren't in the other one.
200 bool MadeChange
= false;
201 TypeSet
InputSet(*this);
203 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
) {
205 for (unsigned j
= 0, e
= InVT
.TypeVec
.size(); j
!= e
; ++j
)
206 if (TypeVec
[i
] == InVT
.TypeVec
[j
]) {
211 if (InInVT
) continue;
212 TypeVec
.erase(TypeVec
.begin()+i
--);
216 // If we removed all of our types, we have a type contradiction.
217 if (!TypeVec
.empty())
220 // FIXME: Really want an SMLoc here!
221 TP
.error("Type inference contradiction found, merging '" +
222 InVT
.getName() + "' into '" + InputSet
.getName() + "'");
223 return true; // unreachable
226 /// EnforceInteger - Remove all non-integer types from this set.
227 bool EEVT::TypeSet::EnforceInteger(TreePattern
&TP
) {
228 // If we know nothing, then get the full set.
230 return FillWithPossibleTypes(TP
, isInteger
, "integer");
231 if (!hasFloatingPointTypes())
234 TypeSet
InputSet(*this);
236 // Filter out all the fp types.
237 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
238 if (!isInteger(TypeVec
[i
]))
239 TypeVec
.erase(TypeVec
.begin()+i
--);
242 TP
.error("Type inference contradiction found, '" +
243 InputSet
.getName() + "' needs to be integer");
247 /// EnforceFloatingPoint - Remove all integer types from this set.
248 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern
&TP
) {
249 // If we know nothing, then get the full set.
251 return FillWithPossibleTypes(TP
, isFloatingPoint
, "floating point");
253 if (!hasIntegerTypes())
256 TypeSet
InputSet(*this);
258 // Filter out all the fp types.
259 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
260 if (!isFloatingPoint(TypeVec
[i
]))
261 TypeVec
.erase(TypeVec
.begin()+i
--);
264 TP
.error("Type inference contradiction found, '" +
265 InputSet
.getName() + "' needs to be floating point");
269 /// EnforceScalar - Remove all vector types from this.
270 bool EEVT::TypeSet::EnforceScalar(TreePattern
&TP
) {
271 // If we know nothing, then get the full set.
273 return FillWithPossibleTypes(TP
, isScalar
, "scalar");
275 if (!hasVectorTypes())
278 TypeSet
InputSet(*this);
280 // Filter out all the vector types.
281 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
282 if (!isScalar(TypeVec
[i
]))
283 TypeVec
.erase(TypeVec
.begin()+i
--);
286 TP
.error("Type inference contradiction found, '" +
287 InputSet
.getName() + "' needs to be scalar");
291 /// EnforceVector - Remove all vector types from this.
292 bool EEVT::TypeSet::EnforceVector(TreePattern
&TP
) {
293 // If we know nothing, then get the full set.
295 return FillWithPossibleTypes(TP
, isVector
, "vector");
297 TypeSet
InputSet(*this);
298 bool MadeChange
= false;
300 // Filter out all the scalar types.
301 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
)
302 if (!isVector(TypeVec
[i
])) {
303 TypeVec
.erase(TypeVec
.begin()+i
--);
308 TP
.error("Type inference contradiction found, '" +
309 InputSet
.getName() + "' needs to be a vector");
315 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
316 /// this an other based on this information.
317 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet
&Other
, TreePattern
&TP
) {
318 // Both operands must be integer or FP, but we don't care which.
319 bool MadeChange
= false;
321 if (isCompletelyUnknown())
322 MadeChange
= FillWithPossibleTypes(TP
);
324 if (Other
.isCompletelyUnknown())
325 MadeChange
= Other
.FillWithPossibleTypes(TP
);
327 // If one side is known to be integer or known to be FP but the other side has
328 // no information, get at least the type integrality info in there.
329 if (!hasFloatingPointTypes())
330 MadeChange
|= Other
.EnforceInteger(TP
);
331 else if (!hasIntegerTypes())
332 MadeChange
|= Other
.EnforceFloatingPoint(TP
);
333 if (!Other
.hasFloatingPointTypes())
334 MadeChange
|= EnforceInteger(TP
);
335 else if (!Other
.hasIntegerTypes())
336 MadeChange
|= EnforceFloatingPoint(TP
);
338 assert(!isCompletelyUnknown() && !Other
.isCompletelyUnknown() &&
339 "Should have a type list now");
341 // If one contains vectors but the other doesn't pull vectors out.
342 if (!hasVectorTypes())
343 MadeChange
|= Other
.EnforceScalar(TP
);
344 if (!hasVectorTypes())
345 MadeChange
|= EnforceScalar(TP
);
347 if (TypeVec
.size() == 1 && Other
.TypeVec
.size() == 1) {
348 // If we are down to concrete types, this code does not currently
349 // handle nodes which have multiple types, where some types are
350 // integer, and some are fp. Assert that this is not the case.
351 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
352 !(Other
.hasIntegerTypes() && Other
.hasFloatingPointTypes()) &&
353 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
355 // Otherwise, if these are both vector types, either this vector
356 // must have a larger bitsize than the other, or this element type
357 // must be larger than the other.
358 EVT
Type(TypeVec
[0]);
359 EVT
OtherType(Other
.TypeVec
[0]);
361 if (hasVectorTypes() && Other
.hasVectorTypes()) {
362 if (Type
.getSizeInBits() >= OtherType
.getSizeInBits())
363 if (Type
.getVectorElementType().getSizeInBits()
364 >= OtherType
.getVectorElementType().getSizeInBits())
365 TP
.error("Type inference contradiction found, '" +
366 getName() + "' element type not smaller than '" +
367 Other
.getName() +"'!");
370 // For scalar types, the bitsize of this type must be larger
371 // than that of the other.
372 if (Type
.getSizeInBits() >= OtherType
.getSizeInBits())
373 TP
.error("Type inference contradiction found, '" +
374 getName() + "' is not smaller than '" +
375 Other
.getName() +"'!");
380 // Handle int and fp as disjoint sets. This won't work for patterns
381 // that have mixed fp/int types but those are likely rare and would
382 // not have been accepted by this code previously.
384 // Okay, find the smallest type from the current set and remove it from the
386 MVT::SimpleValueType SmallestInt
= MVT::LAST_VALUETYPE
;
387 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
388 if (isInteger(TypeVec
[i
])) {
389 SmallestInt
= TypeVec
[i
];
392 for (unsigned i
= 1, e
= TypeVec
.size(); i
!= e
; ++i
)
393 if (isInteger(TypeVec
[i
]) && TypeVec
[i
] < SmallestInt
)
394 SmallestInt
= TypeVec
[i
];
396 MVT::SimpleValueType SmallestFP
= MVT::LAST_VALUETYPE
;
397 for (unsigned i
= 0, e
= TypeVec
.size(); i
!= e
; ++i
)
398 if (isFloatingPoint(TypeVec
[i
])) {
399 SmallestFP
= TypeVec
[i
];
402 for (unsigned i
= 1, e
= TypeVec
.size(); i
!= e
; ++i
)
403 if (isFloatingPoint(TypeVec
[i
]) && TypeVec
[i
] < SmallestFP
)
404 SmallestFP
= TypeVec
[i
];
406 int OtherIntSize
= 0;
408 for (SmallVector
<MVT::SimpleValueType
, 2>::iterator TVI
=
409 Other
.TypeVec
.begin();
410 TVI
!= Other
.TypeVec
.end();
412 if (isInteger(*TVI
)) {
414 if (*TVI
== SmallestInt
) {
415 TVI
= Other
.TypeVec
.erase(TVI
);
421 else if (isFloatingPoint(*TVI
)) {
423 if (*TVI
== SmallestFP
) {
424 TVI
= Other
.TypeVec
.erase(TVI
);
433 // If this is the only type in the large set, the constraint can never be
435 if ((Other
.hasIntegerTypes() && OtherIntSize
== 0)
436 || (Other
.hasFloatingPointTypes() && OtherFPSize
== 0))
437 TP
.error("Type inference contradiction found, '" +
438 Other
.getName() + "' has nothing larger than '" + getName() +"'!");
440 // Okay, find the largest type in the Other set and remove it from the
442 MVT::SimpleValueType LargestInt
= MVT::Other
;
443 for (unsigned i
= 0, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
444 if (isInteger(Other
.TypeVec
[i
])) {
445 LargestInt
= Other
.TypeVec
[i
];
448 for (unsigned i
= 1, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
449 if (isInteger(Other
.TypeVec
[i
]) && Other
.TypeVec
[i
] > LargestInt
)
450 LargestInt
= Other
.TypeVec
[i
];
452 MVT::SimpleValueType LargestFP
= MVT::Other
;
453 for (unsigned i
= 0, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
454 if (isFloatingPoint(Other
.TypeVec
[i
])) {
455 LargestFP
= Other
.TypeVec
[i
];
458 for (unsigned i
= 1, e
= Other
.TypeVec
.size(); i
!= e
; ++i
)
459 if (isFloatingPoint(Other
.TypeVec
[i
]) && Other
.TypeVec
[i
] > LargestFP
)
460 LargestFP
= Other
.TypeVec
[i
];
464 for (SmallVector
<MVT::SimpleValueType
, 2>::iterator TVI
=
466 TVI
!= TypeVec
.end();
468 if (isInteger(*TVI
)) {
470 if (*TVI
== LargestInt
) {
471 TVI
= TypeVec
.erase(TVI
);
477 else if (isFloatingPoint(*TVI
)) {
479 if (*TVI
== LargestFP
) {
480 TVI
= TypeVec
.erase(TVI
);
489 // If this is the only type in the small set, the constraint can never be
491 if ((hasIntegerTypes() && IntSize
== 0)
492 || (hasFloatingPointTypes() && FPSize
== 0))
493 TP
.error("Type inference contradiction found, '" +
494 getName() + "' has nothing smaller than '" + Other
.getName()+"'!");
499 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
500 /// whose element is specified by VTOperand.
501 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet
&VTOperand
,
503 // "This" must be a vector and "VTOperand" must be a scalar.
504 bool MadeChange
= false;
505 MadeChange
|= EnforceVector(TP
);
506 MadeChange
|= VTOperand
.EnforceScalar(TP
);
508 // If we know the vector type, it forces the scalar to agree.
510 EVT IVT
= getConcrete();
511 IVT
= IVT
.getVectorElementType();
513 VTOperand
.MergeInTypeInfo(IVT
.getSimpleVT().SimpleTy
, TP
);
516 // If the scalar type is known, filter out vector types whose element types
518 if (!VTOperand
.isConcrete())
521 MVT::SimpleValueType VT
= VTOperand
.getConcrete();
523 TypeSet
InputSet(*this);
525 // Filter out all the types which don't have the right element type.
526 for (unsigned i
= 0; i
!= TypeVec
.size(); ++i
) {
527 assert(isVector(TypeVec
[i
]) && "EnforceVector didn't work");
528 if (EVT(TypeVec
[i
]).getVectorElementType().getSimpleVT().SimpleTy
!= VT
) {
529 TypeVec
.erase(TypeVec
.begin()+i
--);
534 if (TypeVec
.empty()) // FIXME: Really want an SMLoc here!
535 TP
.error("Type inference contradiction found, forcing '" +
536 InputSet
.getName() + "' to have a vector element");
540 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
541 /// vector type specified by VTOperand.
542 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet
&VTOperand
,
544 // "This" must be a vector and "VTOperand" must be a vector.
545 bool MadeChange
= false;
546 MadeChange
|= EnforceVector(TP
);
547 MadeChange
|= VTOperand
.EnforceVector(TP
);
549 // "This" must be larger than "VTOperand."
550 MadeChange
|= VTOperand
.EnforceSmallerThan(*this, TP
);
552 // If we know the vector type, it forces the scalar types to agree.
554 EVT IVT
= getConcrete();
555 IVT
= IVT
.getVectorElementType();
557 EEVT::TypeSet
EltTypeSet(IVT
.getSimpleVT().SimpleTy
, TP
);
558 MadeChange
|= VTOperand
.EnforceVectorEltTypeIs(EltTypeSet
, TP
);
559 } else if (VTOperand
.isConcrete()) {
560 EVT IVT
= VTOperand
.getConcrete();
561 IVT
= IVT
.getVectorElementType();
563 EEVT::TypeSet
EltTypeSet(IVT
.getSimpleVT().SimpleTy
, TP
);
564 MadeChange
|= EnforceVectorEltTypeIs(EltTypeSet
, TP
);
570 //===----------------------------------------------------------------------===//
571 // Helpers for working with extended types.
573 bool RecordPtrCmp::operator()(const Record
*LHS
, const Record
*RHS
) const {
574 return LHS
->getID() < RHS
->getID();
577 /// Dependent variable map for CodeGenDAGPattern variant generation
578 typedef std::map
<std::string
, int> DepVarMap
;
580 /// Const iterator shorthand for DepVarMap
581 typedef DepVarMap::const_iterator DepVarMap_citer
;
583 static void FindDepVarsOf(TreePatternNode
*N
, DepVarMap
&DepMap
) {
585 if (dynamic_cast<DefInit
*>(N
->getLeafValue()) != NULL
)
586 DepMap
[N
->getName()]++;
588 for (size_t i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
589 FindDepVarsOf(N
->getChild(i
), DepMap
);
593 /// Find dependent variables within child patterns
594 static void FindDepVars(TreePatternNode
*N
, MultipleUseVarSet
&DepVars
) {
596 FindDepVarsOf(N
, depcounts
);
597 for (DepVarMap_citer i
= depcounts
.begin(); i
!= depcounts
.end(); ++i
) {
598 if (i
->second
> 1) // std::pair<std::string, int>
599 DepVars
.insert(i
->first
);
604 /// Dump the dependent variable set:
605 static void DumpDepVars(MultipleUseVarSet
&DepVars
) {
606 if (DepVars
.empty()) {
607 DEBUG(errs() << "<empty set>");
609 DEBUG(errs() << "[ ");
610 for (MultipleUseVarSet::const_iterator i
= DepVars
.begin(),
611 e
= DepVars
.end(); i
!= e
; ++i
) {
612 DEBUG(errs() << (*i
) << " ");
614 DEBUG(errs() << "]");
620 //===----------------------------------------------------------------------===//
621 // TreePredicateFn Implementation
622 //===----------------------------------------------------------------------===//
624 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
625 TreePredicateFn::TreePredicateFn(TreePattern
*N
) : PatFragRec(N
) {
626 assert((getPredCode().empty() || getImmCode().empty()) &&
627 ".td file corrupt: can't have a node predicate *and* an imm predicate");
630 std::string
TreePredicateFn::getPredCode() const {
631 return PatFragRec
->getRecord()->getValueAsCode("PredicateCode");
634 std::string
TreePredicateFn::getImmCode() const {
635 return PatFragRec
->getRecord()->getValueAsCode("ImmediateCode");
639 /// isAlwaysTrue - Return true if this is a noop predicate.
640 bool TreePredicateFn::isAlwaysTrue() const {
641 return getPredCode().empty() && getImmCode().empty();
644 /// Return the name to use in the generated code to reference this, this is
645 /// "Predicate_foo" if from a pattern fragment "foo".
646 std::string
TreePredicateFn::getFnName() const {
647 return "Predicate_" + PatFragRec
->getRecord()->getName();
650 /// getCodeToRunOnSDNode - Return the code for the function body that
651 /// evaluates this predicate. The argument is expected to be in "Node",
652 /// not N. This handles casting and conversion to a concrete node type as
654 std::string
TreePredicateFn::getCodeToRunOnSDNode() const {
655 // Handle immediate predicates first.
656 std::string ImmCode
= getImmCode();
657 if (!ImmCode
.empty()) {
659 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
660 return Result
+ ImmCode
;
663 // Handle arbitrary node predicates.
664 assert(!getPredCode().empty() && "Don't have any predicate code!");
665 std::string ClassName
;
666 if (PatFragRec
->getOnlyTree()->isLeaf())
667 ClassName
= "SDNode";
669 Record
*Op
= PatFragRec
->getOnlyTree()->getOperator();
670 ClassName
= PatFragRec
->getDAGPatterns().getSDNodeInfo(Op
).getSDClassName();
673 if (ClassName
== "SDNode")
674 Result
= " SDNode *N = Node;\n";
676 Result
= " " + ClassName
+ "*N = cast<" + ClassName
+ ">(Node);\n";
678 return Result
+ getPredCode();
681 //===----------------------------------------------------------------------===//
682 // PatternToMatch implementation
686 /// getPatternSize - Return the 'size' of this pattern. We want to match large
687 /// patterns before small ones. This is used to determine the size of a
689 static unsigned getPatternSize(const TreePatternNode
*P
,
690 const CodeGenDAGPatterns
&CGP
) {
691 unsigned Size
= 3; // The node itself.
692 // If the root node is a ConstantSDNode, increases its size.
693 // e.g. (set R32:$dst, 0).
694 if (P
->isLeaf() && dynamic_cast<IntInit
*>(P
->getLeafValue()))
697 // FIXME: This is a hack to statically increase the priority of patterns
698 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
699 // Later we can allow complexity / cost for each pattern to be (optionally)
700 // specified. To get best possible pattern match we'll need to dynamically
701 // calculate the complexity of all patterns a dag can potentially map to.
702 const ComplexPattern
*AM
= P
->getComplexPatternInfo(CGP
);
704 Size
+= AM
->getNumOperands() * 3;
706 // If this node has some predicate function that must match, it adds to the
707 // complexity of this node.
708 if (!P
->getPredicateFns().empty())
711 // Count children in the count if they are also nodes.
712 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
) {
713 TreePatternNode
*Child
= P
->getChild(i
);
714 if (!Child
->isLeaf() && Child
->getNumTypes() &&
715 Child
->getType(0) != MVT::Other
)
716 Size
+= getPatternSize(Child
, CGP
);
717 else if (Child
->isLeaf()) {
718 if (dynamic_cast<IntInit
*>(Child
->getLeafValue()))
719 Size
+= 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
720 else if (Child
->getComplexPatternInfo(CGP
))
721 Size
+= getPatternSize(Child
, CGP
);
722 else if (!Child
->getPredicateFns().empty())
730 /// Compute the complexity metric for the input pattern. This roughly
731 /// corresponds to the number of nodes that are covered.
732 unsigned PatternToMatch::
733 getPatternComplexity(const CodeGenDAGPatterns
&CGP
) const {
734 return getPatternSize(getSrcPattern(), CGP
) + getAddedComplexity();
738 /// getPredicateCheck - Return a single string containing all of this
739 /// pattern's predicates concatenated with "&&" operators.
741 std::string
PatternToMatch::getPredicateCheck() const {
742 std::string PredicateCheck
;
743 for (unsigned i
= 0, e
= Predicates
->getSize(); i
!= e
; ++i
) {
744 if (DefInit
*Pred
= dynamic_cast<DefInit
*>(Predicates
->getElement(i
))) {
745 Record
*Def
= Pred
->getDef();
746 if (!Def
->isSubClassOf("Predicate")) {
750 assert(0 && "Unknown predicate type!");
752 if (!PredicateCheck
.empty())
753 PredicateCheck
+= " && ";
754 PredicateCheck
+= "(" + Def
->getValueAsString("CondString") + ")";
758 return PredicateCheck
;
761 //===----------------------------------------------------------------------===//
762 // SDTypeConstraint implementation
765 SDTypeConstraint::SDTypeConstraint(Record
*R
) {
766 OperandNo
= R
->getValueAsInt("OperandNum");
768 if (R
->isSubClassOf("SDTCisVT")) {
769 ConstraintType
= SDTCisVT
;
770 x
.SDTCisVT_Info
.VT
= getValueType(R
->getValueAsDef("VT"));
771 if (x
.SDTCisVT_Info
.VT
== MVT::isVoid
)
772 throw TGError(R
->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
774 } else if (R
->isSubClassOf("SDTCisPtrTy")) {
775 ConstraintType
= SDTCisPtrTy
;
776 } else if (R
->isSubClassOf("SDTCisInt")) {
777 ConstraintType
= SDTCisInt
;
778 } else if (R
->isSubClassOf("SDTCisFP")) {
779 ConstraintType
= SDTCisFP
;
780 } else if (R
->isSubClassOf("SDTCisVec")) {
781 ConstraintType
= SDTCisVec
;
782 } else if (R
->isSubClassOf("SDTCisSameAs")) {
783 ConstraintType
= SDTCisSameAs
;
784 x
.SDTCisSameAs_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOperandNum");
785 } else if (R
->isSubClassOf("SDTCisVTSmallerThanOp")) {
786 ConstraintType
= SDTCisVTSmallerThanOp
;
787 x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
=
788 R
->getValueAsInt("OtherOperandNum");
789 } else if (R
->isSubClassOf("SDTCisOpSmallerThanOp")) {
790 ConstraintType
= SDTCisOpSmallerThanOp
;
791 x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
=
792 R
->getValueAsInt("BigOperandNum");
793 } else if (R
->isSubClassOf("SDTCisEltOfVec")) {
794 ConstraintType
= SDTCisEltOfVec
;
795 x
.SDTCisEltOfVec_Info
.OtherOperandNum
= R
->getValueAsInt("OtherOpNum");
796 } else if (R
->isSubClassOf("SDTCisSubVecOfVec")) {
797 ConstraintType
= SDTCisSubVecOfVec
;
798 x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
=
799 R
->getValueAsInt("OtherOpNum");
801 errs() << "Unrecognized SDTypeConstraint '" << R
->getName() << "'!\n";
806 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
807 /// N, and the result number in ResNo.
808 static TreePatternNode
*getOperandNum(unsigned OpNo
, TreePatternNode
*N
,
809 const SDNodeInfo
&NodeInfo
,
811 unsigned NumResults
= NodeInfo
.getNumResults();
812 if (OpNo
< NumResults
) {
819 if (OpNo
>= N
->getNumChildren()) {
820 errs() << "Invalid operand number in type constraint "
821 << (OpNo
+NumResults
) << " ";
827 return N
->getChild(OpNo
);
830 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
831 /// constraint to the nodes operands. This returns true if it makes a
832 /// change, false otherwise. If a type contradiction is found, throw an
834 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode
*N
,
835 const SDNodeInfo
&NodeInfo
,
836 TreePattern
&TP
) const {
837 unsigned ResNo
= 0; // The result number being referenced.
838 TreePatternNode
*NodeToApply
= getOperandNum(OperandNo
, N
, NodeInfo
, ResNo
);
840 switch (ConstraintType
) {
841 default: assert(0 && "Unknown constraint type!");
843 // Operand must be a particular type.
844 return NodeToApply
->UpdateNodeType(ResNo
, x
.SDTCisVT_Info
.VT
, TP
);
846 // Operand must be same as target pointer type.
847 return NodeToApply
->UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
849 // Require it to be one of the legal integer VTs.
850 return NodeToApply
->getExtType(ResNo
).EnforceInteger(TP
);
852 // Require it to be one of the legal fp VTs.
853 return NodeToApply
->getExtType(ResNo
).EnforceFloatingPoint(TP
);
855 // Require it to be one of the legal vector VTs.
856 return NodeToApply
->getExtType(ResNo
).EnforceVector(TP
);
859 TreePatternNode
*OtherNode
=
860 getOperandNum(x
.SDTCisSameAs_Info
.OtherOperandNum
, N
, NodeInfo
, OResNo
);
861 return NodeToApply
->UpdateNodeType(OResNo
, OtherNode
->getExtType(ResNo
),TP
)|
862 OtherNode
->UpdateNodeType(ResNo
,NodeToApply
->getExtType(OResNo
),TP
);
864 case SDTCisVTSmallerThanOp
: {
865 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
866 // have an integer type that is smaller than the VT.
867 if (!NodeToApply
->isLeaf() ||
868 !dynamic_cast<DefInit
*>(NodeToApply
->getLeafValue()) ||
869 !static_cast<DefInit
*>(NodeToApply
->getLeafValue())->getDef()
870 ->isSubClassOf("ValueType"))
871 TP
.error(N
->getOperator()->getName() + " expects a VT operand!");
872 MVT::SimpleValueType VT
=
873 getValueType(static_cast<DefInit
*>(NodeToApply
->getLeafValue())->getDef());
875 EEVT::TypeSet
TypeListTmp(VT
, TP
);
878 TreePatternNode
*OtherNode
=
879 getOperandNum(x
.SDTCisVTSmallerThanOp_Info
.OtherOperandNum
, N
, NodeInfo
,
882 return TypeListTmp
.EnforceSmallerThan(OtherNode
->getExtType(OResNo
), TP
);
884 case SDTCisOpSmallerThanOp
: {
886 TreePatternNode
*BigOperand
=
887 getOperandNum(x
.SDTCisOpSmallerThanOp_Info
.BigOperandNum
, N
, NodeInfo
,
889 return NodeToApply
->getExtType(ResNo
).
890 EnforceSmallerThan(BigOperand
->getExtType(BResNo
), TP
);
892 case SDTCisEltOfVec
: {
894 TreePatternNode
*VecOperand
=
895 getOperandNum(x
.SDTCisEltOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
898 // Filter vector types out of VecOperand that don't have the right element
900 return VecOperand
->getExtType(VResNo
).
901 EnforceVectorEltTypeIs(NodeToApply
->getExtType(ResNo
), TP
);
903 case SDTCisSubVecOfVec
: {
905 TreePatternNode
*BigVecOperand
=
906 getOperandNum(x
.SDTCisSubVecOfVec_Info
.OtherOperandNum
, N
, NodeInfo
,
909 // Filter vector types out of BigVecOperand that don't have the
910 // right subvector type.
911 return BigVecOperand
->getExtType(VResNo
).
912 EnforceVectorSubVectorTypeIs(NodeToApply
->getExtType(ResNo
), TP
);
918 //===----------------------------------------------------------------------===//
919 // SDNodeInfo implementation
921 SDNodeInfo::SDNodeInfo(Record
*R
) : Def(R
) {
922 EnumName
= R
->getValueAsString("Opcode");
923 SDClassName
= R
->getValueAsString("SDClass");
924 Record
*TypeProfile
= R
->getValueAsDef("TypeProfile");
925 NumResults
= TypeProfile
->getValueAsInt("NumResults");
926 NumOperands
= TypeProfile
->getValueAsInt("NumOperands");
928 // Parse the properties.
930 std::vector
<Record
*> PropList
= R
->getValueAsListOfDefs("Properties");
931 for (unsigned i
= 0, e
= PropList
.size(); i
!= e
; ++i
) {
932 if (PropList
[i
]->getName() == "SDNPCommutative") {
933 Properties
|= 1 << SDNPCommutative
;
934 } else if (PropList
[i
]->getName() == "SDNPAssociative") {
935 Properties
|= 1 << SDNPAssociative
;
936 } else if (PropList
[i
]->getName() == "SDNPHasChain") {
937 Properties
|= 1 << SDNPHasChain
;
938 } else if (PropList
[i
]->getName() == "SDNPOutGlue") {
939 Properties
|= 1 << SDNPOutGlue
;
940 } else if (PropList
[i
]->getName() == "SDNPInGlue") {
941 Properties
|= 1 << SDNPInGlue
;
942 } else if (PropList
[i
]->getName() == "SDNPOptInGlue") {
943 Properties
|= 1 << SDNPOptInGlue
;
944 } else if (PropList
[i
]->getName() == "SDNPMayStore") {
945 Properties
|= 1 << SDNPMayStore
;
946 } else if (PropList
[i
]->getName() == "SDNPMayLoad") {
947 Properties
|= 1 << SDNPMayLoad
;
948 } else if (PropList
[i
]->getName() == "SDNPSideEffect") {
949 Properties
|= 1 << SDNPSideEffect
;
950 } else if (PropList
[i
]->getName() == "SDNPMemOperand") {
951 Properties
|= 1 << SDNPMemOperand
;
952 } else if (PropList
[i
]->getName() == "SDNPVariadic") {
953 Properties
|= 1 << SDNPVariadic
;
955 errs() << "Unknown SD Node property '" << PropList
[i
]->getName()
956 << "' on node '" << R
->getName() << "'!\n";
962 // Parse the type constraints.
963 std::vector
<Record
*> ConstraintList
=
964 TypeProfile
->getValueAsListOfDefs("Constraints");
965 TypeConstraints
.assign(ConstraintList
.begin(), ConstraintList
.end());
968 /// getKnownType - If the type constraints on this node imply a fixed type
969 /// (e.g. all stores return void, etc), then return it as an
970 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
971 MVT::SimpleValueType
SDNodeInfo::getKnownType(unsigned ResNo
) const {
972 unsigned NumResults
= getNumResults();
973 assert(NumResults
<= 1 &&
974 "We only work with nodes with zero or one result so far!");
975 assert(ResNo
== 0 && "Only handles single result nodes so far");
977 for (unsigned i
= 0, e
= TypeConstraints
.size(); i
!= e
; ++i
) {
978 // Make sure that this applies to the correct node result.
979 if (TypeConstraints
[i
].OperandNo
>= NumResults
) // FIXME: need value #
982 switch (TypeConstraints
[i
].ConstraintType
) {
984 case SDTypeConstraint::SDTCisVT
:
985 return TypeConstraints
[i
].x
.SDTCisVT_Info
.VT
;
986 case SDTypeConstraint::SDTCisPtrTy
:
993 //===----------------------------------------------------------------------===//
994 // TreePatternNode implementation
997 TreePatternNode::~TreePatternNode() {
998 #if 0 // FIXME: implement refcounted tree nodes!
999 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1004 static unsigned GetNumNodeResults(Record
*Operator
, CodeGenDAGPatterns
&CDP
) {
1005 if (Operator
->getName() == "set" ||
1006 Operator
->getName() == "implicit")
1007 return 0; // All return nothing.
1009 if (Operator
->isSubClassOf("Intrinsic"))
1010 return CDP
.getIntrinsic(Operator
).IS
.RetVTs
.size();
1012 if (Operator
->isSubClassOf("SDNode"))
1013 return CDP
.getSDNodeInfo(Operator
).getNumResults();
1015 if (Operator
->isSubClassOf("PatFrag")) {
1016 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1017 // the forward reference case where one pattern fragment references another
1018 // before it is processed.
1019 if (TreePattern
*PFRec
= CDP
.getPatternFragmentIfRead(Operator
))
1020 return PFRec
->getOnlyTree()->getNumTypes();
1022 // Get the result tree.
1023 DagInit
*Tree
= Operator
->getValueAsDag("Fragment");
1025 if (Tree
&& dynamic_cast<DefInit
*>(Tree
->getOperator()))
1026 Op
= dynamic_cast<DefInit
*>(Tree
->getOperator())->getDef();
1027 assert(Op
&& "Invalid Fragment");
1028 return GetNumNodeResults(Op
, CDP
);
1031 if (Operator
->isSubClassOf("Instruction")) {
1032 CodeGenInstruction
&InstInfo
= CDP
.getTargetInfo().getInstruction(Operator
);
1034 // FIXME: Should allow access to all the results here.
1035 unsigned NumDefsToAdd
= InstInfo
.Operands
.NumDefs
? 1 : 0;
1037 // Add on one implicit def if it has a resolvable type.
1038 if (InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo()) !=MVT::Other
)
1040 return NumDefsToAdd
;
1043 if (Operator
->isSubClassOf("SDNodeXForm"))
1044 return 1; // FIXME: Generalize SDNodeXForm
1047 errs() << "Unhandled node in GetNumNodeResults\n";
1051 void TreePatternNode::print(raw_ostream
&OS
) const {
1053 OS
<< *getLeafValue();
1055 OS
<< '(' << getOperator()->getName();
1057 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1058 OS
<< ':' << getExtType(i
).getName();
1061 if (getNumChildren() != 0) {
1063 getChild(0)->print(OS
);
1064 for (unsigned i
= 1, e
= getNumChildren(); i
!= e
; ++i
) {
1066 getChild(i
)->print(OS
);
1072 for (unsigned i
= 0, e
= PredicateFns
.size(); i
!= e
; ++i
)
1073 OS
<< "<<P:" << PredicateFns
[i
].getFnName() << ">>";
1075 OS
<< "<<X:" << TransformFn
->getName() << ">>";
1076 if (!getName().empty())
1077 OS
<< ":$" << getName();
1080 void TreePatternNode::dump() const {
1084 /// isIsomorphicTo - Return true if this node is recursively
1085 /// isomorphic to the specified node. For this comparison, the node's
1086 /// entire state is considered. The assigned name is ignored, since
1087 /// nodes with differing names are considered isomorphic. However, if
1088 /// the assigned name is present in the dependent variable set, then
1089 /// the assigned name is considered significant and the node is
1090 /// isomorphic if the names match.
1091 bool TreePatternNode::isIsomorphicTo(const TreePatternNode
*N
,
1092 const MultipleUseVarSet
&DepVars
) const {
1093 if (N
== this) return true;
1094 if (N
->isLeaf() != isLeaf() || getExtTypes() != N
->getExtTypes() ||
1095 getPredicateFns() != N
->getPredicateFns() ||
1096 getTransformFn() != N
->getTransformFn())
1100 if (DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue())) {
1101 if (DefInit
*NDI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
1102 return ((DI
->getDef() == NDI
->getDef())
1103 && (DepVars
.find(getName()) == DepVars
.end()
1104 || getName() == N
->getName()));
1107 return getLeafValue() == N
->getLeafValue();
1110 if (N
->getOperator() != getOperator() ||
1111 N
->getNumChildren() != getNumChildren()) return false;
1112 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1113 if (!getChild(i
)->isIsomorphicTo(N
->getChild(i
), DepVars
))
1118 /// clone - Make a copy of this tree and all of its children.
1120 TreePatternNode
*TreePatternNode::clone() const {
1121 TreePatternNode
*New
;
1123 New
= new TreePatternNode(getLeafValue(), getNumTypes());
1125 std::vector
<TreePatternNode
*> CChildren
;
1126 CChildren
.reserve(Children
.size());
1127 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1128 CChildren
.push_back(getChild(i
)->clone());
1129 New
= new TreePatternNode(getOperator(), CChildren
, getNumTypes());
1131 New
->setName(getName());
1133 New
->setPredicateFns(getPredicateFns());
1134 New
->setTransformFn(getTransformFn());
1138 /// RemoveAllTypes - Recursively strip all the types of this tree.
1139 void TreePatternNode::RemoveAllTypes() {
1140 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1141 Types
[i
] = EEVT::TypeSet(); // Reset to unknown type.
1142 if (isLeaf()) return;
1143 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1144 getChild(i
)->RemoveAllTypes();
1148 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1149 /// with actual values specified by ArgMap.
1150 void TreePatternNode::
1151 SubstituteFormalArguments(std::map
<std::string
, TreePatternNode
*> &ArgMap
) {
1152 if (isLeaf()) return;
1154 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
1155 TreePatternNode
*Child
= getChild(i
);
1156 if (Child
->isLeaf()) {
1157 Init
*Val
= Child
->getLeafValue();
1158 if (dynamic_cast<DefInit
*>(Val
) &&
1159 static_cast<DefInit
*>(Val
)->getDef()->getName() == "node") {
1160 // We found a use of a formal argument, replace it with its value.
1161 TreePatternNode
*NewChild
= ArgMap
[Child
->getName()];
1162 assert(NewChild
&& "Couldn't find formal argument!");
1163 assert((Child
->getPredicateFns().empty() ||
1164 NewChild
->getPredicateFns() == Child
->getPredicateFns()) &&
1165 "Non-empty child predicate clobbered!");
1166 setChild(i
, NewChild
);
1169 getChild(i
)->SubstituteFormalArguments(ArgMap
);
1175 /// InlinePatternFragments - If this pattern refers to any pattern
1176 /// fragments, inline them into place, giving us a pattern without any
1177 /// PatFrag references.
1178 TreePatternNode
*TreePatternNode::InlinePatternFragments(TreePattern
&TP
) {
1179 if (isLeaf()) return this; // nothing to do.
1180 Record
*Op
= getOperator();
1182 if (!Op
->isSubClassOf("PatFrag")) {
1183 // Just recursively inline children nodes.
1184 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
) {
1185 TreePatternNode
*Child
= getChild(i
);
1186 TreePatternNode
*NewChild
= Child
->InlinePatternFragments(TP
);
1188 assert((Child
->getPredicateFns().empty() ||
1189 NewChild
->getPredicateFns() == Child
->getPredicateFns()) &&
1190 "Non-empty child predicate clobbered!");
1192 setChild(i
, NewChild
);
1197 // Otherwise, we found a reference to a fragment. First, look up its
1198 // TreePattern record.
1199 TreePattern
*Frag
= TP
.getDAGPatterns().getPatternFragment(Op
);
1201 // Verify that we are passing the right number of operands.
1202 if (Frag
->getNumArgs() != Children
.size())
1203 TP
.error("'" + Op
->getName() + "' fragment requires " +
1204 utostr(Frag
->getNumArgs()) + " operands!");
1206 TreePatternNode
*FragTree
= Frag
->getOnlyTree()->clone();
1208 TreePredicateFn
PredFn(Frag
);
1209 if (!PredFn
.isAlwaysTrue())
1210 FragTree
->addPredicateFn(PredFn
);
1212 // Resolve formal arguments to their actual value.
1213 if (Frag
->getNumArgs()) {
1214 // Compute the map of formal to actual arguments.
1215 std::map
<std::string
, TreePatternNode
*> ArgMap
;
1216 for (unsigned i
= 0, e
= Frag
->getNumArgs(); i
!= e
; ++i
)
1217 ArgMap
[Frag
->getArgName(i
)] = getChild(i
)->InlinePatternFragments(TP
);
1219 FragTree
->SubstituteFormalArguments(ArgMap
);
1222 FragTree
->setName(getName());
1223 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1224 FragTree
->UpdateNodeType(i
, getExtType(i
), TP
);
1226 // Transfer in the old predicates.
1227 for (unsigned i
= 0, e
= getPredicateFns().size(); i
!= e
; ++i
)
1228 FragTree
->addPredicateFn(getPredicateFns()[i
]);
1230 // Get a new copy of this fragment to stitch into here.
1231 //delete this; // FIXME: implement refcounting!
1233 // The fragment we inlined could have recursive inlining that is needed. See
1234 // if there are any pattern fragments in it and inline them as needed.
1235 return FragTree
->InlinePatternFragments(TP
);
1238 /// getImplicitType - Check to see if the specified record has an implicit
1239 /// type which should be applied to it. This will infer the type of register
1240 /// references from the register file information, for example.
1242 static EEVT::TypeSet
getImplicitType(Record
*R
, unsigned ResNo
,
1243 bool NotRegisters
, TreePattern
&TP
) {
1244 // Check to see if this is a register or a register class.
1245 if (R
->isSubClassOf("RegisterClass")) {
1246 assert(ResNo
== 0 && "Regclass ref only has one result!");
1248 return EEVT::TypeSet(); // Unknown.
1249 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1250 return EEVT::TypeSet(T
.getRegisterClass(R
).getValueTypes());
1253 if (R
->isSubClassOf("PatFrag")) {
1254 assert(ResNo
== 0 && "FIXME: PatFrag with multiple results?");
1255 // Pattern fragment types will be resolved when they are inlined.
1256 return EEVT::TypeSet(); // Unknown.
1259 if (R
->isSubClassOf("Register")) {
1260 assert(ResNo
== 0 && "Registers only produce one result!");
1262 return EEVT::TypeSet(); // Unknown.
1263 const CodeGenTarget
&T
= TP
.getDAGPatterns().getTargetInfo();
1264 return EEVT::TypeSet(T
.getRegisterVTs(R
));
1267 if (R
->isSubClassOf("SubRegIndex")) {
1268 assert(ResNo
== 0 && "SubRegisterIndices only produce one result!");
1269 return EEVT::TypeSet();
1272 if (R
->isSubClassOf("ValueType") || R
->isSubClassOf("CondCode")) {
1273 assert(ResNo
== 0 && "This node only has one result!");
1274 // Using a VTSDNode or CondCodeSDNode.
1275 return EEVT::TypeSet(MVT::Other
, TP
);
1278 if (R
->isSubClassOf("ComplexPattern")) {
1279 assert(ResNo
== 0 && "FIXME: ComplexPattern with multiple results?");
1281 return EEVT::TypeSet(); // Unknown.
1282 return EEVT::TypeSet(TP
.getDAGPatterns().getComplexPattern(R
).getValueType(),
1285 if (R
->isSubClassOf("PointerLikeRegClass")) {
1286 assert(ResNo
== 0 && "Regclass can only have one result!");
1287 return EEVT::TypeSet(MVT::iPTR
, TP
);
1290 if (R
->getName() == "node" || R
->getName() == "srcvalue" ||
1291 R
->getName() == "zero_reg") {
1293 return EEVT::TypeSet(); // Unknown.
1296 TP
.error("Unknown node flavor used in pattern: " + R
->getName());
1297 return EEVT::TypeSet(MVT::Other
, TP
);
1301 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1302 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1303 const CodeGenIntrinsic
*TreePatternNode::
1304 getIntrinsicInfo(const CodeGenDAGPatterns
&CDP
) const {
1305 if (getOperator() != CDP
.get_intrinsic_void_sdnode() &&
1306 getOperator() != CDP
.get_intrinsic_w_chain_sdnode() &&
1307 getOperator() != CDP
.get_intrinsic_wo_chain_sdnode())
1311 dynamic_cast<IntInit
*>(getChild(0)->getLeafValue())->getValue();
1312 return &CDP
.getIntrinsicInfo(IID
);
1315 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1316 /// return the ComplexPattern information, otherwise return null.
1317 const ComplexPattern
*
1318 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns
&CGP
) const {
1319 if (!isLeaf()) return 0;
1321 DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue());
1322 if (DI
&& DI
->getDef()->isSubClassOf("ComplexPattern"))
1323 return &CGP
.getComplexPattern(DI
->getDef());
1327 /// NodeHasProperty - Return true if this node has the specified property.
1328 bool TreePatternNode::NodeHasProperty(SDNP Property
,
1329 const CodeGenDAGPatterns
&CGP
) const {
1331 if (const ComplexPattern
*CP
= getComplexPatternInfo(CGP
))
1332 return CP
->hasProperty(Property
);
1336 Record
*Operator
= getOperator();
1337 if (!Operator
->isSubClassOf("SDNode")) return false;
1339 return CGP
.getSDNodeInfo(Operator
).hasProperty(Property
);
1345 /// TreeHasProperty - Return true if any node in this tree has the specified
1347 bool TreePatternNode::TreeHasProperty(SDNP Property
,
1348 const CodeGenDAGPatterns
&CGP
) const {
1349 if (NodeHasProperty(Property
, CGP
))
1351 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1352 if (getChild(i
)->TreeHasProperty(Property
, CGP
))
1357 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1358 /// commutative intrinsic.
1360 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns
&CDP
) const {
1361 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
))
1362 return Int
->isCommutative
;
1367 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1368 /// this node and its children in the tree. This returns true if it makes a
1369 /// change, false otherwise. If a type contradiction is found, throw an
1371 bool TreePatternNode::ApplyTypeConstraints(TreePattern
&TP
, bool NotRegisters
) {
1372 CodeGenDAGPatterns
&CDP
= TP
.getDAGPatterns();
1374 if (DefInit
*DI
= dynamic_cast<DefInit
*>(getLeafValue())) {
1375 // If it's a regclass or something else known, include the type.
1376 bool MadeChange
= false;
1377 for (unsigned i
= 0, e
= Types
.size(); i
!= e
; ++i
)
1378 MadeChange
|= UpdateNodeType(i
, getImplicitType(DI
->getDef(), i
,
1379 NotRegisters
, TP
), TP
);
1383 if (IntInit
*II
= dynamic_cast<IntInit
*>(getLeafValue())) {
1384 assert(Types
.size() == 1 && "Invalid IntInit");
1386 // Int inits are always integers. :)
1387 bool MadeChange
= Types
[0].EnforceInteger(TP
);
1389 if (!Types
[0].isConcrete())
1392 MVT::SimpleValueType VT
= getType(0);
1393 if (VT
== MVT::iPTR
|| VT
== MVT::iPTRAny
)
1396 unsigned Size
= EVT(VT
).getSizeInBits();
1397 // Make sure that the value is representable for this type.
1398 if (Size
>= 32) return MadeChange
;
1400 int Val
= (II
->getValue() << (32-Size
)) >> (32-Size
);
1401 if (Val
== II
->getValue()) return MadeChange
;
1403 // If sign-extended doesn't fit, does it fit as unsigned?
1405 unsigned UnsignedVal
;
1406 ValueMask
= unsigned(~uint32_t(0UL) >> (32-Size
));
1407 UnsignedVal
= unsigned(II
->getValue());
1409 if ((ValueMask
& UnsignedVal
) == UnsignedVal
)
1412 TP
.error("Integer value '" + itostr(II
->getValue())+
1413 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1419 // special handling for set, which isn't really an SDNode.
1420 if (getOperator()->getName() == "set") {
1421 assert(getNumTypes() == 0 && "Set doesn't produce a value");
1422 assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1423 unsigned NC
= getNumChildren();
1425 TreePatternNode
*SetVal
= getChild(NC
-1);
1426 bool MadeChange
= SetVal
->ApplyTypeConstraints(TP
, NotRegisters
);
1428 for (unsigned i
= 0; i
< NC
-1; ++i
) {
1429 TreePatternNode
*Child
= getChild(i
);
1430 MadeChange
|= Child
->ApplyTypeConstraints(TP
, NotRegisters
);
1432 // Types of operands must match.
1433 MadeChange
|= Child
->UpdateNodeType(0, SetVal
->getExtType(i
), TP
);
1434 MadeChange
|= SetVal
->UpdateNodeType(i
, Child
->getExtType(0), TP
);
1439 if (getOperator()->getName() == "implicit") {
1440 assert(getNumTypes() == 0 && "Node doesn't produce a value");
1442 bool MadeChange
= false;
1443 for (unsigned i
= 0; i
< getNumChildren(); ++i
)
1444 MadeChange
= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
1448 if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1449 bool MadeChange
= false;
1450 MadeChange
|= getChild(0)->ApplyTypeConstraints(TP
, NotRegisters
);
1451 MadeChange
|= getChild(1)->ApplyTypeConstraints(TP
, NotRegisters
);
1453 assert(getChild(0)->getNumTypes() == 1 &&
1454 getChild(1)->getNumTypes() == 1 && "Unhandled case");
1456 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care
1457 // what type it gets, so if it didn't get a concrete type just give it the
1458 // first viable type from the reg class.
1459 if (!getChild(1)->hasTypeSet(0) &&
1460 !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1461 MVT::SimpleValueType RCVT
= getChild(1)->getExtType(0).getTypeList()[0];
1462 MadeChange
|= getChild(1)->UpdateNodeType(0, RCVT
, TP
);
1467 if (const CodeGenIntrinsic
*Int
= getIntrinsicInfo(CDP
)) {
1468 bool MadeChange
= false;
1470 // Apply the result type to the node.
1471 unsigned NumRetVTs
= Int
->IS
.RetVTs
.size();
1472 unsigned NumParamVTs
= Int
->IS
.ParamVTs
.size();
1474 for (unsigned i
= 0, e
= NumRetVTs
; i
!= e
; ++i
)
1475 MadeChange
|= UpdateNodeType(i
, Int
->IS
.RetVTs
[i
], TP
);
1477 if (getNumChildren() != NumParamVTs
+ 1)
1478 TP
.error("Intrinsic '" + Int
->Name
+ "' expects " +
1479 utostr(NumParamVTs
) + " operands, not " +
1480 utostr(getNumChildren() - 1) + " operands!");
1482 // Apply type info to the intrinsic ID.
1483 MadeChange
|= getChild(0)->UpdateNodeType(0, MVT::iPTR
, TP
);
1485 for (unsigned i
= 0, e
= getNumChildren()-1; i
!= e
; ++i
) {
1486 MadeChange
|= getChild(i
+1)->ApplyTypeConstraints(TP
, NotRegisters
);
1488 MVT::SimpleValueType OpVT
= Int
->IS
.ParamVTs
[i
];
1489 assert(getChild(i
+1)->getNumTypes() == 1 && "Unhandled case");
1490 MadeChange
|= getChild(i
+1)->UpdateNodeType(0, OpVT
, TP
);
1495 if (getOperator()->isSubClassOf("SDNode")) {
1496 const SDNodeInfo
&NI
= CDP
.getSDNodeInfo(getOperator());
1498 // Check that the number of operands is sane. Negative operands -> varargs.
1499 if (NI
.getNumOperands() >= 0 &&
1500 getNumChildren() != (unsigned)NI
.getNumOperands())
1501 TP
.error(getOperator()->getName() + " node requires exactly " +
1502 itostr(NI
.getNumOperands()) + " operands!");
1504 bool MadeChange
= NI
.ApplyTypeConstraints(this, TP
);
1505 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1506 MadeChange
|= getChild(i
)->ApplyTypeConstraints(TP
, NotRegisters
);
1510 if (getOperator()->isSubClassOf("Instruction")) {
1511 const DAGInstruction
&Inst
= CDP
.getInstruction(getOperator());
1512 CodeGenInstruction
&InstInfo
=
1513 CDP
.getTargetInfo().getInstruction(getOperator());
1515 bool MadeChange
= false;
1517 // Apply the result types to the node, these come from the things in the
1518 // (outs) list of the instruction.
1519 // FIXME: Cap at one result so far.
1520 unsigned NumResultsToAdd
= InstInfo
.Operands
.NumDefs
? 1 : 0;
1521 for (unsigned ResNo
= 0; ResNo
!= NumResultsToAdd
; ++ResNo
) {
1522 Record
*ResultNode
= Inst
.getResult(ResNo
);
1524 if (ResultNode
->isSubClassOf("PointerLikeRegClass")) {
1525 MadeChange
|= UpdateNodeType(ResNo
, MVT::iPTR
, TP
);
1526 } else if (ResultNode
->getName() == "unknown") {
1529 assert(ResultNode
->isSubClassOf("RegisterClass") &&
1530 "Operands should be register classes!");
1531 const CodeGenRegisterClass
&RC
=
1532 CDP
.getTargetInfo().getRegisterClass(ResultNode
);
1533 MadeChange
|= UpdateNodeType(ResNo
, RC
.getValueTypes(), TP
);
1537 // If the instruction has implicit defs, we apply the first one as a result.
1538 // FIXME: This sucks, it should apply all implicit defs.
1539 if (!InstInfo
.ImplicitDefs
.empty()) {
1540 unsigned ResNo
= NumResultsToAdd
;
1542 // FIXME: Generalize to multiple possible types and multiple possible
1544 MVT::SimpleValueType VT
=
1545 InstInfo
.HasOneImplicitDefWithKnownVT(CDP
.getTargetInfo());
1547 if (VT
!= MVT::Other
)
1548 MadeChange
|= UpdateNodeType(ResNo
, VT
, TP
);
1551 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1553 if (getOperator()->getName() == "INSERT_SUBREG") {
1554 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1555 MadeChange
|= UpdateNodeType(0, getChild(0)->getExtType(0), TP
);
1556 MadeChange
|= getChild(0)->UpdateNodeType(0, getExtType(0), TP
);
1559 unsigned ChildNo
= 0;
1560 for (unsigned i
= 0, e
= Inst
.getNumOperands(); i
!= e
; ++i
) {
1561 Record
*OperandNode
= Inst
.getOperand(i
);
1563 // If the instruction expects a predicate or optional def operand, we
1564 // codegen this by setting the operand to it's default value if it has a
1565 // non-empty DefaultOps field.
1566 if ((OperandNode
->isSubClassOf("PredicateOperand") ||
1567 OperandNode
->isSubClassOf("OptionalDefOperand")) &&
1568 !CDP
.getDefaultOperand(OperandNode
).DefaultOps
.empty())
1571 // Verify that we didn't run out of provided operands.
1572 if (ChildNo
>= getNumChildren())
1573 TP
.error("Instruction '" + getOperator()->getName() +
1574 "' expects more operands than were provided.");
1576 MVT::SimpleValueType VT
;
1577 TreePatternNode
*Child
= getChild(ChildNo
++);
1578 unsigned ChildResNo
= 0; // Instructions always use res #0 of their op.
1580 if (OperandNode
->isSubClassOf("RegisterClass")) {
1581 const CodeGenRegisterClass
&RC
=
1582 CDP
.getTargetInfo().getRegisterClass(OperandNode
);
1583 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, RC
.getValueTypes(), TP
);
1584 } else if (OperandNode
->isSubClassOf("Operand")) {
1585 VT
= getValueType(OperandNode
->getValueAsDef("Type"));
1586 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, VT
, TP
);
1587 } else if (OperandNode
->isSubClassOf("PointerLikeRegClass")) {
1588 MadeChange
|= Child
->UpdateNodeType(ChildResNo
, MVT::iPTR
, TP
);
1589 } else if (OperandNode
->getName() == "unknown") {
1592 assert(0 && "Unknown operand type!");
1595 MadeChange
|= Child
->ApplyTypeConstraints(TP
, NotRegisters
);
1598 if (ChildNo
!= getNumChildren())
1599 TP
.error("Instruction '" + getOperator()->getName() +
1600 "' was provided too many operands!");
1605 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1607 // Node transforms always take one operand.
1608 if (getNumChildren() != 1)
1609 TP
.error("Node transform '" + getOperator()->getName() +
1610 "' requires one operand!");
1612 bool MadeChange
= getChild(0)->ApplyTypeConstraints(TP
, NotRegisters
);
1615 // If either the output or input of the xform does not have exact
1616 // type info. We assume they must be the same. Otherwise, it is perfectly
1617 // legal to transform from one type to a completely different type.
1619 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1620 bool MadeChange
= UpdateNodeType(getChild(0)->getExtType(), TP
);
1621 MadeChange
|= getChild(0)->UpdateNodeType(getExtType(), TP
);
1628 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1629 /// RHS of a commutative operation, not the on LHS.
1630 static bool OnlyOnRHSOfCommutative(TreePatternNode
*N
) {
1631 if (!N
->isLeaf() && N
->getOperator()->getName() == "imm")
1633 if (N
->isLeaf() && dynamic_cast<IntInit
*>(N
->getLeafValue()))
1639 /// canPatternMatch - If it is impossible for this pattern to match on this
1640 /// target, fill in Reason and return false. Otherwise, return true. This is
1641 /// used as a sanity check for .td files (to prevent people from writing stuff
1642 /// that can never possibly work), and to prevent the pattern permuter from
1643 /// generating stuff that is useless.
1644 bool TreePatternNode::canPatternMatch(std::string
&Reason
,
1645 const CodeGenDAGPatterns
&CDP
) {
1646 if (isLeaf()) return true;
1648 for (unsigned i
= 0, e
= getNumChildren(); i
!= e
; ++i
)
1649 if (!getChild(i
)->canPatternMatch(Reason
, CDP
))
1652 // If this is an intrinsic, handle cases that would make it not match. For
1653 // example, if an operand is required to be an immediate.
1654 if (getOperator()->isSubClassOf("Intrinsic")) {
1659 // If this node is a commutative operator, check that the LHS isn't an
1661 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(getOperator());
1662 bool isCommIntrinsic
= isCommutativeIntrinsic(CDP
);
1663 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
1664 // Scan all of the operands of the node and make sure that only the last one
1665 // is a constant node, unless the RHS also is.
1666 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1667 bool Skip
= isCommIntrinsic
? 1 : 0; // First operand is intrinsic id.
1668 for (unsigned i
= Skip
, e
= getNumChildren()-1; i
!= e
; ++i
)
1669 if (OnlyOnRHSOfCommutative(getChild(i
))) {
1670 Reason
="Immediate value must be on the RHS of commutative operators!";
1679 //===----------------------------------------------------------------------===//
1680 // TreePattern implementation
1683 TreePattern::TreePattern(Record
*TheRec
, ListInit
*RawPat
, bool isInput
,
1684 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1685 isInputPattern
= isInput
;
1686 for (unsigned i
= 0, e
= RawPat
->getSize(); i
!= e
; ++i
)
1687 Trees
.push_back(ParseTreePattern(RawPat
->getElement(i
), ""));
1690 TreePattern::TreePattern(Record
*TheRec
, DagInit
*Pat
, bool isInput
,
1691 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1692 isInputPattern
= isInput
;
1693 Trees
.push_back(ParseTreePattern(Pat
, ""));
1696 TreePattern::TreePattern(Record
*TheRec
, TreePatternNode
*Pat
, bool isInput
,
1697 CodeGenDAGPatterns
&cdp
) : TheRecord(TheRec
), CDP(cdp
){
1698 isInputPattern
= isInput
;
1699 Trees
.push_back(Pat
);
1702 void TreePattern::error(const std::string
&Msg
) const {
1704 throw TGError(TheRecord
->getLoc(), "In " + TheRecord
->getName() + ": " + Msg
);
1707 void TreePattern::ComputeNamedNodes() {
1708 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
)
1709 ComputeNamedNodes(Trees
[i
]);
1712 void TreePattern::ComputeNamedNodes(TreePatternNode
*N
) {
1713 if (!N
->getName().empty())
1714 NamedNodes
[N
->getName()].push_back(N
);
1716 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
1717 ComputeNamedNodes(N
->getChild(i
));
1721 TreePatternNode
*TreePattern::ParseTreePattern(Init
*TheInit
, StringRef OpName
){
1722 if (DefInit
*DI
= dynamic_cast<DefInit
*>(TheInit
)) {
1723 Record
*R
= DI
->getDef();
1725 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1726 // TreePatternNode if its own. For example:
1727 /// (foo GPR, imm) -> (foo GPR, (imm))
1728 if (R
->isSubClassOf("SDNode") || R
->isSubClassOf("PatFrag"))
1729 return ParseTreePattern(new DagInit(DI
, "",
1730 std::vector
<std::pair
<Init
*, std::string
> >()),
1734 TreePatternNode
*Res
= new TreePatternNode(DI
, 1);
1735 if (R
->getName() == "node" && !OpName
.empty()) {
1737 error("'node' argument requires a name to match with operand list");
1738 Args
.push_back(OpName
);
1741 Res
->setName(OpName
);
1745 if (IntInit
*II
= dynamic_cast<IntInit
*>(TheInit
)) {
1746 if (!OpName
.empty())
1747 error("Constant int argument should not have a name!");
1748 return new TreePatternNode(II
, 1);
1751 if (BitsInit
*BI
= dynamic_cast<BitsInit
*>(TheInit
)) {
1752 // Turn this into an IntInit.
1753 Init
*II
= BI
->convertInitializerTo(new IntRecTy());
1754 if (II
== 0 || !dynamic_cast<IntInit
*>(II
))
1755 error("Bits value must be constants!");
1756 return ParseTreePattern(II
, OpName
);
1759 DagInit
*Dag
= dynamic_cast<DagInit
*>(TheInit
);
1762 error("Pattern has unexpected init kind!");
1764 DefInit
*OpDef
= dynamic_cast<DefInit
*>(Dag
->getOperator());
1765 if (!OpDef
) error("Pattern has unexpected operator type!");
1766 Record
*Operator
= OpDef
->getDef();
1768 if (Operator
->isSubClassOf("ValueType")) {
1769 // If the operator is a ValueType, then this must be "type cast" of a leaf
1771 if (Dag
->getNumArgs() != 1)
1772 error("Type cast only takes one operand!");
1774 TreePatternNode
*New
= ParseTreePattern(Dag
->getArg(0), Dag
->getArgName(0));
1776 // Apply the type cast.
1777 assert(New
->getNumTypes() == 1 && "FIXME: Unhandled");
1778 New
->UpdateNodeType(0, getValueType(Operator
), *this);
1780 if (!OpName
.empty())
1781 error("ValueType cast should not have a name!");
1785 // Verify that this is something that makes sense for an operator.
1786 if (!Operator
->isSubClassOf("PatFrag") &&
1787 !Operator
->isSubClassOf("SDNode") &&
1788 !Operator
->isSubClassOf("Instruction") &&
1789 !Operator
->isSubClassOf("SDNodeXForm") &&
1790 !Operator
->isSubClassOf("Intrinsic") &&
1791 Operator
->getName() != "set" &&
1792 Operator
->getName() != "implicit")
1793 error("Unrecognized node '" + Operator
->getName() + "'!");
1795 // Check to see if this is something that is illegal in an input pattern.
1796 if (isInputPattern
) {
1797 if (Operator
->isSubClassOf("Instruction") ||
1798 Operator
->isSubClassOf("SDNodeXForm"))
1799 error("Cannot use '" + Operator
->getName() + "' in an input pattern!");
1801 if (Operator
->isSubClassOf("Intrinsic"))
1802 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
1804 if (Operator
->isSubClassOf("SDNode") &&
1805 Operator
->getName() != "imm" &&
1806 Operator
->getName() != "fpimm" &&
1807 Operator
->getName() != "tglobaltlsaddr" &&
1808 Operator
->getName() != "tconstpool" &&
1809 Operator
->getName() != "tjumptable" &&
1810 Operator
->getName() != "tframeindex" &&
1811 Operator
->getName() != "texternalsym" &&
1812 Operator
->getName() != "tblockaddress" &&
1813 Operator
->getName() != "tglobaladdr" &&
1814 Operator
->getName() != "bb" &&
1815 Operator
->getName() != "vt")
1816 error("Cannot use '" + Operator
->getName() + "' in an output pattern!");
1819 std::vector
<TreePatternNode
*> Children
;
1821 // Parse all the operands.
1822 for (unsigned i
= 0, e
= Dag
->getNumArgs(); i
!= e
; ++i
)
1823 Children
.push_back(ParseTreePattern(Dag
->getArg(i
), Dag
->getArgName(i
)));
1825 // If the operator is an intrinsic, then this is just syntactic sugar for for
1826 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
1827 // convert the intrinsic name to a number.
1828 if (Operator
->isSubClassOf("Intrinsic")) {
1829 const CodeGenIntrinsic
&Int
= getDAGPatterns().getIntrinsic(Operator
);
1830 unsigned IID
= getDAGPatterns().getIntrinsicID(Operator
)+1;
1832 // If this intrinsic returns void, it must have side-effects and thus a
1834 if (Int
.IS
.RetVTs
.empty())
1835 Operator
= getDAGPatterns().get_intrinsic_void_sdnode();
1836 else if (Int
.ModRef
!= CodeGenIntrinsic::NoMem
)
1837 // Has side-effects, requires chain.
1838 Operator
= getDAGPatterns().get_intrinsic_w_chain_sdnode();
1839 else // Otherwise, no chain.
1840 Operator
= getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1842 TreePatternNode
*IIDNode
= new TreePatternNode(new IntInit(IID
), 1);
1843 Children
.insert(Children
.begin(), IIDNode
);
1846 unsigned NumResults
= GetNumNodeResults(Operator
, CDP
);
1847 TreePatternNode
*Result
= new TreePatternNode(Operator
, Children
, NumResults
);
1848 Result
->setName(OpName
);
1850 if (!Dag
->getName().empty()) {
1851 assert(Result
->getName().empty());
1852 Result
->setName(Dag
->getName());
1857 /// SimplifyTree - See if we can simplify this tree to eliminate something that
1858 /// will never match in favor of something obvious that will. This is here
1859 /// strictly as a convenience to target authors because it allows them to write
1860 /// more type generic things and have useless type casts fold away.
1862 /// This returns true if any change is made.
1863 static bool SimplifyTree(TreePatternNode
*&N
) {
1867 // If we have a bitconvert with a resolved type and if the source and
1868 // destination types are the same, then the bitconvert is useless, remove it.
1869 if (N
->getOperator()->getName() == "bitconvert" &&
1870 N
->getExtType(0).isConcrete() &&
1871 N
->getExtType(0) == N
->getChild(0)->getExtType(0) &&
1872 N
->getName().empty()) {
1878 // Walk all children.
1879 bool MadeChange
= false;
1880 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
1881 TreePatternNode
*Child
= N
->getChild(i
);
1882 MadeChange
|= SimplifyTree(Child
);
1883 N
->setChild(i
, Child
);
1890 /// InferAllTypes - Infer/propagate as many types throughout the expression
1891 /// patterns as possible. Return true if all types are inferred, false
1892 /// otherwise. Throw an exception if a type contradiction is found.
1894 InferAllTypes(const StringMap
<SmallVector
<TreePatternNode
*,1> > *InNamedTypes
) {
1895 if (NamedNodes
.empty())
1896 ComputeNamedNodes();
1898 bool MadeChange
= true;
1899 while (MadeChange
) {
1901 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
) {
1902 MadeChange
|= Trees
[i
]->ApplyTypeConstraints(*this, false);
1903 MadeChange
|= SimplifyTree(Trees
[i
]);
1906 // If there are constraints on our named nodes, apply them.
1907 for (StringMap
<SmallVector
<TreePatternNode
*,1> >::iterator
1908 I
= NamedNodes
.begin(), E
= NamedNodes
.end(); I
!= E
; ++I
) {
1909 SmallVectorImpl
<TreePatternNode
*> &Nodes
= I
->second
;
1911 // If we have input named node types, propagate their types to the named
1914 // FIXME: Should be error?
1915 assert(InNamedTypes
->count(I
->getKey()) &&
1916 "Named node in output pattern but not input pattern?");
1918 const SmallVectorImpl
<TreePatternNode
*> &InNodes
=
1919 InNamedTypes
->find(I
->getKey())->second
;
1921 // The input types should be fully resolved by now.
1922 for (unsigned i
= 0, e
= Nodes
.size(); i
!= e
; ++i
) {
1923 // If this node is a register class, and it is the root of the pattern
1924 // then we're mapping something onto an input register. We allow
1925 // changing the type of the input register in this case. This allows
1926 // us to match things like:
1927 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1928 if (Nodes
[i
] == Trees
[0] && Nodes
[i
]->isLeaf()) {
1929 DefInit
*DI
= dynamic_cast<DefInit
*>(Nodes
[i
]->getLeafValue());
1930 if (DI
&& DI
->getDef()->isSubClassOf("RegisterClass"))
1934 assert(Nodes
[i
]->getNumTypes() == 1 &&
1935 InNodes
[0]->getNumTypes() == 1 &&
1936 "FIXME: cannot name multiple result nodes yet");
1937 MadeChange
|= Nodes
[i
]->UpdateNodeType(0, InNodes
[0]->getExtType(0),
1942 // If there are multiple nodes with the same name, they must all have the
1944 if (I
->second
.size() > 1) {
1945 for (unsigned i
= 0, e
= Nodes
.size()-1; i
!= e
; ++i
) {
1946 TreePatternNode
*N1
= Nodes
[i
], *N2
= Nodes
[i
+1];
1947 assert(N1
->getNumTypes() == 1 && N2
->getNumTypes() == 1 &&
1948 "FIXME: cannot name multiple result nodes yet");
1950 MadeChange
|= N1
->UpdateNodeType(0, N2
->getExtType(0), *this);
1951 MadeChange
|= N2
->UpdateNodeType(0, N1
->getExtType(0), *this);
1957 bool HasUnresolvedTypes
= false;
1958 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
)
1959 HasUnresolvedTypes
|= Trees
[i
]->ContainsUnresolvedType();
1960 return !HasUnresolvedTypes
;
1963 void TreePattern::print(raw_ostream
&OS
) const {
1964 OS
<< getRecord()->getName();
1965 if (!Args
.empty()) {
1966 OS
<< "(" << Args
[0];
1967 for (unsigned i
= 1, e
= Args
.size(); i
!= e
; ++i
)
1968 OS
<< ", " << Args
[i
];
1973 if (Trees
.size() > 1)
1975 for (unsigned i
= 0, e
= Trees
.size(); i
!= e
; ++i
) {
1977 Trees
[i
]->print(OS
);
1981 if (Trees
.size() > 1)
1985 void TreePattern::dump() const { print(errs()); }
1987 //===----------------------------------------------------------------------===//
1988 // CodeGenDAGPatterns implementation
1991 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper
&R
) :
1992 Records(R
), Target(R
) {
1994 Intrinsics
= LoadIntrinsics(Records
, false);
1995 TgtIntrinsics
= LoadIntrinsics(Records
, true);
1997 ParseNodeTransforms();
1998 ParseComplexPatterns();
1999 ParsePatternFragments();
2000 ParseDefaultOperands();
2001 ParseInstructions();
2004 // Generate variants. For example, commutative patterns can match
2005 // multiple ways. Add them to PatternsToMatch as well.
2008 // Infer instruction flags. For example, we can detect loads,
2009 // stores, and side effects in many cases by examining an
2010 // instruction's pattern.
2011 InferInstructionFlags();
2014 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2015 for (pf_iterator I
= PatternFragments
.begin(),
2016 E
= PatternFragments
.end(); I
!= E
; ++I
)
2021 Record
*CodeGenDAGPatterns::getSDNodeNamed(const std::string
&Name
) const {
2022 Record
*N
= Records
.getDef(Name
);
2023 if (!N
|| !N
->isSubClassOf("SDNode")) {
2024 errs() << "Error getting SDNode '" << Name
<< "'!\n";
2030 // Parse all of the SDNode definitions for the target, populating SDNodes.
2031 void CodeGenDAGPatterns::ParseNodeInfo() {
2032 std::vector
<Record
*> Nodes
= Records
.getAllDerivedDefinitions("SDNode");
2033 while (!Nodes
.empty()) {
2034 SDNodes
.insert(std::make_pair(Nodes
.back(), Nodes
.back()));
2038 // Get the builtin intrinsic nodes.
2039 intrinsic_void_sdnode
= getSDNodeNamed("intrinsic_void");
2040 intrinsic_w_chain_sdnode
= getSDNodeNamed("intrinsic_w_chain");
2041 intrinsic_wo_chain_sdnode
= getSDNodeNamed("intrinsic_wo_chain");
2044 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2045 /// map, and emit them to the file as functions.
2046 void CodeGenDAGPatterns::ParseNodeTransforms() {
2047 std::vector
<Record
*> Xforms
= Records
.getAllDerivedDefinitions("SDNodeXForm");
2048 while (!Xforms
.empty()) {
2049 Record
*XFormNode
= Xforms
.back();
2050 Record
*SDNode
= XFormNode
->getValueAsDef("Opcode");
2051 std::string Code
= XFormNode
->getValueAsCode("XFormFunction");
2052 SDNodeXForms
.insert(std::make_pair(XFormNode
, NodeXForm(SDNode
, Code
)));
2058 void CodeGenDAGPatterns::ParseComplexPatterns() {
2059 std::vector
<Record
*> AMs
= Records
.getAllDerivedDefinitions("ComplexPattern");
2060 while (!AMs
.empty()) {
2061 ComplexPatterns
.insert(std::make_pair(AMs
.back(), AMs
.back()));
2067 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2068 /// file, building up the PatternFragments map. After we've collected them all,
2069 /// inline fragments together as necessary, so that there are no references left
2070 /// inside a pattern fragment to a pattern fragment.
2072 void CodeGenDAGPatterns::ParsePatternFragments() {
2073 std::vector
<Record
*> Fragments
= Records
.getAllDerivedDefinitions("PatFrag");
2075 // First step, parse all of the fragments.
2076 for (unsigned i
= 0, e
= Fragments
.size(); i
!= e
; ++i
) {
2077 DagInit
*Tree
= Fragments
[i
]->getValueAsDag("Fragment");
2078 TreePattern
*P
= new TreePattern(Fragments
[i
], Tree
, true, *this);
2079 PatternFragments
[Fragments
[i
]] = P
;
2081 // Validate the argument list, converting it to set, to discard duplicates.
2082 std::vector
<std::string
> &Args
= P
->getArgList();
2083 std::set
<std::string
> OperandsSet(Args
.begin(), Args
.end());
2085 if (OperandsSet
.count(""))
2086 P
->error("Cannot have unnamed 'node' values in pattern fragment!");
2088 // Parse the operands list.
2089 DagInit
*OpsList
= Fragments
[i
]->getValueAsDag("Operands");
2090 DefInit
*OpsOp
= dynamic_cast<DefInit
*>(OpsList
->getOperator());
2091 // Special cases: ops == outs == ins. Different names are used to
2092 // improve readability.
2094 (OpsOp
->getDef()->getName() != "ops" &&
2095 OpsOp
->getDef()->getName() != "outs" &&
2096 OpsOp
->getDef()->getName() != "ins"))
2097 P
->error("Operands list should start with '(ops ... '!");
2099 // Copy over the arguments.
2101 for (unsigned j
= 0, e
= OpsList
->getNumArgs(); j
!= e
; ++j
) {
2102 if (!dynamic_cast<DefInit
*>(OpsList
->getArg(j
)) ||
2103 static_cast<DefInit
*>(OpsList
->getArg(j
))->
2104 getDef()->getName() != "node")
2105 P
->error("Operands list should all be 'node' values.");
2106 if (OpsList
->getArgName(j
).empty())
2107 P
->error("Operands list should have names for each operand!");
2108 if (!OperandsSet
.count(OpsList
->getArgName(j
)))
2109 P
->error("'" + OpsList
->getArgName(j
) +
2110 "' does not occur in pattern or was multiply specified!");
2111 OperandsSet
.erase(OpsList
->getArgName(j
));
2112 Args
.push_back(OpsList
->getArgName(j
));
2115 if (!OperandsSet
.empty())
2116 P
->error("Operands list does not contain an entry for operand '" +
2117 *OperandsSet
.begin() + "'!");
2119 // If there is a code init for this fragment, keep track of the fact that
2120 // this fragment uses it.
2121 TreePredicateFn
PredFn(P
);
2122 if (!PredFn
.isAlwaysTrue())
2123 P
->getOnlyTree()->addPredicateFn(PredFn
);
2125 // If there is a node transformation corresponding to this, keep track of
2127 Record
*Transform
= Fragments
[i
]->getValueAsDef("OperandTransform");
2128 if (!getSDNodeTransform(Transform
).second
.empty()) // not noop xform?
2129 P
->getOnlyTree()->setTransformFn(Transform
);
2132 // Now that we've parsed all of the tree fragments, do a closure on them so
2133 // that there are not references to PatFrags left inside of them.
2134 for (unsigned i
= 0, e
= Fragments
.size(); i
!= e
; ++i
) {
2135 TreePattern
*ThePat
= PatternFragments
[Fragments
[i
]];
2136 ThePat
->InlinePatternFragments();
2138 // Infer as many types as possible. Don't worry about it if we don't infer
2139 // all of them, some may depend on the inputs of the pattern.
2141 ThePat
->InferAllTypes();
2143 // If this pattern fragment is not supported by this target (no types can
2144 // satisfy its constraints), just ignore it. If the bogus pattern is
2145 // actually used by instructions, the type consistency error will be
2149 // If debugging, print out the pattern fragment result.
2150 DEBUG(ThePat
->dump());
2154 void CodeGenDAGPatterns::ParseDefaultOperands() {
2155 std::vector
<Record
*> DefaultOps
[2];
2156 DefaultOps
[0] = Records
.getAllDerivedDefinitions("PredicateOperand");
2157 DefaultOps
[1] = Records
.getAllDerivedDefinitions("OptionalDefOperand");
2159 // Find some SDNode.
2160 assert(!SDNodes
.empty() && "No SDNodes parsed?");
2161 Init
*SomeSDNode
= new DefInit(SDNodes
.begin()->first
);
2163 for (unsigned iter
= 0; iter
!= 2; ++iter
) {
2164 for (unsigned i
= 0, e
= DefaultOps
[iter
].size(); i
!= e
; ++i
) {
2165 DagInit
*DefaultInfo
= DefaultOps
[iter
][i
]->getValueAsDag("DefaultOps");
2167 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2168 // SomeSDnode so that we can parse this.
2169 std::vector
<std::pair
<Init
*, std::string
> > Ops
;
2170 for (unsigned op
= 0, e
= DefaultInfo
->getNumArgs(); op
!= e
; ++op
)
2171 Ops
.push_back(std::make_pair(DefaultInfo
->getArg(op
),
2172 DefaultInfo
->getArgName(op
)));
2173 DagInit
*DI
= new DagInit(SomeSDNode
, "", Ops
);
2175 // Create a TreePattern to parse this.
2176 TreePattern
P(DefaultOps
[iter
][i
], DI
, false, *this);
2177 assert(P
.getNumTrees() == 1 && "This ctor can only produce one tree!");
2179 // Copy the operands over into a DAGDefaultOperand.
2180 DAGDefaultOperand DefaultOpInfo
;
2182 TreePatternNode
*T
= P
.getTree(0);
2183 for (unsigned op
= 0, e
= T
->getNumChildren(); op
!= e
; ++op
) {
2184 TreePatternNode
*TPN
= T
->getChild(op
);
2185 while (TPN
->ApplyTypeConstraints(P
, false))
2186 /* Resolve all types */;
2188 if (TPN
->ContainsUnresolvedType()) {
2190 throw "Value #" + utostr(i
) + " of PredicateOperand '" +
2191 DefaultOps
[iter
][i
]->getName() +"' doesn't have a concrete type!";
2193 throw "Value #" + utostr(i
) + " of OptionalDefOperand '" +
2194 DefaultOps
[iter
][i
]->getName() +"' doesn't have a concrete type!";
2196 DefaultOpInfo
.DefaultOps
.push_back(TPN
);
2199 // Insert it into the DefaultOperands map so we can find it later.
2200 DefaultOperands
[DefaultOps
[iter
][i
]] = DefaultOpInfo
;
2205 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2206 /// instruction input. Return true if this is a real use.
2207 static bool HandleUse(TreePattern
*I
, TreePatternNode
*Pat
,
2208 std::map
<std::string
, TreePatternNode
*> &InstInputs
) {
2209 // No name -> not interesting.
2210 if (Pat
->getName().empty()) {
2211 if (Pat
->isLeaf()) {
2212 DefInit
*DI
= dynamic_cast<DefInit
*>(Pat
->getLeafValue());
2213 if (DI
&& DI
->getDef()->isSubClassOf("RegisterClass"))
2214 I
->error("Input " + DI
->getDef()->getName() + " must be named!");
2220 if (Pat
->isLeaf()) {
2221 DefInit
*DI
= dynamic_cast<DefInit
*>(Pat
->getLeafValue());
2222 if (!DI
) I
->error("Input $" + Pat
->getName() + " must be an identifier!");
2225 Rec
= Pat
->getOperator();
2228 // SRCVALUE nodes are ignored.
2229 if (Rec
->getName() == "srcvalue")
2232 TreePatternNode
*&Slot
= InstInputs
[Pat
->getName()];
2238 if (Slot
->isLeaf()) {
2239 SlotRec
= dynamic_cast<DefInit
*>(Slot
->getLeafValue())->getDef();
2241 assert(Slot
->getNumChildren() == 0 && "can't be a use with children!");
2242 SlotRec
= Slot
->getOperator();
2245 // Ensure that the inputs agree if we've already seen this input.
2247 I
->error("All $" + Pat
->getName() + " inputs must agree with each other");
2248 if (Slot
->getExtTypes() != Pat
->getExtTypes())
2249 I
->error("All $" + Pat
->getName() + " inputs must agree with each other");
2253 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2254 /// part of "I", the instruction), computing the set of inputs and outputs of
2255 /// the pattern. Report errors if we see anything naughty.
2256 void CodeGenDAGPatterns::
2257 FindPatternInputsAndOutputs(TreePattern
*I
, TreePatternNode
*Pat
,
2258 std::map
<std::string
, TreePatternNode
*> &InstInputs
,
2259 std::map
<std::string
, TreePatternNode
*>&InstResults
,
2260 std::vector
<Record
*> &InstImpResults
) {
2261 if (Pat
->isLeaf()) {
2262 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
2263 if (!isUse
&& Pat
->getTransformFn())
2264 I
->error("Cannot specify a transform function for a non-input value!");
2268 if (Pat
->getOperator()->getName() == "implicit") {
2269 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
2270 TreePatternNode
*Dest
= Pat
->getChild(i
);
2271 if (!Dest
->isLeaf())
2272 I
->error("implicitly defined value should be a register!");
2274 DefInit
*Val
= dynamic_cast<DefInit
*>(Dest
->getLeafValue());
2275 if (!Val
|| !Val
->getDef()->isSubClassOf("Register"))
2276 I
->error("implicitly defined value should be a register!");
2277 InstImpResults
.push_back(Val
->getDef());
2282 if (Pat
->getOperator()->getName() != "set") {
2283 // If this is not a set, verify that the children nodes are not void typed,
2285 for (unsigned i
= 0, e
= Pat
->getNumChildren(); i
!= e
; ++i
) {
2286 if (Pat
->getChild(i
)->getNumTypes() == 0)
2287 I
->error("Cannot have void nodes inside of patterns!");
2288 FindPatternInputsAndOutputs(I
, Pat
->getChild(i
), InstInputs
, InstResults
,
2292 // If this is a non-leaf node with no children, treat it basically as if
2293 // it were a leaf. This handles nodes like (imm).
2294 bool isUse
= HandleUse(I
, Pat
, InstInputs
);
2296 if (!isUse
&& Pat
->getTransformFn())
2297 I
->error("Cannot specify a transform function for a non-input value!");
2301 // Otherwise, this is a set, validate and collect instruction results.
2302 if (Pat
->getNumChildren() == 0)
2303 I
->error("set requires operands!");
2305 if (Pat
->getTransformFn())
2306 I
->error("Cannot specify a transform function on a set node!");
2308 // Check the set destinations.
2309 unsigned NumDests
= Pat
->getNumChildren()-1;
2310 for (unsigned i
= 0; i
!= NumDests
; ++i
) {
2311 TreePatternNode
*Dest
= Pat
->getChild(i
);
2312 if (!Dest
->isLeaf())
2313 I
->error("set destination should be a register!");
2315 DefInit
*Val
= dynamic_cast<DefInit
*>(Dest
->getLeafValue());
2317 I
->error("set destination should be a register!");
2319 if (Val
->getDef()->isSubClassOf("RegisterClass") ||
2320 Val
->getDef()->isSubClassOf("PointerLikeRegClass")) {
2321 if (Dest
->getName().empty())
2322 I
->error("set destination must have a name!");
2323 if (InstResults
.count(Dest
->getName()))
2324 I
->error("cannot set '" + Dest
->getName() +"' multiple times");
2325 InstResults
[Dest
->getName()] = Dest
;
2326 } else if (Val
->getDef()->isSubClassOf("Register")) {
2327 InstImpResults
.push_back(Val
->getDef());
2329 I
->error("set destination should be a register!");
2333 // Verify and collect info from the computation.
2334 FindPatternInputsAndOutputs(I
, Pat
->getChild(NumDests
),
2335 InstInputs
, InstResults
, InstImpResults
);
2338 //===----------------------------------------------------------------------===//
2339 // Instruction Analysis
2340 //===----------------------------------------------------------------------===//
2342 class InstAnalyzer
{
2343 const CodeGenDAGPatterns
&CDP
;
2347 bool &HasSideEffects
;
2350 InstAnalyzer(const CodeGenDAGPatterns
&cdp
,
2351 bool &maystore
, bool &mayload
, bool &isbc
, bool &hse
, bool &isv
)
2352 : CDP(cdp
), mayStore(maystore
), mayLoad(mayload
), IsBitcast(isbc
),
2353 HasSideEffects(hse
), IsVariadic(isv
) {
2356 /// Analyze - Analyze the specified instruction, returning true if the
2357 /// instruction had a pattern.
2358 bool Analyze(Record
*InstRecord
) {
2359 const TreePattern
*Pattern
= CDP
.getInstruction(InstRecord
).getPattern();
2362 return false; // No pattern.
2365 // FIXME: Assume only the first tree is the pattern. The others are clobber
2367 AnalyzeNode(Pattern
->getTree(0));
2372 bool IsNodeBitcast(const TreePatternNode
*N
) const {
2373 if (HasSideEffects
|| mayLoad
|| mayStore
|| IsVariadic
)
2376 if (N
->getNumChildren() != 2)
2379 const TreePatternNode
*N0
= N
->getChild(0);
2380 if (!N0
->isLeaf() || !dynamic_cast<DefInit
*>(N0
->getLeafValue()))
2383 const TreePatternNode
*N1
= N
->getChild(1);
2386 if (N1
->getNumChildren() != 1 || !N1
->getChild(0)->isLeaf())
2389 const SDNodeInfo
&OpInfo
= CDP
.getSDNodeInfo(N1
->getOperator());
2390 if (OpInfo
.getNumResults() != 1 || OpInfo
.getNumOperands() != 1)
2392 return OpInfo
.getEnumName() == "ISD::BITCAST";
2395 void AnalyzeNode(const TreePatternNode
*N
) {
2397 if (DefInit
*DI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
2398 Record
*LeafRec
= DI
->getDef();
2399 // Handle ComplexPattern leaves.
2400 if (LeafRec
->isSubClassOf("ComplexPattern")) {
2401 const ComplexPattern
&CP
= CDP
.getComplexPattern(LeafRec
);
2402 if (CP
.hasProperty(SDNPMayStore
)) mayStore
= true;
2403 if (CP
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
2404 if (CP
.hasProperty(SDNPSideEffect
)) HasSideEffects
= true;
2410 // Analyze children.
2411 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
2412 AnalyzeNode(N
->getChild(i
));
2414 // Ignore set nodes, which are not SDNodes.
2415 if (N
->getOperator()->getName() == "set") {
2416 IsBitcast
= IsNodeBitcast(N
);
2420 // Get information about the SDNode for the operator.
2421 const SDNodeInfo
&OpInfo
= CDP
.getSDNodeInfo(N
->getOperator());
2423 // Notice properties of the node.
2424 if (OpInfo
.hasProperty(SDNPMayStore
)) mayStore
= true;
2425 if (OpInfo
.hasProperty(SDNPMayLoad
)) mayLoad
= true;
2426 if (OpInfo
.hasProperty(SDNPSideEffect
)) HasSideEffects
= true;
2427 if (OpInfo
.hasProperty(SDNPVariadic
)) IsVariadic
= true;
2429 if (const CodeGenIntrinsic
*IntInfo
= N
->getIntrinsicInfo(CDP
)) {
2430 // If this is an intrinsic, analyze it.
2431 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadArgMem
)
2432 mayLoad
= true;// These may load memory.
2434 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadWriteArgMem
)
2435 mayStore
= true;// Intrinsics that can write to memory are 'mayStore'.
2437 if (IntInfo
->ModRef
>= CodeGenIntrinsic::ReadWriteMem
)
2438 // WriteMem intrinsics can have other strange effects.
2439 HasSideEffects
= true;
2445 static void InferFromPattern(const CodeGenInstruction
&Inst
,
2446 bool &MayStore
, bool &MayLoad
,
2448 bool &HasSideEffects
, bool &IsVariadic
,
2449 const CodeGenDAGPatterns
&CDP
) {
2450 MayStore
= MayLoad
= IsBitcast
= HasSideEffects
= IsVariadic
= false;
2453 InstAnalyzer(CDP
, MayStore
, MayLoad
, IsBitcast
, HasSideEffects
, IsVariadic
)
2454 .Analyze(Inst
.TheDef
);
2456 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far.
2457 if (Inst
.mayStore
) { // If the .td file explicitly sets mayStore, use it.
2458 // If we decided that this is a store from the pattern, then the .td file
2459 // entry is redundant.
2462 "Warning: mayStore flag explicitly set on instruction '%s'"
2463 " but flag already inferred from pattern.\n",
2464 Inst
.TheDef
->getName().c_str());
2468 if (Inst
.mayLoad
) { // If the .td file explicitly sets mayLoad, use it.
2469 // If we decided that this is a load from the pattern, then the .td file
2470 // entry is redundant.
2473 "Warning: mayLoad flag explicitly set on instruction '%s'"
2474 " but flag already inferred from pattern.\n",
2475 Inst
.TheDef
->getName().c_str());
2479 if (Inst
.neverHasSideEffects
) {
2481 fprintf(stderr
, "Warning: neverHasSideEffects set on instruction '%s' "
2482 "which already has a pattern\n", Inst
.TheDef
->getName().c_str());
2483 HasSideEffects
= false;
2486 if (Inst
.hasSideEffects
) {
2488 fprintf(stderr
, "Warning: hasSideEffects set on instruction '%s' "
2489 "which already inferred this.\n", Inst
.TheDef
->getName().c_str());
2490 HasSideEffects
= true;
2493 if (Inst
.Operands
.isVariadic
)
2494 IsVariadic
= true; // Can warn if we want.
2497 /// ParseInstructions - Parse all of the instructions, inlining and resolving
2498 /// any fragments involved. This populates the Instructions list with fully
2499 /// resolved instructions.
2500 void CodeGenDAGPatterns::ParseInstructions() {
2501 std::vector
<Record
*> Instrs
= Records
.getAllDerivedDefinitions("Instruction");
2503 for (unsigned i
= 0, e
= Instrs
.size(); i
!= e
; ++i
) {
2506 if (dynamic_cast<ListInit
*>(Instrs
[i
]->getValueInit("Pattern")))
2507 LI
= Instrs
[i
]->getValueAsListInit("Pattern");
2509 // If there is no pattern, only collect minimal information about the
2510 // instruction for its operand list. We have to assume that there is one
2511 // result, as we have no detailed info.
2512 if (!LI
|| LI
->getSize() == 0) {
2513 std::vector
<Record
*> Results
;
2514 std::vector
<Record
*> Operands
;
2516 CodeGenInstruction
&InstInfo
= Target
.getInstruction(Instrs
[i
]);
2518 if (InstInfo
.Operands
.size() != 0) {
2519 if (InstInfo
.Operands
.NumDefs
== 0) {
2520 // These produce no results
2521 for (unsigned j
= 0, e
= InstInfo
.Operands
.size(); j
< e
; ++j
)
2522 Operands
.push_back(InstInfo
.Operands
[j
].Rec
);
2524 // Assume the first operand is the result.
2525 Results
.push_back(InstInfo
.Operands
[0].Rec
);
2527 // The rest are inputs.
2528 for (unsigned j
= 1, e
= InstInfo
.Operands
.size(); j
< e
; ++j
)
2529 Operands
.push_back(InstInfo
.Operands
[j
].Rec
);
2533 // Create and insert the instruction.
2534 std::vector
<Record
*> ImpResults
;
2535 Instructions
.insert(std::make_pair(Instrs
[i
],
2536 DAGInstruction(0, Results
, Operands
, ImpResults
)));
2537 continue; // no pattern.
2540 // Parse the instruction.
2541 TreePattern
*I
= new TreePattern(Instrs
[i
], LI
, true, *this);
2542 // Inline pattern fragments into it.
2543 I
->InlinePatternFragments();
2545 // Infer as many types as possible. If we cannot infer all of them, we can
2546 // never do anything with this instruction pattern: report it to the user.
2547 if (!I
->InferAllTypes())
2548 I
->error("Could not infer all types in pattern!");
2550 // InstInputs - Keep track of all of the inputs of the instruction, along
2551 // with the record they are declared as.
2552 std::map
<std::string
, TreePatternNode
*> InstInputs
;
2554 // InstResults - Keep track of all the virtual registers that are 'set'
2555 // in the instruction, including what reg class they are.
2556 std::map
<std::string
, TreePatternNode
*> InstResults
;
2558 std::vector
<Record
*> InstImpResults
;
2560 // Verify that the top-level forms in the instruction are of void type, and
2561 // fill in the InstResults map.
2562 for (unsigned j
= 0, e
= I
->getNumTrees(); j
!= e
; ++j
) {
2563 TreePatternNode
*Pat
= I
->getTree(j
);
2564 if (Pat
->getNumTypes() != 0)
2565 I
->error("Top-level forms in instruction pattern should have"
2568 // Find inputs and outputs, and verify the structure of the uses/defs.
2569 FindPatternInputsAndOutputs(I
, Pat
, InstInputs
, InstResults
,
2573 // Now that we have inputs and outputs of the pattern, inspect the operands
2574 // list for the instruction. This determines the order that operands are
2575 // added to the machine instruction the node corresponds to.
2576 unsigned NumResults
= InstResults
.size();
2578 // Parse the operands list from the (ops) list, validating it.
2579 assert(I
->getArgList().empty() && "Args list should still be empty here!");
2580 CodeGenInstruction
&CGI
= Target
.getInstruction(Instrs
[i
]);
2582 // Check that all of the results occur first in the list.
2583 std::vector
<Record
*> Results
;
2584 TreePatternNode
*Res0Node
= 0;
2585 for (unsigned i
= 0; i
!= NumResults
; ++i
) {
2586 if (i
== CGI
.Operands
.size())
2587 I
->error("'" + InstResults
.begin()->first
+
2588 "' set but does not appear in operand list!");
2589 const std::string
&OpName
= CGI
.Operands
[i
].Name
;
2591 // Check that it exists in InstResults.
2592 TreePatternNode
*RNode
= InstResults
[OpName
];
2594 I
->error("Operand $" + OpName
+ " does not exist in operand list!");
2598 Record
*R
= dynamic_cast<DefInit
*>(RNode
->getLeafValue())->getDef();
2600 I
->error("Operand $" + OpName
+ " should be a set destination: all "
2601 "outputs must occur before inputs in operand list!");
2603 if (CGI
.Operands
[i
].Rec
!= R
)
2604 I
->error("Operand $" + OpName
+ " class mismatch!");
2606 // Remember the return type.
2607 Results
.push_back(CGI
.Operands
[i
].Rec
);
2609 // Okay, this one checks out.
2610 InstResults
.erase(OpName
);
2613 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
2614 // the copy while we're checking the inputs.
2615 std::map
<std::string
, TreePatternNode
*> InstInputsCheck(InstInputs
);
2617 std::vector
<TreePatternNode
*> ResultNodeOperands
;
2618 std::vector
<Record
*> Operands
;
2619 for (unsigned i
= NumResults
, e
= CGI
.Operands
.size(); i
!= e
; ++i
) {
2620 CGIOperandList::OperandInfo
&Op
= CGI
.Operands
[i
];
2621 const std::string
&OpName
= Op
.Name
;
2623 I
->error("Operand #" + utostr(i
) + " in operands list has no name!");
2625 if (!InstInputsCheck
.count(OpName
)) {
2626 // If this is an predicate operand or optional def operand with an
2627 // DefaultOps set filled in, we can ignore this. When we codegen it,
2628 // we will do so as always executed.
2629 if (Op
.Rec
->isSubClassOf("PredicateOperand") ||
2630 Op
.Rec
->isSubClassOf("OptionalDefOperand")) {
2631 // Does it have a non-empty DefaultOps field? If so, ignore this
2633 if (!getDefaultOperand(Op
.Rec
).DefaultOps
.empty())
2636 I
->error("Operand $" + OpName
+
2637 " does not appear in the instruction pattern");
2639 TreePatternNode
*InVal
= InstInputsCheck
[OpName
];
2640 InstInputsCheck
.erase(OpName
); // It occurred, remove from map.
2642 if (InVal
->isLeaf() &&
2643 dynamic_cast<DefInit
*>(InVal
->getLeafValue())) {
2644 Record
*InRec
= static_cast<DefInit
*>(InVal
->getLeafValue())->getDef();
2645 if (Op
.Rec
!= InRec
&& !InRec
->isSubClassOf("ComplexPattern"))
2646 I
->error("Operand $" + OpName
+ "'s register class disagrees"
2647 " between the operand and pattern");
2649 Operands
.push_back(Op
.Rec
);
2651 // Construct the result for the dest-pattern operand list.
2652 TreePatternNode
*OpNode
= InVal
->clone();
2654 // No predicate is useful on the result.
2655 OpNode
->clearPredicateFns();
2657 // Promote the xform function to be an explicit node if set.
2658 if (Record
*Xform
= OpNode
->getTransformFn()) {
2659 OpNode
->setTransformFn(0);
2660 std::vector
<TreePatternNode
*> Children
;
2661 Children
.push_back(OpNode
);
2662 OpNode
= new TreePatternNode(Xform
, Children
, OpNode
->getNumTypes());
2665 ResultNodeOperands
.push_back(OpNode
);
2668 if (!InstInputsCheck
.empty())
2669 I
->error("Input operand $" + InstInputsCheck
.begin()->first
+
2670 " occurs in pattern but not in operands list!");
2672 TreePatternNode
*ResultPattern
=
2673 new TreePatternNode(I
->getRecord(), ResultNodeOperands
,
2674 GetNumNodeResults(I
->getRecord(), *this));
2675 // Copy fully inferred output node type to instruction result pattern.
2676 for (unsigned i
= 0; i
!= NumResults
; ++i
)
2677 ResultPattern
->setType(i
, Res0Node
->getExtType(i
));
2679 // Create and insert the instruction.
2680 // FIXME: InstImpResults should not be part of DAGInstruction.
2681 DAGInstruction
TheInst(I
, Results
, Operands
, InstImpResults
);
2682 Instructions
.insert(std::make_pair(I
->getRecord(), TheInst
));
2684 // Use a temporary tree pattern to infer all types and make sure that the
2685 // constructed result is correct. This depends on the instruction already
2686 // being inserted into the Instructions map.
2687 TreePattern
Temp(I
->getRecord(), ResultPattern
, false, *this);
2688 Temp
.InferAllTypes(&I
->getNamedNodesMap());
2690 DAGInstruction
&TheInsertedInst
= Instructions
.find(I
->getRecord())->second
;
2691 TheInsertedInst
.setResultPattern(Temp
.getOnlyTree());
2696 // If we can, convert the instructions to be patterns that are matched!
2697 for (std::map
<Record
*, DAGInstruction
, RecordPtrCmp
>::iterator II
=
2698 Instructions
.begin(),
2699 E
= Instructions
.end(); II
!= E
; ++II
) {
2700 DAGInstruction
&TheInst
= II
->second
;
2701 const TreePattern
*I
= TheInst
.getPattern();
2702 if (I
== 0) continue; // No pattern.
2704 // FIXME: Assume only the first tree is the pattern. The others are clobber
2706 TreePatternNode
*Pattern
= I
->getTree(0);
2707 TreePatternNode
*SrcPattern
;
2708 if (Pattern
->getOperator()->getName() == "set") {
2709 SrcPattern
= Pattern
->getChild(Pattern
->getNumChildren()-1)->clone();
2711 // Not a set (store or something?)
2712 SrcPattern
= Pattern
;
2715 Record
*Instr
= II
->first
;
2716 AddPatternToMatch(I
,
2717 PatternToMatch(Instr
,
2718 Instr
->getValueAsListInit("Predicates"),
2720 TheInst
.getResultPattern(),
2721 TheInst
.getImpResults(),
2722 Instr
->getValueAsInt("AddedComplexity"),
2728 typedef std::pair
<const TreePatternNode
*, unsigned> NameRecord
;
2730 static void FindNames(const TreePatternNode
*P
,
2731 std::map
<std::string
, NameRecord
> &Names
,
2732 const TreePattern
*PatternTop
) {
2733 if (!P
->getName().empty()) {
2734 NameRecord
&Rec
= Names
[P
->getName()];
2735 // If this is the first instance of the name, remember the node.
2736 if (Rec
.second
++ == 0)
2738 else if (Rec
.first
->getExtTypes() != P
->getExtTypes())
2739 PatternTop
->error("repetition of value: $" + P
->getName() +
2740 " where different uses have different types!");
2744 for (unsigned i
= 0, e
= P
->getNumChildren(); i
!= e
; ++i
)
2745 FindNames(P
->getChild(i
), Names
, PatternTop
);
2749 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern
*Pattern
,
2750 const PatternToMatch
&PTM
) {
2751 // Do some sanity checking on the pattern we're about to match.
2753 if (!PTM
.getSrcPattern()->canPatternMatch(Reason
, *this))
2754 Pattern
->error("Pattern can never match: " + Reason
);
2756 // If the source pattern's root is a complex pattern, that complex pattern
2757 // must specify the nodes it can potentially match.
2758 if (const ComplexPattern
*CP
=
2759 PTM
.getSrcPattern()->getComplexPatternInfo(*this))
2760 if (CP
->getRootNodes().empty())
2761 Pattern
->error("ComplexPattern at root must specify list of opcodes it"
2765 // Find all of the named values in the input and output, ensure they have the
2767 std::map
<std::string
, NameRecord
> SrcNames
, DstNames
;
2768 FindNames(PTM
.getSrcPattern(), SrcNames
, Pattern
);
2769 FindNames(PTM
.getDstPattern(), DstNames
, Pattern
);
2771 // Scan all of the named values in the destination pattern, rejecting them if
2772 // they don't exist in the input pattern.
2773 for (std::map
<std::string
, NameRecord
>::iterator
2774 I
= DstNames
.begin(), E
= DstNames
.end(); I
!= E
; ++I
) {
2775 if (SrcNames
[I
->first
].first
== 0)
2776 Pattern
->error("Pattern has input without matching name in output: $" +
2780 // Scan all of the named values in the source pattern, rejecting them if the
2781 // name isn't used in the dest, and isn't used to tie two values together.
2782 for (std::map
<std::string
, NameRecord
>::iterator
2783 I
= SrcNames
.begin(), E
= SrcNames
.end(); I
!= E
; ++I
)
2784 if (DstNames
[I
->first
].first
== 0 && SrcNames
[I
->first
].second
== 1)
2785 Pattern
->error("Pattern has dead named input: $" + I
->first
);
2787 PatternsToMatch
.push_back(PTM
);
2792 void CodeGenDAGPatterns::InferInstructionFlags() {
2793 const std::vector
<const CodeGenInstruction
*> &Instructions
=
2794 Target
.getInstructionsByEnumValue();
2795 for (unsigned i
= 0, e
= Instructions
.size(); i
!= e
; ++i
) {
2796 CodeGenInstruction
&InstInfo
=
2797 const_cast<CodeGenInstruction
&>(*Instructions
[i
]);
2798 // Determine properties of the instruction from its pattern.
2799 bool MayStore
, MayLoad
, IsBitcast
, HasSideEffects
, IsVariadic
;
2800 InferFromPattern(InstInfo
, MayStore
, MayLoad
, IsBitcast
,
2801 HasSideEffects
, IsVariadic
, *this);
2802 InstInfo
.mayStore
= MayStore
;
2803 InstInfo
.mayLoad
= MayLoad
;
2804 InstInfo
.isBitcast
= IsBitcast
;
2805 InstInfo
.hasSideEffects
= HasSideEffects
;
2806 InstInfo
.Operands
.isVariadic
= IsVariadic
;
2810 /// Given a pattern result with an unresolved type, see if we can find one
2811 /// instruction with an unresolved result type. Force this result type to an
2812 /// arbitrary element if it's possible types to converge results.
2813 static bool ForceArbitraryInstResultType(TreePatternNode
*N
, TreePattern
&TP
) {
2817 // Analyze children.
2818 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
2819 if (ForceArbitraryInstResultType(N
->getChild(i
), TP
))
2822 if (!N
->getOperator()->isSubClassOf("Instruction"))
2825 // If this type is already concrete or completely unknown we can't do
2827 for (unsigned i
= 0, e
= N
->getNumTypes(); i
!= e
; ++i
) {
2828 if (N
->getExtType(i
).isCompletelyUnknown() || N
->getExtType(i
).isConcrete())
2831 // Otherwise, force its type to the first possibility (an arbitrary choice).
2832 if (N
->getExtType(i
).MergeInTypeInfo(N
->getExtType(i
).getTypeList()[0], TP
))
2839 void CodeGenDAGPatterns::ParsePatterns() {
2840 std::vector
<Record
*> Patterns
= Records
.getAllDerivedDefinitions("Pattern");
2842 for (unsigned i
= 0, e
= Patterns
.size(); i
!= e
; ++i
) {
2843 Record
*CurPattern
= Patterns
[i
];
2844 DagInit
*Tree
= CurPattern
->getValueAsDag("PatternToMatch");
2845 TreePattern
*Pattern
= new TreePattern(CurPattern
, Tree
, true, *this);
2847 // Inline pattern fragments into it.
2848 Pattern
->InlinePatternFragments();
2850 ListInit
*LI
= CurPattern
->getValueAsListInit("ResultInstrs");
2851 if (LI
->getSize() == 0) continue; // no pattern.
2853 // Parse the instruction.
2854 TreePattern
*Result
= new TreePattern(CurPattern
, LI
, false, *this);
2856 // Inline pattern fragments into it.
2857 Result
->InlinePatternFragments();
2859 if (Result
->getNumTrees() != 1)
2860 Result
->error("Cannot handle instructions producing instructions "
2861 "with temporaries yet!");
2863 bool IterateInference
;
2864 bool InferredAllPatternTypes
, InferredAllResultTypes
;
2866 // Infer as many types as possible. If we cannot infer all of them, we
2867 // can never do anything with this pattern: report it to the user.
2868 InferredAllPatternTypes
=
2869 Pattern
->InferAllTypes(&Pattern
->getNamedNodesMap());
2871 // Infer as many types as possible. If we cannot infer all of them, we
2872 // can never do anything with this pattern: report it to the user.
2873 InferredAllResultTypes
=
2874 Result
->InferAllTypes(&Pattern
->getNamedNodesMap());
2876 IterateInference
= false;
2878 // Apply the type of the result to the source pattern. This helps us
2879 // resolve cases where the input type is known to be a pointer type (which
2880 // is considered resolved), but the result knows it needs to be 32- or
2881 // 64-bits. Infer the other way for good measure.
2882 for (unsigned i
= 0, e
= std::min(Result
->getTree(0)->getNumTypes(),
2883 Pattern
->getTree(0)->getNumTypes());
2885 IterateInference
= Pattern
->getTree(0)->
2886 UpdateNodeType(i
, Result
->getTree(0)->getExtType(i
), *Result
);
2887 IterateInference
|= Result
->getTree(0)->
2888 UpdateNodeType(i
, Pattern
->getTree(0)->getExtType(i
), *Result
);
2891 // If our iteration has converged and the input pattern's types are fully
2892 // resolved but the result pattern is not fully resolved, we may have a
2893 // situation where we have two instructions in the result pattern and
2894 // the instructions require a common register class, but don't care about
2895 // what actual MVT is used. This is actually a bug in our modelling:
2896 // output patterns should have register classes, not MVTs.
2898 // In any case, to handle this, we just go through and disambiguate some
2899 // arbitrary types to the result pattern's nodes.
2900 if (!IterateInference
&& InferredAllPatternTypes
&&
2901 !InferredAllResultTypes
)
2902 IterateInference
= ForceArbitraryInstResultType(Result
->getTree(0),
2904 } while (IterateInference
);
2906 // Verify that we inferred enough types that we can do something with the
2907 // pattern and result. If these fire the user has to add type casts.
2908 if (!InferredAllPatternTypes
)
2909 Pattern
->error("Could not infer all types in pattern!");
2910 if (!InferredAllResultTypes
) {
2912 Result
->error("Could not infer all types in pattern result!");
2915 // Validate that the input pattern is correct.
2916 std::map
<std::string
, TreePatternNode
*> InstInputs
;
2917 std::map
<std::string
, TreePatternNode
*> InstResults
;
2918 std::vector
<Record
*> InstImpResults
;
2919 for (unsigned j
= 0, ee
= Pattern
->getNumTrees(); j
!= ee
; ++j
)
2920 FindPatternInputsAndOutputs(Pattern
, Pattern
->getTree(j
),
2921 InstInputs
, InstResults
,
2924 // Promote the xform function to be an explicit node if set.
2925 TreePatternNode
*DstPattern
= Result
->getOnlyTree();
2926 std::vector
<TreePatternNode
*> ResultNodeOperands
;
2927 for (unsigned ii
= 0, ee
= DstPattern
->getNumChildren(); ii
!= ee
; ++ii
) {
2928 TreePatternNode
*OpNode
= DstPattern
->getChild(ii
);
2929 if (Record
*Xform
= OpNode
->getTransformFn()) {
2930 OpNode
->setTransformFn(0);
2931 std::vector
<TreePatternNode
*> Children
;
2932 Children
.push_back(OpNode
);
2933 OpNode
= new TreePatternNode(Xform
, Children
, OpNode
->getNumTypes());
2935 ResultNodeOperands
.push_back(OpNode
);
2937 DstPattern
= Result
->getOnlyTree();
2938 if (!DstPattern
->isLeaf())
2939 DstPattern
= new TreePatternNode(DstPattern
->getOperator(),
2941 DstPattern
->getNumTypes());
2943 for (unsigned i
= 0, e
= Result
->getOnlyTree()->getNumTypes(); i
!= e
; ++i
)
2944 DstPattern
->setType(i
, Result
->getOnlyTree()->getExtType(i
));
2946 TreePattern
Temp(Result
->getRecord(), DstPattern
, false, *this);
2947 Temp
.InferAllTypes();
2950 AddPatternToMatch(Pattern
,
2951 PatternToMatch(CurPattern
,
2952 CurPattern
->getValueAsListInit("Predicates"),
2953 Pattern
->getTree(0),
2954 Temp
.getOnlyTree(), InstImpResults
,
2955 CurPattern
->getValueAsInt("AddedComplexity"),
2956 CurPattern
->getID()));
2960 /// CombineChildVariants - Given a bunch of permutations of each child of the
2961 /// 'operator' node, put them together in all possible ways.
2962 static void CombineChildVariants(TreePatternNode
*Orig
,
2963 const std::vector
<std::vector
<TreePatternNode
*> > &ChildVariants
,
2964 std::vector
<TreePatternNode
*> &OutVariants
,
2965 CodeGenDAGPatterns
&CDP
,
2966 const MultipleUseVarSet
&DepVars
) {
2967 // Make sure that each operand has at least one variant to choose from.
2968 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
2969 if (ChildVariants
[i
].empty())
2972 // The end result is an all-pairs construction of the resultant pattern.
2973 std::vector
<unsigned> Idxs
;
2974 Idxs
.resize(ChildVariants
.size());
2978 DEBUG(if (!Idxs
.empty()) {
2979 errs() << Orig
->getOperator()->getName() << ": Idxs = [ ";
2980 for (unsigned i
= 0; i
< Idxs
.size(); ++i
) {
2981 errs() << Idxs
[i
] << " ";
2986 // Create the variant and add it to the output list.
2987 std::vector
<TreePatternNode
*> NewChildren
;
2988 for (unsigned i
= 0, e
= ChildVariants
.size(); i
!= e
; ++i
)
2989 NewChildren
.push_back(ChildVariants
[i
][Idxs
[i
]]);
2990 TreePatternNode
*R
= new TreePatternNode(Orig
->getOperator(), NewChildren
,
2991 Orig
->getNumTypes());
2993 // Copy over properties.
2994 R
->setName(Orig
->getName());
2995 R
->setPredicateFns(Orig
->getPredicateFns());
2996 R
->setTransformFn(Orig
->getTransformFn());
2997 for (unsigned i
= 0, e
= Orig
->getNumTypes(); i
!= e
; ++i
)
2998 R
->setType(i
, Orig
->getExtType(i
));
3000 // If this pattern cannot match, do not include it as a variant.
3001 std::string ErrString
;
3002 if (!R
->canPatternMatch(ErrString
, CDP
)) {
3005 bool AlreadyExists
= false;
3007 // Scan to see if this pattern has already been emitted. We can get
3008 // duplication due to things like commuting:
3009 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3010 // which are the same pattern. Ignore the dups.
3011 for (unsigned i
= 0, e
= OutVariants
.size(); i
!= e
; ++i
)
3012 if (R
->isIsomorphicTo(OutVariants
[i
], DepVars
)) {
3013 AlreadyExists
= true;
3020 OutVariants
.push_back(R
);
3023 // Increment indices to the next permutation by incrementing the
3024 // indicies from last index backward, e.g., generate the sequence
3025 // [0, 0], [0, 1], [1, 0], [1, 1].
3027 for (IdxsIdx
= Idxs
.size() - 1; IdxsIdx
>= 0; --IdxsIdx
) {
3028 if (++Idxs
[IdxsIdx
] == ChildVariants
[IdxsIdx
].size())
3033 NotDone
= (IdxsIdx
>= 0);
3037 /// CombineChildVariants - A helper function for binary operators.
3039 static void CombineChildVariants(TreePatternNode
*Orig
,
3040 const std::vector
<TreePatternNode
*> &LHS
,
3041 const std::vector
<TreePatternNode
*> &RHS
,
3042 std::vector
<TreePatternNode
*> &OutVariants
,
3043 CodeGenDAGPatterns
&CDP
,
3044 const MultipleUseVarSet
&DepVars
) {
3045 std::vector
<std::vector
<TreePatternNode
*> > ChildVariants
;
3046 ChildVariants
.push_back(LHS
);
3047 ChildVariants
.push_back(RHS
);
3048 CombineChildVariants(Orig
, ChildVariants
, OutVariants
, CDP
, DepVars
);
3052 static void GatherChildrenOfAssociativeOpcode(TreePatternNode
*N
,
3053 std::vector
<TreePatternNode
*> &Children
) {
3054 assert(N
->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3055 Record
*Operator
= N
->getOperator();
3057 // Only permit raw nodes.
3058 if (!N
->getName().empty() || !N
->getPredicateFns().empty() ||
3059 N
->getTransformFn()) {
3060 Children
.push_back(N
);
3064 if (N
->getChild(0)->isLeaf() || N
->getChild(0)->getOperator() != Operator
)
3065 Children
.push_back(N
->getChild(0));
3067 GatherChildrenOfAssociativeOpcode(N
->getChild(0), Children
);
3069 if (N
->getChild(1)->isLeaf() || N
->getChild(1)->getOperator() != Operator
)
3070 Children
.push_back(N
->getChild(1));
3072 GatherChildrenOfAssociativeOpcode(N
->getChild(1), Children
);
3075 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3076 /// the (potentially recursive) pattern by using algebraic laws.
3078 static void GenerateVariantsOf(TreePatternNode
*N
,
3079 std::vector
<TreePatternNode
*> &OutVariants
,
3080 CodeGenDAGPatterns
&CDP
,
3081 const MultipleUseVarSet
&DepVars
) {
3082 // We cannot permute leaves.
3084 OutVariants
.push_back(N
);
3088 // Look up interesting info about the node.
3089 const SDNodeInfo
&NodeInfo
= CDP
.getSDNodeInfo(N
->getOperator());
3091 // If this node is associative, re-associate.
3092 if (NodeInfo
.hasProperty(SDNPAssociative
)) {
3093 // Re-associate by pulling together all of the linked operators
3094 std::vector
<TreePatternNode
*> MaximalChildren
;
3095 GatherChildrenOfAssociativeOpcode(N
, MaximalChildren
);
3097 // Only handle child sizes of 3. Otherwise we'll end up trying too many
3099 if (MaximalChildren
.size() == 3) {
3100 // Find the variants of all of our maximal children.
3101 std::vector
<TreePatternNode
*> AVariants
, BVariants
, CVariants
;
3102 GenerateVariantsOf(MaximalChildren
[0], AVariants
, CDP
, DepVars
);
3103 GenerateVariantsOf(MaximalChildren
[1], BVariants
, CDP
, DepVars
);
3104 GenerateVariantsOf(MaximalChildren
[2], CVariants
, CDP
, DepVars
);
3106 // There are only two ways we can permute the tree:
3107 // (A op B) op C and A op (B op C)
3108 // Within these forms, we can also permute A/B/C.
3110 // Generate legal pair permutations of A/B/C.
3111 std::vector
<TreePatternNode
*> ABVariants
;
3112 std::vector
<TreePatternNode
*> BAVariants
;
3113 std::vector
<TreePatternNode
*> ACVariants
;
3114 std::vector
<TreePatternNode
*> CAVariants
;
3115 std::vector
<TreePatternNode
*> BCVariants
;
3116 std::vector
<TreePatternNode
*> CBVariants
;
3117 CombineChildVariants(N
, AVariants
, BVariants
, ABVariants
, CDP
, DepVars
);
3118 CombineChildVariants(N
, BVariants
, AVariants
, BAVariants
, CDP
, DepVars
);
3119 CombineChildVariants(N
, AVariants
, CVariants
, ACVariants
, CDP
, DepVars
);
3120 CombineChildVariants(N
, CVariants
, AVariants
, CAVariants
, CDP
, DepVars
);
3121 CombineChildVariants(N
, BVariants
, CVariants
, BCVariants
, CDP
, DepVars
);
3122 CombineChildVariants(N
, CVariants
, BVariants
, CBVariants
, CDP
, DepVars
);
3124 // Combine those into the result: (x op x) op x
3125 CombineChildVariants(N
, ABVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
3126 CombineChildVariants(N
, BAVariants
, CVariants
, OutVariants
, CDP
, DepVars
);
3127 CombineChildVariants(N
, ACVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
3128 CombineChildVariants(N
, CAVariants
, BVariants
, OutVariants
, CDP
, DepVars
);
3129 CombineChildVariants(N
, BCVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
3130 CombineChildVariants(N
, CBVariants
, AVariants
, OutVariants
, CDP
, DepVars
);
3132 // Combine those into the result: x op (x op x)
3133 CombineChildVariants(N
, CVariants
, ABVariants
, OutVariants
, CDP
, DepVars
);
3134 CombineChildVariants(N
, CVariants
, BAVariants
, OutVariants
, CDP
, DepVars
);
3135 CombineChildVariants(N
, BVariants
, ACVariants
, OutVariants
, CDP
, DepVars
);
3136 CombineChildVariants(N
, BVariants
, CAVariants
, OutVariants
, CDP
, DepVars
);
3137 CombineChildVariants(N
, AVariants
, BCVariants
, OutVariants
, CDP
, DepVars
);
3138 CombineChildVariants(N
, AVariants
, CBVariants
, OutVariants
, CDP
, DepVars
);
3143 // Compute permutations of all children.
3144 std::vector
<std::vector
<TreePatternNode
*> > ChildVariants
;
3145 ChildVariants
.resize(N
->getNumChildren());
3146 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
3147 GenerateVariantsOf(N
->getChild(i
), ChildVariants
[i
], CDP
, DepVars
);
3149 // Build all permutations based on how the children were formed.
3150 CombineChildVariants(N
, ChildVariants
, OutVariants
, CDP
, DepVars
);
3152 // If this node is commutative, consider the commuted order.
3153 bool isCommIntrinsic
= N
->isCommutativeIntrinsic(CDP
);
3154 if (NodeInfo
.hasProperty(SDNPCommutative
) || isCommIntrinsic
) {
3155 assert((N
->getNumChildren()==2 || isCommIntrinsic
) &&
3156 "Commutative but doesn't have 2 children!");
3157 // Don't count children which are actually register references.
3159 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
) {
3160 TreePatternNode
*Child
= N
->getChild(i
);
3161 if (Child
->isLeaf())
3162 if (DefInit
*DI
= dynamic_cast<DefInit
*>(Child
->getLeafValue())) {
3163 Record
*RR
= DI
->getDef();
3164 if (RR
->isSubClassOf("Register"))
3169 // Consider the commuted order.
3170 if (isCommIntrinsic
) {
3171 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3172 // operands are the commutative operands, and there might be more operands
3175 "Commutative intrinsic should have at least 3 childrean!");
3176 std::vector
<std::vector
<TreePatternNode
*> > Variants
;
3177 Variants
.push_back(ChildVariants
[0]); // Intrinsic id.
3178 Variants
.push_back(ChildVariants
[2]);
3179 Variants
.push_back(ChildVariants
[1]);
3180 for (unsigned i
= 3; i
!= NC
; ++i
)
3181 Variants
.push_back(ChildVariants
[i
]);
3182 CombineChildVariants(N
, Variants
, OutVariants
, CDP
, DepVars
);
3184 CombineChildVariants(N
, ChildVariants
[1], ChildVariants
[0],
3185 OutVariants
, CDP
, DepVars
);
3190 // GenerateVariants - Generate variants. For example, commutative patterns can
3191 // match multiple ways. Add them to PatternsToMatch as well.
3192 void CodeGenDAGPatterns::GenerateVariants() {
3193 DEBUG(errs() << "Generating instruction variants.\n");
3195 // Loop over all of the patterns we've collected, checking to see if we can
3196 // generate variants of the instruction, through the exploitation of
3197 // identities. This permits the target to provide aggressive matching without
3198 // the .td file having to contain tons of variants of instructions.
3200 // Note that this loop adds new patterns to the PatternsToMatch list, but we
3201 // intentionally do not reconsider these. Any variants of added patterns have
3202 // already been added.
3204 for (unsigned i
= 0, e
= PatternsToMatch
.size(); i
!= e
; ++i
) {
3205 MultipleUseVarSet DepVars
;
3206 std::vector
<TreePatternNode
*> Variants
;
3207 FindDepVars(PatternsToMatch
[i
].getSrcPattern(), DepVars
);
3208 DEBUG(errs() << "Dependent/multiply used variables: ");
3209 DEBUG(DumpDepVars(DepVars
));
3210 DEBUG(errs() << "\n");
3211 GenerateVariantsOf(PatternsToMatch
[i
].getSrcPattern(), Variants
, *this,
3214 assert(!Variants
.empty() && "Must create at least original variant!");
3215 Variants
.erase(Variants
.begin()); // Remove the original pattern.
3217 if (Variants
.empty()) // No variants for this pattern.
3220 DEBUG(errs() << "FOUND VARIANTS OF: ";
3221 PatternsToMatch
[i
].getSrcPattern()->dump();
3224 for (unsigned v
= 0, e
= Variants
.size(); v
!= e
; ++v
) {
3225 TreePatternNode
*Variant
= Variants
[v
];
3227 DEBUG(errs() << " VAR#" << v
<< ": ";
3231 // Scan to see if an instruction or explicit pattern already matches this.
3232 bool AlreadyExists
= false;
3233 for (unsigned p
= 0, e
= PatternsToMatch
.size(); p
!= e
; ++p
) {
3234 // Skip if the top level predicates do not match.
3235 if (PatternsToMatch
[i
].getPredicates() !=
3236 PatternsToMatch
[p
].getPredicates())
3238 // Check to see if this variant already exists.
3239 if (Variant
->isIsomorphicTo(PatternsToMatch
[p
].getSrcPattern(),
3241 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
3242 AlreadyExists
= true;
3246 // If we already have it, ignore the variant.
3247 if (AlreadyExists
) continue;
3249 // Otherwise, add it to the list of patterns we have.
3251 push_back(PatternToMatch(PatternsToMatch
[i
].getSrcRecord(),
3252 PatternsToMatch
[i
].getPredicates(),
3253 Variant
, PatternsToMatch
[i
].getDstPattern(),
3254 PatternsToMatch
[i
].getDstRegs(),
3255 PatternsToMatch
[i
].getAddedComplexity(),
3256 Record::getNewUID()));
3259 DEBUG(errs() << "\n");