1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
12 #include "CodeGenRegisters.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringMap.h"
21 /// getRegisterValueType - Look up and return the ValueType of the specified
22 /// register. If the register is a member of multiple register classes which
23 /// have different associated types, return MVT::Other.
24 static MVT::SimpleValueType
getRegisterValueType(Record
*R
,
25 const CodeGenTarget
&T
) {
27 MVT::SimpleValueType VT
= MVT::Other
;
28 const std::vector
<CodeGenRegisterClass
> &RCs
= T
.getRegisterClasses();
29 std::vector
<Record
*>::const_iterator Element
;
31 for (unsigned rc
= 0, e
= RCs
.size(); rc
!= e
; ++rc
) {
32 const CodeGenRegisterClass
&RC
= RCs
[rc
];
33 if (!std::count(RC
.Elements
.begin(), RC
.Elements
.end(), R
))
38 VT
= RC
.getValueTypeNum(0);
42 // If this occurs in multiple register classes, they all have to agree.
43 assert(VT
== RC
.getValueTypeNum(0));
51 const PatternToMatch
&Pattern
;
52 const CodeGenDAGPatterns
&CGP
;
54 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
55 /// out with all of the types removed. This allows us to insert type checks
56 /// as we scan the tree.
57 TreePatternNode
*PatWithNoTypes
;
59 /// VariableMap - A map from variable names ('$dst') to the recorded operand
60 /// number that they were captured as. These are biased by 1 to make
62 StringMap
<unsigned> VariableMap
;
64 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
65 /// the RecordedNodes array, this keeps track of which slot will be next to
67 unsigned NextRecordedOperandNo
;
69 /// MatchedChainNodes - This maintains the position in the recorded nodes
70 /// array of all of the recorded input nodes that have chains.
71 SmallVector
<unsigned, 2> MatchedChainNodes
;
73 /// MatchedGlueResultNodes - This maintains the position in the recorded
74 /// nodes array of all of the recorded input nodes that have glue results.
75 SmallVector
<unsigned, 2> MatchedGlueResultNodes
;
77 /// MatchedComplexPatterns - This maintains a list of all of the
78 /// ComplexPatterns that we need to check. The patterns are known to have
79 /// names which were recorded. The second element of each pair is the first
80 /// slot number that the OPC_CheckComplexPat opcode drops the matched
82 SmallVector
<std::pair
<const TreePatternNode
*,
83 unsigned>, 2> MatchedComplexPatterns
;
85 /// PhysRegInputs - List list has an entry for each explicitly specified
86 /// physreg input to the pattern. The first elt is the Register node, the
87 /// second is the recorded slot number the input pattern match saved it in.
88 SmallVector
<std::pair
<Record
*, unsigned>, 2> PhysRegInputs
;
90 /// Matcher - This is the top level of the generated matcher, the result.
93 /// CurPredicate - As we emit matcher nodes, this points to the latest check
94 /// which should have future checks stuck into its Next position.
95 Matcher
*CurPredicate
;
97 /// RegisterDefMap - A map of register record definitions to the
98 /// corresponding target CodeGenRegister entry.
99 DenseMap
<const Record
*, const CodeGenRegister
*> RegisterDefMap
;
101 MatcherGen(const PatternToMatch
&pattern
, const CodeGenDAGPatterns
&cgp
);
104 delete PatWithNoTypes
;
107 bool EmitMatcherCode(unsigned Variant
);
108 void EmitResultCode();
110 Matcher
*GetMatcher() const { return TheMatcher
; }
112 void AddMatcher(Matcher
*NewNode
);
113 void InferPossibleTypes();
115 // Matcher Generation.
116 void EmitMatchCode(const TreePatternNode
*N
, TreePatternNode
*NodeNoTypes
);
117 void EmitLeafMatchCode(const TreePatternNode
*N
);
118 void EmitOperatorMatchCode(const TreePatternNode
*N
,
119 TreePatternNode
*NodeNoTypes
);
121 // Result Code Generation.
122 unsigned getNamedArgumentSlot(StringRef Name
) {
123 unsigned VarMapEntry
= VariableMap
[Name
];
124 assert(VarMapEntry
!= 0 &&
125 "Variable referenced but not defined and not caught earlier!");
126 return VarMapEntry
-1;
129 /// GetInstPatternNode - Get the pattern for an instruction.
130 const TreePatternNode
*GetInstPatternNode(const DAGInstruction
&Ins
,
131 const TreePatternNode
*N
);
133 void EmitResultOperand(const TreePatternNode
*N
,
134 SmallVectorImpl
<unsigned> &ResultOps
);
135 void EmitResultOfNamedOperand(const TreePatternNode
*N
,
136 SmallVectorImpl
<unsigned> &ResultOps
);
137 void EmitResultLeafAsOperand(const TreePatternNode
*N
,
138 SmallVectorImpl
<unsigned> &ResultOps
);
139 void EmitResultInstructionAsOperand(const TreePatternNode
*N
,
140 SmallVectorImpl
<unsigned> &ResultOps
);
141 void EmitResultSDNodeXFormAsOperand(const TreePatternNode
*N
,
142 SmallVectorImpl
<unsigned> &ResultOps
);
145 } // end anon namespace.
147 MatcherGen::MatcherGen(const PatternToMatch
&pattern
,
148 const CodeGenDAGPatterns
&cgp
)
149 : Pattern(pattern
), CGP(cgp
), NextRecordedOperandNo(0),
150 TheMatcher(0), CurPredicate(0) {
151 // We need to produce the matcher tree for the patterns source pattern. To do
152 // this we need to match the structure as well as the types. To do the type
153 // matching, we want to figure out the fewest number of type checks we need to
154 // emit. For example, if there is only one integer type supported by a
155 // target, there should be no type comparisons at all for integer patterns!
157 // To figure out the fewest number of type checks needed, clone the pattern,
158 // remove the types, then perform type inference on the pattern as a whole.
159 // If there are unresolved types, emit an explicit check for those types,
160 // apply the type to the tree, then rerun type inference. Iterate until all
161 // types are resolved.
163 PatWithNoTypes
= Pattern
.getSrcPattern()->clone();
164 PatWithNoTypes
->RemoveAllTypes();
166 // If there are types that are manifestly known, infer them.
167 InferPossibleTypes();
169 // Populate the map from records to CodeGenRegister entries.
170 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
171 const std::vector
<CodeGenRegister
> &Registers
= CGT
.getRegisters();
172 for (unsigned i
= 0, e
= Registers
.size(); i
!= e
; ++i
)
173 RegisterDefMap
[Registers
[i
].TheDef
] = &Registers
[i
];
176 /// InferPossibleTypes - As we emit the pattern, we end up generating type
177 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
178 /// want to propagate implied types as far throughout the tree as possible so
179 /// that we avoid doing redundant type checks. This does the type propagation.
180 void MatcherGen::InferPossibleTypes() {
181 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
182 // diagnostics, which we know are impossible at this point.
183 TreePattern
&TP
= *CGP
.pf_begin()->second
;
186 bool MadeChange
= true;
188 MadeChange
= PatWithNoTypes
->ApplyTypeConstraints(TP
,
189 true/*Ignore reg constraints*/);
191 errs() << "Type constraint application shouldn't fail!";
197 /// AddMatcher - Add a matcher node to the current graph we're building.
198 void MatcherGen::AddMatcher(Matcher
*NewNode
) {
199 if (CurPredicate
!= 0)
200 CurPredicate
->setNext(NewNode
);
202 TheMatcher
= NewNode
;
203 CurPredicate
= NewNode
;
207 //===----------------------------------------------------------------------===//
208 // Pattern Match Generation
209 //===----------------------------------------------------------------------===//
211 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
212 void MatcherGen::EmitLeafMatchCode(const TreePatternNode
*N
) {
213 assert(N
->isLeaf() && "Not a leaf?");
215 // Direct match against an integer constant.
216 if (IntInit
*II
= dynamic_cast<IntInit
*>(N
->getLeafValue())) {
217 // If this is the root of the dag we're matching, we emit a redundant opcode
218 // check to ensure that this gets folded into the normal top-level
220 if (N
== Pattern
.getSrcPattern()) {
221 const SDNodeInfo
&NI
= CGP
.getSDNodeInfo(CGP
.getSDNodeNamed("imm"));
222 AddMatcher(new CheckOpcodeMatcher(NI
));
225 return AddMatcher(new CheckIntegerMatcher(II
->getValue()));
228 DefInit
*DI
= dynamic_cast<DefInit
*>(N
->getLeafValue());
230 errs() << "Unknown leaf kind: " << *DI
<< "\n";
234 Record
*LeafRec
= DI
->getDef();
235 if (// Handle register references. Nothing to do here, they always match.
236 LeafRec
->isSubClassOf("RegisterClass") ||
237 LeafRec
->isSubClassOf("PointerLikeRegClass") ||
238 LeafRec
->isSubClassOf("SubRegIndex") ||
239 // Place holder for SRCVALUE nodes. Nothing to do here.
240 LeafRec
->getName() == "srcvalue")
243 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
244 // record the register
245 if (LeafRec
->isSubClassOf("Register")) {
246 AddMatcher(new RecordMatcher("physreg input "+LeafRec
->getName(),
247 NextRecordedOperandNo
));
248 PhysRegInputs
.push_back(std::make_pair(LeafRec
, NextRecordedOperandNo
++));
252 if (LeafRec
->isSubClassOf("ValueType"))
253 return AddMatcher(new CheckValueTypeMatcher(LeafRec
->getName()));
255 if (LeafRec
->isSubClassOf("CondCode"))
256 return AddMatcher(new CheckCondCodeMatcher(LeafRec
->getName()));
258 if (LeafRec
->isSubClassOf("ComplexPattern")) {
259 // We can't model ComplexPattern uses that don't have their name taken yet.
260 // The OPC_CheckComplexPattern operation implicitly records the results.
261 if (N
->getName().empty()) {
262 errs() << "We expect complex pattern uses to have names: " << *N
<< "\n";
266 // Remember this ComplexPattern so that we can emit it after all the other
267 // structural matches are done.
268 MatchedComplexPatterns
.push_back(std::make_pair(N
, 0));
272 errs() << "Unknown leaf kind: " << *N
<< "\n";
276 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode
*N
,
277 TreePatternNode
*NodeNoTypes
) {
278 assert(!N
->isLeaf() && "Not an operator?");
279 const SDNodeInfo
&CInfo
= CGP
.getSDNodeInfo(N
->getOperator());
281 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
282 // a constant without a predicate fn that has more that one bit set, handle
283 // this as a special case. This is usually for targets that have special
284 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
285 // handling stuff). Using these instructions is often far more efficient
286 // than materializing the constant. Unfortunately, both the instcombiner
287 // and the dag combiner can often infer that bits are dead, and thus drop
288 // them from the mask in the dag. For example, it might turn 'AND X, 255'
289 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
291 if ((N
->getOperator()->getName() == "and" ||
292 N
->getOperator()->getName() == "or") &&
293 N
->getChild(1)->isLeaf() && N
->getChild(1)->getPredicateFns().empty() &&
294 N
->getPredicateFns().empty()) {
295 if (IntInit
*II
= dynamic_cast<IntInit
*>(N
->getChild(1)->getLeafValue())) {
296 if (!isPowerOf2_32(II
->getValue())) { // Don't bother with single bits.
297 // If this is at the root of the pattern, we emit a redundant
298 // CheckOpcode so that the following checks get factored properly under
299 // a single opcode check.
300 if (N
== Pattern
.getSrcPattern())
301 AddMatcher(new CheckOpcodeMatcher(CInfo
));
303 // Emit the CheckAndImm/CheckOrImm node.
304 if (N
->getOperator()->getName() == "and")
305 AddMatcher(new CheckAndImmMatcher(II
->getValue()));
307 AddMatcher(new CheckOrImmMatcher(II
->getValue()));
309 // Match the LHS of the AND as appropriate.
310 AddMatcher(new MoveChildMatcher(0));
311 EmitMatchCode(N
->getChild(0), NodeNoTypes
->getChild(0));
312 AddMatcher(new MoveParentMatcher());
318 // Check that the current opcode lines up.
319 AddMatcher(new CheckOpcodeMatcher(CInfo
));
321 // If this node has memory references (i.e. is a load or store), tell the
322 // interpreter to capture them in the memref array.
323 if (N
->NodeHasProperty(SDNPMemOperand
, CGP
))
324 AddMatcher(new RecordMemRefMatcher());
326 // If this node has a chain, then the chain is operand #0 is the SDNode, and
327 // the child numbers of the node are all offset by one.
329 if (N
->NodeHasProperty(SDNPHasChain
, CGP
)) {
330 // Record the node and remember it in our chained nodes list.
331 AddMatcher(new RecordMatcher("'" + N
->getOperator()->getName() +
333 NextRecordedOperandNo
));
334 // Remember all of the input chains our pattern will match.
335 MatchedChainNodes
.push_back(NextRecordedOperandNo
++);
337 // Don't look at the input chain when matching the tree pattern to the
341 // If this node is not the root and the subtree underneath it produces a
342 // chain, then the result of matching the node is also produce a chain.
343 // Beyond that, this means that we're also folding (at least) the root node
344 // into the node that produce the chain (for example, matching
345 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
346 // problematic, if the 'reg' node also uses the load (say, its chain).
351 // | \ DAG's like cheese.
357 // It would be invalid to fold XX and LD. In this case, folding the two
358 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
359 // To prevent this, we emit a dynamic check for legality before allowing
360 // this to be folded.
362 const TreePatternNode
*Root
= Pattern
.getSrcPattern();
363 if (N
!= Root
) { // Not the root of the pattern.
364 // If there is a node between the root and this node, then we definitely
365 // need to emit the check.
366 bool NeedCheck
= !Root
->hasChild(N
);
368 // If it *is* an immediate child of the root, we can still need a check if
369 // the root SDNode has multiple inputs. For us, this means that it is an
370 // intrinsic, has multiple operands, or has other inputs like chain or
373 const SDNodeInfo
&PInfo
= CGP
.getSDNodeInfo(Root
->getOperator());
375 Root
->getOperator() == CGP
.get_intrinsic_void_sdnode() ||
376 Root
->getOperator() == CGP
.get_intrinsic_w_chain_sdnode() ||
377 Root
->getOperator() == CGP
.get_intrinsic_wo_chain_sdnode() ||
378 PInfo
.getNumOperands() > 1 ||
379 PInfo
.hasProperty(SDNPHasChain
) ||
380 PInfo
.hasProperty(SDNPInGlue
) ||
381 PInfo
.hasProperty(SDNPOptInGlue
);
385 AddMatcher(new CheckFoldableChainNodeMatcher());
389 // If this node has an output glue and isn't the root, remember it.
390 if (N
->NodeHasProperty(SDNPOutGlue
, CGP
) &&
391 N
!= Pattern
.getSrcPattern()) {
392 // TODO: This redundantly records nodes with both glues and chains.
394 // Record the node and remember it in our chained nodes list.
395 AddMatcher(new RecordMatcher("'" + N
->getOperator()->getName() +
396 "' glue output node",
397 NextRecordedOperandNo
));
398 // Remember all of the nodes with output glue our pattern will match.
399 MatchedGlueResultNodes
.push_back(NextRecordedOperandNo
++);
402 // If this node is known to have an input glue or if it *might* have an input
403 // glue, capture it as the glue input of the pattern.
404 if (N
->NodeHasProperty(SDNPOptInGlue
, CGP
) ||
405 N
->NodeHasProperty(SDNPInGlue
, CGP
))
406 AddMatcher(new CaptureGlueInputMatcher());
408 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
, ++OpNo
) {
409 // Get the code suitable for matching this child. Move to the child, check
410 // it then move back to the parent.
411 AddMatcher(new MoveChildMatcher(OpNo
));
412 EmitMatchCode(N
->getChild(i
), NodeNoTypes
->getChild(i
));
413 AddMatcher(new MoveParentMatcher());
418 void MatcherGen::EmitMatchCode(const TreePatternNode
*N
,
419 TreePatternNode
*NodeNoTypes
) {
420 // If N and NodeNoTypes don't agree on a type, then this is a case where we
421 // need to do a type check. Emit the check, apply the tyep to NodeNoTypes and
422 // reinfer any correlated types.
423 SmallVector
<unsigned, 2> ResultsToTypeCheck
;
425 for (unsigned i
= 0, e
= NodeNoTypes
->getNumTypes(); i
!= e
; ++i
) {
426 if (NodeNoTypes
->getExtType(i
) == N
->getExtType(i
)) continue;
427 NodeNoTypes
->setType(i
, N
->getExtType(i
));
428 InferPossibleTypes();
429 ResultsToTypeCheck
.push_back(i
);
432 // If this node has a name associated with it, capture it in VariableMap. If
433 // we already saw this in the pattern, emit code to verify dagness.
434 if (!N
->getName().empty()) {
435 unsigned &VarMapEntry
= VariableMap
[N
->getName()];
436 if (VarMapEntry
== 0) {
437 // If it is a named node, we must emit a 'Record' opcode.
438 AddMatcher(new RecordMatcher("$" + N
->getName(), NextRecordedOperandNo
));
439 VarMapEntry
= ++NextRecordedOperandNo
;
441 // If we get here, this is a second reference to a specific name. Since
442 // we already have checked that the first reference is valid, we don't
443 // have to recursively match it, just check that it's the same as the
444 // previously named thing.
445 AddMatcher(new CheckSameMatcher(VarMapEntry
-1));
451 EmitLeafMatchCode(N
);
453 EmitOperatorMatchCode(N
, NodeNoTypes
);
455 // If there are node predicates for this node, generate their checks.
456 for (unsigned i
= 0, e
= N
->getPredicateFns().size(); i
!= e
; ++i
)
457 AddMatcher(new CheckPredicateMatcher(N
->getPredicateFns()[i
]));
459 for (unsigned i
= 0, e
= ResultsToTypeCheck
.size(); i
!= e
; ++i
)
460 AddMatcher(new CheckTypeMatcher(N
->getType(ResultsToTypeCheck
[i
]),
461 ResultsToTypeCheck
[i
]));
464 /// EmitMatcherCode - Generate the code that matches the predicate of this
465 /// pattern for the specified Variant. If the variant is invalid this returns
466 /// true and does not generate code, if it is valid, it returns false.
467 bool MatcherGen::EmitMatcherCode(unsigned Variant
) {
468 // If the root of the pattern is a ComplexPattern and if it is specified to
469 // match some number of root opcodes, these are considered to be our variants.
470 // Depending on which variant we're generating code for, emit the root opcode
472 if (const ComplexPattern
*CP
=
473 Pattern
.getSrcPattern()->getComplexPatternInfo(CGP
)) {
474 const std::vector
<Record
*> &OpNodes
= CP
->getRootNodes();
475 assert(!OpNodes
.empty() &&"Complex Pattern must specify what it can match");
476 if (Variant
>= OpNodes
.size()) return true;
478 AddMatcher(new CheckOpcodeMatcher(CGP
.getSDNodeInfo(OpNodes
[Variant
])));
480 if (Variant
!= 0) return true;
483 // Emit the matcher for the pattern structure and types.
484 EmitMatchCode(Pattern
.getSrcPattern(), PatWithNoTypes
);
486 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
487 // feature is around, do the check).
488 if (!Pattern
.getPredicateCheck().empty())
489 AddMatcher(new CheckPatternPredicateMatcher(Pattern
.getPredicateCheck()));
491 // Now that we've completed the structural type match, emit any ComplexPattern
492 // checks (e.g. addrmode matches). We emit this after the structural match
493 // because they are generally more expensive to evaluate and more difficult to
495 for (unsigned i
= 0, e
= MatchedComplexPatterns
.size(); i
!= e
; ++i
) {
496 const TreePatternNode
*N
= MatchedComplexPatterns
[i
].first
;
498 // Remember where the results of this match get stuck.
499 MatchedComplexPatterns
[i
].second
= NextRecordedOperandNo
;
501 // Get the slot we recorded the value in from the name on the node.
502 unsigned RecNodeEntry
= VariableMap
[N
->getName()];
503 assert(!N
->getName().empty() && RecNodeEntry
&&
504 "Complex pattern should have a name and slot");
505 --RecNodeEntry
; // Entries in VariableMap are biased.
507 const ComplexPattern
&CP
=
508 CGP
.getComplexPattern(((DefInit
*)N
->getLeafValue())->getDef());
510 // Emit a CheckComplexPat operation, which does the match (aborting if it
511 // fails) and pushes the matched operands onto the recorded nodes list.
512 AddMatcher(new CheckComplexPatMatcher(CP
, RecNodeEntry
,
513 N
->getName(), NextRecordedOperandNo
));
515 // Record the right number of operands.
516 NextRecordedOperandNo
+= CP
.getNumOperands();
517 if (CP
.hasProperty(SDNPHasChain
)) {
518 // If the complex pattern has a chain, then we need to keep track of the
519 // fact that we just recorded a chain input. The chain input will be
520 // matched as the last operand of the predicate if it was successful.
521 ++NextRecordedOperandNo
; // Chained node operand.
523 // It is the last operand recorded.
524 assert(NextRecordedOperandNo
> 1 &&
525 "Should have recorded input/result chains at least!");
526 MatchedChainNodes
.push_back(NextRecordedOperandNo
-1);
529 // TODO: Complex patterns can't have output glues, if they did, we'd want
537 //===----------------------------------------------------------------------===//
538 // Node Result Generation
539 //===----------------------------------------------------------------------===//
541 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode
*N
,
542 SmallVectorImpl
<unsigned> &ResultOps
){
543 assert(!N
->getName().empty() && "Operand not named!");
545 // A reference to a complex pattern gets all of the results of the complex
547 if (const ComplexPattern
*CP
= N
->getComplexPatternInfo(CGP
)) {
549 for (unsigned i
= 0, e
= MatchedComplexPatterns
.size(); i
!= e
; ++i
)
550 if (MatchedComplexPatterns
[i
].first
->getName() == N
->getName()) {
551 SlotNo
= MatchedComplexPatterns
[i
].second
;
554 assert(SlotNo
!= 0 && "Didn't get a slot number assigned?");
556 // The first slot entry is the node itself, the subsequent entries are the
558 for (unsigned i
= 0, e
= CP
->getNumOperands(); i
!= e
; ++i
)
559 ResultOps
.push_back(SlotNo
+i
);
563 unsigned SlotNo
= getNamedArgumentSlot(N
->getName());
565 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
566 // version of the immediate so that it doesn't get selected due to some other
569 StringRef OperatorName
= N
->getOperator()->getName();
570 if (OperatorName
== "imm" || OperatorName
== "fpimm") {
571 AddMatcher(new EmitConvertToTargetMatcher(SlotNo
));
572 ResultOps
.push_back(NextRecordedOperandNo
++);
577 ResultOps
.push_back(SlotNo
);
580 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode
*N
,
581 SmallVectorImpl
<unsigned> &ResultOps
) {
582 assert(N
->isLeaf() && "Must be a leaf");
584 if (IntInit
*II
= dynamic_cast<IntInit
*>(N
->getLeafValue())) {
585 AddMatcher(new EmitIntegerMatcher(II
->getValue(), N
->getType(0)));
586 ResultOps
.push_back(NextRecordedOperandNo
++);
590 // If this is an explicit register reference, handle it.
591 if (DefInit
*DI
= dynamic_cast<DefInit
*>(N
->getLeafValue())) {
592 if (DI
->getDef()->isSubClassOf("Register")) {
593 AddMatcher(new EmitRegisterMatcher(RegisterDefMap
[DI
->getDef()],
595 ResultOps
.push_back(NextRecordedOperandNo
++);
599 if (DI
->getDef()->getName() == "zero_reg") {
600 AddMatcher(new EmitRegisterMatcher(0, N
->getType(0)));
601 ResultOps
.push_back(NextRecordedOperandNo
++);
605 // Handle a reference to a register class. This is used
606 // in COPY_TO_SUBREG instructions.
607 if (DI
->getDef()->isSubClassOf("RegisterClass")) {
608 std::string Value
= getQualifiedName(DI
->getDef()) + "RegClassID";
609 AddMatcher(new EmitStringIntegerMatcher(Value
, MVT::i32
));
610 ResultOps
.push_back(NextRecordedOperandNo
++);
614 // Handle a subregister index. This is used for INSERT_SUBREG etc.
615 if (DI
->getDef()->isSubClassOf("SubRegIndex")) {
616 std::string Value
= getQualifiedName(DI
->getDef());
617 AddMatcher(new EmitStringIntegerMatcher(Value
, MVT::i32
));
618 ResultOps
.push_back(NextRecordedOperandNo
++);
623 errs() << "unhandled leaf node: \n";
627 /// GetInstPatternNode - Get the pattern for an instruction.
629 const TreePatternNode
*MatcherGen::
630 GetInstPatternNode(const DAGInstruction
&Inst
, const TreePatternNode
*N
) {
631 const TreePattern
*InstPat
= Inst
.getPattern();
633 // FIXME2?: Assume actual pattern comes before "implicit".
634 TreePatternNode
*InstPatNode
;
636 InstPatNode
= InstPat
->getTree(0);
637 else if (/*isRoot*/ N
== Pattern
.getDstPattern())
638 InstPatNode
= Pattern
.getSrcPattern();
642 if (InstPatNode
&& !InstPatNode
->isLeaf() &&
643 InstPatNode
->getOperator()->getName() == "set")
644 InstPatNode
= InstPatNode
->getChild(InstPatNode
->getNumChildren()-1);
650 mayInstNodeLoadOrStore(const TreePatternNode
*N
,
651 const CodeGenDAGPatterns
&CGP
) {
652 Record
*Op
= N
->getOperator();
653 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
654 CodeGenInstruction
&II
= CGT
.getInstruction(Op
);
655 return II
.mayLoad
|| II
.mayStore
;
659 numNodesThatMayLoadOrStore(const TreePatternNode
*N
,
660 const CodeGenDAGPatterns
&CGP
) {
664 Record
*OpRec
= N
->getOperator();
665 if (!OpRec
->isSubClassOf("Instruction"))
669 if (mayInstNodeLoadOrStore(N
, CGP
))
672 for (unsigned i
= 0, e
= N
->getNumChildren(); i
!= e
; ++i
)
673 Count
+= numNodesThatMayLoadOrStore(N
->getChild(i
), CGP
);
679 EmitResultInstructionAsOperand(const TreePatternNode
*N
,
680 SmallVectorImpl
<unsigned> &OutputOps
) {
681 Record
*Op
= N
->getOperator();
682 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
683 CodeGenInstruction
&II
= CGT
.getInstruction(Op
);
684 const DAGInstruction
&Inst
= CGP
.getInstruction(Op
);
686 // If we can, get the pattern for the instruction we're generating. We derive
687 // a variety of information from this pattern, such as whether it has a chain.
689 // FIXME2: This is extremely dubious for several reasons, not the least of
690 // which it gives special status to instructions with patterns that Pat<>
691 // nodes can't duplicate.
692 const TreePatternNode
*InstPatNode
= GetInstPatternNode(Inst
, N
);
694 // NodeHasChain - Whether the instruction node we're creating takes chains.
695 bool NodeHasChain
= InstPatNode
&&
696 InstPatNode
->TreeHasProperty(SDNPHasChain
, CGP
);
698 bool isRoot
= N
== Pattern
.getDstPattern();
700 // TreeHasOutGlue - True if this tree has glue.
701 bool TreeHasInGlue
= false, TreeHasOutGlue
= false;
703 const TreePatternNode
*SrcPat
= Pattern
.getSrcPattern();
704 TreeHasInGlue
= SrcPat
->TreeHasProperty(SDNPOptInGlue
, CGP
) ||
705 SrcPat
->TreeHasProperty(SDNPInGlue
, CGP
);
707 // FIXME2: this is checking the entire pattern, not just the node in
708 // question, doing this just for the root seems like a total hack.
709 TreeHasOutGlue
= SrcPat
->TreeHasProperty(SDNPOutGlue
, CGP
);
712 // NumResults - This is the number of results produced by the instruction in
714 unsigned NumResults
= Inst
.getNumResults();
716 // Loop over all of the operands of the instruction pattern, emitting code
717 // to fill them all in. The node 'N' usually has number children equal to
718 // the number of input operands of the instruction. However, in cases
719 // where there are predicate operands for an instruction, we need to fill
720 // in the 'execute always' values. Match up the node operands to the
721 // instruction operands to do this.
722 SmallVector
<unsigned, 8> InstOps
;
723 for (unsigned ChildNo
= 0, InstOpNo
= NumResults
, e
= II
.Operands
.size();
724 InstOpNo
!= e
; ++InstOpNo
) {
726 // Determine what to emit for this operand.
727 Record
*OperandNode
= II
.Operands
[InstOpNo
].Rec
;
728 if ((OperandNode
->isSubClassOf("PredicateOperand") ||
729 OperandNode
->isSubClassOf("OptionalDefOperand")) &&
730 !CGP
.getDefaultOperand(OperandNode
).DefaultOps
.empty()) {
731 // This is a predicate or optional def operand; emit the
732 // 'default ops' operands.
733 const DAGDefaultOperand
&DefaultOp
734 = CGP
.getDefaultOperand(OperandNode
);
735 for (unsigned i
= 0, e
= DefaultOp
.DefaultOps
.size(); i
!= e
; ++i
)
736 EmitResultOperand(DefaultOp
.DefaultOps
[i
], InstOps
);
740 const TreePatternNode
*Child
= N
->getChild(ChildNo
);
742 // Otherwise this is a normal operand or a predicate operand without
743 // 'execute always'; emit it.
744 unsigned BeforeAddingNumOps
= InstOps
.size();
745 EmitResultOperand(Child
, InstOps
);
746 assert(InstOps
.size() > BeforeAddingNumOps
&& "Didn't add any operands");
748 // If the operand is an instruction and it produced multiple results, just
749 // take the first one.
750 if (!Child
->isLeaf() && Child
->getOperator()->isSubClassOf("Instruction"))
751 InstOps
.resize(BeforeAddingNumOps
+1);
756 // If this node has input glue or explicitly specified input physregs, we
757 // need to add chained and glued copyfromreg nodes and materialize the glue
759 if (isRoot
&& !PhysRegInputs
.empty()) {
760 // Emit all of the CopyToReg nodes for the input physical registers. These
761 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
762 for (unsigned i
= 0, e
= PhysRegInputs
.size(); i
!= e
; ++i
)
763 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs
[i
].second
,
764 PhysRegInputs
[i
].first
));
765 // Even if the node has no other glue inputs, the resultant node must be
766 // glued to the CopyFromReg nodes we just generated.
767 TreeHasInGlue
= true;
770 // Result order: node results, chain, glue
772 // Determine the result types.
773 SmallVector
<MVT::SimpleValueType
, 4> ResultVTs
;
774 for (unsigned i
= 0, e
= N
->getNumTypes(); i
!= e
; ++i
)
775 ResultVTs
.push_back(N
->getType(i
));
777 // If this is the root instruction of a pattern that has physical registers in
778 // its result pattern, add output VTs for them. For example, X86 has:
779 // (set AL, (mul ...))
780 // This also handles implicit results like:
782 if (isRoot
&& !Pattern
.getDstRegs().empty()) {
783 // If the root came from an implicit def in the instruction handling stuff,
785 Record
*HandledReg
= 0;
786 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
787 HandledReg
= II
.ImplicitDefs
[0];
789 for (unsigned i
= 0; i
!= Pattern
.getDstRegs().size(); ++i
) {
790 Record
*Reg
= Pattern
.getDstRegs()[i
];
791 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
) continue;
792 ResultVTs
.push_back(getRegisterValueType(Reg
, CGT
));
796 // If this is the root of the pattern and the pattern we're matching includes
797 // a node that is variadic, mark the generated node as variadic so that it
798 // gets the excess operands from the input DAG.
799 int NumFixedArityOperands
= -1;
801 (Pattern
.getSrcPattern()->NodeHasProperty(SDNPVariadic
, CGP
)))
802 NumFixedArityOperands
= Pattern
.getSrcPattern()->getNumChildren();
804 // If this is the root node and multiple matched nodes in the input pattern
805 // have MemRefs in them, have the interpreter collect them and plop them onto
806 // this node. If there is just one node with MemRefs, leave them on that node
807 // even if it is not the root.
809 // FIXME3: This is actively incorrect for result patterns with multiple
810 // memory-referencing instructions.
811 bool PatternHasMemOperands
=
812 Pattern
.getSrcPattern()->TreeHasProperty(SDNPMemOperand
, CGP
);
814 bool NodeHasMemRefs
= false;
815 if (PatternHasMemOperands
) {
816 unsigned NumNodesThatLoadOrStore
=
817 numNodesThatMayLoadOrStore(Pattern
.getDstPattern(), CGP
);
818 bool NodeIsUniqueLoadOrStore
= mayInstNodeLoadOrStore(N
, CGP
) &&
819 NumNodesThatLoadOrStore
== 1;
821 NodeIsUniqueLoadOrStore
|| (isRoot
&& (mayInstNodeLoadOrStore(N
, CGP
) ||
822 NumNodesThatLoadOrStore
!= 1));
825 assert((!ResultVTs
.empty() || TreeHasOutGlue
|| NodeHasChain
) &&
826 "Node has no result");
828 AddMatcher(new EmitNodeMatcher(II
.Namespace
+"::"+II
.TheDef
->getName(),
829 ResultVTs
.data(), ResultVTs
.size(),
830 InstOps
.data(), InstOps
.size(),
831 NodeHasChain
, TreeHasInGlue
, TreeHasOutGlue
,
832 NodeHasMemRefs
, NumFixedArityOperands
,
833 NextRecordedOperandNo
));
835 // The non-chain and non-glue results of the newly emitted node get recorded.
836 for (unsigned i
= 0, e
= ResultVTs
.size(); i
!= e
; ++i
) {
837 if (ResultVTs
[i
] == MVT::Other
|| ResultVTs
[i
] == MVT::Glue
) break;
838 OutputOps
.push_back(NextRecordedOperandNo
++);
843 EmitResultSDNodeXFormAsOperand(const TreePatternNode
*N
,
844 SmallVectorImpl
<unsigned> &ResultOps
) {
845 assert(N
->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
848 SmallVector
<unsigned, 8> InputOps
;
850 // FIXME2: Could easily generalize this to support multiple inputs and outputs
851 // to the SDNodeXForm. For now we just support one input and one output like
852 // the old instruction selector.
853 assert(N
->getNumChildren() == 1);
854 EmitResultOperand(N
->getChild(0), InputOps
);
856 // The input currently must have produced exactly one result.
857 assert(InputOps
.size() == 1 && "Unexpected input to SDNodeXForm");
859 AddMatcher(new EmitNodeXFormMatcher(InputOps
[0], N
->getOperator()));
860 ResultOps
.push_back(NextRecordedOperandNo
++);
863 void MatcherGen::EmitResultOperand(const TreePatternNode
*N
,
864 SmallVectorImpl
<unsigned> &ResultOps
) {
865 // This is something selected from the pattern we matched.
866 if (!N
->getName().empty())
867 return EmitResultOfNamedOperand(N
, ResultOps
);
870 return EmitResultLeafAsOperand(N
, ResultOps
);
872 Record
*OpRec
= N
->getOperator();
873 if (OpRec
->isSubClassOf("Instruction"))
874 return EmitResultInstructionAsOperand(N
, ResultOps
);
875 if (OpRec
->isSubClassOf("SDNodeXForm"))
876 return EmitResultSDNodeXFormAsOperand(N
, ResultOps
);
877 errs() << "Unknown result node to emit code for: " << *N
<< '\n';
878 throw std::string("Unknown node in result pattern!");
881 void MatcherGen::EmitResultCode() {
882 // Patterns that match nodes with (potentially multiple) chain inputs have to
883 // merge them together into a token factor. This informs the generated code
884 // what all the chained nodes are.
885 if (!MatchedChainNodes
.empty())
886 AddMatcher(new EmitMergeInputChainsMatcher
887 (MatchedChainNodes
.data(), MatchedChainNodes
.size()));
889 // Codegen the root of the result pattern, capturing the resulting values.
890 SmallVector
<unsigned, 8> Ops
;
891 EmitResultOperand(Pattern
.getDstPattern(), Ops
);
893 // At this point, we have however many values the result pattern produces.
894 // However, the input pattern might not need all of these. If there are
895 // excess values at the end (such as implicit defs of condition codes etc)
896 // just lop them off. This doesn't need to worry about glue or chains, just
899 unsigned NumSrcResults
= Pattern
.getSrcPattern()->getNumTypes();
901 // If the pattern also has (implicit) results, count them as well.
902 if (!Pattern
.getDstRegs().empty()) {
903 // If the root came from an implicit def in the instruction handling stuff,
905 Record
*HandledReg
= 0;
906 const TreePatternNode
*DstPat
= Pattern
.getDstPattern();
907 if (!DstPat
->isLeaf() &&DstPat
->getOperator()->isSubClassOf("Instruction")){
908 const CodeGenTarget
&CGT
= CGP
.getTargetInfo();
909 CodeGenInstruction
&II
= CGT
.getInstruction(DstPat
->getOperator());
911 if (II
.HasOneImplicitDefWithKnownVT(CGT
) != MVT::Other
)
912 HandledReg
= II
.ImplicitDefs
[0];
915 for (unsigned i
= 0; i
!= Pattern
.getDstRegs().size(); ++i
) {
916 Record
*Reg
= Pattern
.getDstRegs()[i
];
917 if (!Reg
->isSubClassOf("Register") || Reg
== HandledReg
) continue;
922 assert(Ops
.size() >= NumSrcResults
&& "Didn't provide enough results");
923 Ops
.resize(NumSrcResults
);
925 // If the matched pattern covers nodes which define a glue result, emit a node
926 // that tells the matcher about them so that it can update their results.
927 if (!MatchedGlueResultNodes
.empty())
928 AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes
.data(),
929 MatchedGlueResultNodes
.size()));
931 AddMatcher(new CompleteMatchMatcher(Ops
.data(), Ops
.size(), Pattern
));
935 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
936 /// the specified variant. If the variant number is invalid, this returns null.
937 Matcher
*llvm::ConvertPatternToMatcher(const PatternToMatch
&Pattern
,
939 const CodeGenDAGPatterns
&CGP
) {
940 MatcherGen
Gen(Pattern
, CGP
);
942 // Generate the code for the matcher.
943 if (Gen
.EmitMatcherCode(Variant
))
946 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
947 // FIXME2: Split result code out to another table, and make the matcher end
948 // with an "Emit <index>" command. This allows result generation stuff to be
949 // shared and factored?
951 // If the match succeeds, then we generate Pattern.
952 Gen
.EmitResultCode();
954 // Unconditional match.
955 return Gen
.GetMatcher();