Fold assert-only-used variable into the assert.
[llvm/stm8.git] / utils / TableGen / DAGISelMatcherGen.cpp
blob402a239ec5512e973dc251137950688537e8c4a7
1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
12 #include "CodeGenRegisters.h"
13 #include "Record.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringMap.h"
17 #include <utility>
18 using namespace llvm;
21 /// getRegisterValueType - Look up and return the ValueType of the specified
22 /// register. If the register is a member of multiple register classes which
23 /// have different associated types, return MVT::Other.
24 static MVT::SimpleValueType getRegisterValueType(Record *R,
25 const CodeGenTarget &T) {
26 bool FoundRC = false;
27 MVT::SimpleValueType VT = MVT::Other;
28 const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
29 std::vector<Record*>::const_iterator Element;
31 for (unsigned rc = 0, e = RCs.size(); rc != e; ++rc) {
32 const CodeGenRegisterClass &RC = RCs[rc];
33 if (!std::count(RC.Elements.begin(), RC.Elements.end(), R))
34 continue;
36 if (!FoundRC) {
37 FoundRC = true;
38 VT = RC.getValueTypeNum(0);
39 continue;
42 // If this occurs in multiple register classes, they all have to agree.
43 assert(VT == RC.getValueTypeNum(0));
45 return VT;
49 namespace {
50 class MatcherGen {
51 const PatternToMatch &Pattern;
52 const CodeGenDAGPatterns &CGP;
54 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
55 /// out with all of the types removed. This allows us to insert type checks
56 /// as we scan the tree.
57 TreePatternNode *PatWithNoTypes;
59 /// VariableMap - A map from variable names ('$dst') to the recorded operand
60 /// number that they were captured as. These are biased by 1 to make
61 /// insertion easier.
62 StringMap<unsigned> VariableMap;
64 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
65 /// the RecordedNodes array, this keeps track of which slot will be next to
66 /// record into.
67 unsigned NextRecordedOperandNo;
69 /// MatchedChainNodes - This maintains the position in the recorded nodes
70 /// array of all of the recorded input nodes that have chains.
71 SmallVector<unsigned, 2> MatchedChainNodes;
73 /// MatchedGlueResultNodes - This maintains the position in the recorded
74 /// nodes array of all of the recorded input nodes that have glue results.
75 SmallVector<unsigned, 2> MatchedGlueResultNodes;
77 /// MatchedComplexPatterns - This maintains a list of all of the
78 /// ComplexPatterns that we need to check. The patterns are known to have
79 /// names which were recorded. The second element of each pair is the first
80 /// slot number that the OPC_CheckComplexPat opcode drops the matched
81 /// results into.
82 SmallVector<std::pair<const TreePatternNode*,
83 unsigned>, 2> MatchedComplexPatterns;
85 /// PhysRegInputs - List list has an entry for each explicitly specified
86 /// physreg input to the pattern. The first elt is the Register node, the
87 /// second is the recorded slot number the input pattern match saved it in.
88 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
90 /// Matcher - This is the top level of the generated matcher, the result.
91 Matcher *TheMatcher;
93 /// CurPredicate - As we emit matcher nodes, this points to the latest check
94 /// which should have future checks stuck into its Next position.
95 Matcher *CurPredicate;
97 /// RegisterDefMap - A map of register record definitions to the
98 /// corresponding target CodeGenRegister entry.
99 DenseMap<const Record *, const CodeGenRegister *> RegisterDefMap;
100 public:
101 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
103 ~MatcherGen() {
104 delete PatWithNoTypes;
107 bool EmitMatcherCode(unsigned Variant);
108 void EmitResultCode();
110 Matcher *GetMatcher() const { return TheMatcher; }
111 private:
112 void AddMatcher(Matcher *NewNode);
113 void InferPossibleTypes();
115 // Matcher Generation.
116 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
117 void EmitLeafMatchCode(const TreePatternNode *N);
118 void EmitOperatorMatchCode(const TreePatternNode *N,
119 TreePatternNode *NodeNoTypes);
121 // Result Code Generation.
122 unsigned getNamedArgumentSlot(StringRef Name) {
123 unsigned VarMapEntry = VariableMap[Name];
124 assert(VarMapEntry != 0 &&
125 "Variable referenced but not defined and not caught earlier!");
126 return VarMapEntry-1;
129 /// GetInstPatternNode - Get the pattern for an instruction.
130 const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
131 const TreePatternNode *N);
133 void EmitResultOperand(const TreePatternNode *N,
134 SmallVectorImpl<unsigned> &ResultOps);
135 void EmitResultOfNamedOperand(const TreePatternNode *N,
136 SmallVectorImpl<unsigned> &ResultOps);
137 void EmitResultLeafAsOperand(const TreePatternNode *N,
138 SmallVectorImpl<unsigned> &ResultOps);
139 void EmitResultInstructionAsOperand(const TreePatternNode *N,
140 SmallVectorImpl<unsigned> &ResultOps);
141 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
142 SmallVectorImpl<unsigned> &ResultOps);
145 } // end anon namespace.
147 MatcherGen::MatcherGen(const PatternToMatch &pattern,
148 const CodeGenDAGPatterns &cgp)
149 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
150 TheMatcher(0), CurPredicate(0) {
151 // We need to produce the matcher tree for the patterns source pattern. To do
152 // this we need to match the structure as well as the types. To do the type
153 // matching, we want to figure out the fewest number of type checks we need to
154 // emit. For example, if there is only one integer type supported by a
155 // target, there should be no type comparisons at all for integer patterns!
157 // To figure out the fewest number of type checks needed, clone the pattern,
158 // remove the types, then perform type inference on the pattern as a whole.
159 // If there are unresolved types, emit an explicit check for those types,
160 // apply the type to the tree, then rerun type inference. Iterate until all
161 // types are resolved.
163 PatWithNoTypes = Pattern.getSrcPattern()->clone();
164 PatWithNoTypes->RemoveAllTypes();
166 // If there are types that are manifestly known, infer them.
167 InferPossibleTypes();
169 // Populate the map from records to CodeGenRegister entries.
170 const CodeGenTarget &CGT = CGP.getTargetInfo();
171 const std::vector<CodeGenRegister> &Registers = CGT.getRegisters();
172 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
173 RegisterDefMap[Registers[i].TheDef] = &Registers[i];
176 /// InferPossibleTypes - As we emit the pattern, we end up generating type
177 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
178 /// want to propagate implied types as far throughout the tree as possible so
179 /// that we avoid doing redundant type checks. This does the type propagation.
180 void MatcherGen::InferPossibleTypes() {
181 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
182 // diagnostics, which we know are impossible at this point.
183 TreePattern &TP = *CGP.pf_begin()->second;
185 try {
186 bool MadeChange = true;
187 while (MadeChange)
188 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
189 true/*Ignore reg constraints*/);
190 } catch (...) {
191 errs() << "Type constraint application shouldn't fail!";
192 abort();
197 /// AddMatcher - Add a matcher node to the current graph we're building.
198 void MatcherGen::AddMatcher(Matcher *NewNode) {
199 if (CurPredicate != 0)
200 CurPredicate->setNext(NewNode);
201 else
202 TheMatcher = NewNode;
203 CurPredicate = NewNode;
207 //===----------------------------------------------------------------------===//
208 // Pattern Match Generation
209 //===----------------------------------------------------------------------===//
211 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
212 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
213 assert(N->isLeaf() && "Not a leaf?");
215 // Direct match against an integer constant.
216 if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
217 // If this is the root of the dag we're matching, we emit a redundant opcode
218 // check to ensure that this gets folded into the normal top-level
219 // OpcodeSwitch.
220 if (N == Pattern.getSrcPattern()) {
221 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
222 AddMatcher(new CheckOpcodeMatcher(NI));
225 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
228 DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue());
229 if (DI == 0) {
230 errs() << "Unknown leaf kind: " << *DI << "\n";
231 abort();
234 Record *LeafRec = DI->getDef();
235 if (// Handle register references. Nothing to do here, they always match.
236 LeafRec->isSubClassOf("RegisterClass") ||
237 LeafRec->isSubClassOf("PointerLikeRegClass") ||
238 LeafRec->isSubClassOf("SubRegIndex") ||
239 // Place holder for SRCVALUE nodes. Nothing to do here.
240 LeafRec->getName() == "srcvalue")
241 return;
243 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
244 // record the register
245 if (LeafRec->isSubClassOf("Register")) {
246 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
247 NextRecordedOperandNo));
248 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
249 return;
252 if (LeafRec->isSubClassOf("ValueType"))
253 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
255 if (LeafRec->isSubClassOf("CondCode"))
256 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
258 if (LeafRec->isSubClassOf("ComplexPattern")) {
259 // We can't model ComplexPattern uses that don't have their name taken yet.
260 // The OPC_CheckComplexPattern operation implicitly records the results.
261 if (N->getName().empty()) {
262 errs() << "We expect complex pattern uses to have names: " << *N << "\n";
263 exit(1);
266 // Remember this ComplexPattern so that we can emit it after all the other
267 // structural matches are done.
268 MatchedComplexPatterns.push_back(std::make_pair(N, 0));
269 return;
272 errs() << "Unknown leaf kind: " << *N << "\n";
273 abort();
276 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
277 TreePatternNode *NodeNoTypes) {
278 assert(!N->isLeaf() && "Not an operator?");
279 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
281 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
282 // a constant without a predicate fn that has more that one bit set, handle
283 // this as a special case. This is usually for targets that have special
284 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
285 // handling stuff). Using these instructions is often far more efficient
286 // than materializing the constant. Unfortunately, both the instcombiner
287 // and the dag combiner can often infer that bits are dead, and thus drop
288 // them from the mask in the dag. For example, it might turn 'AND X, 255'
289 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
290 // to handle this.
291 if ((N->getOperator()->getName() == "and" ||
292 N->getOperator()->getName() == "or") &&
293 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
294 N->getPredicateFns().empty()) {
295 if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
296 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
297 // If this is at the root of the pattern, we emit a redundant
298 // CheckOpcode so that the following checks get factored properly under
299 // a single opcode check.
300 if (N == Pattern.getSrcPattern())
301 AddMatcher(new CheckOpcodeMatcher(CInfo));
303 // Emit the CheckAndImm/CheckOrImm node.
304 if (N->getOperator()->getName() == "and")
305 AddMatcher(new CheckAndImmMatcher(II->getValue()));
306 else
307 AddMatcher(new CheckOrImmMatcher(II->getValue()));
309 // Match the LHS of the AND as appropriate.
310 AddMatcher(new MoveChildMatcher(0));
311 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
312 AddMatcher(new MoveParentMatcher());
313 return;
318 // Check that the current opcode lines up.
319 AddMatcher(new CheckOpcodeMatcher(CInfo));
321 // If this node has memory references (i.e. is a load or store), tell the
322 // interpreter to capture them in the memref array.
323 if (N->NodeHasProperty(SDNPMemOperand, CGP))
324 AddMatcher(new RecordMemRefMatcher());
326 // If this node has a chain, then the chain is operand #0 is the SDNode, and
327 // the child numbers of the node are all offset by one.
328 unsigned OpNo = 0;
329 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
330 // Record the node and remember it in our chained nodes list.
331 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
332 "' chained node",
333 NextRecordedOperandNo));
334 // Remember all of the input chains our pattern will match.
335 MatchedChainNodes.push_back(NextRecordedOperandNo++);
337 // Don't look at the input chain when matching the tree pattern to the
338 // SDNode.
339 OpNo = 1;
341 // If this node is not the root and the subtree underneath it produces a
342 // chain, then the result of matching the node is also produce a chain.
343 // Beyond that, this means that we're also folding (at least) the root node
344 // into the node that produce the chain (for example, matching
345 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
346 // problematic, if the 'reg' node also uses the load (say, its chain).
347 // Graphically:
349 // [LD]
350 // ^ ^
351 // | \ DAG's like cheese.
352 // / |
353 // / [YY]
354 // | ^
355 // [XX]--/
357 // It would be invalid to fold XX and LD. In this case, folding the two
358 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
359 // To prevent this, we emit a dynamic check for legality before allowing
360 // this to be folded.
362 const TreePatternNode *Root = Pattern.getSrcPattern();
363 if (N != Root) { // Not the root of the pattern.
364 // If there is a node between the root and this node, then we definitely
365 // need to emit the check.
366 bool NeedCheck = !Root->hasChild(N);
368 // If it *is* an immediate child of the root, we can still need a check if
369 // the root SDNode has multiple inputs. For us, this means that it is an
370 // intrinsic, has multiple operands, or has other inputs like chain or
371 // glue).
372 if (!NeedCheck) {
373 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
374 NeedCheck =
375 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
376 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
377 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
378 PInfo.getNumOperands() > 1 ||
379 PInfo.hasProperty(SDNPHasChain) ||
380 PInfo.hasProperty(SDNPInGlue) ||
381 PInfo.hasProperty(SDNPOptInGlue);
384 if (NeedCheck)
385 AddMatcher(new CheckFoldableChainNodeMatcher());
389 // If this node has an output glue and isn't the root, remember it.
390 if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
391 N != Pattern.getSrcPattern()) {
392 // TODO: This redundantly records nodes with both glues and chains.
394 // Record the node and remember it in our chained nodes list.
395 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
396 "' glue output node",
397 NextRecordedOperandNo));
398 // Remember all of the nodes with output glue our pattern will match.
399 MatchedGlueResultNodes.push_back(NextRecordedOperandNo++);
402 // If this node is known to have an input glue or if it *might* have an input
403 // glue, capture it as the glue input of the pattern.
404 if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
405 N->NodeHasProperty(SDNPInGlue, CGP))
406 AddMatcher(new CaptureGlueInputMatcher());
408 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
409 // Get the code suitable for matching this child. Move to the child, check
410 // it then move back to the parent.
411 AddMatcher(new MoveChildMatcher(OpNo));
412 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
413 AddMatcher(new MoveParentMatcher());
418 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
419 TreePatternNode *NodeNoTypes) {
420 // If N and NodeNoTypes don't agree on a type, then this is a case where we
421 // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and
422 // reinfer any correlated types.
423 SmallVector<unsigned, 2> ResultsToTypeCheck;
425 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
426 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
427 NodeNoTypes->setType(i, N->getExtType(i));
428 InferPossibleTypes();
429 ResultsToTypeCheck.push_back(i);
432 // If this node has a name associated with it, capture it in VariableMap. If
433 // we already saw this in the pattern, emit code to verify dagness.
434 if (!N->getName().empty()) {
435 unsigned &VarMapEntry = VariableMap[N->getName()];
436 if (VarMapEntry == 0) {
437 // If it is a named node, we must emit a 'Record' opcode.
438 AddMatcher(new RecordMatcher("$" + N->getName(), NextRecordedOperandNo));
439 VarMapEntry = ++NextRecordedOperandNo;
440 } else {
441 // If we get here, this is a second reference to a specific name. Since
442 // we already have checked that the first reference is valid, we don't
443 // have to recursively match it, just check that it's the same as the
444 // previously named thing.
445 AddMatcher(new CheckSameMatcher(VarMapEntry-1));
446 return;
450 if (N->isLeaf())
451 EmitLeafMatchCode(N);
452 else
453 EmitOperatorMatchCode(N, NodeNoTypes);
455 // If there are node predicates for this node, generate their checks.
456 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
457 AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
459 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
460 AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
461 ResultsToTypeCheck[i]));
464 /// EmitMatcherCode - Generate the code that matches the predicate of this
465 /// pattern for the specified Variant. If the variant is invalid this returns
466 /// true and does not generate code, if it is valid, it returns false.
467 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
468 // If the root of the pattern is a ComplexPattern and if it is specified to
469 // match some number of root opcodes, these are considered to be our variants.
470 // Depending on which variant we're generating code for, emit the root opcode
471 // check.
472 if (const ComplexPattern *CP =
473 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
474 const std::vector<Record*> &OpNodes = CP->getRootNodes();
475 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
476 if (Variant >= OpNodes.size()) return true;
478 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
479 } else {
480 if (Variant != 0) return true;
483 // Emit the matcher for the pattern structure and types.
484 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
486 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
487 // feature is around, do the check).
488 if (!Pattern.getPredicateCheck().empty())
489 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
491 // Now that we've completed the structural type match, emit any ComplexPattern
492 // checks (e.g. addrmode matches). We emit this after the structural match
493 // because they are generally more expensive to evaluate and more difficult to
494 // factor.
495 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
496 const TreePatternNode *N = MatchedComplexPatterns[i].first;
498 // Remember where the results of this match get stuck.
499 MatchedComplexPatterns[i].second = NextRecordedOperandNo;
501 // Get the slot we recorded the value in from the name on the node.
502 unsigned RecNodeEntry = VariableMap[N->getName()];
503 assert(!N->getName().empty() && RecNodeEntry &&
504 "Complex pattern should have a name and slot");
505 --RecNodeEntry; // Entries in VariableMap are biased.
507 const ComplexPattern &CP =
508 CGP.getComplexPattern(((DefInit*)N->getLeafValue())->getDef());
510 // Emit a CheckComplexPat operation, which does the match (aborting if it
511 // fails) and pushes the matched operands onto the recorded nodes list.
512 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
513 N->getName(), NextRecordedOperandNo));
515 // Record the right number of operands.
516 NextRecordedOperandNo += CP.getNumOperands();
517 if (CP.hasProperty(SDNPHasChain)) {
518 // If the complex pattern has a chain, then we need to keep track of the
519 // fact that we just recorded a chain input. The chain input will be
520 // matched as the last operand of the predicate if it was successful.
521 ++NextRecordedOperandNo; // Chained node operand.
523 // It is the last operand recorded.
524 assert(NextRecordedOperandNo > 1 &&
525 "Should have recorded input/result chains at least!");
526 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
529 // TODO: Complex patterns can't have output glues, if they did, we'd want
530 // to record them.
533 return false;
537 //===----------------------------------------------------------------------===//
538 // Node Result Generation
539 //===----------------------------------------------------------------------===//
541 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
542 SmallVectorImpl<unsigned> &ResultOps){
543 assert(!N->getName().empty() && "Operand not named!");
545 // A reference to a complex pattern gets all of the results of the complex
546 // pattern's match.
547 if (const ComplexPattern *CP = N->getComplexPatternInfo(CGP)) {
548 unsigned SlotNo = 0;
549 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i)
550 if (MatchedComplexPatterns[i].first->getName() == N->getName()) {
551 SlotNo = MatchedComplexPatterns[i].second;
552 break;
554 assert(SlotNo != 0 && "Didn't get a slot number assigned?");
556 // The first slot entry is the node itself, the subsequent entries are the
557 // matched values.
558 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
559 ResultOps.push_back(SlotNo+i);
560 return;
563 unsigned SlotNo = getNamedArgumentSlot(N->getName());
565 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
566 // version of the immediate so that it doesn't get selected due to some other
567 // node use.
568 if (!N->isLeaf()) {
569 StringRef OperatorName = N->getOperator()->getName();
570 if (OperatorName == "imm" || OperatorName == "fpimm") {
571 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
572 ResultOps.push_back(NextRecordedOperandNo++);
573 return;
577 ResultOps.push_back(SlotNo);
580 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
581 SmallVectorImpl<unsigned> &ResultOps) {
582 assert(N->isLeaf() && "Must be a leaf");
584 if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
585 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
586 ResultOps.push_back(NextRecordedOperandNo++);
587 return;
590 // If this is an explicit register reference, handle it.
591 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
592 if (DI->getDef()->isSubClassOf("Register")) {
593 AddMatcher(new EmitRegisterMatcher(RegisterDefMap[DI->getDef()],
594 N->getType(0)));
595 ResultOps.push_back(NextRecordedOperandNo++);
596 return;
599 if (DI->getDef()->getName() == "zero_reg") {
600 AddMatcher(new EmitRegisterMatcher(0, N->getType(0)));
601 ResultOps.push_back(NextRecordedOperandNo++);
602 return;
605 // Handle a reference to a register class. This is used
606 // in COPY_TO_SUBREG instructions.
607 if (DI->getDef()->isSubClassOf("RegisterClass")) {
608 std::string Value = getQualifiedName(DI->getDef()) + "RegClassID";
609 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
610 ResultOps.push_back(NextRecordedOperandNo++);
611 return;
614 // Handle a subregister index. This is used for INSERT_SUBREG etc.
615 if (DI->getDef()->isSubClassOf("SubRegIndex")) {
616 std::string Value = getQualifiedName(DI->getDef());
617 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
618 ResultOps.push_back(NextRecordedOperandNo++);
619 return;
623 errs() << "unhandled leaf node: \n";
624 N->dump();
627 /// GetInstPatternNode - Get the pattern for an instruction.
629 const TreePatternNode *MatcherGen::
630 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
631 const TreePattern *InstPat = Inst.getPattern();
633 // FIXME2?: Assume actual pattern comes before "implicit".
634 TreePatternNode *InstPatNode;
635 if (InstPat)
636 InstPatNode = InstPat->getTree(0);
637 else if (/*isRoot*/ N == Pattern.getDstPattern())
638 InstPatNode = Pattern.getSrcPattern();
639 else
640 return 0;
642 if (InstPatNode && !InstPatNode->isLeaf() &&
643 InstPatNode->getOperator()->getName() == "set")
644 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
646 return InstPatNode;
649 static bool
650 mayInstNodeLoadOrStore(const TreePatternNode *N,
651 const CodeGenDAGPatterns &CGP) {
652 Record *Op = N->getOperator();
653 const CodeGenTarget &CGT = CGP.getTargetInfo();
654 CodeGenInstruction &II = CGT.getInstruction(Op);
655 return II.mayLoad || II.mayStore;
658 static unsigned
659 numNodesThatMayLoadOrStore(const TreePatternNode *N,
660 const CodeGenDAGPatterns &CGP) {
661 if (N->isLeaf())
662 return 0;
664 Record *OpRec = N->getOperator();
665 if (!OpRec->isSubClassOf("Instruction"))
666 return 0;
668 unsigned Count = 0;
669 if (mayInstNodeLoadOrStore(N, CGP))
670 ++Count;
672 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
673 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
675 return Count;
678 void MatcherGen::
679 EmitResultInstructionAsOperand(const TreePatternNode *N,
680 SmallVectorImpl<unsigned> &OutputOps) {
681 Record *Op = N->getOperator();
682 const CodeGenTarget &CGT = CGP.getTargetInfo();
683 CodeGenInstruction &II = CGT.getInstruction(Op);
684 const DAGInstruction &Inst = CGP.getInstruction(Op);
686 // If we can, get the pattern for the instruction we're generating. We derive
687 // a variety of information from this pattern, such as whether it has a chain.
689 // FIXME2: This is extremely dubious for several reasons, not the least of
690 // which it gives special status to instructions with patterns that Pat<>
691 // nodes can't duplicate.
692 const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
694 // NodeHasChain - Whether the instruction node we're creating takes chains.
695 bool NodeHasChain = InstPatNode &&
696 InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
698 bool isRoot = N == Pattern.getDstPattern();
700 // TreeHasOutGlue - True if this tree has glue.
701 bool TreeHasInGlue = false, TreeHasOutGlue = false;
702 if (isRoot) {
703 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
704 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
705 SrcPat->TreeHasProperty(SDNPInGlue, CGP);
707 // FIXME2: this is checking the entire pattern, not just the node in
708 // question, doing this just for the root seems like a total hack.
709 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
712 // NumResults - This is the number of results produced by the instruction in
713 // the "outs" list.
714 unsigned NumResults = Inst.getNumResults();
716 // Loop over all of the operands of the instruction pattern, emitting code
717 // to fill them all in. The node 'N' usually has number children equal to
718 // the number of input operands of the instruction. However, in cases
719 // where there are predicate operands for an instruction, we need to fill
720 // in the 'execute always' values. Match up the node operands to the
721 // instruction operands to do this.
722 SmallVector<unsigned, 8> InstOps;
723 for (unsigned ChildNo = 0, InstOpNo = NumResults, e = II.Operands.size();
724 InstOpNo != e; ++InstOpNo) {
726 // Determine what to emit for this operand.
727 Record *OperandNode = II.Operands[InstOpNo].Rec;
728 if ((OperandNode->isSubClassOf("PredicateOperand") ||
729 OperandNode->isSubClassOf("OptionalDefOperand")) &&
730 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
731 // This is a predicate or optional def operand; emit the
732 // 'default ops' operands.
733 const DAGDefaultOperand &DefaultOp
734 = CGP.getDefaultOperand(OperandNode);
735 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
736 EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
737 continue;
740 const TreePatternNode *Child = N->getChild(ChildNo);
742 // Otherwise this is a normal operand or a predicate operand without
743 // 'execute always'; emit it.
744 unsigned BeforeAddingNumOps = InstOps.size();
745 EmitResultOperand(Child, InstOps);
746 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
748 // If the operand is an instruction and it produced multiple results, just
749 // take the first one.
750 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
751 InstOps.resize(BeforeAddingNumOps+1);
753 ++ChildNo;
756 // If this node has input glue or explicitly specified input physregs, we
757 // need to add chained and glued copyfromreg nodes and materialize the glue
758 // input.
759 if (isRoot && !PhysRegInputs.empty()) {
760 // Emit all of the CopyToReg nodes for the input physical registers. These
761 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
762 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
763 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
764 PhysRegInputs[i].first));
765 // Even if the node has no other glue inputs, the resultant node must be
766 // glued to the CopyFromReg nodes we just generated.
767 TreeHasInGlue = true;
770 // Result order: node results, chain, glue
772 // Determine the result types.
773 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
774 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
775 ResultVTs.push_back(N->getType(i));
777 // If this is the root instruction of a pattern that has physical registers in
778 // its result pattern, add output VTs for them. For example, X86 has:
779 // (set AL, (mul ...))
780 // This also handles implicit results like:
781 // (implicit EFLAGS)
782 if (isRoot && !Pattern.getDstRegs().empty()) {
783 // If the root came from an implicit def in the instruction handling stuff,
784 // don't re-add it.
785 Record *HandledReg = 0;
786 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
787 HandledReg = II.ImplicitDefs[0];
789 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
790 Record *Reg = Pattern.getDstRegs()[i];
791 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
792 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
796 // If this is the root of the pattern and the pattern we're matching includes
797 // a node that is variadic, mark the generated node as variadic so that it
798 // gets the excess operands from the input DAG.
799 int NumFixedArityOperands = -1;
800 if (isRoot &&
801 (Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)))
802 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
804 // If this is the root node and multiple matched nodes in the input pattern
805 // have MemRefs in them, have the interpreter collect them and plop them onto
806 // this node. If there is just one node with MemRefs, leave them on that node
807 // even if it is not the root.
809 // FIXME3: This is actively incorrect for result patterns with multiple
810 // memory-referencing instructions.
811 bool PatternHasMemOperands =
812 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
814 bool NodeHasMemRefs = false;
815 if (PatternHasMemOperands) {
816 unsigned NumNodesThatLoadOrStore =
817 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
818 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
819 NumNodesThatLoadOrStore == 1;
820 NodeHasMemRefs =
821 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
822 NumNodesThatLoadOrStore != 1));
825 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
826 "Node has no result");
828 AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
829 ResultVTs.data(), ResultVTs.size(),
830 InstOps.data(), InstOps.size(),
831 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
832 NodeHasMemRefs, NumFixedArityOperands,
833 NextRecordedOperandNo));
835 // The non-chain and non-glue results of the newly emitted node get recorded.
836 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
837 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
838 OutputOps.push_back(NextRecordedOperandNo++);
842 void MatcherGen::
843 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
844 SmallVectorImpl<unsigned> &ResultOps) {
845 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
847 // Emit the operand.
848 SmallVector<unsigned, 8> InputOps;
850 // FIXME2: Could easily generalize this to support multiple inputs and outputs
851 // to the SDNodeXForm. For now we just support one input and one output like
852 // the old instruction selector.
853 assert(N->getNumChildren() == 1);
854 EmitResultOperand(N->getChild(0), InputOps);
856 // The input currently must have produced exactly one result.
857 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
859 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
860 ResultOps.push_back(NextRecordedOperandNo++);
863 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
864 SmallVectorImpl<unsigned> &ResultOps) {
865 // This is something selected from the pattern we matched.
866 if (!N->getName().empty())
867 return EmitResultOfNamedOperand(N, ResultOps);
869 if (N->isLeaf())
870 return EmitResultLeafAsOperand(N, ResultOps);
872 Record *OpRec = N->getOperator();
873 if (OpRec->isSubClassOf("Instruction"))
874 return EmitResultInstructionAsOperand(N, ResultOps);
875 if (OpRec->isSubClassOf("SDNodeXForm"))
876 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
877 errs() << "Unknown result node to emit code for: " << *N << '\n';
878 throw std::string("Unknown node in result pattern!");
881 void MatcherGen::EmitResultCode() {
882 // Patterns that match nodes with (potentially multiple) chain inputs have to
883 // merge them together into a token factor. This informs the generated code
884 // what all the chained nodes are.
885 if (!MatchedChainNodes.empty())
886 AddMatcher(new EmitMergeInputChainsMatcher
887 (MatchedChainNodes.data(), MatchedChainNodes.size()));
889 // Codegen the root of the result pattern, capturing the resulting values.
890 SmallVector<unsigned, 8> Ops;
891 EmitResultOperand(Pattern.getDstPattern(), Ops);
893 // At this point, we have however many values the result pattern produces.
894 // However, the input pattern might not need all of these. If there are
895 // excess values at the end (such as implicit defs of condition codes etc)
896 // just lop them off. This doesn't need to worry about glue or chains, just
897 // explicit results.
899 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
901 // If the pattern also has (implicit) results, count them as well.
902 if (!Pattern.getDstRegs().empty()) {
903 // If the root came from an implicit def in the instruction handling stuff,
904 // don't re-add it.
905 Record *HandledReg = 0;
906 const TreePatternNode *DstPat = Pattern.getDstPattern();
907 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
908 const CodeGenTarget &CGT = CGP.getTargetInfo();
909 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
911 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
912 HandledReg = II.ImplicitDefs[0];
915 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
916 Record *Reg = Pattern.getDstRegs()[i];
917 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
918 ++NumSrcResults;
922 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
923 Ops.resize(NumSrcResults);
925 // If the matched pattern covers nodes which define a glue result, emit a node
926 // that tells the matcher about them so that it can update their results.
927 if (!MatchedGlueResultNodes.empty())
928 AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes.data(),
929 MatchedGlueResultNodes.size()));
931 AddMatcher(new CompleteMatchMatcher(Ops.data(), Ops.size(), Pattern));
935 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
936 /// the specified variant. If the variant number is invalid, this returns null.
937 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
938 unsigned Variant,
939 const CodeGenDAGPatterns &CGP) {
940 MatcherGen Gen(Pattern, CGP);
942 // Generate the code for the matcher.
943 if (Gen.EmitMatcherCode(Variant))
944 return 0;
946 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
947 // FIXME2: Split result code out to another table, and make the matcher end
948 // with an "Emit <index>" command. This allows result generation stuff to be
949 // shared and factored?
951 // If the match succeeds, then we generate Pattern.
952 Gen.EmitResultCode();
954 // Unconditional match.
955 return Gen.GetMatcher();