1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
5 <title>LLVM Assembly Language Reference Manual
</title>
6 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
7 <meta name=
"author" content=
"Chris Lattner">
8 <meta name=
"description"
9 content=
"LLVM Assembly Language Reference Manual.">
10 <link rel=
"stylesheet" href=
"llvm.css" type=
"text/css">
15 <h1>LLVM Language Reference Manual
</h1>
17 <li><a href=
"#abstract">Abstract
</a></li>
18 <li><a href=
"#introduction">Introduction
</a></li>
19 <li><a href=
"#identifiers">Identifiers
</a></li>
20 <li><a href=
"#highlevel">High Level Structure
</a>
22 <li><a href=
"#modulestructure">Module Structure
</a></li>
23 <li><a href=
"#linkage">Linkage Types
</a>
25 <li><a href=
"#linkage_private">'
<tt>private
</tt>' Linkage
</a></li>
26 <li><a href=
"#linkage_linker_private">'
<tt>linker_private
</tt>' Linkage
</a></li>
27 <li><a href=
"#linkage_linker_private_weak">'
<tt>linker_private_weak
</tt>' Linkage
</a></li>
28 <li><a href=
"#linkage_linker_private_weak_def_auto">'
<tt>linker_private_weak_def_auto
</tt>' Linkage
</a></li>
29 <li><a href=
"#linkage_internal">'
<tt>internal
</tt>' Linkage
</a></li>
30 <li><a href=
"#linkage_available_externally">'
<tt>available_externally
</tt>' Linkage
</a></li>
31 <li><a href=
"#linkage_linkonce">'
<tt>linkonce
</tt>' Linkage
</a></li>
32 <li><a href=
"#linkage_common">'
<tt>common
</tt>' Linkage
</a></li>
33 <li><a href=
"#linkage_weak">'
<tt>weak
</tt>' Linkage
</a></li>
34 <li><a href=
"#linkage_appending">'
<tt>appending
</tt>' Linkage
</a></li>
35 <li><a href=
"#linkage_externweak">'
<tt>extern_weak
</tt>' Linkage
</a></li>
36 <li><a href=
"#linkage_linkonce_odr">'
<tt>linkonce_odr
</tt>' Linkage
</a></li>
37 <li><a href=
"#linkage_weak">'
<tt>weak_odr
</tt>' Linkage
</a></li>
38 <li><a href=
"#linkage_external">'
<tt>externally visible
</tt>' Linkage
</a></li>
39 <li><a href=
"#linkage_dllimport">'
<tt>dllimport
</tt>' Linkage
</a></li>
40 <li><a href=
"#linkage_dllexport">'
<tt>dllexport
</tt>' Linkage
</a></li>
43 <li><a href=
"#callingconv">Calling Conventions
</a></li>
44 <li><a href=
"#namedtypes">Named Types
</a></li>
45 <li><a href=
"#globalvars">Global Variables
</a></li>
46 <li><a href=
"#functionstructure">Functions
</a></li>
47 <li><a href=
"#aliasstructure">Aliases
</a></li>
48 <li><a href=
"#namedmetadatastructure">Named Metadata
</a></li>
49 <li><a href=
"#paramattrs">Parameter Attributes
</a></li>
50 <li><a href=
"#fnattrs">Function Attributes
</a></li>
51 <li><a href=
"#gc">Garbage Collector Names
</a></li>
52 <li><a href=
"#moduleasm">Module-Level Inline Assembly
</a></li>
53 <li><a href=
"#datalayout">Data Layout
</a></li>
54 <li><a href=
"#pointeraliasing">Pointer Aliasing Rules
</a></li>
55 <li><a href=
"#volatile">Volatile Memory Accesses
</a></li>
58 <li><a href=
"#typesystem">Type System
</a>
60 <li><a href=
"#t_classifications">Type Classifications
</a></li>
61 <li><a href=
"#t_primitive">Primitive Types
</a>
63 <li><a href=
"#t_integer">Integer Type
</a></li>
64 <li><a href=
"#t_floating">Floating Point Types
</a></li>
65 <li><a href=
"#t_x86mmx">X86mmx Type
</a></li>
66 <li><a href=
"#t_void">Void Type
</a></li>
67 <li><a href=
"#t_label">Label Type
</a></li>
68 <li><a href=
"#t_metadata">Metadata Type
</a></li>
71 <li><a href=
"#t_derived">Derived Types
</a>
73 <li><a href=
"#t_aggregate">Aggregate Types
</a>
75 <li><a href=
"#t_array">Array Type
</a></li>
76 <li><a href=
"#t_struct">Structure Type
</a></li>
77 <li><a href=
"#t_pstruct">Packed Structure Type
</a></li>
78 <li><a href=
"#t_vector">Vector Type
</a></li>
81 <li><a href=
"#t_function">Function Type
</a></li>
82 <li><a href=
"#t_pointer">Pointer Type
</a></li>
83 <li><a href=
"#t_opaque">Opaque Type
</a></li>
86 <li><a href=
"#t_uprefs">Type Up-references
</a></li>
89 <li><a href=
"#constants">Constants
</a>
91 <li><a href=
"#simpleconstants">Simple Constants
</a></li>
92 <li><a href=
"#complexconstants">Complex Constants
</a></li>
93 <li><a href=
"#globalconstants">Global Variable and Function Addresses
</a></li>
94 <li><a href=
"#undefvalues">Undefined Values
</a></li>
95 <li><a href=
"#trapvalues">Trap Values
</a></li>
96 <li><a href=
"#blockaddress">Addresses of Basic Blocks
</a></li>
97 <li><a href=
"#constantexprs">Constant Expressions
</a></li>
100 <li><a href=
"#othervalues">Other Values
</a>
102 <li><a href=
"#inlineasm">Inline Assembler Expressions
</a></li>
103 <li><a href=
"#metadata">Metadata Nodes and Metadata Strings
</a></li>
106 <li><a href=
"#intrinsic_globals">Intrinsic Global Variables
</a>
108 <li><a href=
"#intg_used">The '
<tt>llvm.used
</tt>' Global Variable
</a></li>
109 <li><a href=
"#intg_compiler_used">The '
<tt>llvm.compiler.used
</tt>'
110 Global Variable
</a></li>
111 <li><a href=
"#intg_global_ctors">The '
<tt>llvm.global_ctors
</tt>'
112 Global Variable
</a></li>
113 <li><a href=
"#intg_global_dtors">The '
<tt>llvm.global_dtors
</tt>'
114 Global Variable
</a></li>
117 <li><a href=
"#instref">Instruction Reference
</a>
119 <li><a href=
"#terminators">Terminator Instructions
</a>
121 <li><a href=
"#i_ret">'
<tt>ret
</tt>' Instruction
</a></li>
122 <li><a href=
"#i_br">'
<tt>br
</tt>' Instruction
</a></li>
123 <li><a href=
"#i_switch">'
<tt>switch
</tt>' Instruction
</a></li>
124 <li><a href=
"#i_indirectbr">'
<tt>indirectbr
</tt>' Instruction
</a></li>
125 <li><a href=
"#i_invoke">'
<tt>invoke
</tt>' Instruction
</a></li>
126 <li><a href=
"#i_unwind">'
<tt>unwind
</tt>' Instruction
</a></li>
127 <li><a href=
"#i_unreachable">'
<tt>unreachable
</tt>' Instruction
</a></li>
130 <li><a href=
"#binaryops">Binary Operations
</a>
132 <li><a href=
"#i_add">'
<tt>add
</tt>' Instruction
</a></li>
133 <li><a href=
"#i_fadd">'
<tt>fadd
</tt>' Instruction
</a></li>
134 <li><a href=
"#i_sub">'
<tt>sub
</tt>' Instruction
</a></li>
135 <li><a href=
"#i_fsub">'
<tt>fsub
</tt>' Instruction
</a></li>
136 <li><a href=
"#i_mul">'
<tt>mul
</tt>' Instruction
</a></li>
137 <li><a href=
"#i_fmul">'
<tt>fmul
</tt>' Instruction
</a></li>
138 <li><a href=
"#i_udiv">'
<tt>udiv
</tt>' Instruction
</a></li>
139 <li><a href=
"#i_sdiv">'
<tt>sdiv
</tt>' Instruction
</a></li>
140 <li><a href=
"#i_fdiv">'
<tt>fdiv
</tt>' Instruction
</a></li>
141 <li><a href=
"#i_urem">'
<tt>urem
</tt>' Instruction
</a></li>
142 <li><a href=
"#i_srem">'
<tt>srem
</tt>' Instruction
</a></li>
143 <li><a href=
"#i_frem">'
<tt>frem
</tt>' Instruction
</a></li>
146 <li><a href=
"#bitwiseops">Bitwise Binary Operations
</a>
148 <li><a href=
"#i_shl">'
<tt>shl
</tt>' Instruction
</a></li>
149 <li><a href=
"#i_lshr">'
<tt>lshr
</tt>' Instruction
</a></li>
150 <li><a href=
"#i_ashr">'
<tt>ashr
</tt>' Instruction
</a></li>
151 <li><a href=
"#i_and">'
<tt>and
</tt>' Instruction
</a></li>
152 <li><a href=
"#i_or">'
<tt>or
</tt>' Instruction
</a></li>
153 <li><a href=
"#i_xor">'
<tt>xor
</tt>' Instruction
</a></li>
156 <li><a href=
"#vectorops">Vector Operations
</a>
158 <li><a href=
"#i_extractelement">'
<tt>extractelement
</tt>' Instruction
</a></li>
159 <li><a href=
"#i_insertelement">'
<tt>insertelement
</tt>' Instruction
</a></li>
160 <li><a href=
"#i_shufflevector">'
<tt>shufflevector
</tt>' Instruction
</a></li>
163 <li><a href=
"#aggregateops">Aggregate Operations
</a>
165 <li><a href=
"#i_extractvalue">'
<tt>extractvalue
</tt>' Instruction
</a></li>
166 <li><a href=
"#i_insertvalue">'
<tt>insertvalue
</tt>' Instruction
</a></li>
169 <li><a href=
"#memoryops">Memory Access and Addressing Operations
</a>
171 <li><a href=
"#i_alloca">'
<tt>alloca
</tt>' Instruction
</a></li>
172 <li><a href=
"#i_load">'
<tt>load
</tt>' Instruction
</a></li>
173 <li><a href=
"#i_store">'
<tt>store
</tt>' Instruction
</a></li>
174 <li><a href=
"#i_getelementptr">'
<tt>getelementptr
</tt>' Instruction
</a></li>
177 <li><a href=
"#convertops">Conversion Operations
</a>
179 <li><a href=
"#i_trunc">'
<tt>trunc .. to
</tt>' Instruction
</a></li>
180 <li><a href=
"#i_zext">'
<tt>zext .. to
</tt>' Instruction
</a></li>
181 <li><a href=
"#i_sext">'
<tt>sext .. to
</tt>' Instruction
</a></li>
182 <li><a href=
"#i_fptrunc">'
<tt>fptrunc .. to
</tt>' Instruction
</a></li>
183 <li><a href=
"#i_fpext">'
<tt>fpext .. to
</tt>' Instruction
</a></li>
184 <li><a href=
"#i_fptoui">'
<tt>fptoui .. to
</tt>' Instruction
</a></li>
185 <li><a href=
"#i_fptosi">'
<tt>fptosi .. to
</tt>' Instruction
</a></li>
186 <li><a href=
"#i_uitofp">'
<tt>uitofp .. to
</tt>' Instruction
</a></li>
187 <li><a href=
"#i_sitofp">'
<tt>sitofp .. to
</tt>' Instruction
</a></li>
188 <li><a href=
"#i_ptrtoint">'
<tt>ptrtoint .. to
</tt>' Instruction
</a></li>
189 <li><a href=
"#i_inttoptr">'
<tt>inttoptr .. to
</tt>' Instruction
</a></li>
190 <li><a href=
"#i_bitcast">'
<tt>bitcast .. to
</tt>' Instruction
</a></li>
193 <li><a href=
"#otherops">Other Operations
</a>
195 <li><a href=
"#i_icmp">'
<tt>icmp
</tt>' Instruction
</a></li>
196 <li><a href=
"#i_fcmp">'
<tt>fcmp
</tt>' Instruction
</a></li>
197 <li><a href=
"#i_phi">'
<tt>phi
</tt>' Instruction
</a></li>
198 <li><a href=
"#i_select">'
<tt>select
</tt>' Instruction
</a></li>
199 <li><a href=
"#i_call">'
<tt>call
</tt>' Instruction
</a></li>
200 <li><a href=
"#i_va_arg">'
<tt>va_arg
</tt>' Instruction
</a></li>
205 <li><a href=
"#intrinsics">Intrinsic Functions
</a>
207 <li><a href=
"#int_varargs">Variable Argument Handling Intrinsics
</a>
209 <li><a href=
"#int_va_start">'
<tt>llvm.va_start
</tt>' Intrinsic
</a></li>
210 <li><a href=
"#int_va_end">'
<tt>llvm.va_end
</tt>' Intrinsic
</a></li>
211 <li><a href=
"#int_va_copy">'
<tt>llvm.va_copy
</tt>' Intrinsic
</a></li>
214 <li><a href=
"#int_gc">Accurate Garbage Collection Intrinsics
</a>
216 <li><a href=
"#int_gcroot">'
<tt>llvm.gcroot
</tt>' Intrinsic
</a></li>
217 <li><a href=
"#int_gcread">'
<tt>llvm.gcread
</tt>' Intrinsic
</a></li>
218 <li><a href=
"#int_gcwrite">'
<tt>llvm.gcwrite
</tt>' Intrinsic
</a></li>
221 <li><a href=
"#int_codegen">Code Generator Intrinsics
</a>
223 <li><a href=
"#int_returnaddress">'
<tt>llvm.returnaddress
</tt>' Intrinsic
</a></li>
224 <li><a href=
"#int_frameaddress">'
<tt>llvm.frameaddress
</tt>' Intrinsic
</a></li>
225 <li><a href=
"#int_stacksave">'
<tt>llvm.stacksave
</tt>' Intrinsic
</a></li>
226 <li><a href=
"#int_stackrestore">'
<tt>llvm.stackrestore
</tt>' Intrinsic
</a></li>
227 <li><a href=
"#int_prefetch">'
<tt>llvm.prefetch
</tt>' Intrinsic
</a></li>
228 <li><a href=
"#int_pcmarker">'
<tt>llvm.pcmarker
</tt>' Intrinsic
</a></li>
229 <li><a href=
"#int_readcyclecounter">'
<tt>llvm.readcyclecounter
</tt>' Intrinsic
</a></li>
232 <li><a href=
"#int_libc">Standard C Library Intrinsics
</a>
234 <li><a href=
"#int_memcpy">'
<tt>llvm.memcpy.*
</tt>' Intrinsic
</a></li>
235 <li><a href=
"#int_memmove">'
<tt>llvm.memmove.*
</tt>' Intrinsic
</a></li>
236 <li><a href=
"#int_memset">'
<tt>llvm.memset.*
</tt>' Intrinsic
</a></li>
237 <li><a href=
"#int_sqrt">'
<tt>llvm.sqrt.*
</tt>' Intrinsic
</a></li>
238 <li><a href=
"#int_powi">'
<tt>llvm.powi.*
</tt>' Intrinsic
</a></li>
239 <li><a href=
"#int_sin">'
<tt>llvm.sin.*
</tt>' Intrinsic
</a></li>
240 <li><a href=
"#int_cos">'
<tt>llvm.cos.*
</tt>' Intrinsic
</a></li>
241 <li><a href=
"#int_pow">'
<tt>llvm.pow.*
</tt>' Intrinsic
</a></li>
244 <li><a href=
"#int_manip">Bit Manipulation Intrinsics
</a>
246 <li><a href=
"#int_bswap">'
<tt>llvm.bswap.*
</tt>' Intrinsics
</a></li>
247 <li><a href=
"#int_ctpop">'
<tt>llvm.ctpop.*
</tt>' Intrinsic
</a></li>
248 <li><a href=
"#int_ctlz">'
<tt>llvm.ctlz.*
</tt>' Intrinsic
</a></li>
249 <li><a href=
"#int_cttz">'
<tt>llvm.cttz.*
</tt>' Intrinsic
</a></li>
252 <li><a href=
"#int_overflow">Arithmetic with Overflow Intrinsics
</a>
254 <li><a href=
"#int_sadd_overflow">'
<tt>llvm.sadd.with.overflow.*
</tt> Intrinsics
</a></li>
255 <li><a href=
"#int_uadd_overflow">'
<tt>llvm.uadd.with.overflow.*
</tt> Intrinsics
</a></li>
256 <li><a href=
"#int_ssub_overflow">'
<tt>llvm.ssub.with.overflow.*
</tt> Intrinsics
</a></li>
257 <li><a href=
"#int_usub_overflow">'
<tt>llvm.usub.with.overflow.*
</tt> Intrinsics
</a></li>
258 <li><a href=
"#int_smul_overflow">'
<tt>llvm.smul.with.overflow.*
</tt> Intrinsics
</a></li>
259 <li><a href=
"#int_umul_overflow">'
<tt>llvm.umul.with.overflow.*
</tt> Intrinsics
</a></li>
262 <li><a href=
"#int_fp16">Half Precision Floating Point Intrinsics
</a>
264 <li><a href=
"#int_convert_to_fp16">'
<tt>llvm.convert.to.fp16
</tt>' Intrinsic
</a></li>
265 <li><a href=
"#int_convert_from_fp16">'
<tt>llvm.convert.from.fp16
</tt>' Intrinsic
</a></li>
268 <li><a href=
"#int_debugger">Debugger intrinsics
</a></li>
269 <li><a href=
"#int_eh">Exception Handling intrinsics
</a></li>
270 <li><a href=
"#int_trampoline">Trampoline Intrinsic
</a>
272 <li><a href=
"#int_it">'
<tt>llvm.init.trampoline
</tt>' Intrinsic
</a></li>
275 <li><a href=
"#int_atomics">Atomic intrinsics
</a>
277 <li><a href=
"#int_memory_barrier"><tt>llvm.memory_barrier
</tt></a></li>
278 <li><a href=
"#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap
</tt></a></li>
279 <li><a href=
"#int_atomic_swap"><tt>llvm.atomic.swap
</tt></a></li>
280 <li><a href=
"#int_atomic_load_add"><tt>llvm.atomic.load.add
</tt></a></li>
281 <li><a href=
"#int_atomic_load_sub"><tt>llvm.atomic.load.sub
</tt></a></li>
282 <li><a href=
"#int_atomic_load_and"><tt>llvm.atomic.load.and
</tt></a></li>
283 <li><a href=
"#int_atomic_load_nand"><tt>llvm.atomic.load.nand
</tt></a></li>
284 <li><a href=
"#int_atomic_load_or"><tt>llvm.atomic.load.or
</tt></a></li>
285 <li><a href=
"#int_atomic_load_xor"><tt>llvm.atomic.load.xor
</tt></a></li>
286 <li><a href=
"#int_atomic_load_max"><tt>llvm.atomic.load.max
</tt></a></li>
287 <li><a href=
"#int_atomic_load_min"><tt>llvm.atomic.load.min
</tt></a></li>
288 <li><a href=
"#int_atomic_load_umax"><tt>llvm.atomic.load.umax
</tt></a></li>
289 <li><a href=
"#int_atomic_load_umin"><tt>llvm.atomic.load.umin
</tt></a></li>
292 <li><a href=
"#int_memorymarkers">Memory Use Markers
</a>
294 <li><a href=
"#int_lifetime_start"><tt>llvm.lifetime.start
</tt></a></li>
295 <li><a href=
"#int_lifetime_end"><tt>llvm.lifetime.end
</tt></a></li>
296 <li><a href=
"#int_invariant_start"><tt>llvm.invariant.start
</tt></a></li>
297 <li><a href=
"#int_invariant_end"><tt>llvm.invariant.end
</tt></a></li>
300 <li><a href=
"#int_general">General intrinsics
</a>
302 <li><a href=
"#int_var_annotation">
303 '
<tt>llvm.var.annotation
</tt>' Intrinsic
</a></li>
304 <li><a href=
"#int_annotation">
305 '
<tt>llvm.annotation.*
</tt>' Intrinsic
</a></li>
306 <li><a href=
"#int_trap">
307 '
<tt>llvm.trap
</tt>' Intrinsic
</a></li>
308 <li><a href=
"#int_stackprotector">
309 '
<tt>llvm.stackprotector
</tt>' Intrinsic
</a></li>
310 <li><a href=
"#int_objectsize">
311 '
<tt>llvm.objectsize
</tt>' Intrinsic
</a></li>
318 <div class=
"doc_author">
319 <p>Written by
<a href=
"mailto:sabre@nondot.org">Chris Lattner
</a>
320 and
<a href=
"mailto:vadve@cs.uiuc.edu">Vikram Adve
</a></p>
323 <!-- *********************************************************************** -->
324 <h2><a name=
"abstract">Abstract
</a></h2>
325 <!-- *********************************************************************** -->
329 <p>This document is a reference manual for the LLVM assembly language. LLVM is
330 a Static Single Assignment (SSA) based representation that provides type
331 safety, low-level operations, flexibility, and the capability of representing
332 'all' high-level languages cleanly. It is the common code representation
333 used throughout all phases of the LLVM compilation strategy.
</p>
337 <!-- *********************************************************************** -->
338 <h2><a name=
"introduction">Introduction
</a></h2>
339 <!-- *********************************************************************** -->
343 <p>The LLVM code representation is designed to be used in three different forms:
344 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
345 for fast loading by a Just-In-Time compiler), and as a human readable
346 assembly language representation. This allows LLVM to provide a powerful
347 intermediate representation for efficient compiler transformations and
348 analysis, while providing a natural means to debug and visualize the
349 transformations. The three different forms of LLVM are all equivalent. This
350 document describes the human readable representation and notation.
</p>
352 <p>The LLVM representation aims to be light-weight and low-level while being
353 expressive, typed, and extensible at the same time. It aims to be a
354 "universal IR" of sorts, by being at a low enough level that high-level ideas
355 may be cleanly mapped to it (similar to how microprocessors are
"universal
356 IR's", allowing many source languages to be mapped to them). By providing
357 type information, LLVM can be used as the target of optimizations: for
358 example, through pointer analysis, it can be proven that a C automatic
359 variable is never accessed outside of the current function, allowing it to
360 be promoted to a simple SSA value instead of a memory location.
</p>
362 <!-- _______________________________________________________________________ -->
364 <a name=
"wellformed">Well-Formedness
</a>
369 <p>It is important to note that this document describes 'well formed' LLVM
370 assembly language. There is a difference between what the parser accepts and
371 what is considered 'well formed'. For example, the following instruction is
372 syntactically okay, but not well formed:
</p>
374 <pre class=
"doc_code">
375 %x =
<a href=
"#i_add">add
</a> i32
1, %x
378 <p>because the definition of
<tt>%x
</tt> does not dominate all of its uses. The
379 LLVM infrastructure provides a verification pass that may be used to verify
380 that an LLVM module is well formed. This pass is automatically run by the
381 parser after parsing input assembly and by the optimizer before it outputs
382 bitcode. The violations pointed out by the verifier pass indicate bugs in
383 transformation passes or input to the parser.
</p>
389 <!-- Describe the typesetting conventions here. -->
391 <!-- *********************************************************************** -->
392 <h2><a name=
"identifiers">Identifiers
</a></h2>
393 <!-- *********************************************************************** -->
397 <p>LLVM identifiers come in two basic types: global and local. Global
398 identifiers (functions, global variables) begin with the
<tt>'@'
</tt>
399 character. Local identifiers (register names, types) begin with
400 the
<tt>'%'
</tt> character. Additionally, there are three different formats
401 for identifiers, for different purposes:
</p>
404 <li>Named values are represented as a string of characters with their prefix.
405 For example,
<tt>%foo
</tt>,
<tt>@DivisionByZero
</tt>,
406 <tt>%a.really.long.identifier
</tt>. The actual regular expression used is
407 '
<tt>[%@][a-zA-Z$._][a-zA-Z$._0-
9]*
</tt>'. Identifiers which require
408 other characters in their names can be surrounded with quotes. Special
409 characters may be escaped using
<tt>"\xx"</tt> where
<tt>xx
</tt> is the
410 ASCII code for the character in hexadecimal. In this way, any character
411 can be used in a name value, even quotes themselves.
</li>
413 <li>Unnamed values are represented as an unsigned numeric value with their
414 prefix. For example,
<tt>%
12</tt>,
<tt>@
2</tt>,
<tt>%
44</tt>.
</li>
416 <li>Constants, which are described in a
<a href=
"#constants">section about
417 constants
</a>, below.
</li>
420 <p>LLVM requires that values start with a prefix for two reasons: Compilers
421 don't need to worry about name clashes with reserved words, and the set of
422 reserved words may be expanded in the future without penalty. Additionally,
423 unnamed identifiers allow a compiler to quickly come up with a temporary
424 variable without having to avoid symbol table conflicts.
</p>
426 <p>Reserved words in LLVM are very similar to reserved words in other
427 languages. There are keywords for different opcodes
428 ('
<tt><a href=
"#i_add">add
</a></tt>',
429 '
<tt><a href=
"#i_bitcast">bitcast
</a></tt>',
430 '
<tt><a href=
"#i_ret">ret
</a></tt>', etc...), for primitive type names
431 ('
<tt><a href=
"#t_void">void
</a></tt>',
432 '
<tt><a href=
"#t_primitive">i32
</a></tt>', etc...), and others. These
433 reserved words cannot conflict with variable names, because none of them
434 start with a prefix character (
<tt>'%'
</tt> or
<tt>'@'
</tt>).
</p>
436 <p>Here is an example of LLVM code to multiply the integer variable
437 '
<tt>%X
</tt>' by
8:
</p>
441 <pre class=
"doc_code">
442 %result =
<a href=
"#i_mul">mul
</a> i32 %X,
8
445 <p>After strength reduction:
</p>
447 <pre class=
"doc_code">
448 %result =
<a href=
"#i_shl">shl
</a> i32 %X, i8
3
451 <p>And the hard way:
</p>
453 <pre class=
"doc_code">
454 %
0 =
<a href=
"#i_add">add
</a> i32 %X, %X
<i>; yields {i32}:%
0</i>
455 %
1 =
<a href=
"#i_add">add
</a> i32 %
0, %
0 <i>; yields {i32}:%
1</i>
456 %result =
<a href=
"#i_add">add
</a> i32 %
1, %
1
459 <p>This last way of multiplying
<tt>%X
</tt> by
8 illustrates several important
460 lexical features of LLVM:
</p>
463 <li>Comments are delimited with a '
<tt>;
</tt>' and go until the end of
466 <li>Unnamed temporaries are created when the result of a computation is not
467 assigned to a named value.
</li>
469 <li>Unnamed temporaries are numbered sequentially
</li>
472 <p>It also shows a convention that we follow in this document. When
473 demonstrating instructions, we will follow an instruction with a comment that
474 defines the type and name of value produced. Comments are shown in italic
479 <!-- *********************************************************************** -->
480 <h2><a name=
"highlevel">High Level Structure
</a></h2>
481 <!-- *********************************************************************** -->
483 <!-- ======================================================================= -->
485 <a name=
"modulestructure">Module Structure
</a>
490 <p>LLVM programs are composed of
"Module"s, each of which is a translation unit
491 of the input programs. Each module consists of functions, global variables,
492 and symbol table entries. Modules may be combined together with the LLVM
493 linker, which merges function (and global variable) definitions, resolves
494 forward declarations, and merges symbol table entries. Here is an example of
495 the
"hello world" module:
</p>
497 <pre class=
"doc_code">
498 <i>; Declare the string constant as a global constant.
</i>
499 <a href=
"#identifiers">@.LC0
</a> =
<a href=
"#linkage_internal">internal
</a> <a href=
"#globalvars">constant
</a> <a href=
"#t_array">[
13 x i8]
</a> c
"hello world\0A\00" <i>; [
13 x i8]*
</i>
501 <i>; External declaration of the puts function
</i>
502 <a href=
"#functionstructure">declare
</a> i32 @puts(i8*)
<i>; i32 (i8*)*
</i>
504 <i>; Definition of main function
</i>
505 define i32 @main() {
<i>; i32()*
</i>
506 <i>; Convert [
13 x i8]* to i8 *...
</i>
507 %cast210 =
<a href=
"#i_getelementptr">getelementptr
</a> [
13 x i8]* @.LC0, i64
0, i64
0 <i>; i8*
</i>
509 <i>; Call puts function to write out the string to stdout.
</i>
510 <a href=
"#i_call">call
</a> i32 @puts(i8* %cast210)
<i>; i32
</i>
511 <a href=
"#i_ret">ret
</a> i32
0
514 <i>; Named metadata
</i>
515 !
1 = metadata !{i32
41}
519 <p>This example is made up of a
<a href=
"#globalvars">global variable
</a> named
520 "<tt>.LC0</tt>", an external declaration of the
"<tt>puts</tt>" function,
521 a
<a href=
"#functionstructure">function definition
</a> for
522 "<tt>main</tt>" and
<a href=
"#namedmetadatastructure">named metadata
</a>
525 <p>In general, a module is made up of a list of global values, where both
526 functions and global variables are global values. Global values are
527 represented by a pointer to a memory location (in this case, a pointer to an
528 array of char, and a pointer to a function), and have one of the
529 following
<a href=
"#linkage">linkage types
</a>.
</p>
533 <!-- ======================================================================= -->
535 <a name=
"linkage">Linkage Types
</a>
540 <p>All Global Variables and Functions have one of the following types of
544 <dt><tt><b><a name=
"linkage_private">private
</a></b></tt></dt>
545 <dd>Global values with
"<tt>private</tt>" linkage are only directly accessible
546 by objects in the current module. In particular, linking code into a
547 module with an private global value may cause the private to be renamed as
548 necessary to avoid collisions. Because the symbol is private to the
549 module, all references can be updated. This doesn't show up in any symbol
550 table in the object file.
</dd>
552 <dt><tt><b><a name=
"linkage_linker_private">linker_private
</a></b></tt></dt>
553 <dd>Similar to
<tt>private
</tt>, but the symbol is passed through the
554 assembler and evaluated by the linker. Unlike normal strong symbols, they
555 are removed by the linker from the final linked image (executable or
556 dynamic library).
</dd>
558 <dt><tt><b><a name=
"linkage_linker_private_weak">linker_private_weak
</a></b></tt></dt>
559 <dd>Similar to
"<tt>linker_private</tt>", but the symbol is weak. Note that
560 <tt>linker_private_weak
</tt> symbols are subject to coalescing by the
561 linker. The symbols are removed by the linker from the final linked image
562 (executable or dynamic library).
</dd>
564 <dt><tt><b><a name=
"linkage_linker_private_weak_def_auto">linker_private_weak_def_auto
</a></b></tt></dt>
565 <dd>Similar to
"<tt>linker_private_weak</tt>", but it's known that the address
566 of the object is not taken. For instance, functions that had an inline
567 definition, but the compiler decided not to inline it. Note,
568 unlike
<tt>linker_private
</tt> and
<tt>linker_private_weak
</tt>,
569 <tt>linker_private_weak_def_auto
</tt> may have only
<tt>default
</tt>
570 visibility. The symbols are removed by the linker from the final linked
571 image (executable or dynamic library).
</dd>
573 <dt><tt><b><a name=
"linkage_internal">internal
</a></b></tt></dt>
574 <dd>Similar to private, but the value shows as a local symbol
575 (
<tt>STB_LOCAL
</tt> in the case of ELF) in the object file. This
576 corresponds to the notion of the '
<tt>static
</tt>' keyword in C.
</dd>
578 <dt><tt><b><a name=
"linkage_available_externally">available_externally
</a></b></tt></dt>
579 <dd>Globals with
"<tt>available_externally</tt>" linkage are never emitted
580 into the object file corresponding to the LLVM module. They exist to
581 allow inlining and other optimizations to take place given knowledge of
582 the definition of the global, which is known to be somewhere outside the
583 module. Globals with
<tt>available_externally
</tt> linkage are allowed to
584 be discarded at will, and are otherwise the same as
<tt>linkonce_odr
</tt>.
585 This linkage type is only allowed on definitions, not declarations.
</dd>
587 <dt><tt><b><a name=
"linkage_linkonce">linkonce
</a></b></tt></dt>
588 <dd>Globals with
"<tt>linkonce</tt>" linkage are merged with other globals of
589 the same name when linkage occurs. This can be used to implement
590 some forms of inline functions, templates, or other code which must be
591 generated in each translation unit that uses it, but where the body may
592 be overridden with a more definitive definition later. Unreferenced
593 <tt>linkonce
</tt> globals are allowed to be discarded. Note that
594 <tt>linkonce
</tt> linkage does not actually allow the optimizer to
595 inline the body of this function into callers because it doesn't know if
596 this definition of the function is the definitive definition within the
597 program or whether it will be overridden by a stronger definition.
598 To enable inlining and other optimizations, use
"<tt>linkonce_odr</tt>"
601 <dt><tt><b><a name=
"linkage_weak">weak
</a></b></tt></dt>
602 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
603 <tt>linkonce
</tt> linkage, except that unreferenced globals with
604 <tt>weak
</tt> linkage may not be discarded. This is used for globals that
605 are declared
"weak" in C source code.
</dd>
607 <dt><tt><b><a name=
"linkage_common">common
</a></b></tt></dt>
608 <dd>"<tt>common</tt>" linkage is most similar to
"<tt>weak</tt>" linkage, but
609 they are used for tentative definitions in C, such as
"<tt>int X;</tt>" at
611 Symbols with
"<tt>common</tt>" linkage are merged in the same way as
612 <tt>weak symbols
</tt>, and they may not be deleted if unreferenced.
613 <tt>common
</tt> symbols may not have an explicit section,
614 must have a zero initializer, and may not be marked '
<a
615 href=
"#globalvars"><tt>constant
</tt></a>'. Functions and aliases may not
616 have common linkage.
</dd>
619 <dt><tt><b><a name=
"linkage_appending">appending
</a></b></tt></dt>
620 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
621 pointer to array type. When two global variables with appending linkage
622 are linked together, the two global arrays are appended together. This is
623 the LLVM, typesafe, equivalent of having the system linker append together
624 "sections" with identical names when .o files are linked.
</dd>
626 <dt><tt><b><a name=
"linkage_externweak">extern_weak
</a></b></tt></dt>
627 <dd>The semantics of this linkage follow the ELF object file model: the symbol
628 is weak until linked, if not linked, the symbol becomes null instead of
629 being an undefined reference.
</dd>
631 <dt><tt><b><a name=
"linkage_linkonce_odr">linkonce_odr
</a></b></tt></dt>
632 <dt><tt><b><a name=
"linkage_weak_odr">weak_odr
</a></b></tt></dt>
633 <dd>Some languages allow differing globals to be merged, such as two functions
634 with different semantics. Other languages, such as
<tt>C++
</tt>, ensure
635 that only equivalent globals are ever merged (the
"one definition rule"
636 — "ODR"). Such languages can use the
<tt>linkonce_odr
</tt>
637 and
<tt>weak_odr
</tt> linkage types to indicate that the global will only
638 be merged with equivalent globals. These linkage types are otherwise the
639 same as their non-
<tt>odr
</tt> versions.
</dd>
641 <dt><tt><b><a name=
"linkage_external">externally visible
</a></b></tt>:
</dt>
642 <dd>If none of the above identifiers are used, the global is externally
643 visible, meaning that it participates in linkage and can be used to
644 resolve external symbol references.
</dd>
647 <p>The next two types of linkage are targeted for Microsoft Windows platform
648 only. They are designed to support importing (exporting) symbols from (to)
649 DLLs (Dynamic Link Libraries).
</p>
652 <dt><tt><b><a name=
"linkage_dllimport">dllimport
</a></b></tt></dt>
653 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
654 or variable via a global pointer to a pointer that is set up by the DLL
655 exporting the symbol. On Microsoft Windows targets, the pointer name is
656 formed by combining
<code>__imp_
</code> and the function or variable
659 <dt><tt><b><a name=
"linkage_dllexport">dllexport
</a></b></tt></dt>
660 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
661 pointer to a pointer in a DLL, so that it can be referenced with the
662 <tt>dllimport
</tt> attribute. On Microsoft Windows targets, the pointer
663 name is formed by combining
<code>__imp_
</code> and the function or
667 <p>For example, since the
"<tt>.LC0</tt>" variable is defined to be internal, if
668 another module defined a
"<tt>.LC0</tt>" variable and was linked with this
669 one, one of the two would be renamed, preventing a collision. Since
670 "<tt>main</tt>" and
"<tt>puts</tt>" are external (i.e., lacking any linkage
671 declarations), they are accessible outside of the current module.
</p>
673 <p>It is illegal for a function
<i>declaration
</i> to have any linkage type
674 other than
"externally visible",
<tt>dllimport
</tt>
675 or
<tt>extern_weak
</tt>.
</p>
677 <p>Aliases can have only
<tt>external
</tt>,
<tt>internal
</tt>,
<tt>weak
</tt>
678 or
<tt>weak_odr
</tt> linkages.
</p>
682 <!-- ======================================================================= -->
684 <a name=
"callingconv">Calling Conventions
</a>
689 <p>LLVM
<a href=
"#functionstructure">functions
</a>,
<a href=
"#i_call">calls
</a>
690 and
<a href=
"#i_invoke">invokes
</a> can all have an optional calling
691 convention specified for the call. The calling convention of any pair of
692 dynamic caller/callee must match, or the behavior of the program is
693 undefined. The following calling conventions are supported by LLVM, and more
694 may be added in the future:
</p>
697 <dt><b>"<tt>ccc</tt>" - The C calling convention
</b>:
</dt>
698 <dd>This calling convention (the default if no other calling convention is
699 specified) matches the target C calling conventions. This calling
700 convention supports varargs function calls and tolerates some mismatch in
701 the declared prototype and implemented declaration of the function (as
704 <dt><b>"<tt>fastcc</tt>" - The fast calling convention
</b>:
</dt>
705 <dd>This calling convention attempts to make calls as fast as possible
706 (e.g. by passing things in registers). This calling convention allows the
707 target to use whatever tricks it wants to produce fast code for the
708 target, without having to conform to an externally specified ABI
709 (Application Binary Interface).
710 <a href=
"CodeGenerator.html#tailcallopt">Tail calls can only be optimized
711 when this or the GHC convention is used.
</a> This calling convention
712 does not support varargs and requires the prototype of all callees to
713 exactly match the prototype of the function definition.
</dd>
715 <dt><b>"<tt>coldcc</tt>" - The cold calling convention
</b>:
</dt>
716 <dd>This calling convention attempts to make code in the caller as efficient
717 as possible under the assumption that the call is not commonly executed.
718 As such, these calls often preserve all registers so that the call does
719 not break any live ranges in the caller side. This calling convention
720 does not support varargs and requires the prototype of all callees to
721 exactly match the prototype of the function definition.
</dd>
723 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention
</b>:
</dt>
724 <dd>This calling convention has been implemented specifically for use by the
725 <a href=
"http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)
</a>.
726 It passes everything in registers, going to extremes to achieve this by
727 disabling callee save registers. This calling convention should not be
728 used lightly but only for specific situations such as an alternative to
729 the
<em>register pinning
</em> performance technique often used when
730 implementing functional programming languages.At the moment only X86
731 supports this convention and it has the following limitations:
733 <li>On
<em>X86-
32</em> only supports up to
4 bit type parameters. No
734 floating point types are supported.
</li>
735 <li>On
<em>X86-
64</em> only supports up to
10 bit type parameters and
736 6 floating point parameters.
</li>
738 This calling convention supports
739 <a href=
"CodeGenerator.html#tailcallopt">tail call optimization
</a> but
740 requires both the caller and callee are using it.
743 <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention
</b>:
</dt>
744 <dd>Any calling convention may be specified by number, allowing
745 target-specific calling conventions to be used. Target specific calling
746 conventions start at
64.
</dd>
749 <p>More calling conventions can be added/defined on an as-needed basis, to
750 support Pascal conventions or any other well-known target-independent
755 <!-- ======================================================================= -->
757 <a name=
"visibility">Visibility Styles
</a>
762 <p>All Global Variables and Functions have one of the following visibility
766 <dt><b>"<tt>default</tt>" - Default style
</b>:
</dt>
767 <dd>On targets that use the ELF object file format, default visibility means
768 that the declaration is visible to other modules and, in shared libraries,
769 means that the declared entity may be overridden. On Darwin, default
770 visibility means that the declaration is visible to other modules. Default
771 visibility corresponds to
"external linkage" in the language.
</dd>
773 <dt><b>"<tt>hidden</tt>" - Hidden style
</b>:
</dt>
774 <dd>Two declarations of an object with hidden visibility refer to the same
775 object if they are in the same shared object. Usually, hidden visibility
776 indicates that the symbol will not be placed into the dynamic symbol
777 table, so no other module (executable or shared library) can reference it
780 <dt><b>"<tt>protected</tt>" - Protected style
</b>:
</dt>
781 <dd>On ELF, protected visibility indicates that the symbol will be placed in
782 the dynamic symbol table, but that references within the defining module
783 will bind to the local symbol. That is, the symbol cannot be overridden by
789 <!-- ======================================================================= -->
791 <a name=
"namedtypes">Named Types
</a>
796 <p>LLVM IR allows you to specify name aliases for certain types. This can make
797 it easier to read the IR and make the IR more condensed (particularly when
798 recursive types are involved). An example of a name specification is:
</p>
800 <pre class=
"doc_code">
801 %mytype = type { %mytype*, i32 }
804 <p>You may give a name to any
<a href=
"#typesystem">type
</a> except
805 "<a href="#t_void
">void</a>". Type name aliases may be used anywhere a type
806 is expected with the syntax
"%mytype".
</p>
808 <p>Note that type names are aliases for the structural type that they indicate,
809 and that you can therefore specify multiple names for the same type. This
810 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
811 uses structural typing, the name is not part of the type. When printing out
812 LLVM IR, the printer will pick
<em>one name
</em> to render all types of a
813 particular shape. This means that if you have code where two different
814 source types end up having the same LLVM type, that the dumper will sometimes
815 print the
"wrong" or unexpected type. This is an important design point and
816 isn't going to change.
</p>
820 <!-- ======================================================================= -->
822 <a name=
"globalvars">Global Variables
</a>
827 <p>Global variables define regions of memory allocated at compilation time
828 instead of run-time. Global variables may optionally be initialized, may
829 have an explicit section to be placed in, and may have an optional explicit
830 alignment specified. A variable may be defined as
"thread_local", which
831 means that it will not be shared by threads (each thread will have a
832 separated copy of the variable). A variable may be defined as a global
833 "constant," which indicates that the contents of the variable
834 will
<b>never
</b> be modified (enabling better optimization, allowing the
835 global data to be placed in the read-only section of an executable, etc).
836 Note that variables that need runtime initialization cannot be marked
837 "constant" as there is a store to the variable.
</p>
839 <p>LLVM explicitly allows
<em>declarations
</em> of global variables to be marked
840 constant, even if the final definition of the global is not. This capability
841 can be used to enable slightly better optimization of the program, but
842 requires the language definition to guarantee that optimizations based on the
843 'constantness' are valid for the translation units that do not include the
846 <p>As SSA values, global variables define pointer values that are in scope
847 (i.e. they dominate) all basic blocks in the program. Global variables
848 always define a pointer to their
"content" type because they describe a
849 region of memory, and all memory objects in LLVM are accessed through
852 <p>Global variables can be marked with
<tt>unnamed_addr
</tt> which indicates
853 that the address is not significant, only the content. Constants marked
854 like this can be merged with other constants if they have the same
855 initializer. Note that a constant with significant address
<em>can
</em>
856 be merged with a
<tt>unnamed_addr
</tt> constant, the result being a
857 constant whose address is significant.
</p>
859 <p>A global variable may be declared to reside in a target-specific numbered
860 address space. For targets that support them, address spaces may affect how
861 optimizations are performed and/or what target instructions are used to
862 access the variable. The default address space is zero. The address space
863 qualifier must precede any other attributes.
</p>
865 <p>LLVM allows an explicit section to be specified for globals. If the target
866 supports it, it will emit globals to the section specified.
</p>
868 <p>An explicit alignment may be specified for a global, which must be a power
869 of
2. If not present, or if the alignment is set to zero, the alignment of
870 the global is set by the target to whatever it feels convenient. If an
871 explicit alignment is specified, the global is forced to have exactly that
872 alignment. Targets and optimizers are not allowed to over-align the global
873 if the global has an assigned section. In this case, the extra alignment
874 could be observable: for example, code could assume that the globals are
875 densely packed in their section and try to iterate over them as an array,
876 alignment padding would break this iteration.
</p>
878 <p>For example, the following defines a global in a numbered address space with
879 an initializer, section, and alignment:
</p>
881 <pre class=
"doc_code">
882 @G = addrspace(
5) constant float
1.0, section
"foo", align
4
888 <!-- ======================================================================= -->
890 <a name=
"functionstructure">Functions
</a>
895 <p>LLVM function definitions consist of the
"<tt>define</tt>" keyword, an
896 optional
<a href=
"#linkage">linkage type
</a>, an optional
897 <a href=
"#visibility">visibility style
</a>, an optional
898 <a href=
"#callingconv">calling convention
</a>,
899 an optional
<tt>unnamed_addr
</tt> attribute, a return type, an optional
900 <a href=
"#paramattrs">parameter attribute
</a> for the return type, a function
901 name, a (possibly empty) argument list (each with optional
902 <a href=
"#paramattrs">parameter attributes
</a>), optional
903 <a href=
"#fnattrs">function attributes
</a>, an optional section, an optional
904 alignment, an optional
<a href=
"#gc">garbage collector name
</a>, an opening
905 curly brace, a list of basic blocks, and a closing curly brace.
</p>
907 <p>LLVM function declarations consist of the
"<tt>declare</tt>" keyword, an
908 optional
<a href=
"#linkage">linkage type
</a>, an optional
909 <a href=
"#visibility">visibility style
</a>, an optional
910 <a href=
"#callingconv">calling convention
</a>,
911 an optional
<tt>unnamed_addr
</tt> attribute, a return type, an optional
912 <a href=
"#paramattrs">parameter attribute
</a> for the return type, a function
913 name, a possibly empty list of arguments, an optional alignment, and an
914 optional
<a href=
"#gc">garbage collector name
</a>.
</p>
916 <p>A function definition contains a list of basic blocks, forming the CFG
917 (Control Flow Graph) for the function. Each basic block may optionally start
918 with a label (giving the basic block a symbol table entry), contains a list
919 of instructions, and ends with a
<a href=
"#terminators">terminator
</a>
920 instruction (such as a branch or function return).
</p>
922 <p>The first basic block in a function is special in two ways: it is immediately
923 executed on entrance to the function, and it is not allowed to have
924 predecessor basic blocks (i.e. there can not be any branches to the entry
925 block of a function). Because the block can have no predecessors, it also
926 cannot have any
<a href=
"#i_phi">PHI nodes
</a>.
</p>
928 <p>LLVM allows an explicit section to be specified for functions. If the target
929 supports it, it will emit functions to the section specified.
</p>
931 <p>An explicit alignment may be specified for a function. If not present, or if
932 the alignment is set to zero, the alignment of the function is set by the
933 target to whatever it feels convenient. If an explicit alignment is
934 specified, the function is forced to have at least that much alignment. All
935 alignments must be a power of
2.
</p>
937 <p>If the
<tt>unnamed_addr
</tt> attribute is given, the address is know to not
938 be significant and two identical functions can be merged
</p>.
941 <pre class=
"doc_code">
942 define [
<a href=
"#linkage">linkage
</a>] [
<a href=
"#visibility">visibility
</a>]
943 [
<a href=
"#callingconv">cconv
</a>] [
<a href=
"#paramattrs">ret attrs
</a>]
944 <ResultType
> @
<FunctionName
> ([argument list])
945 [
<a href=
"#fnattrs">fn Attrs
</a>] [section
"name"] [align N]
946 [
<a href=
"#gc">gc
</a>] { ... }
951 <!-- ======================================================================= -->
953 <a name=
"aliasstructure">Aliases
</a>
958 <p>Aliases act as
"second name" for the aliasee value (which can be either
959 function, global variable, another alias or bitcast of global value). Aliases
960 may have an optional
<a href=
"#linkage">linkage type
</a>, and an
961 optional
<a href=
"#visibility">visibility style
</a>.
</p>
964 <pre class=
"doc_code">
965 @
<Name
> = alias [Linkage] [Visibility]
<AliaseeTy
> @
<Aliasee
>
970 <!-- ======================================================================= -->
972 <a name=
"namedmetadatastructure">Named Metadata
</a>
977 <p>Named metadata is a collection of metadata.
<a href=
"#metadata">Metadata
978 nodes
</a> (but not metadata strings) are the only valid operands for
979 a named metadata.
</p>
982 <pre class=
"doc_code">
983 ; Some unnamed metadata nodes, which are referenced by the named metadata.
984 !
0 = metadata !{metadata !
"zero"}
985 !
1 = metadata !{metadata !
"one"}
986 !
2 = metadata !{metadata !
"two"}
988 !name = !{!
0, !
1, !
2}
993 <!-- ======================================================================= -->
995 <a name=
"paramattrs">Parameter Attributes
</a>
1000 <p>The return type and each parameter of a function type may have a set of
1001 <i>parameter attributes
</i> associated with them. Parameter attributes are
1002 used to communicate additional information about the result or parameters of
1003 a function. Parameter attributes are considered to be part of the function,
1004 not of the function type, so functions with different parameter attributes
1005 can have the same function type.
</p>
1007 <p>Parameter attributes are simple keywords that follow the type specified. If
1008 multiple parameter attributes are needed, they are space separated. For
1011 <pre class=
"doc_code">
1012 declare i32 @printf(i8* noalias nocapture, ...)
1013 declare i32 @atoi(i8 zeroext)
1014 declare signext i8 @returns_signed_char()
1017 <p>Note that any attributes for the function result (
<tt>nounwind
</tt>,
1018 <tt>readonly
</tt>) come immediately after the argument list.
</p>
1020 <p>Currently, only the following parameter attributes are defined:
</p>
1023 <dt><tt><b>zeroext
</b></tt></dt>
1024 <dd>This indicates to the code generator that the parameter or return value
1025 should be zero-extended to the extent required by the target's ABI (which
1026 is usually
32-bits, but is
8-bits for a i1 on x86-
64) by the caller (for a
1027 parameter) or the callee (for a return value).
</dd>
1029 <dt><tt><b>signext
</b></tt></dt>
1030 <dd>This indicates to the code generator that the parameter or return value
1031 should be sign-extended to the extent required by the target's ABI (which
1032 is usually
32-bits) by the caller (for a parameter) or the callee (for a
1035 <dt><tt><b>inreg
</b></tt></dt>
1036 <dd>This indicates that this parameter or return value should be treated in a
1037 special target-dependent fashion during while emitting code for a function
1038 call or return (usually, by putting it in a register as opposed to memory,
1039 though some targets use it to distinguish between two different kinds of
1040 registers). Use of this attribute is target-specific.
</dd>
1042 <dt><tt><b><a name=
"byval">byval
</a></b></tt></dt>
1043 <dd><p>This indicates that the pointer parameter should really be passed by
1044 value to the function. The attribute implies that a hidden copy of the
1046 is made between the caller and the callee, so the callee is unable to
1047 modify the value in the callee. This attribute is only valid on LLVM
1048 pointer arguments. It is generally used to pass structs and arrays by
1049 value, but is also valid on pointers to scalars. The copy is considered
1050 to belong to the caller not the callee (for example,
1051 <tt><a href=
"#readonly">readonly
</a></tt> functions should not write to
1052 <tt>byval
</tt> parameters). This is not a valid attribute for return
1055 <p>The byval attribute also supports specifying an alignment with
1056 the align attribute. It indicates the alignment of the stack slot to
1057 form and the known alignment of the pointer specified to the call site. If
1058 the alignment is not specified, then the code generator makes a
1059 target-specific assumption.
</p></dd>
1061 <dt><tt><b><a name=
"sret">sret
</a></b></tt></dt>
1062 <dd>This indicates that the pointer parameter specifies the address of a
1063 structure that is the return value of the function in the source program.
1064 This pointer must be guaranteed by the caller to be valid: loads and
1065 stores to the structure may be assumed by the callee to not to trap. This
1066 may only be applied to the first parameter. This is not a valid attribute
1067 for return values.
</dd>
1069 <dt><tt><b><a name=
"noalias">noalias
</a></b></tt></dt>
1070 <dd>This indicates that pointer values
1071 <a href=
"#pointeraliasing"><i>based
</i></a> on the argument or return
1072 value do not alias pointer values which are not
<i>based
</i> on it,
1073 ignoring certain
"irrelevant" dependencies.
1074 For a call to the parent function, dependencies between memory
1075 references from before or after the call and from those during the call
1076 are
"irrelevant" to the
<tt>noalias
</tt> keyword for the arguments and
1077 return value used in that call.
1078 The caller shares the responsibility with the callee for ensuring that
1079 these requirements are met.
1080 For further details, please see the discussion of the NoAlias response in
1081 <a href=
"AliasAnalysis.html#MustMayNo">alias analysis
</a>.
<br>
1083 Note that this definition of
<tt>noalias
</tt> is intentionally
1084 similar to the definition of
<tt>restrict
</tt> in C99 for function
1085 arguments, though it is slightly weaker.
1087 For function return values, C99's
<tt>restrict
</tt> is not meaningful,
1088 while LLVM's
<tt>noalias
</tt> is.
1091 <dt><tt><b><a name=
"nocapture">nocapture
</a></b></tt></dt>
1092 <dd>This indicates that the callee does not make any copies of the pointer
1093 that outlive the callee itself. This is not a valid attribute for return
1096 <dt><tt><b><a name=
"nest">nest
</a></b></tt></dt>
1097 <dd>This indicates that the pointer parameter can be excised using the
1098 <a href=
"#int_trampoline">trampoline intrinsics
</a>. This is not a valid
1099 attribute for return values.
</dd>
1104 <!-- ======================================================================= -->
1106 <a name=
"gc">Garbage Collector Names
</a>
1111 <p>Each function may specify a garbage collector name, which is simply a
1114 <pre class=
"doc_code">
1115 define void @f() gc
"name" { ... }
1118 <p>The compiler declares the supported values of
<i>name
</i>. Specifying a
1119 collector which will cause the compiler to alter its output in order to
1120 support the named garbage collection algorithm.
</p>
1124 <!-- ======================================================================= -->
1126 <a name=
"fnattrs">Function Attributes
</a>
1131 <p>Function attributes are set to communicate additional information about a
1132 function. Function attributes are considered to be part of the function, not
1133 of the function type, so functions with different parameter attributes can
1134 have the same function type.
</p>
1136 <p>Function attributes are simple keywords that follow the type specified. If
1137 multiple attributes are needed, they are space separated. For example:
</p>
1139 <pre class=
"doc_code">
1140 define void @f() noinline { ... }
1141 define void @f() alwaysinline { ... }
1142 define void @f() alwaysinline optsize { ... }
1143 define void @f() optsize { ... }
1147 <dt><tt><b>alignstack(
<<em>n
</em>>)
</b></tt></dt>
1148 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1149 the backend should forcibly align the stack pointer. Specify the
1150 desired alignment, which must be a power of two, in parentheses.
1152 <dt><tt><b>alwaysinline
</b></tt></dt>
1153 <dd>This attribute indicates that the inliner should attempt to inline this
1154 function into callers whenever possible, ignoring any active inlining size
1155 threshold for this caller.
</dd>
1157 <dt><tt><b>hotpatch
</b></tt></dt>
1158 <dd>This attribute indicates that the function should be 'hotpatchable',
1159 meaning the function can be patched and/or hooked even while it is
1160 loaded into memory. On x86, the function prologue will be preceded
1161 by six bytes of padding and will begin with a two-byte instruction.
1162 Most of the functions in the Windows system DLLs in Windows XP SP2 or
1163 higher were compiled in this fashion.
</dd>
1165 <dt><tt><b>inlinehint
</b></tt></dt>
1166 <dd>This attribute indicates that the source code contained a hint that inlining
1167 this function is desirable (such as the
"inline" keyword in C/C++). It
1168 is just a hint; it imposes no requirements on the inliner.
</dd>
1170 <dt><tt><b>naked
</b></tt></dt>
1171 <dd>This attribute disables prologue / epilogue emission for the function.
1172 This can have very system-specific consequences.
</dd>
1174 <dt><tt><b>noimplicitfloat
</b></tt></dt>
1175 <dd>This attributes disables implicit floating point instructions.
</dd>
1177 <dt><tt><b>noinline
</b></tt></dt>
1178 <dd>This attribute indicates that the inliner should never inline this
1179 function in any situation. This attribute may not be used together with
1180 the
<tt>alwaysinline
</tt> attribute.
</dd>
1182 <dt><tt><b>noredzone
</b></tt></dt>
1183 <dd>This attribute indicates that the code generator should not use a red
1184 zone, even if the target-specific ABI normally permits it.
</dd>
1186 <dt><tt><b>noreturn
</b></tt></dt>
1187 <dd>This function attribute indicates that the function never returns
1188 normally. This produces undefined behavior at runtime if the function
1189 ever does dynamically return.
</dd>
1191 <dt><tt><b>nounwind
</b></tt></dt>
1192 <dd>This function attribute indicates that the function never returns with an
1193 unwind or exceptional control flow. If the function does unwind, its
1194 runtime behavior is undefined.
</dd>
1196 <dt><tt><b>optsize
</b></tt></dt>
1197 <dd>This attribute suggests that optimization passes and code generator passes
1198 make choices that keep the code size of this function low, and otherwise
1199 do optimizations specifically to reduce code size.
</dd>
1201 <dt><tt><b>readnone
</b></tt></dt>
1202 <dd>This attribute indicates that the function computes its result (or decides
1203 to unwind an exception) based strictly on its arguments, without
1204 dereferencing any pointer arguments or otherwise accessing any mutable
1205 state (e.g. memory, control registers, etc) visible to caller functions.
1206 It does not write through any pointer arguments
1207 (including
<tt><a href=
"#byval">byval
</a></tt> arguments) and never
1208 changes any state visible to callers. This means that it cannot unwind
1209 exceptions by calling the
<tt>C++
</tt> exception throwing methods, but
1210 could use the
<tt>unwind
</tt> instruction.
</dd>
1212 <dt><tt><b><a name=
"readonly">readonly
</a></b></tt></dt>
1213 <dd>This attribute indicates that the function does not write through any
1214 pointer arguments (including
<tt><a href=
"#byval">byval
</a></tt>
1215 arguments) or otherwise modify any state (e.g. memory, control registers,
1216 etc) visible to caller functions. It may dereference pointer arguments
1217 and read state that may be set in the caller. A readonly function always
1218 returns the same value (or unwinds an exception identically) when called
1219 with the same set of arguments and global state. It cannot unwind an
1220 exception by calling the
<tt>C++
</tt> exception throwing methods, but may
1221 use the
<tt>unwind
</tt> instruction.
</dd>
1223 <dt><tt><b><a name=
"ssp">ssp
</a></b></tt></dt>
1224 <dd>This attribute indicates that the function should emit a stack smashing
1225 protector. It is in the form of a
"canary"—a random value placed on
1226 the stack before the local variables that's checked upon return from the
1227 function to see if it has been overwritten. A heuristic is used to
1228 determine if a function needs stack protectors or not.
<br>
1230 If a function that has an
<tt>ssp
</tt> attribute is inlined into a
1231 function that doesn't have an
<tt>ssp
</tt> attribute, then the resulting
1232 function will have an
<tt>ssp
</tt> attribute.
</dd>
1234 <dt><tt><b>sspreq
</b></tt></dt>
1235 <dd>This attribute indicates that the function should
<em>always
</em> emit a
1236 stack smashing protector. This overrides
1237 the
<tt><a href=
"#ssp">ssp
</a></tt> function attribute.
<br>
1239 If a function that has an
<tt>sspreq
</tt> attribute is inlined into a
1240 function that doesn't have an
<tt>sspreq
</tt> attribute or which has
1241 an
<tt>ssp
</tt> attribute, then the resulting function will have
1242 an
<tt>sspreq
</tt> attribute.
</dd>
1247 <!-- ======================================================================= -->
1249 <a name=
"moduleasm">Module-Level Inline Assembly
</a>
1254 <p>Modules may contain
"module-level inline asm" blocks, which corresponds to
1255 the GCC
"file scope inline asm" blocks. These blocks are internally
1256 concatenated by LLVM and treated as a single unit, but may be separated in
1257 the
<tt>.ll
</tt> file if desired. The syntax is very simple:
</p>
1259 <pre class=
"doc_code">
1260 module asm
"inline asm code goes here"
1261 module asm
"more can go here"
1264 <p>The strings can contain any character by escaping non-printable characters.
1265 The escape sequence used is simply
"\xx" where
"xx" is the two digit hex code
1268 <p>The inline asm code is simply printed to the machine code .s file when
1269 assembly code is generated.
</p>
1273 <!-- ======================================================================= -->
1275 <a name=
"datalayout">Data Layout
</a>
1280 <p>A module may specify a target specific data layout string that specifies how
1281 data is to be laid out in memory. The syntax for the data layout is
1284 <pre class=
"doc_code">
1285 target datalayout =
"<i>layout specification</i>"
1288 <p>The
<i>layout specification
</i> consists of a list of specifications
1289 separated by the minus sign character ('-'). Each specification starts with
1290 a letter and may include other information after the letter to define some
1291 aspect of the data layout. The specifications accepted are as follows:
</p>
1295 <dd>Specifies that the target lays out data in big-endian form. That is, the
1296 bits with the most significance have the lowest address location.
</dd>
1299 <dd>Specifies that the target lays out data in little-endian form. That is,
1300 the bits with the least significance have the lowest address
1303 <dt><tt>p:
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1304 <dd>This specifies the
<i>size
</i> of a pointer and its
<i>abi
</i> and
1305 <i>preferred
</i> alignments. All sizes are in bits. Specifying
1306 the
<i>pref
</i> alignment is optional. If omitted, the
1307 preceding
<tt>:
</tt> should be omitted too.
</dd>
1309 <dt><tt>i
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1310 <dd>This specifies the alignment for an integer type of a given bit
1311 <i>size
</i>. The value of
<i>size
</i> must be in the range [
1,
2^
23).
</dd>
1313 <dt><tt>v
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1314 <dd>This specifies the alignment for a vector type of a given bit
1317 <dt><tt>f
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1318 <dd>This specifies the alignment for a floating point type of a given bit
1319 <i>size
</i>. Only values of
<i>size
</i> that are supported by the target
1320 will work.
32 (float) and
64 (double) are supported on all targets;
1321 80 or
128 (different flavors of long double) are also supported on some
1324 <dt><tt>a
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1325 <dd>This specifies the alignment for an aggregate type of a given bit
1328 <dt><tt>s
<i>size
</i>:
<i>abi
</i>:
<i>pref
</i></tt></dt>
1329 <dd>This specifies the alignment for a stack object of a given bit
1332 <dt><tt>n
<i>size1
</i>:
<i>size2
</i>:
<i>size3
</i>...
</tt></dt>
1333 <dd>This specifies a set of native integer widths for the target CPU
1334 in bits. For example, it might contain
"n32" for
32-bit PowerPC,
1335 "n32:64" for PowerPC
64, or
"n8:16:32:64" for X86-
64. Elements of
1336 this set are considered to support most general arithmetic
1337 operations efficiently.
</dd>
1340 <p>When constructing the data layout for a given target, LLVM starts with a
1341 default set of specifications which are then (possibly) overridden by the
1342 specifications in the
<tt>datalayout
</tt> keyword. The default specifications
1343 are given in this list:
</p>
1346 <li><tt>E
</tt> - big endian
</li>
1347 <li><tt>p:
64:
64:
64</tt> -
64-bit pointers with
64-bit alignment
</li>
1348 <li><tt>i1:
8:
8</tt> - i1 is
8-bit (byte) aligned
</li>
1349 <li><tt>i8:
8:
8</tt> - i8 is
8-bit (byte) aligned
</li>
1350 <li><tt>i16:
16:
16</tt> - i16 is
16-bit aligned
</li>
1351 <li><tt>i32:
32:
32</tt> - i32 is
32-bit aligned
</li>
1352 <li><tt>i64:
32:
64</tt> - i64 has ABI alignment of
32-bits but preferred
1353 alignment of
64-bits
</li>
1354 <li><tt>f32:
32:
32</tt> - float is
32-bit aligned
</li>
1355 <li><tt>f64:
64:
64</tt> - double is
64-bit aligned
</li>
1356 <li><tt>v64:
64:
64</tt> -
64-bit vector is
64-bit aligned
</li>
1357 <li><tt>v128:
128:
128</tt> -
128-bit vector is
128-bit aligned
</li>
1358 <li><tt>a0:
0:
1</tt> - aggregates are
8-bit aligned
</li>
1359 <li><tt>s0:
64:
64</tt> - stack objects are
64-bit aligned
</li>
1362 <p>When LLVM is determining the alignment for a given type, it uses the
1363 following rules:
</p>
1366 <li>If the type sought is an exact match for one of the specifications, that
1367 specification is used.
</li>
1369 <li>If no match is found, and the type sought is an integer type, then the
1370 smallest integer type that is larger than the bitwidth of the sought type
1371 is used. If none of the specifications are larger than the bitwidth then
1372 the the largest integer type is used. For example, given the default
1373 specifications above, the i7 type will use the alignment of i8 (next
1374 largest) while both i65 and i256 will use the alignment of i64 (largest
1377 <li>If no match is found, and the type sought is a vector type, then the
1378 largest vector type that is smaller than the sought vector type will be
1379 used as a fall back. This happens because
<128 x double
> can be
1380 implemented in terms of
64 <2 x double
>, for example.
</li>
1385 <!-- ======================================================================= -->
1387 <a name=
"pointeraliasing">Pointer Aliasing Rules
</a>
1392 <p>Any memory access must be done through a pointer value associated
1393 with an address range of the memory access, otherwise the behavior
1394 is undefined. Pointer values are associated with address ranges
1395 according to the following rules:
</p>
1398 <li>A pointer value is associated with the addresses associated with
1399 any value it is
<i>based
</i> on.
1400 <li>An address of a global variable is associated with the address
1401 range of the variable's storage.
</li>
1402 <li>The result value of an allocation instruction is associated with
1403 the address range of the allocated storage.
</li>
1404 <li>A null pointer in the default address-space is associated with
1406 <li>An integer constant other than zero or a pointer value returned
1407 from a function not defined within LLVM may be associated with address
1408 ranges allocated through mechanisms other than those provided by
1409 LLVM. Such ranges shall not overlap with any ranges of addresses
1410 allocated by mechanisms provided by LLVM.
</li>
1413 <p>A pointer value is
<i>based
</i> on another pointer value according
1414 to the following rules:
</p>
1417 <li>A pointer value formed from a
1418 <tt><a href=
"#i_getelementptr">getelementptr
</a></tt> operation
1419 is
<i>based
</i> on the first operand of the
<tt>getelementptr
</tt>.
</li>
1420 <li>The result value of a
1421 <tt><a href=
"#i_bitcast">bitcast
</a></tt> is
<i>based
</i> on the operand
1422 of the
<tt>bitcast
</tt>.
</li>
1423 <li>A pointer value formed by an
1424 <tt><a href=
"#i_inttoptr">inttoptr
</a></tt> is
<i>based
</i> on all
1425 pointer values that contribute (directly or indirectly) to the
1426 computation of the pointer's value.
</li>
1427 <li>The
"<i>based</i> on" relationship is transitive.
</li>
1430 <p>Note that this definition of
<i>"based"</i> is intentionally
1431 similar to the definition of
<i>"based"</i> in C99, though it is
1432 slightly weaker.
</p>
1434 <p>LLVM IR does not associate types with memory. The result type of a
1435 <tt><a href=
"#i_load">load
</a></tt> merely indicates the size and
1436 alignment of the memory from which to load, as well as the
1437 interpretation of the value. The first operand type of a
1438 <tt><a href=
"#i_store">store
</a></tt> similarly only indicates the size
1439 and alignment of the store.
</p>
1441 <p>Consequently, type-based alias analysis, aka TBAA, aka
1442 <tt>-fstrict-aliasing
</tt>, is not applicable to general unadorned
1443 LLVM IR.
<a href=
"#metadata">Metadata
</a> may be used to encode
1444 additional information which specialized optimization passes may use
1445 to implement type-based alias analysis.
</p>
1449 <!-- ======================================================================= -->
1451 <a name=
"volatile">Volatile Memory Accesses
</a>
1456 <p>Certain memory accesses, such as
<a href=
"#i_load"><tt>load
</tt></a>s,
<a
1457 href=
"#i_store"><tt>store
</tt></a>s, and
<a
1458 href=
"#int_memcpy"><tt>llvm.memcpy
</tt></a>s may be marked
<tt>volatile
</tt>.
1459 The optimizers must not change the number of volatile operations or change their
1460 order of execution relative to other volatile operations. The optimizers
1461 <i>may
</i> change the order of volatile operations relative to non-volatile
1462 operations. This is not Java's
"volatile" and has no cross-thread
1463 synchronization behavior.
</p>
1469 <!-- *********************************************************************** -->
1470 <h2><a name=
"typesystem">Type System
</a></h2>
1471 <!-- *********************************************************************** -->
1475 <p>The LLVM type system is one of the most important features of the
1476 intermediate representation. Being typed enables a number of optimizations
1477 to be performed on the intermediate representation directly, without having
1478 to do extra analyses on the side before the transformation. A strong type
1479 system makes it easier to read the generated code and enables novel analyses
1480 and transformations that are not feasible to perform on normal three address
1481 code representations.
</p>
1483 <!-- ======================================================================= -->
1485 <a name=
"t_classifications">Type Classifications
</a>
1490 <p>The types fall into a few useful classifications:
</p>
1492 <table border=
"1" cellspacing=
"0" cellpadding=
"4">
1494 <tr><th>Classification
</th><th>Types
</th></tr>
1496 <td><a href=
"#t_integer">integer
</a></td>
1497 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ...
</tt></td>
1500 <td><a href=
"#t_floating">floating point
</a></td>
1501 <td><tt>float, double, x86_fp80, fp128, ppc_fp128
</tt></td>
1504 <td><a name=
"t_firstclass">first class
</a></td>
1505 <td><a href=
"#t_integer">integer
</a>,
1506 <a href=
"#t_floating">floating point
</a>,
1507 <a href=
"#t_pointer">pointer
</a>,
1508 <a href=
"#t_vector">vector
</a>,
1509 <a href=
"#t_struct">structure
</a>,
1510 <a href=
"#t_array">array
</a>,
1511 <a href=
"#t_label">label
</a>,
1512 <a href=
"#t_metadata">metadata
</a>.
1516 <td><a href=
"#t_primitive">primitive
</a></td>
1517 <td><a href=
"#t_label">label
</a>,
1518 <a href=
"#t_void">void
</a>,
1519 <a href=
"#t_integer">integer
</a>,
1520 <a href=
"#t_floating">floating point
</a>,
1521 <a href=
"#t_x86mmx">x86mmx
</a>,
1522 <a href=
"#t_metadata">metadata
</a>.
</td>
1525 <td><a href=
"#t_derived">derived
</a></td>
1526 <td><a href=
"#t_array">array
</a>,
1527 <a href=
"#t_function">function
</a>,
1528 <a href=
"#t_pointer">pointer
</a>,
1529 <a href=
"#t_struct">structure
</a>,
1530 <a href=
"#t_pstruct">packed structure
</a>,
1531 <a href=
"#t_vector">vector
</a>,
1532 <a href=
"#t_opaque">opaque
</a>.
1538 <p>The
<a href=
"#t_firstclass">first class
</a> types are perhaps the most
1539 important. Values of these types are the only ones which can be produced by
1544 <!-- ======================================================================= -->
1546 <a name=
"t_primitive">Primitive Types
</a>
1551 <p>The primitive types are the fundamental building blocks of the LLVM
1554 <!-- _______________________________________________________________________ -->
1556 <a name=
"t_integer">Integer Type
</a>
1562 <p>The integer type is a very simple type that simply specifies an arbitrary
1563 bit width for the integer type desired. Any bit width from
1 bit to
1564 2<sup>23</sup>-
1 (about
8 million) can be specified.
</p>
1571 <p>The number of bits the integer will occupy is specified by the
<tt>N
</tt>
1575 <table class=
"layout">
1577 <td class=
"left"><tt>i1
</tt></td>
1578 <td class=
"left">a single-bit integer.
</td>
1581 <td class=
"left"><tt>i32
</tt></td>
1582 <td class=
"left">a
32-bit integer.
</td>
1585 <td class=
"left"><tt>i1942652
</tt></td>
1586 <td class=
"left">a really big integer of over
1 million bits.
</td>
1592 <!-- _______________________________________________________________________ -->
1594 <a name=
"t_floating">Floating Point Types
</a>
1601 <tr><th>Type
</th><th>Description
</th></tr>
1602 <tr><td><tt>float
</tt></td><td>32-bit floating point value
</td></tr>
1603 <tr><td><tt>double
</tt></td><td>64-bit floating point value
</td></tr>
1604 <tr><td><tt>fp128
</tt></td><td>128-bit floating point value (
112-bit mantissa)
</td></tr>
1605 <tr><td><tt>x86_fp80
</tt></td><td>80-bit floating point value (X87)
</td></tr>
1606 <tr><td><tt>ppc_fp128
</tt></td><td>128-bit floating point value (two
64-bits)
</td></tr>
1612 <!-- _______________________________________________________________________ -->
1614 <a name=
"t_x86mmx">X86mmx Type
</a>
1620 <p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.
</p>
1629 <!-- _______________________________________________________________________ -->
1631 <a name=
"t_void">Void Type
</a>
1637 <p>The void type does not represent any value and has no size.
</p>
1646 <!-- _______________________________________________________________________ -->
1648 <a name=
"t_label">Label Type
</a>
1654 <p>The label type represents code labels.
</p>
1663 <!-- _______________________________________________________________________ -->
1665 <a name=
"t_metadata">Metadata Type
</a>
1671 <p>The metadata type represents embedded metadata. No derived types may be
1672 created from metadata except for
<a href=
"#t_function">function
</a>
1684 <!-- ======================================================================= -->
1686 <a name=
"t_derived">Derived Types
</a>
1691 <p>The real power in LLVM comes from the derived types in the system. This is
1692 what allows a programmer to represent arrays, functions, pointers, and other
1693 useful types. Each of these types contain one or more element types which
1694 may be a primitive type, or another derived type. For example, it is
1695 possible to have a two dimensional array, using an array as the element type
1696 of another array.
</p>
1699 <!-- _______________________________________________________________________ -->
1701 <a name=
"t_aggregate">Aggregate Types
</a>
1706 <p>Aggregate Types are a subset of derived types that can contain multiple
1707 member types.
<a href=
"#t_array">Arrays
</a>,
1708 <a href=
"#t_struct">structs
</a>, and
<a href=
"#t_vector">vectors
</a> are
1709 aggregate types.
</p>
1713 <!-- _______________________________________________________________________ -->
1715 <a name=
"t_array">Array Type
</a>
1721 <p>The array type is a very simple derived type that arranges elements
1722 sequentially in memory. The array type requires a size (number of elements)
1723 and an underlying data type.
</p>
1727 [
<# elements
> x
<elementtype
>]
1730 <p>The number of elements is a constant integer value;
<tt>elementtype
</tt> may
1731 be any type with a size.
</p>
1734 <table class=
"layout">
1736 <td class=
"left"><tt>[
40 x i32]
</tt></td>
1737 <td class=
"left">Array of
40 32-bit integer values.
</td>
1740 <td class=
"left"><tt>[
41 x i32]
</tt></td>
1741 <td class=
"left">Array of
41 32-bit integer values.
</td>
1744 <td class=
"left"><tt>[
4 x i8]
</tt></td>
1745 <td class=
"left">Array of
4 8-bit integer values.
</td>
1748 <p>Here are some examples of multidimensional arrays:
</p>
1749 <table class=
"layout">
1751 <td class=
"left"><tt>[
3 x [
4 x i32]]
</tt></td>
1752 <td class=
"left">3x4 array of
32-bit integer values.
</td>
1755 <td class=
"left"><tt>[
12 x [
10 x float]]
</tt></td>
1756 <td class=
"left">12x10 array of single precision floating point values.
</td>
1759 <td class=
"left"><tt>[
2 x [
3 x [
4 x i16]]]
</tt></td>
1760 <td class=
"left">2x3x4 array of
16-bit integer values.
</td>
1764 <p>There is no restriction on indexing beyond the end of the array implied by
1765 a static type (though there are restrictions on indexing beyond the bounds
1766 of an allocated object in some cases). This means that single-dimension
1767 'variable sized array' addressing can be implemented in LLVM with a zero
1768 length array type. An implementation of 'pascal style arrays' in LLVM could
1769 use the type
"<tt>{ i32, [0 x float]}</tt>", for example.
</p>
1773 <!-- _______________________________________________________________________ -->
1775 <a name=
"t_function">Function Type
</a>
1781 <p>The function type can be thought of as a function signature. It consists of
1782 a return type and a list of formal parameter types. The return type of a
1783 function type is a first class type or a void type.
</p>
1787 <returntype
> (
<parameter list
>)
1790 <p>...where '
<tt><parameter list
></tt>' is a comma-separated list of type
1791 specifiers. Optionally, the parameter list may include a type
<tt>...
</tt>,
1792 which indicates that the function takes a variable number of arguments.
1793 Variable argument functions can access their arguments with
1794 the
<a href=
"#int_varargs">variable argument handling intrinsic
</a>
1795 functions. '
<tt><returntype
></tt>' is any type except
1796 <a href=
"#t_label">label
</a>.
</p>
1799 <table class=
"layout">
1801 <td class=
"left"><tt>i32 (i32)
</tt></td>
1802 <td class=
"left">function taking an
<tt>i32
</tt>, returning an
<tt>i32
</tt>
1804 </tr><tr class=
"layout">
1805 <td class=
"left"><tt>float
(i16,
i32
*)
*
1807 <td class=
"left"><a href=
"#t_pointer">Pointer
</a> to a function that takes
1808 an
<tt>i16
</tt> and a
<a href=
"#t_pointer">pointer
</a> to
<tt>i32
</tt>,
1809 returning
<tt>float
</tt>.
1811 </tr><tr class=
"layout">
1812 <td class=
"left"><tt>i32 (i8*, ...)
</tt></td>
1813 <td class=
"left">A vararg function that takes at least one
1814 <a href=
"#t_pointer">pointer
</a> to
<tt>i8
</tt> (char in C),
1815 which returns an integer. This is the signature for
<tt>printf
</tt> in
1818 </tr><tr class=
"layout">
1819 <td class=
"left"><tt>{i32, i32} (i32)
</tt></td>
1820 <td class=
"left">A function taking an
<tt>i32
</tt>, returning a
1821 <a href=
"#t_struct">structure
</a> containing two
<tt>i32
</tt> values
1828 <!-- _______________________________________________________________________ -->
1830 <a name=
"t_struct">Structure Type
</a>
1836 <p>The structure type is used to represent a collection of data members together
1837 in memory. The packing of the field types is defined to match the ABI of the
1838 underlying processor. The elements of a structure may be any type that has a
1841 <p>Structures in memory are accessed using '
<tt><a href=
"#i_load">load
</a></tt>'
1842 and '
<tt><a href=
"#i_store">store
</a></tt>' by getting a pointer to a field
1843 with the '
<tt><a href=
"#i_getelementptr">getelementptr
</a></tt>' instruction.
1844 Structures in registers are accessed using the
1845 '
<tt><a href=
"#i_extractvalue">extractvalue
</a></tt>' and
1846 '
<tt><a href=
"#i_insertvalue">insertvalue
</a></tt>' instructions.
</p>
1849 {
<type list
> }
1853 <table class=
"layout">
1855 <td class=
"left"><tt>{ i32, i32, i32 }
</tt></td>
1856 <td class=
"left">A triple of three
<tt>i32
</tt> values
</td>
1857 </tr><tr class=
"layout">
1858 <td class=
"left"><tt>{
float,
i32
(i32)
*
}
</tt></td>
1859 <td class=
"left">A pair, where the first element is a
<tt>float
</tt> and the
1860 second element is a
<a href=
"#t_pointer">pointer
</a> to a
1861 <a href=
"#t_function">function
</a> that takes an
<tt>i32
</tt>, returning
1862 an
<tt>i32
</tt>.
</td>
1868 <!-- _______________________________________________________________________ -->
1870 <a name=
"t_pstruct">Packed Structure Type
</a>
1876 <p>The packed structure type is used to represent a collection of data members
1877 together in memory. There is no padding between fields. Further, the
1878 alignment of a packed structure is
1 byte. The elements of a packed
1879 structure may be any type that has a size.
</p>
1881 <p>Structures are accessed using '
<tt><a href=
"#i_load">load
</a></tt> and
1882 '
<tt><a href=
"#i_store">store
</a></tt>' by getting a pointer to a field with
1883 the '
<tt><a href=
"#i_getelementptr">getelementptr
</a></tt>' instruction.
</p>
1887 < {
<type list
> }
>
1891 <table class=
"layout">
1893 <td class=
"left"><tt>< { i32, i32, i32 }
></tt></td>
1894 <td class=
"left">A triple of three
<tt>i32
</tt> values
</td>
1895 </tr><tr class=
"layout">
1897 <tt>< {
float,
i32
(i32)*
}
></tt></td>
1898 <td class=
"left">A pair, where the first element is a
<tt>float
</tt> and the
1899 second element is a
<a href=
"#t_pointer">pointer
</a> to a
1900 <a href=
"#t_function">function
</a> that takes an
<tt>i32
</tt>, returning
1901 an
<tt>i32
</tt>.
</td>
1907 <!-- _______________________________________________________________________ -->
1909 <a name=
"t_pointer">Pointer Type
</a>
1915 <p>The pointer type is used to specify memory locations.
1916 Pointers are commonly used to reference objects in memory.
</p>
1918 <p>Pointer types may have an optional address space attribute defining the
1919 numbered address space where the pointed-to object resides. The default
1920 address space is number zero. The semantics of non-zero address
1921 spaces are target-specific.
</p>
1923 <p>Note that LLVM does not permit pointers to void (
<tt>void*
</tt>) nor does it
1924 permit pointers to labels (
<tt>label*
</tt>). Use
<tt>i8*
</tt> instead.
</p>
1932 <table class=
"layout">
1934 <td class=
"left"><tt>[
4 x i32]*
</tt></td>
1935 <td class=
"left">A
<a href=
"#t_pointer">pointer
</a> to
<a
1936 href=
"#t_array">array
</a> of four
<tt>i32
</tt> values.
</td>
1939 <td class=
"left"><tt>i32 (i32*) *
</tt></td>
1940 <td class=
"left"> A
<a href=
"#t_pointer">pointer
</a> to a
<a
1941 href=
"#t_function">function
</a> that takes an
<tt>i32*
</tt>, returning an
1945 <td class=
"left"><tt>i32 addrspace(
5)*
</tt></td>
1946 <td class=
"left">A
<a href=
"#t_pointer">pointer
</a> to an
<tt>i32
</tt> value
1947 that resides in address space #
5.
</td>
1953 <!-- _______________________________________________________________________ -->
1955 <a name=
"t_vector">Vector Type
</a>
1961 <p>A vector type is a simple derived type that represents a vector of elements.
1962 Vector types are used when multiple primitive data are operated in parallel
1963 using a single instruction (SIMD). A vector type requires a size (number of
1964 elements) and an underlying primitive data type. Vector types are considered
1965 <a href=
"#t_firstclass">first class
</a>.
</p>
1969 < <# elements
> x
<elementtype
> >
1972 <p>The number of elements is a constant integer value larger than
0; elementtype
1973 may be any integer or floating point type. Vectors of size zero are not
1974 allowed, and pointers are not allowed as the element type.
</p>
1977 <table class=
"layout">
1979 <td class=
"left"><tt><4 x i32
></tt></td>
1980 <td class=
"left">Vector of
4 32-bit integer values.
</td>
1983 <td class=
"left"><tt><8 x float
></tt></td>
1984 <td class=
"left">Vector of
8 32-bit floating-point values.
</td>
1987 <td class=
"left"><tt><2 x i64
></tt></td>
1988 <td class=
"left">Vector of
2 64-bit integer values.
</td>
1994 <!-- _______________________________________________________________________ -->
1996 <a name=
"t_opaque">Opaque Type
</a>
2002 <p>Opaque types are used to represent unknown types in the system. This
2003 corresponds (for example) to the C notion of a forward declared structure
2004 type. In LLVM, opaque types can eventually be resolved to any type (not just
2005 a structure type).
</p>
2013 <table class=
"layout">
2015 <td class=
"left"><tt>opaque
</tt></td>
2016 <td class=
"left">An opaque type.
</td>
2024 <!-- ======================================================================= -->
2026 <a name=
"t_uprefs">Type Up-references
</a>
2032 <p>An
"up reference" allows you to refer to a lexically enclosing type without
2033 requiring it to have a name. For instance, a structure declaration may
2034 contain a pointer to any of the types it is lexically a member of. Example
2035 of up references (with their equivalent as named type declarations)
2039 { \
2 * } %x = type { %x* }
2040 { \
2 }* %y = type { %y }*
2044 <p>An up reference is needed by the asmprinter for printing out cyclic types
2045 when there is no declared name for a type in the cycle. Because the
2046 asmprinter does not want to print out an infinite type string, it needs a
2047 syntax to handle recursive types that have no names (all names are optional
2055 <p>The level is the count of the lexical type that is being referred to.
</p>
2058 <table class=
"layout">
2060 <td class=
"left"><tt>\
1*
</tt></td>
2061 <td class=
"left">Self-referential pointer.
</td>
2064 <td class=
"left"><tt>{ { \
3*, i8 }, i32 }
</tt></td>
2065 <td class=
"left">Recursive structure where the upref refers to the out-most
2074 <!-- *********************************************************************** -->
2075 <h2><a name=
"constants">Constants
</a></h2>
2076 <!-- *********************************************************************** -->
2080 <p>LLVM has several different basic types of constants. This section describes
2081 them all and their syntax.
</p>
2083 <!-- ======================================================================= -->
2085 <a name=
"simpleconstants">Simple Constants
</a>
2091 <dt><b>Boolean constants
</b></dt>
2092 <dd>The two strings '
<tt>true
</tt>' and '
<tt>false
</tt>' are both valid
2093 constants of the
<tt><a href=
"#t_integer">i1
</a></tt> type.
</dd>
2095 <dt><b>Integer constants
</b></dt>
2096 <dd>Standard integers (such as '
4') are constants of
2097 the
<a href=
"#t_integer">integer
</a> type. Negative numbers may be used
2098 with integer types.
</dd>
2100 <dt><b>Floating point constants
</b></dt>
2101 <dd>Floating point constants use standard decimal notation (e.g.
123.421),
2102 exponential notation (e.g.
1.23421e+2), or a more precise hexadecimal
2103 notation (see below). The assembler requires the exact decimal value of a
2104 floating-point constant. For example, the assembler accepts
1.25 but
2105 rejects
1.3 because
1.3 is a repeating decimal in binary. Floating point
2106 constants must have a
<a href=
"#t_floating">floating point
</a> type.
</dd>
2108 <dt><b>Null pointer constants
</b></dt>
2109 <dd>The identifier '
<tt>null
</tt>' is recognized as a null pointer constant
2110 and must be of
<a href=
"#t_pointer">pointer type
</a>.
</dd>
2113 <p>The one non-intuitive notation for constants is the hexadecimal form of
2114 floating point constants. For example, the form '
<tt>double
2115 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2116 '
<tt>double
4.5e+15</tt>'. The only time hexadecimal floating point
2117 constants are required (and the only time that they are generated by the
2118 disassembler) is when a floating point constant must be emitted but it cannot
2119 be represented as a decimal floating point number in a reasonable number of
2120 digits. For example, NaN's, infinities, and other special values are
2121 represented in their IEEE hexadecimal format so that assembly and disassembly
2122 do not cause any bits to change in the constants.
</p>
2124 <p>When using the hexadecimal form, constants of types float and double are
2125 represented using the
16-digit form shown above (which matches the IEEE754
2126 representation for double); float values must, however, be exactly
2127 representable as IEE754 single precision. Hexadecimal format is always used
2128 for long double, and there are three forms of long double. The
80-bit format
2129 used by x86 is represented as
<tt>0xK
</tt> followed by
20 hexadecimal digits.
2130 The
128-bit format used by PowerPC (two adjacent doubles) is represented
2131 by
<tt>0xM
</tt> followed by
32 hexadecimal digits. The IEEE
128-bit format
2132 is represented by
<tt>0xL
</tt> followed by
32 hexadecimal digits; no
2133 currently supported target uses this format. Long doubles will only work if
2134 they match the long double format on your target. All hexadecimal formats
2135 are big-endian (sign bit at the left).
</p>
2137 <p>There are no constants of type x86mmx.
</p>
2140 <!-- ======================================================================= -->
2142 <a name=
"aggregateconstants"></a> <!-- old anchor -->
2143 <a name=
"complexconstants">Complex Constants
</a>
2148 <p>Complex constants are a (potentially recursive) combination of simple
2149 constants and smaller complex constants.
</p>
2152 <dt><b>Structure constants
</b></dt>
2153 <dd>Structure constants are represented with notation similar to structure
2154 type definitions (a comma separated list of elements, surrounded by braces
2155 (
<tt>{}
</tt>)). For example:
"<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2156 where
"<tt>@G</tt>" is declared as
"<tt>@G = external global i32</tt>".
2157 Structure constants must have
<a href=
"#t_struct">structure type
</a>, and
2158 the number and types of elements must match those specified by the
2161 <dt><b>Array constants
</b></dt>
2162 <dd>Array constants are represented with notation similar to array type
2163 definitions (a comma separated list of elements, surrounded by square
2164 brackets (
<tt>[]
</tt>)). For example:
"<tt>[ i32 42, i32 11, i32 74
2165 ]</tt>". Array constants must have
<a href=
"#t_array">array type
</a>, and
2166 the number and types of elements must match those specified by the
2169 <dt><b>Vector constants
</b></dt>
2170 <dd>Vector constants are represented with notation similar to vector type
2171 definitions (a comma separated list of elements, surrounded by
2172 less-than/greater-than's (
<tt><></tt>)). For example:
"<tt>< i32
2173 42, i32 11, i32 74, i32 100 ></tt>". Vector constants must
2174 have
<a href=
"#t_vector">vector type
</a>, and the number and types of
2175 elements must match those specified by the type.
</dd>
2177 <dt><b>Zero initialization
</b></dt>
2178 <dd>The string '
<tt>zeroinitializer
</tt>' can be used to zero initialize a
2179 value to zero of
<em>any
</em> type, including scalar and
2180 <a href=
"#t_aggregate">aggregate
</a> types.
2181 This is often used to avoid having to print large zero initializers
2182 (e.g. for large arrays) and is always exactly equivalent to using explicit
2183 zero initializers.
</dd>
2185 <dt><b>Metadata node
</b></dt>
2186 <dd>A metadata node is a structure-like constant with
2187 <a href=
"#t_metadata">metadata type
</a>. For example:
"<tt>metadata !{
2188 i32 0, metadata !"test
" }</tt>". Unlike other constants that are meant to
2189 be interpreted as part of the instruction stream, metadata is a place to
2190 attach additional information such as debug info.
</dd>
2195 <!-- ======================================================================= -->
2197 <a name=
"globalconstants">Global Variable and Function Addresses
</a>
2202 <p>The addresses of
<a href=
"#globalvars">global variables
</a>
2203 and
<a href=
"#functionstructure">functions
</a> are always implicitly valid
2204 (link-time) constants. These constants are explicitly referenced when
2205 the
<a href=
"#identifiers">identifier for the global
</a> is used and always
2206 have
<a href=
"#t_pointer">pointer
</a> type. For example, the following is a
2207 legal LLVM file:
</p>
2209 <pre class=
"doc_code">
2212 @Z = global [
2 x i32*] [ i32* @X, i32* @Y ]
2217 <!-- ======================================================================= -->
2219 <a name=
"undefvalues">Undefined Values
</a>
2224 <p>The string '
<tt>undef
</tt>' can be used anywhere a constant is expected, and
2225 indicates that the user of the value may receive an unspecified bit-pattern.
2226 Undefined values may be of any type (other than '
<tt>label
</tt>'
2227 or '
<tt>void
</tt>') and be used anywhere a constant is permitted.
</p>
2229 <p>Undefined values are useful because they indicate to the compiler that the
2230 program is well defined no matter what value is used. This gives the
2231 compiler more freedom to optimize. Here are some examples of (potentially
2232 surprising) transformations that are valid (in pseudo IR):
</p>
2235 <pre class=
"doc_code">
2245 <p>This is safe because all of the output bits are affected by the undef bits.
2246 Any output bit can have a zero or one depending on the input bits.
</p>
2248 <pre class=
"doc_code">
2259 <p>These logical operations have bits that are not always affected by the input.
2260 For example, if
<tt>%X
</tt> has a zero bit, then the output of the
2261 '
<tt>and
</tt>' operation will always be a zero for that bit, no matter what
2262 the corresponding bit from the '
<tt>undef
</tt>' is. As such, it is unsafe to
2263 optimize or assume that the result of the '
<tt>and
</tt>' is '
<tt>undef
</tt>'.
2264 However, it is safe to assume that all bits of the '
<tt>undef
</tt>' could be
2265 0, and optimize the '
<tt>and
</tt>' to
0. Likewise, it is safe to assume that
2266 all the bits of the '
<tt>undef
</tt>' operand to the '
<tt>or
</tt>' could be
2267 set, allowing the '
<tt>or
</tt>' to be folded to -
1.
</p>
2269 <pre class=
"doc_code">
2270 %A = select undef, %X, %Y
2271 %B = select undef,
42, %Y
2272 %C = select %X, %Y, undef
2283 <p>This set of examples shows that undefined '
<tt>select
</tt>' (and conditional
2284 branch) conditions can go
<em>either way
</em>, but they have to come from one
2285 of the two operands. In the
<tt>%A
</tt> example, if
<tt>%X
</tt> and
2286 <tt>%Y
</tt> were both known to have a clear low bit, then
<tt>%A
</tt> would
2287 have to have a cleared low bit. However, in the
<tt>%C
</tt> example, the
2288 optimizer is allowed to assume that the '
<tt>undef
</tt>' operand could be the
2289 same as
<tt>%Y
</tt>, allowing the whole '
<tt>select
</tt>' to be
2292 <pre class=
"doc_code">
2293 %A = xor undef, undef
2311 <p>This example points out that two '
<tt>undef
</tt>' operands are not
2312 necessarily the same. This can be surprising to people (and also matches C
2313 semantics) where they assume that
"<tt>X^X</tt>" is always zero, even
2314 if
<tt>X
</tt> is undefined. This isn't true for a number of reasons, but the
2315 short answer is that an '
<tt>undef
</tt>'
"variable" can arbitrarily change
2316 its value over its
"live range". This is true because the variable doesn't
2317 actually
<em>have a live range
</em>. Instead, the value is logically read
2318 from arbitrary registers that happen to be around when needed, so the value
2319 is not necessarily consistent over time. In fact,
<tt>%A
</tt> and
<tt>%C
</tt>
2320 need to have the same semantics or the core LLVM
"replace all uses with"
2321 concept would not hold.
</p>
2323 <pre class=
"doc_code">
2331 <p>These examples show the crucial difference between an
<em>undefined
2332 value
</em> and
<em>undefined behavior
</em>. An undefined value (like
2333 '
<tt>undef
</tt>') is allowed to have an arbitrary bit-pattern. This means that
2334 the
<tt>%A
</tt> operation can be constant folded to '
<tt>undef
</tt>', because
2335 the '
<tt>undef
</tt>' could be an SNaN, and
<tt>fdiv
</tt> is not (currently)
2336 defined on SNaN's. However, in the second example, we can make a more
2337 aggressive assumption: because the
<tt>undef
</tt> is allowed to be an
2338 arbitrary value, we are allowed to assume that it could be zero. Since a
2339 divide by zero has
<em>undefined behavior
</em>, we are allowed to assume that
2340 the operation does not execute at all. This allows us to delete the divide and
2341 all code after it. Because the undefined operation
"can't happen", the
2342 optimizer can assume that it occurs in dead code.
</p>
2344 <pre class=
"doc_code">
2345 a: store undef -
> %X
2346 b: store %X -
> undef
2352 <p>These examples reiterate the
<tt>fdiv
</tt> example: a store
<em>of
</em> an
2353 undefined value can be assumed to not have any effect; we can assume that the
2354 value is overwritten with bits that happen to match what was already there.
2355 However, a store
<em>to
</em> an undefined location could clobber arbitrary
2356 memory, therefore, it has undefined behavior.
</p>
2360 <!-- ======================================================================= -->
2362 <a name=
"trapvalues">Trap Values
</a>
2367 <p>Trap values are similar to
<a href=
"#undefvalues">undef values
</a>, however
2368 instead of representing an unspecified bit pattern, they represent the
2369 fact that an instruction or constant expression which cannot evoke side
2370 effects has nevertheless detected a condition which results in undefined
2373 <p>There is currently no way of representing a trap value in the IR; they
2374 only exist when produced by operations such as
2375 <a href=
"#i_add"><tt>add
</tt></a> with the
<tt>nsw
</tt> flag.
</p>
2377 <p>Trap value behavior is defined in terms of value
<i>dependence
</i>:
</p>
2380 <li>Values other than
<a href=
"#i_phi"><tt>phi
</tt></a> nodes depend on
2381 their operands.
</li>
2383 <li><a href=
"#i_phi"><tt>Phi
</tt></a> nodes depend on the operand corresponding
2384 to their dynamic predecessor basic block.
</li>
2386 <li>Function arguments depend on the corresponding actual argument values in
2387 the dynamic callers of their functions.
</li>
2389 <li><a href=
"#i_call"><tt>Call
</tt></a> instructions depend on the
2390 <a href=
"#i_ret"><tt>ret
</tt></a> instructions that dynamically transfer
2391 control back to them.
</li>
2393 <li><a href=
"#i_invoke"><tt>Invoke
</tt></a> instructions depend on the
2394 <a href=
"#i_ret"><tt>ret
</tt></a>,
<a href=
"#i_unwind"><tt>unwind
</tt></a>,
2395 or exception-throwing call instructions that dynamically transfer control
2398 <li>Non-volatile loads and stores depend on the most recent stores to all of the
2399 referenced memory addresses, following the order in the IR
2400 (including loads and stores implied by intrinsics such as
2401 <a href=
"#int_memcpy"><tt>@llvm.memcpy
</tt></a>.)
</li>
2403 <!-- TODO: In the case of multiple threads, this only applies if the store
2404 "happens-before" the load or store. -->
2406 <!-- TODO: floating-point exception state -->
2408 <li>An instruction with externally visible side effects depends on the most
2409 recent preceding instruction with externally visible side effects, following
2410 the order in the IR. (This includes
2411 <a href=
"#volatile">volatile operations
</a>.)
</li>
2413 <li>An instruction
<i>control-depends
</i> on a
2414 <a href=
"#terminators">terminator instruction
</a>
2415 if the terminator instruction has multiple successors and the instruction
2416 is always executed when control transfers to one of the successors, and
2417 may not be executed when control is transferred to another.
</li>
2419 <li>Additionally, an instruction also
<i>control-depends
</i> on a terminator
2420 instruction if the set of instructions it otherwise depends on would be
2421 different if the terminator had transferred control to a different
2424 <li>Dependence is transitive.
</li>
2428 <p>Whenever a trap value is generated, all values which depend on it evaluate
2429 to trap. If they have side effects, the evoke their side effects as if each
2430 operand with a trap value were undef. If they have externally-visible side
2431 effects, the behavior is undefined.
</p>
2433 <p>Here are some examples:
</p>
2435 <pre class=
"doc_code">
2437 %trap = sub nuw i32
0,
1 ; Results in a trap value.
2438 %still_trap = and i32 %trap,
0 ; Whereas (and i32 undef,
0) would return
0.
2439 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2440 store i32
0, i32* %trap_yet_again ; undefined behavior
2442 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2443 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2445 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2447 %narrowaddr = bitcast i32* @g to i16*
2448 %wideaddr = bitcast i32* @g to i64*
2449 %trap3 = load
16* %narrowaddr ; Returns a trap value.
2450 %trap4 = load i64* %widaddr ; Returns a trap value.
2452 %cmp = icmp i32 slt %trap,
0 ; Returns a trap value.
2453 %br i1 %cmp, %true, %end ; Branch to either destination.
2456 volatile store i32
0, i32* @g ; This is control-dependent on %cmp, so
2457 ; it has undefined behavior.
2461 %p = phi i32 [
0, %entry ], [
1, %true ]
2462 ; Both edges into this PHI are
2463 ; control-dependent on %cmp, so this
2464 ; always results in a trap value.
2466 volatile store i32
0, i32* @g ; This would depend on the store in %true
2467 ; if %cmp is true, or the store in %entry
2468 ; otherwise, so this is undefined behavior.
2470 %br i1 %cmp, %second_true, %second_end
2471 ; The same branch again, but this time the
2472 ; true block doesn't have side effects.
2479 volatile store i32
0, i32* @g ; This time, the instruction always depends
2480 ; on the store in %end. Also, it is
2481 ; control-equivalent to %end, so this is
2482 ; well- defined (again, ignoring earlier
2483 ; undefined behavior in this example).
2488 <!-- ======================================================================= -->
2490 <a name=
"blockaddress">Addresses of Basic Blocks
</a>
2495 <p><b><tt>blockaddress(@function, %block)
</tt></b></p>
2497 <p>The '
<tt>blockaddress
</tt>' constant computes the address of the specified
2498 basic block in the specified function, and always has an i8* type. Taking
2499 the address of the entry block is illegal.
</p>
2501 <p>This value only has defined behavior when used as an operand to the
2502 '
<a href=
"#i_indirectbr"><tt>indirectbr
</tt></a>' instruction, or for
2503 comparisons against null. Pointer equality tests between labels addresses
2504 results in undefined behavior
— though, again, comparison against null
2505 is ok, and no label is equal to the null pointer. This may be passed around
2506 as an opaque pointer sized value as long as the bits are not inspected. This
2507 allows
<tt>ptrtoint
</tt> and arithmetic to be performed on these values so
2508 long as the original value is reconstituted before the
<tt>indirectbr
</tt>
2511 <p>Finally, some targets may provide defined semantics when using the value as
2512 the operand to an inline assembly, but that is target specific.
</p>
2517 <!-- ======================================================================= -->
2519 <a name=
"constantexprs">Constant Expressions
</a>
2524 <p>Constant expressions are used to allow expressions involving other constants
2525 to be used as constants. Constant expressions may be of
2526 any
<a href=
"#t_firstclass">first class
</a> type and may involve any LLVM
2527 operation that does not have side effects (e.g. load and call are not
2528 supported). The following is the syntax for constant expressions:
</p>
2531 <dt><b><tt>trunc (CST to TYPE)
</tt></b></dt>
2532 <dd>Truncate a constant to another type. The bit size of CST must be larger
2533 than the bit size of TYPE. Both types must be integers.
</dd>
2535 <dt><b><tt>zext (CST to TYPE)
</tt></b></dt>
2536 <dd>Zero extend a constant to another type. The bit size of CST must be
2537 smaller than the bit size of TYPE. Both types must be integers.
</dd>
2539 <dt><b><tt>sext (CST to TYPE)
</tt></b></dt>
2540 <dd>Sign extend a constant to another type. The bit size of CST must be
2541 smaller than the bit size of TYPE. Both types must be integers.
</dd>
2543 <dt><b><tt>fptrunc (CST to TYPE)
</tt></b></dt>
2544 <dd>Truncate a floating point constant to another floating point type. The
2545 size of CST must be larger than the size of TYPE. Both types must be
2546 floating point.
</dd>
2548 <dt><b><tt>fpext (CST to TYPE)
</tt></b></dt>
2549 <dd>Floating point extend a constant to another type. The size of CST must be
2550 smaller or equal to the size of TYPE. Both types must be floating
2553 <dt><b><tt>fptoui (CST to TYPE)
</tt></b></dt>
2554 <dd>Convert a floating point constant to the corresponding unsigned integer
2555 constant. TYPE must be a scalar or vector integer type. CST must be of
2556 scalar or vector floating point type. Both CST and TYPE must be scalars,
2557 or vectors of the same number of elements. If the value won't fit in the
2558 integer type, the results are undefined.
</dd>
2560 <dt><b><tt>fptosi (CST to TYPE)
</tt></b></dt>
2561 <dd>Convert a floating point constant to the corresponding signed integer
2562 constant. TYPE must be a scalar or vector integer type. CST must be of
2563 scalar or vector floating point type. Both CST and TYPE must be scalars,
2564 or vectors of the same number of elements. If the value won't fit in the
2565 integer type, the results are undefined.
</dd>
2567 <dt><b><tt>uitofp (CST to TYPE)
</tt></b></dt>
2568 <dd>Convert an unsigned integer constant to the corresponding floating point
2569 constant. TYPE must be a scalar or vector floating point type. CST must be
2570 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2571 vectors of the same number of elements. If the value won't fit in the
2572 floating point type, the results are undefined.
</dd>
2574 <dt><b><tt>sitofp (CST to TYPE)
</tt></b></dt>
2575 <dd>Convert a signed integer constant to the corresponding floating point
2576 constant. TYPE must be a scalar or vector floating point type. CST must be
2577 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2578 vectors of the same number of elements. If the value won't fit in the
2579 floating point type, the results are undefined.
</dd>
2581 <dt><b><tt>ptrtoint (CST to TYPE)
</tt></b></dt>
2582 <dd>Convert a pointer typed constant to the corresponding integer constant
2583 <tt>TYPE
</tt> must be an integer type.
<tt>CST
</tt> must be of pointer
2584 type. The
<tt>CST
</tt> value is zero extended, truncated, or unchanged to
2585 make it fit in
<tt>TYPE
</tt>.
</dd>
2587 <dt><b><tt>inttoptr (CST to TYPE)
</tt></b></dt>
2588 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2589 type. CST must be of integer type. The CST value is zero extended,
2590 truncated, or unchanged to make it fit in a pointer size. This one is
2591 <i>really
</i> dangerous!
</dd>
2593 <dt><b><tt>bitcast (CST to TYPE)
</tt></b></dt>
2594 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2595 are the same as those for the
<a href=
"#i_bitcast">bitcast
2596 instruction
</a>.
</dd>
2598 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)
</tt></b></dt>
2599 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)
</tt></b></dt>
2600 <dd>Perform the
<a href=
"#i_getelementptr">getelementptr operation
</a> on
2601 constants. As with the
<a href=
"#i_getelementptr">getelementptr
</a>
2602 instruction, the index list may have zero or more indexes, which are
2603 required to make sense for the type of
"CSTPTR".
</dd>
2605 <dt><b><tt>select (COND, VAL1, VAL2)
</tt></b></dt>
2606 <dd>Perform the
<a href=
"#i_select">select operation
</a> on constants.
</dd>
2608 <dt><b><tt>icmp COND (VAL1, VAL2)
</tt></b></dt>
2609 <dd>Performs the
<a href=
"#i_icmp">icmp operation
</a> on constants.
</dd>
2611 <dt><b><tt>fcmp COND (VAL1, VAL2)
</tt></b></dt>
2612 <dd>Performs the
<a href=
"#i_fcmp">fcmp operation
</a> on constants.
</dd>
2614 <dt><b><tt>extractelement (VAL, IDX)
</tt></b></dt>
2615 <dd>Perform the
<a href=
"#i_extractelement">extractelement operation
</a> on
2618 <dt><b><tt>insertelement (VAL, ELT, IDX)
</tt></b></dt>
2619 <dd>Perform the
<a href=
"#i_insertelement">insertelement operation
</a> on
2622 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)
</tt></b></dt>
2623 <dd>Perform the
<a href=
"#i_shufflevector">shufflevector operation
</a> on
2626 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)
</tt></b></dt>
2627 <dd>Perform the
<a href=
"#i_extractvalue">extractvalue operation
</a> on
2628 constants. The index list is interpreted in a similar manner as indices in
2629 a '
<a href=
"#i_getelementptr">getelementptr
</a>' operation. At least one
2630 index value must be specified.
</dd>
2632 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)
</tt></b></dt>
2633 <dd>Perform the
<a href=
"#i_insertvalue">insertvalue operation
</a> on
2634 constants. The index list is interpreted in a similar manner as indices in
2635 a '
<a href=
"#i_getelementptr">getelementptr
</a>' operation. At least one
2636 index value must be specified.
</dd>
2638 <dt><b><tt>OPCODE (LHS, RHS)
</tt></b></dt>
2639 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2640 be any of the
<a href=
"#binaryops">binary
</a>
2641 or
<a href=
"#bitwiseops">bitwise binary
</a> operations. The constraints
2642 on operands are the same as those for the corresponding instruction
2643 (e.g. no bitwise operations on floating point values are allowed).
</dd>
2650 <!-- *********************************************************************** -->
2651 <h2><a name=
"othervalues">Other Values
</a></h2>
2652 <!-- *********************************************************************** -->
2654 <!-- ======================================================================= -->
2656 <a name=
"inlineasm">Inline Assembler Expressions
</a>
2661 <p>LLVM supports inline assembler expressions (as opposed
2662 to
<a href=
"#moduleasm"> Module-Level Inline Assembly
</a>) through the use of
2663 a special value. This value represents the inline assembler as a string
2664 (containing the instructions to emit), a list of operand constraints (stored
2665 as a string), a flag that indicates whether or not the inline asm
2666 expression has side effects, and a flag indicating whether the function
2667 containing the asm needs to align its stack conservatively. An example
2668 inline assembler expression is:
</p>
2670 <pre class=
"doc_code">
2671 i32 (i32) asm
"bswap $0",
"=r,r"
2674 <p>Inline assembler expressions may
<b>only
</b> be used as the callee operand of
2675 a
<a href=
"#i_call"><tt>call
</tt> instruction
</a>. Thus, typically we
2678 <pre class=
"doc_code">
2679 %X = call i32 asm
"<a href="#int_bswap
">bswap</a> $0",
"=r,r"(i32 %Y)
2682 <p>Inline asms with side effects not visible in the constraint list must be
2683 marked as having side effects. This is done through the use of the
2684 '
<tt>sideeffect
</tt>' keyword, like so:
</p>
2686 <pre class=
"doc_code">
2687 call void asm sideeffect
"eieio",
""()
2690 <p>In some cases inline asms will contain code that will not work unless the
2691 stack is aligned in some way, such as calls or SSE instructions on x86,
2692 yet will not contain code that does that alignment within the asm.
2693 The compiler should make conservative assumptions about what the asm might
2694 contain and should generate its usual stack alignment code in the prologue
2695 if the '
<tt>alignstack
</tt>' keyword is present:
</p>
2697 <pre class=
"doc_code">
2698 call void asm alignstack
"eieio",
""()
2701 <p>If both keywords appear the '
<tt>sideeffect
</tt>' keyword must come
2704 <p>TODO: The format of the asm and constraints string still need to be
2705 documented here. Constraints on what can be done (e.g. duplication, moving,
2706 etc need to be documented). This is probably best done by reference to
2707 another document that covers inline asm from a holistic perspective.
</p>
2710 <a name=
"inlineasm_md">Inline Asm Metadata
</a>
2715 <p>The call instructions that wrap inline asm nodes may have a
"!srcloc" MDNode
2716 attached to it that contains a list of constant integers. If present, the
2717 code generator will use the integer as the location cookie value when report
2718 errors through the LLVMContext error reporting mechanisms. This allows a
2719 front-end to correlate backend errors that occur with inline asm back to the
2720 source code that produced it. For example:
</p>
2722 <pre class=
"doc_code">
2723 call void asm sideeffect
"something bad",
""()
<b>, !srcloc !
42</b>
2725 !
42 = !{ i32
1234567 }
2728 <p>It is up to the front-end to make sense of the magic numbers it places in the
2729 IR. If the MDNode contains multiple constants, the code generator will use
2730 the one that corresponds to the line of the asm that the error occurs on.
</p>
2736 <!-- ======================================================================= -->
2738 <a name=
"metadata">Metadata Nodes and Metadata Strings
</a>
2743 <p>LLVM IR allows metadata to be attached to instructions in the program that
2744 can convey extra information about the code to the optimizers and code
2745 generator. One example application of metadata is source-level debug
2746 information. There are two metadata primitives: strings and nodes. All
2747 metadata has the
<tt>metadata
</tt> type and is identified in syntax by a
2748 preceding exclamation point ('
<tt>!
</tt>').
</p>
2750 <p>A metadata string is a string surrounded by double quotes. It can contain
2751 any character by escaping non-printable characters with
"\xx" where
"xx" is
2752 the two digit hex code. For example:
"<tt>!"test\
00"</tt>".
</p>
2754 <p>Metadata nodes are represented with notation similar to structure constants
2755 (a comma separated list of elements, surrounded by braces and preceded by an
2756 exclamation point). For example:
"<tt>!{ metadata !"test\
00", i32
2757 10}</tt>". Metadata nodes can have any values as their operand.
</p>
2759 <p>A
<a href=
"#namedmetadatastructure">named metadata
</a> is a collection of
2760 metadata nodes, which can be looked up in the module symbol table. For
2761 example:
"<tt>!foo = metadata !{!4, !3}</tt>".
2763 <p>Metadata can be used as function arguments. Here
<tt>llvm.dbg.value
</tt>
2764 function is using two metadata arguments.
</p>
2766 <div class=
"doc_code">
2768 call void @llvm.dbg.value(metadata !
24, i64
0, metadata !
25)
2772 <p>Metadata can be attached with an instruction. Here metadata
<tt>!
21</tt> is
2773 attached with
<tt>add
</tt> instruction using
<tt>!dbg
</tt> identifier.
</p>
2775 <div class=
"doc_code">
2777 %indvar.next = add i64 %indvar,
1, !dbg !
21
2785 <!-- *********************************************************************** -->
2787 <a name=
"intrinsic_globals">Intrinsic Global Variables
</a>
2789 <!-- *********************************************************************** -->
2791 <p>LLVM has a number of
"magic" global variables that contain data that affect
2792 code generation or other IR semantics. These are documented here. All globals
2793 of this sort should have a section specified as
"<tt>llvm.metadata</tt>". This
2794 section and all globals that start with
"<tt>llvm.</tt>" are reserved for use
2797 <!-- ======================================================================= -->
2799 <a name=
"intg_used">The '
<tt>llvm.used
</tt>' Global Variable
</a>
2804 <p>The
<tt>@llvm.used
</tt> global is an array with i8* element type which has
<a
2805 href=
"#linkage_appending">appending linkage
</a>. This array contains a list of
2806 pointers to global variables and functions which may optionally have a pointer
2807 cast formed of bitcast or getelementptr. For example, a legal use of it is:
</p>
2813 @llvm.used = appending global [
2 x i8*] [
2815 i8* bitcast (i32* @Y to i8*)
2816 ], section
"llvm.metadata"
2819 <p>If a global variable appears in the
<tt>@llvm.used
</tt> list, then the
2820 compiler, assembler, and linker are required to treat the symbol as if there is
2821 a reference to the global that it cannot see. For example, if a variable has
2822 internal linkage and no references other than that from the
<tt>@llvm.used
</tt>
2823 list, it cannot be deleted. This is commonly used to represent references from
2824 inline asms and other things the compiler cannot
"see", and corresponds to
2825 "attribute((used))" in GNU C.
</p>
2827 <p>On some targets, the code generator must emit a directive to the assembler or
2828 object file to prevent the assembler and linker from molesting the symbol.
</p>
2832 <!-- ======================================================================= -->
2834 <a name=
"intg_compiler_used">
2835 The '
<tt>llvm.compiler.used
</tt>' Global Variable
2841 <p>The
<tt>@llvm.compiler.used
</tt> directive is the same as the
2842 <tt>@llvm.used
</tt> directive, except that it only prevents the compiler from
2843 touching the symbol. On targets that support it, this allows an intelligent
2844 linker to optimize references to the symbol without being impeded as it would be
2845 by
<tt>@llvm.used
</tt>.
</p>
2847 <p>This is a rare construct that should only be used in rare circumstances, and
2848 should not be exposed to source languages.
</p>
2852 <!-- ======================================================================= -->
2854 <a name=
"intg_global_ctors">The '
<tt>llvm.global_ctors
</tt>' Global Variable
</a>
2859 %
0 = type { i32, void ()* }
2860 @llvm.global_ctors = appending global [
1 x %
0] [%
0 { i32
65535, void ()* @ctor }]
2862 <p>The
<tt>@llvm.global_ctors
</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
2867 <!-- ======================================================================= -->
2869 <a name=
"intg_global_dtors">The '
<tt>llvm.global_dtors
</tt>' Global Variable
</a>
2874 %
0 = type { i32, void ()* }
2875 @llvm.global_dtors = appending global [
1 x %
0] [%
0 { i32
65535, void ()* @dtor }]
2878 <p>The
<tt>@llvm.global_dtors
</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
2885 <!-- *********************************************************************** -->
2886 <h2><a name=
"instref">Instruction Reference
</a></h2>
2887 <!-- *********************************************************************** -->
2891 <p>The LLVM instruction set consists of several different classifications of
2892 instructions:
<a href=
"#terminators">terminator
2893 instructions
</a>,
<a href=
"#binaryops">binary instructions
</a>,
2894 <a href=
"#bitwiseops">bitwise binary instructions
</a>,
2895 <a href=
"#memoryops">memory instructions
</a>, and
2896 <a href=
"#otherops">other instructions
</a>.
</p>
2898 <!-- ======================================================================= -->
2900 <a name=
"terminators">Terminator Instructions
</a>
2905 <p>As mentioned
<a href=
"#functionstructure">previously
</a>, every basic block
2906 in a program ends with a
"Terminator" instruction, which indicates which
2907 block should be executed after the current block is finished. These
2908 terminator instructions typically yield a '
<tt>void
</tt>' value: they produce
2909 control flow, not values (the one exception being the
2910 '
<a href=
"#i_invoke"><tt>invoke
</tt></a>' instruction).
</p>
2912 <p>There are seven different terminator instructions: the
2913 '
<a href=
"#i_ret"><tt>ret
</tt></a>' instruction, the
2914 '
<a href=
"#i_br"><tt>br
</tt></a>' instruction, the
2915 '
<a href=
"#i_switch"><tt>switch
</tt></a>' instruction, the
2916 '
<a href=
"#i_indirectbr">'
<tt>indirectbr
</tt></a>' Instruction, the
2917 '
<a href=
"#i_invoke"><tt>invoke
</tt></a>' instruction, the
2918 '
<a href=
"#i_unwind"><tt>unwind
</tt></a>' instruction, and the
2919 '
<a href=
"#i_unreachable"><tt>unreachable
</tt></a>' instruction.
</p>
2921 <!-- _______________________________________________________________________ -->
2923 <a name=
"i_ret">'
<tt>ret
</tt>' Instruction
</a>
2930 ret
<type
> <value
> <i>; Return a value from a non-void function
</i>
2931 ret void
<i>; Return from void function
</i>
2935 <p>The '
<tt>ret
</tt>' instruction is used to return control flow (and optionally
2936 a value) from a function back to the caller.
</p>
2938 <p>There are two forms of the '
<tt>ret
</tt>' instruction: one that returns a
2939 value and then causes control flow, and one that just causes control flow to
2943 <p>The '
<tt>ret
</tt>' instruction optionally accepts a single argument, the
2944 return value. The type of the return value must be a
2945 '
<a href=
"#t_firstclass">first class
</a>' type.
</p>
2947 <p>A function is not
<a href=
"#wellformed">well formed
</a> if it it has a
2948 non-void return type and contains a '
<tt>ret
</tt>' instruction with no return
2949 value or a return value with a type that does not match its type, or if it
2950 has a void return type and contains a '
<tt>ret
</tt>' instruction with a
2954 <p>When the '
<tt>ret
</tt>' instruction is executed, control flow returns back to
2955 the calling function's context. If the caller is a
2956 "<a href="#i_call
"><tt>call</tt></a>" instruction, execution continues at the
2957 instruction after the call. If the caller was an
2958 "<a href="#i_invoke
"><tt>invoke</tt></a>" instruction, execution continues at
2959 the beginning of the
"normal" destination block. If the instruction returns
2960 a value, that value shall set the call or invoke instruction's return
2965 ret i32
5 <i>; Return an integer value of
5</i>
2966 ret void
<i>; Return from a void function
</i>
2967 ret { i32, i8 } { i32
4, i8
2 }
<i>; Return a struct of values
4 and
2</i>
2971 <!-- _______________________________________________________________________ -->
2973 <a name=
"i_br">'
<tt>br
</tt>' Instruction
</a>
2980 br i1
<cond
>, label
<iftrue
>, label
<iffalse
><br> br label
<dest
> <i>; Unconditional branch
</i>
2984 <p>The '
<tt>br
</tt>' instruction is used to cause control flow to transfer to a
2985 different basic block in the current function. There are two forms of this
2986 instruction, corresponding to a conditional branch and an unconditional
2990 <p>The conditional branch form of the '
<tt>br
</tt>' instruction takes a single
2991 '
<tt>i1
</tt>' value and two '
<tt>label
</tt>' values. The unconditional form
2992 of the '
<tt>br
</tt>' instruction takes a single '
<tt>label
</tt>' value as a
2996 <p>Upon execution of a conditional '
<tt>br
</tt>' instruction, the '
<tt>i1
</tt>'
2997 argument is evaluated. If the value is
<tt>true
</tt>, control flows to the
2998 '
<tt>iftrue
</tt>'
<tt>label
</tt> argument. If
"cond" is
<tt>false
</tt>,
2999 control flows to the '
<tt>iffalse
</tt>'
<tt>label
</tt> argument.
</p>
3004 %cond =
<a href=
"#i_icmp">icmp
</a> eq i32 %a, %b
3005 br i1 %cond, label %IfEqual, label %IfUnequal
3007 <a href=
"#i_ret">ret
</a> i32
1
3009 <a href=
"#i_ret">ret
</a> i32
0
3014 <!-- _______________________________________________________________________ -->
3016 <a name=
"i_switch">'
<tt>switch
</tt>' Instruction
</a>
3023 switch
<intty
> <value
>, label
<defaultdest
> [
<intty
> <val
>, label
<dest
> ... ]
3027 <p>The '
<tt>switch
</tt>' instruction is used to transfer control flow to one of
3028 several different places. It is a generalization of the '
<tt>br
</tt>'
3029 instruction, allowing a branch to occur to one of many possible
3033 <p>The '
<tt>switch
</tt>' instruction uses three parameters: an integer
3034 comparison value '
<tt>value
</tt>', a default '
<tt>label
</tt>' destination,
3035 and an array of pairs of comparison value constants and '
<tt>label
</tt>'s.
3036 The table is not allowed to contain duplicate constant entries.
</p>
3039 <p>The
<tt>switch
</tt> instruction specifies a table of values and
3040 destinations. When the '
<tt>switch
</tt>' instruction is executed, this table
3041 is searched for the given value. If the value is found, control flow is
3042 transferred to the corresponding destination; otherwise, control flow is
3043 transferred to the default destination.
</p>
3045 <h5>Implementation:
</h5>
3046 <p>Depending on properties of the target machine and the particular
3047 <tt>switch
</tt> instruction, this instruction may be code generated in
3048 different ways. For example, it could be generated as a series of chained
3049 conditional branches or with a lookup table.
</p>
3053 <i>; Emulate a conditional br instruction
</i>
3054 %Val =
<a href=
"#i_zext">zext
</a> i1 %value to i32
3055 switch i32 %Val, label %truedest [ i32
0, label %falsedest ]
3057 <i>; Emulate an unconditional br instruction
</i>
3058 switch i32
0, label %dest [ ]
3060 <i>; Implement a jump table:
</i>
3061 switch i32 %val, label %otherwise [ i32
0, label %onzero
3063 i32
2, label %ontwo ]
3069 <!-- _______________________________________________________________________ -->
3071 <a name=
"i_indirectbr">'
<tt>indirectbr
</tt>' Instruction
</a>
3078 indirectbr
<somety
>*
<address
>, [ label
<dest1
>, label
<dest2
>, ... ]
3083 <p>The '
<tt>indirectbr
</tt>' instruction implements an indirect branch to a label
3084 within the current function, whose address is specified by
3085 "<tt>address</tt>". Address must be derived from a
<a
3086 href=
"#blockaddress">blockaddress
</a> constant.
</p>
3090 <p>The '
<tt>address
</tt>' argument is the address of the label to jump to. The
3091 rest of the arguments indicate the full set of possible destinations that the
3092 address may point to. Blocks are allowed to occur multiple times in the
3093 destination list, though this isn't particularly useful.
</p>
3095 <p>This destination list is required so that dataflow analysis has an accurate
3096 understanding of the CFG.
</p>
3100 <p>Control transfers to the block specified in the address argument. All
3101 possible destination blocks must be listed in the label list, otherwise this
3102 instruction has undefined behavior. This implies that jumps to labels
3103 defined in other functions have undefined behavior as well.
</p>
3105 <h5>Implementation:
</h5>
3107 <p>This is typically implemented with a jump through a register.
</p>
3111 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3117 <!-- _______________________________________________________________________ -->
3119 <a name=
"i_invoke">'
<tt>invoke
</tt>' Instruction
</a>
3126 <result
> = invoke [
<a href=
"#callingconv">cconv
</a>] [
<a href=
"#paramattrs">ret attrs
</a>]
<ptr to function ty
> <function ptr val
>(
<function args
>) [
<a href=
"#fnattrs">fn attrs
</a>]
3127 to label
<normal label
> unwind label
<exception label
>
3131 <p>The '
<tt>invoke
</tt>' instruction causes control to transfer to a specified
3132 function, with the possibility of control flow transfer to either the
3133 '
<tt>normal
</tt>' label or the '
<tt>exception
</tt>' label. If the callee
3134 function returns with the
"<tt><a href="#i_ret
">ret</a></tt>" instruction,
3135 control flow will return to the
"normal" label. If the callee (or any
3136 indirect callees) returns with the
"<a href="#i_unwind
"><tt>unwind</tt></a>"
3137 instruction, control is interrupted and continued at the dynamically nearest
3138 "exception" label.
</p>
3141 <p>This instruction requires several arguments:
</p>
3144 <li>The optional
"cconv" marker indicates which
<a href=
"#callingconv">calling
3145 convention
</a> the call should use. If none is specified, the call
3146 defaults to using C calling conventions.
</li>
3148 <li>The optional
<a href=
"#paramattrs">Parameter Attributes
</a> list for
3149 return values. Only '
<tt>zeroext
</tt>', '
<tt>signext
</tt>', and
3150 '
<tt>inreg
</tt>' attributes are valid here.
</li>
3152 <li>'
<tt>ptr to function ty
</tt>': shall be the signature of the pointer to
3153 function value being invoked. In most cases, this is a direct function
3154 invocation, but indirect
<tt>invoke
</tt>s are just as possible, branching
3155 off an arbitrary pointer to function value.
</li>
3157 <li>'
<tt>function ptr val
</tt>': An LLVM value containing a pointer to a
3158 function to be invoked.
</li>
3160 <li>'
<tt>function args
</tt>': argument list whose types match the function
3161 signature argument types and parameter attributes. All arguments must be
3162 of
<a href=
"#t_firstclass">first class
</a> type. If the function
3163 signature indicates the function accepts a variable number of arguments,
3164 the extra arguments can be specified.
</li>
3166 <li>'
<tt>normal label
</tt>': the label reached when the called function
3167 executes a '
<tt><a href=
"#i_ret">ret
</a></tt>' instruction.
</li>
3169 <li>'
<tt>exception label
</tt>': the label reached when a callee returns with
3170 the
<a href=
"#i_unwind"><tt>unwind
</tt></a> instruction.
</li>
3172 <li>The optional
<a href=
"#fnattrs">function attributes
</a> list. Only
3173 '
<tt>noreturn
</tt>', '
<tt>nounwind
</tt>', '
<tt>readonly
</tt>' and
3174 '
<tt>readnone
</tt>' attributes are valid here.
</li>
3178 <p>This instruction is designed to operate as a standard
3179 '
<tt><a href=
"#i_call">call
</a></tt>' instruction in most regards. The
3180 primary difference is that it establishes an association with a label, which
3181 is used by the runtime library to unwind the stack.
</p>
3183 <p>This instruction is used in languages with destructors to ensure that proper
3184 cleanup is performed in the case of either a
<tt>longjmp
</tt> or a thrown
3185 exception. Additionally, this is important for implementation of
3186 '
<tt>catch
</tt>' clauses in high-level languages that support them.
</p>
3188 <p>For the purposes of the SSA form, the definition of the value returned by the
3189 '
<tt>invoke
</tt>' instruction is deemed to occur on the edge from the current
3190 block to the
"normal" label. If the callee unwinds then no return value is
3193 <p>Note that the code generator does not yet completely support unwind, and
3194 that the invoke/unwind semantics are likely to change in future versions.
</p>
3198 %retval = invoke i32 @Test(i32
15) to label %Continue
3199 unwind label %TestCleanup
<i>; {i32}:retval set
</i>
3200 %retval = invoke
<a href=
"#callingconv">coldcc
</a> i32 %Testfnptr(i32
15) to label %Continue
3201 unwind label %TestCleanup
<i>; {i32}:retval set
</i>
3206 <!-- _______________________________________________________________________ -->
3209 <a name=
"i_unwind">'
<tt>unwind
</tt>' Instruction
</a>
3220 <p>The '
<tt>unwind
</tt>' instruction unwinds the stack, continuing control flow
3221 at the first callee in the dynamic call stack which used
3222 an
<a href=
"#i_invoke"><tt>invoke
</tt></a> instruction to perform the call.
3223 This is primarily used to implement exception handling.
</p>
3226 <p>The '
<tt>unwind
</tt>' instruction causes execution of the current function to
3227 immediately halt. The dynamic call stack is then searched for the
3228 first
<a href=
"#i_invoke"><tt>invoke
</tt></a> instruction on the call stack.
3229 Once found, execution continues at the
"exceptional" destination block
3230 specified by the
<tt>invoke
</tt> instruction. If there is no
<tt>invoke
</tt>
3231 instruction in the dynamic call chain, undefined behavior results.
</p>
3233 <p>Note that the code generator does not yet completely support unwind, and
3234 that the invoke/unwind semantics are likely to change in future versions.
</p>
3238 <!-- _______________________________________________________________________ -->
3241 <a name=
"i_unreachable">'
<tt>unreachable
</tt>' Instruction
</a>
3252 <p>The '
<tt>unreachable
</tt>' instruction has no defined semantics. This
3253 instruction is used to inform the optimizer that a particular portion of the
3254 code is not reachable. This can be used to indicate that the code after a
3255 no-return function cannot be reached, and other facts.
</p>
3258 <p>The '
<tt>unreachable
</tt>' instruction has no defined semantics.
</p>
3264 <!-- ======================================================================= -->
3266 <a name=
"binaryops">Binary Operations
</a>
3271 <p>Binary operators are used to do most of the computation in a program. They
3272 require two operands of the same type, execute an operation on them, and
3273 produce a single value. The operands might represent multiple data, as is
3274 the case with the
<a href=
"#t_vector">vector
</a> data type. The result value
3275 has the same type as its operands.
</p>
3277 <p>There are several different binary operators:
</p>
3279 <!-- _______________________________________________________________________ -->
3281 <a name=
"i_add">'
<tt>add
</tt>' Instruction
</a>
3288 <result
> = add
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3289 <result
> = add nuw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3290 <result
> = add nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3291 <result
> = add nuw nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3295 <p>The '
<tt>add
</tt>' instruction returns the sum of its two operands.
</p>
3298 <p>The two arguments to the '
<tt>add
</tt>' instruction must
3299 be
<a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of
3300 integer values. Both arguments must have identical types.
</p>
3303 <p>The value produced is the integer sum of the two operands.
</p>
3305 <p>If the sum has unsigned overflow, the result returned is the mathematical
3306 result modulo
2<sup>n
</sup>, where n is the bit width of the result.
</p>
3308 <p>Because LLVM integers use a two's complement representation, this instruction
3309 is appropriate for both signed and unsigned integers.
</p>
3311 <p><tt>nuw
</tt> and
<tt>nsw
</tt> stand for
"No Unsigned Wrap
"
3312 and
"No Signed Wrap
", respectively. If the
<tt>nuw
</tt> and/or
3313 <tt>nsw
</tt> keywords are present, the result value of the
<tt>add
</tt>
3314 is a
<a href=
"#trapvalues">trap value
</a> if unsigned and/or signed overflow,
3315 respectively, occurs.
</p>
3319 <result
> = add i32
4, %var
<i>; yields {i32}:result =
4 + %var
</i>
3324 <!-- _______________________________________________________________________ -->
3326 <a name=
"i_fadd">'
<tt>fadd
</tt>' Instruction
</a>
3333 <result
> = fadd
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3337 <p>The '
<tt>fadd
</tt>' instruction returns the sum of its two operands.
</p>
3340 <p>The two arguments to the '
<tt>fadd
</tt>' instruction must be
3341 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
3342 floating point values. Both arguments must have identical types.
</p>
3345 <p>The value produced is the floating point sum of the two operands.
</p>
3349 <result
> = fadd float
4.0, %var
<i>; yields {float}:result =
4.0 + %var
</i>
3354 <!-- _______________________________________________________________________ -->
3356 <a name=
"i_sub">'
<tt>sub
</tt>' Instruction
</a>
3363 <result
> = sub
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3364 <result
> = sub nuw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3365 <result
> = sub nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3366 <result
> = sub nuw nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3370 <p>The '
<tt>sub
</tt>' instruction returns the difference of its two
3373 <p>Note that the '
<tt>sub
</tt>' instruction is used to represent the
3374 '
<tt>neg
</tt>' instruction present in most other intermediate
3375 representations.
</p>
3378 <p>The two arguments to the '
<tt>sub
</tt>' instruction must
3379 be
<a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of
3380 integer values. Both arguments must have identical types.
</p>
3383 <p>The value produced is the integer difference of the two operands.
</p>
3385 <p>If the difference has unsigned overflow, the result returned is the
3386 mathematical result modulo
2<sup>n
</sup>, where n is the bit width of the
3389 <p>Because LLVM integers use a two's complement representation, this instruction
3390 is appropriate for both signed and unsigned integers.
</p>
3392 <p><tt>nuw
</tt> and
<tt>nsw
</tt> stand for
"No Unsigned Wrap
"
3393 and
"No Signed Wrap
", respectively. If the
<tt>nuw
</tt> and/or
3394 <tt>nsw
</tt> keywords are present, the result value of the
<tt>sub
</tt>
3395 is a
<a href=
"#trapvalues">trap value
</a> if unsigned and/or signed overflow,
3396 respectively, occurs.
</p>
3400 <result
> = sub i32
4, %var
<i>; yields {i32}:result =
4 - %var
</i>
3401 <result
> = sub i32
0, %val
<i>; yields {i32}:result = -%var
</i>
3406 <!-- _______________________________________________________________________ -->
3408 <a name=
"i_fsub">'
<tt>fsub
</tt>' Instruction
</a>
3415 <result
> = fsub
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3419 <p>The '
<tt>fsub
</tt>' instruction returns the difference of its two
3422 <p>Note that the '
<tt>fsub
</tt>' instruction is used to represent the
3423 '
<tt>fneg
</tt>' instruction present in most other intermediate
3424 representations.
</p>
3427 <p>The two arguments to the '
<tt>fsub
</tt>' instruction must be
3428 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
3429 floating point values. Both arguments must have identical types.
</p>
3432 <p>The value produced is the floating point difference of the two operands.
</p>
3436 <result
> = fsub float
4.0, %var
<i>; yields {float}:result =
4.0 - %var
</i>
3437 <result
> = fsub float -
0.0, %val
<i>; yields {float}:result = -%var
</i>
3442 <!-- _______________________________________________________________________ -->
3444 <a name=
"i_mul">'
<tt>mul
</tt>' Instruction
</a>
3451 <result
> = mul
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3452 <result
> = mul nuw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3453 <result
> = mul nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3454 <result
> = mul nuw nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3458 <p>The '
<tt>mul
</tt>' instruction returns the product of its two operands.
</p>
3461 <p>The two arguments to the '
<tt>mul
</tt>' instruction must
3462 be
<a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of
3463 integer values. Both arguments must have identical types.
</p>
3466 <p>The value produced is the integer product of the two operands.
</p>
3468 <p>If the result of the multiplication has unsigned overflow, the result
3469 returned is the mathematical result modulo
2<sup>n
</sup>, where n is the bit
3470 width of the result.
</p>
3472 <p>Because LLVM integers use a two's complement representation, and the result
3473 is the same width as the operands, this instruction returns the correct
3474 result for both signed and unsigned integers. If a full product
3475 (e.g.
<tt>i32
</tt>x
<tt>i32
</tt>-
><tt>i64
</tt>) is needed, the operands should
3476 be sign-extended or zero-extended as appropriate to the width of the full
3479 <p><tt>nuw
</tt> and
<tt>nsw
</tt> stand for
"No Unsigned Wrap
"
3480 and
"No Signed Wrap
", respectively. If the
<tt>nuw
</tt> and/or
3481 <tt>nsw
</tt> keywords are present, the result value of the
<tt>mul
</tt>
3482 is a
<a href=
"#trapvalues">trap value
</a> if unsigned and/or signed overflow,
3483 respectively, occurs.
</p>
3487 <result
> = mul i32
4, %var
<i>; yields {i32}:result =
4 * %var
</i>
3492 <!-- _______________________________________________________________________ -->
3494 <a name=
"i_fmul">'
<tt>fmul
</tt>' Instruction
</a>
3501 <result
> = fmul
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3505 <p>The '
<tt>fmul
</tt>' instruction returns the product of its two operands.
</p>
3508 <p>The two arguments to the '
<tt>fmul
</tt>' instruction must be
3509 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
3510 floating point values. Both arguments must have identical types.
</p>
3513 <p>The value produced is the floating point product of the two operands.
</p>
3517 <result
> = fmul float
4.0, %var
<i>; yields {float}:result =
4.0 * %var
</i>
3522 <!-- _______________________________________________________________________ -->
3524 <a name=
"i_udiv">'
<tt>udiv
</tt>' Instruction
</a>
3531 <result
> = udiv
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3532 <result
> = udiv exact
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3536 <p>The '
<tt>udiv
</tt>' instruction returns the quotient of its two operands.
</p>
3539 <p>The two arguments to the '
<tt>udiv
</tt>' instruction must be
3540 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3541 values. Both arguments must have identical types.
</p>
3544 <p>The value produced is the unsigned integer quotient of the two operands.
</p>
3546 <p>Note that unsigned integer division and signed integer division are distinct
3547 operations; for signed integer division, use '
<tt>sdiv
</tt>'.
</p>
3549 <p>Division by zero leads to undefined behavior.
</p>
3551 <p>If the
<tt>exact
</tt> keyword is present, the result value of the
3552 <tt>udiv
</tt> is a
<a href=
"#trapvalues">trap value
</a> if %op1 is not a
3553 multiple of %op2 (as such,
"((a udiv exact b) mul b) == a").
</p>
3558 <result
> = udiv i32
4, %var
<i>; yields {i32}:result =
4 / %var
</i>
3563 <!-- _______________________________________________________________________ -->
3565 <a name=
"i_sdiv">'
<tt>sdiv
</tt>' Instruction
</a>
3572 <result
> = sdiv
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3573 <result
> = sdiv exact
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3577 <p>The '
<tt>sdiv
</tt>' instruction returns the quotient of its two operands.
</p>
3580 <p>The two arguments to the '
<tt>sdiv
</tt>' instruction must be
3581 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3582 values. Both arguments must have identical types.
</p>
3585 <p>The value produced is the signed integer quotient of the two operands rounded
3588 <p>Note that signed integer division and unsigned integer division are distinct
3589 operations; for unsigned integer division, use '
<tt>udiv
</tt>'.
</p>
3591 <p>Division by zero leads to undefined behavior. Overflow also leads to
3592 undefined behavior; this is a rare case, but can occur, for example, by doing
3593 a
32-bit division of -
2147483648 by -
1.
</p>
3595 <p>If the
<tt>exact
</tt> keyword is present, the result value of the
3596 <tt>sdiv
</tt> is a
<a href=
"#trapvalues">trap value
</a> if the result would
3601 <result
> = sdiv i32
4, %var
<i>; yields {i32}:result =
4 / %var
</i>
3606 <!-- _______________________________________________________________________ -->
3608 <a name=
"i_fdiv">'
<tt>fdiv
</tt>' Instruction
</a>
3615 <result
> = fdiv
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3619 <p>The '
<tt>fdiv
</tt>' instruction returns the quotient of its two operands.
</p>
3622 <p>The two arguments to the '
<tt>fdiv
</tt>' instruction must be
3623 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
3624 floating point values. Both arguments must have identical types.
</p>
3627 <p>The value produced is the floating point quotient of the two operands.
</p>
3631 <result
> = fdiv float
4.0, %var
<i>; yields {float}:result =
4.0 / %var
</i>
3636 <!-- _______________________________________________________________________ -->
3638 <a name=
"i_urem">'
<tt>urem
</tt>' Instruction
</a>
3645 <result
> = urem
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3649 <p>The '
<tt>urem
</tt>' instruction returns the remainder from the unsigned
3650 division of its two arguments.
</p>
3653 <p>The two arguments to the '
<tt>urem
</tt>' instruction must be
3654 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3655 values. Both arguments must have identical types.
</p>
3658 <p>This instruction returns the unsigned integer
<i>remainder
</i> of a division.
3659 This instruction always performs an unsigned division to get the
3662 <p>Note that unsigned integer remainder and signed integer remainder are
3663 distinct operations; for signed integer remainder, use '
<tt>srem
</tt>'.
</p>
3665 <p>Taking the remainder of a division by zero leads to undefined behavior.
</p>
3669 <result
> = urem i32
4, %var
<i>; yields {i32}:result =
4 % %var
</i>
3674 <!-- _______________________________________________________________________ -->
3676 <a name=
"i_srem">'
<tt>srem
</tt>' Instruction
</a>
3683 <result
> = srem
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3687 <p>The '
<tt>srem
</tt>' instruction returns the remainder from the signed
3688 division of its two operands. This instruction can also take
3689 <a href=
"#t_vector">vector
</a> versions of the values in which case the
3690 elements must be integers.
</p>
3693 <p>The two arguments to the '
<tt>srem
</tt>' instruction must be
3694 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3695 values. Both arguments must have identical types.
</p>
3698 <p>This instruction returns the
<i>remainder
</i> of a division (where the result
3699 is either zero or has the same sign as the dividend,
<tt>op1
</tt>), not the
3700 <i>modulo
</i> operator (where the result is either zero or has the same sign
3701 as the divisor,
<tt>op2
</tt>) of a value.
3702 For more information about the difference,
3703 see
<a href=
"http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3704 Math Forum
</a>. For a table of how this is implemented in various languages,
3705 please see
<a href=
"http://en.wikipedia.org/wiki/Modulo_operation">
3706 Wikipedia: modulo operation
</a>.
</p>
3708 <p>Note that signed integer remainder and unsigned integer remainder are
3709 distinct operations; for unsigned integer remainder, use '
<tt>urem
</tt>'.
</p>
3711 <p>Taking the remainder of a division by zero leads to undefined behavior.
3712 Overflow also leads to undefined behavior; this is a rare case, but can
3713 occur, for example, by taking the remainder of a
32-bit division of
3714 -
2147483648 by -
1. (The remainder doesn't actually overflow, but this rule
3715 lets srem be implemented using instructions that return both the result of
3716 the division and the remainder.)
</p>
3720 <result
> = srem i32
4, %var
<i>; yields {i32}:result =
4 % %var
</i>
3725 <!-- _______________________________________________________________________ -->
3727 <a name=
"i_frem">'
<tt>frem
</tt>' Instruction
</a>
3734 <result
> = frem
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3738 <p>The '
<tt>frem
</tt>' instruction returns the remainder from the division of
3739 its two operands.
</p>
3742 <p>The two arguments to the '
<tt>frem
</tt>' instruction must be
3743 <a href=
"#t_floating">floating point
</a> or
<a href=
"#t_vector">vector
</a> of
3744 floating point values. Both arguments must have identical types.
</p>
3747 <p>This instruction returns the
<i>remainder
</i> of a division. The remainder
3748 has the same sign as the dividend.
</p>
3752 <result
> = frem float
4.0, %var
<i>; yields {float}:result =
4.0 % %var
</i>
3759 <!-- ======================================================================= -->
3761 <a name=
"bitwiseops">Bitwise Binary Operations
</a>
3766 <p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3767 program. They are generally very efficient instructions and can commonly be
3768 strength reduced from other instructions. They require two operands of the
3769 same type, execute an operation on them, and produce a single value. The
3770 resulting value is the same type as its operands.
</p>
3772 <!-- _______________________________________________________________________ -->
3774 <a name=
"i_shl">'
<tt>shl
</tt>' Instruction
</a>
3781 <result
> = shl
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3782 <result
> = shl nuw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3783 <result
> = shl nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3784 <result
> = shl nuw nsw
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3788 <p>The '
<tt>shl
</tt>' instruction returns the first operand shifted to the left
3789 a specified number of bits.
</p>
3792 <p>Both arguments to the '
<tt>shl
</tt>' instruction must be the
3793 same
<a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of
3794 integer type. '
<tt>op2
</tt>' is treated as an unsigned value.
</p>
3797 <p>The value produced is
<tt>op1
</tt> *
2<sup><tt>op2
</tt></sup> mod
3798 2<sup>n
</sup>, where
<tt>n
</tt> is the width of the result. If
<tt>op2
</tt>
3799 is (statically or dynamically) negative or equal to or larger than the number
3800 of bits in
<tt>op1
</tt>, the result is undefined. If the arguments are
3801 vectors, each vector element of
<tt>op1
</tt> is shifted by the corresponding
3802 shift amount in
<tt>op2
</tt>.
</p>
3804 <p>If the
<tt>nuw
</tt> keyword is present, then the shift produces a
3805 <a href=
"#trapvalues">trap value
</a> if it shifts out any non-zero bits. If
3806 the
<tt>nsw
</tt> keyword is present, then the shift produces a
3807 <a href=
"#trapvalues">trap value
</a> if it shifts out any bits that disagree
3808 with the resultant sign bit. As such, NUW/NSW have the same semantics as
3809 they would if the shift were expressed as a mul instruction with the same
3810 nsw/nuw bits in (mul %op1, (shl
1, %op2)).
</p>
3814 <result
> = shl i32
4, %var
<i>; yields {i32}:
4 << %var
</i>
3815 <result
> = shl i32
4,
2 <i>; yields {i32}:
16</i>
3816 <result
> = shl i32
1,
10 <i>; yields {i32}:
1024</i>
3817 <result
> = shl i32
1,
32 <i>; undefined
</i>
3818 <result
> = shl
<2 x i32
> < i32
1, i32
1>,
< i32
1, i32
2> <i>; yields: result=
<2 x i32
> < i32
2, i32
4></i>
3823 <!-- _______________________________________________________________________ -->
3825 <a name=
"i_lshr">'
<tt>lshr
</tt>' Instruction
</a>
3832 <result
> = lshr
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3833 <result
> = lshr exact
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3837 <p>The '
<tt>lshr
</tt>' instruction (logical shift right) returns the first
3838 operand shifted to the right a specified number of bits with zero fill.
</p>
3841 <p>Both arguments to the '
<tt>lshr
</tt>' instruction must be the same
3842 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3843 type. '
<tt>op2
</tt>' is treated as an unsigned value.
</p>
3846 <p>This instruction always performs a logical shift right operation. The most
3847 significant bits of the result will be filled with zero bits after the shift.
3848 If
<tt>op2
</tt> is (statically or dynamically) equal to or larger than the
3849 number of bits in
<tt>op1
</tt>, the result is undefined. If the arguments are
3850 vectors, each vector element of
<tt>op1
</tt> is shifted by the corresponding
3851 shift amount in
<tt>op2
</tt>.
</p>
3853 <p>If the
<tt>exact
</tt> keyword is present, the result value of the
3854 <tt>lshr
</tt> is a
<a href=
"#trapvalues">trap value
</a> if any of the bits
3855 shifted out are non-zero.
</p>
3860 <result
> = lshr i32
4,
1 <i>; yields {i32}:result =
2</i>
3861 <result
> = lshr i32
4,
2 <i>; yields {i32}:result =
1</i>
3862 <result
> = lshr i8
4,
3 <i>; yields {i8}:result =
0</i>
3863 <result
> = lshr i8 -
2,
1 <i>; yields {i8}:result =
0x7FFFFFFF </i>
3864 <result
> = lshr i32
1,
32 <i>; undefined
</i>
3865 <result
> = lshr
<2 x i32
> < i32 -
2, i32
4>,
< i32
1, i32
2> <i>; yields: result=
<2 x i32
> < i32
0x7FFFFFFF, i32
1></i>
3870 <!-- _______________________________________________________________________ -->
3872 <a name=
"i_ashr">'
<tt>ashr
</tt>' Instruction
</a>
3879 <result
> = ashr
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3880 <result
> = ashr exact
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3884 <p>The '
<tt>ashr
</tt>' instruction (arithmetic shift right) returns the first
3885 operand shifted to the right a specified number of bits with sign
3889 <p>Both arguments to the '
<tt>ashr
</tt>' instruction must be the same
3890 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3891 type. '
<tt>op2
</tt>' is treated as an unsigned value.
</p>
3894 <p>This instruction always performs an arithmetic shift right operation, The
3895 most significant bits of the result will be filled with the sign bit
3896 of
<tt>op1
</tt>. If
<tt>op2
</tt> is (statically or dynamically) equal to or
3897 larger than the number of bits in
<tt>op1
</tt>, the result is undefined. If
3898 the arguments are vectors, each vector element of
<tt>op1
</tt> is shifted by
3899 the corresponding shift amount in
<tt>op2
</tt>.
</p>
3901 <p>If the
<tt>exact
</tt> keyword is present, the result value of the
3902 <tt>ashr
</tt> is a
<a href=
"#trapvalues">trap value
</a> if any of the bits
3903 shifted out are non-zero.
</p>
3907 <result
> = ashr i32
4,
1 <i>; yields {i32}:result =
2</i>
3908 <result
> = ashr i32
4,
2 <i>; yields {i32}:result =
1</i>
3909 <result
> = ashr i8
4,
3 <i>; yields {i8}:result =
0</i>
3910 <result
> = ashr i8 -
2,
1 <i>; yields {i8}:result = -
1</i>
3911 <result
> = ashr i32
1,
32 <i>; undefined
</i>
3912 <result
> = ashr
<2 x i32
> < i32 -
2, i32
4>,
< i32
1, i32
3> <i>; yields: result=
<2 x i32
> < i32 -
1, i32
0></i>
3917 <!-- _______________________________________________________________________ -->
3919 <a name=
"i_and">'
<tt>and
</tt>' Instruction
</a>
3926 <result
> = and
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3930 <p>The '
<tt>and
</tt>' instruction returns the bitwise logical and of its two
3934 <p>The two arguments to the '
<tt>and
</tt>' instruction must be
3935 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3936 values. Both arguments must have identical types.
</p>
3939 <p>The truth table used for the '
<tt>and
</tt>' instruction is:
</p>
3941 <table border=
"1" cellspacing=
"0" cellpadding=
"4">
3973 <result
> = and i32
4, %var
<i>; yields {i32}:result =
4 & %var
</i>
3974 <result
> = and i32
15,
40 <i>; yields {i32}:result =
8</i>
3975 <result
> = and i32
4,
8 <i>; yields {i32}:result =
0</i>
3978 <!-- _______________________________________________________________________ -->
3980 <a name=
"i_or">'
<tt>or
</tt>' Instruction
</a>
3987 <result
> = or
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
3991 <p>The '
<tt>or
</tt>' instruction returns the bitwise logical inclusive or of its
3995 <p>The two arguments to the '
<tt>or
</tt>' instruction must be
3996 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
3997 values. Both arguments must have identical types.
</p>
4000 <p>The truth table used for the '
<tt>or
</tt>' instruction is:
</p>
4002 <table border=
"1" cellspacing=
"0" cellpadding=
"4">
4034 <result
> = or i32
4, %var
<i>; yields {i32}:result =
4 | %var
</i>
4035 <result
> = or i32
15,
40 <i>; yields {i32}:result =
47</i>
4036 <result
> = or i32
4,
8 <i>; yields {i32}:result =
12</i>
4041 <!-- _______________________________________________________________________ -->
4043 <a name=
"i_xor">'
<tt>xor
</tt>' Instruction
</a>
4050 <result
> = xor
<ty
> <op1
>,
<op2
> <i>; yields {ty}:result
</i>
4054 <p>The '
<tt>xor
</tt>' instruction returns the bitwise logical exclusive or of
4055 its two operands. The
<tt>xor
</tt> is used to implement the
"one's
4056 complement" operation, which is the
"~" operator in C.
</p>
4059 <p>The two arguments to the '
<tt>xor
</tt>' instruction must be
4060 <a href=
"#t_integer">integer
</a> or
<a href=
"#t_vector">vector
</a> of integer
4061 values. Both arguments must have identical types.
</p>
4064 <p>The truth table used for the '
<tt>xor
</tt>' instruction is:
</p>
4066 <table border=
"1" cellspacing=
"0" cellpadding=
"4">
4098 <result
> = xor i32
4, %var
<i>; yields {i32}:result =
4 ^ %var
</i>
4099 <result
> = xor i32
15,
40 <i>; yields {i32}:result =
39</i>
4100 <result
> = xor i32
4,
8 <i>; yields {i32}:result =
12</i>
4101 <result
> = xor i32 %V, -
1 <i>; yields {i32}:result = ~%V
</i>
4108 <!-- ======================================================================= -->
4110 <a name=
"vectorops">Vector Operations
</a>
4115 <p>LLVM supports several instructions to represent vector operations in a
4116 target-independent manner. These instructions cover the element-access and
4117 vector-specific operations needed to process vectors effectively. While LLVM
4118 does directly support these vector operations, many sophisticated algorithms
4119 will want to use target-specific intrinsics to take full advantage of a
4120 specific target.
</p>
4122 <!-- _______________________________________________________________________ -->
4124 <a name=
"i_extractelement">'
<tt>extractelement
</tt>' Instruction
</a>
4131 <result
> = extractelement
<n x
<ty
>> <val
>, i32
<idx
> <i>; yields
<ty
></i>
4135 <p>The '
<tt>extractelement
</tt>' instruction extracts a single scalar element
4136 from a vector at a specified index.
</p>
4140 <p>The first operand of an '
<tt>extractelement
</tt>' instruction is a value
4141 of
<a href=
"#t_vector">vector
</a> type. The second operand is an index
4142 indicating the position from which to extract the element. The index may be
4146 <p>The result is a scalar of the same type as the element type of
4147 <tt>val
</tt>. Its value is the value at position
<tt>idx
</tt> of
4148 <tt>val
</tt>. If
<tt>idx
</tt> exceeds the length of
<tt>val
</tt>, the
4149 results are undefined.
</p>
4153 <result
> = extractelement
<4 x i32
> %vec, i32
0 <i>; yields i32
</i>
4158 <!-- _______________________________________________________________________ -->
4160 <a name=
"i_insertelement">'
<tt>insertelement
</tt>' Instruction
</a>
4167 <result
> = insertelement
<n x
<ty
>> <val
>,
<ty
> <elt
>, i32
<idx
> <i>; yields
<n x
<ty
>></i>
4171 <p>The '
<tt>insertelement
</tt>' instruction inserts a scalar element into a
4172 vector at a specified index.
</p>
4175 <p>The first operand of an '
<tt>insertelement
</tt>' instruction is a value
4176 of
<a href=
"#t_vector">vector
</a> type. The second operand is a scalar value
4177 whose type must equal the element type of the first operand. The third
4178 operand is an index indicating the position at which to insert the value.
4179 The index may be a variable.
</p>
4182 <p>The result is a vector of the same type as
<tt>val
</tt>. Its element values
4183 are those of
<tt>val
</tt> except at position
<tt>idx
</tt>, where it gets the
4184 value
<tt>elt
</tt>. If
<tt>idx
</tt> exceeds the length of
<tt>val
</tt>, the
4185 results are undefined.
</p>
4189 <result
> = insertelement
<4 x i32
> %vec, i32
1, i32
0 <i>; yields
<4 x i32
></i>
4194 <!-- _______________________________________________________________________ -->
4196 <a name=
"i_shufflevector">'
<tt>shufflevector
</tt>' Instruction
</a>
4203 <result
> = shufflevector
<n x
<ty
>> <v1
>,
<n x
<ty
>> <v2
>,
<m x i32
> <mask
> <i>; yields
<m x
<ty
>></i>
4207 <p>The '
<tt>shufflevector
</tt>' instruction constructs a permutation of elements
4208 from two input vectors, returning a vector with the same element type as the
4209 input and length that is the same as the shuffle mask.
</p>
4212 <p>The first two operands of a '
<tt>shufflevector
</tt>' instruction are vectors
4213 with types that match each other. The third argument is a shuffle mask whose
4214 element type is always 'i32'. The result of the instruction is a vector
4215 whose length is the same as the shuffle mask and whose element type is the
4216 same as the element type of the first two operands.
</p>
4218 <p>The shuffle mask operand is required to be a constant vector with either
4219 constant integer or undef values.
</p>
4222 <p>The elements of the two input vectors are numbered from left to right across
4223 both of the vectors. The shuffle mask operand specifies, for each element of
4224 the result vector, which element of the two input vectors the result element
4225 gets. The element selector may be undef (meaning
"don't care") and the
4226 second operand may be undef if performing a shuffle from only one vector.
</p>
4230 <result
> = shufflevector
<4 x i32
> %v1,
<4 x i32
> %v2,
4231 <4 x i32
> <i32
0, i32
4, i32
1, i32
5> <i>; yields
<4 x i32
></i>
4232 <result
> = shufflevector
<4 x i32
> %v1,
<4 x i32
> undef,
4233 <4 x i32
> <i32
0, i32
1, i32
2, i32
3> <i>; yields
<4 x i32
></i> - Identity shuffle.
4234 <result
> = shufflevector
<8 x i32
> %v1,
<8 x i32
> undef,
4235 <4 x i32
> <i32
0, i32
1, i32
2, i32
3> <i>; yields
<4 x i32
></i>
4236 <result
> = shufflevector
<4 x i32
> %v1,
<4 x i32
> %v2,
4237 <8 x i32
> <i32
0, i32
1, i32
2, i32
3, i32
4, i32
5, i32
6, i32
7 > <i>; yields
<8 x i32
></i>
4244 <!-- ======================================================================= -->
4246 <a name=
"aggregateops">Aggregate Operations
</a>
4251 <p>LLVM supports several instructions for working with
4252 <a href=
"#t_aggregate">aggregate
</a> values.
</p>
4254 <!-- _______________________________________________________________________ -->
4256 <a name=
"i_extractvalue">'
<tt>extractvalue
</tt>' Instruction
</a>
4263 <result
> = extractvalue
<aggregate type
> <val
>,
<idx
>{,
<idx
>}*
4267 <p>The '
<tt>extractvalue
</tt>' instruction extracts the value of a member field
4268 from an
<a href=
"#t_aggregate">aggregate
</a> value.
</p>
4271 <p>The first operand of an '
<tt>extractvalue
</tt>' instruction is a value
4272 of
<a href=
"#t_struct">struct
</a> or
4273 <a href=
"#t_array">array
</a> type. The operands are constant indices to
4274 specify which value to extract in a similar manner as indices in a
4275 '
<tt><a href=
"#i_getelementptr">getelementptr
</a></tt>' instruction.
</p>
4276 <p>The major differences to
<tt>getelementptr
</tt> indexing are:
</p>
4278 <li>Since the value being indexed is not a pointer, the first index is
4279 omitted and assumed to be zero.
</li>
4280 <li>At least one index must be specified.
</li>
4281 <li>Not only struct indices but also array indices must be in
4286 <p>The result is the value at the position in the aggregate specified by the
4291 <result
> = extractvalue {i32, float} %agg,
0 <i>; yields i32
</i>
4296 <!-- _______________________________________________________________________ -->
4298 <a name=
"i_insertvalue">'
<tt>insertvalue
</tt>' Instruction
</a>
4305 <result
> = insertvalue
<aggregate type
> <val
>,
<ty
> <elt
>,
<idx
> <i>; yields
<aggregate type
></i>
4309 <p>The '
<tt>insertvalue
</tt>' instruction inserts a value into a member field
4310 in an
<a href=
"#t_aggregate">aggregate
</a> value.
</p>
4313 <p>The first operand of an '
<tt>insertvalue
</tt>' instruction is a value
4314 of
<a href=
"#t_struct">struct
</a> or
4315 <a href=
"#t_array">array
</a> type. The second operand is a first-class
4316 value to insert. The following operands are constant indices indicating
4317 the position at which to insert the value in a similar manner as indices in a
4318 '
<tt><a href=
"#i_extractvalue">extractvalue
</a></tt>' instruction. The
4319 value to insert must have the same type as the value identified by the
4323 <p>The result is an aggregate of the same type as
<tt>val
</tt>. Its value is
4324 that of
<tt>val
</tt> except that the value at the position specified by the
4325 indices is that of
<tt>elt
</tt>.
</p>
4329 %agg1 = insertvalue {i32, float} undef, i32
1,
0 <i>; yields {i32
1, float undef}
</i>
4330 %agg2 = insertvalue {i32, float} %agg1, float %val,
1 <i>; yields {i32
1, float %val}
</i>
4337 <!-- ======================================================================= -->
4339 <a name=
"memoryops">Memory Access and Addressing Operations
</a>
4344 <p>A key design point of an SSA-based representation is how it represents
4345 memory. In LLVM, no memory locations are in SSA form, which makes things
4346 very simple. This section describes how to read, write, and allocate
4349 <!-- _______________________________________________________________________ -->
4351 <a name=
"i_alloca">'
<tt>alloca
</tt>' Instruction
</a>
4358 <result
> = alloca
<type
>[,
<ty
> <NumElements
>][, align
<alignment
>]
<i>; yields {type*}:result
</i>
4362 <p>The '
<tt>alloca
</tt>' instruction allocates memory on the stack frame of the
4363 currently executing function, to be automatically released when this function
4364 returns to its caller. The object is always allocated in the generic address
4365 space (address space zero).
</p>
4368 <p>The '
<tt>alloca
</tt>' instruction
4369 allocates
<tt>sizeof(
<type
>)*NumElements
</tt> bytes of memory on the
4370 runtime stack, returning a pointer of the appropriate type to the program.
4371 If
"NumElements" is specified, it is the number of elements allocated,
4372 otherwise
"NumElements" is defaulted to be one. If a constant alignment is
4373 specified, the value result of the allocation is guaranteed to be aligned to
4374 at least that boundary. If not specified, or if zero, the target can choose
4375 to align the allocation on any convenient boundary compatible with the
4378 <p>'
<tt>type
</tt>' may be any sized type.
</p>
4381 <p>Memory is allocated; a pointer is returned. The operation is undefined if
4382 there is insufficient stack space for the allocation. '
<tt>alloca
</tt>'d
4383 memory is automatically released when the function returns. The
4384 '
<tt>alloca
</tt>' instruction is commonly used to represent automatic
4385 variables that must have an address available. When the function returns
4386 (either with the
<tt><a href=
"#i_ret">ret
</a></tt>
4387 or
<tt><a href=
"#i_unwind">unwind
</a></tt> instructions), the memory is
4388 reclaimed. Allocating zero bytes is legal, but the result is undefined.
</p>
4392 %ptr = alloca i32
<i>; yields {i32*}:ptr
</i>
4393 %ptr = alloca i32, i32
4 <i>; yields {i32*}:ptr
</i>
4394 %ptr = alloca i32, i32
4, align
1024 <i>; yields {i32*}:ptr
</i>
4395 %ptr = alloca i32, align
1024 <i>; yields {i32*}:ptr
</i>
4400 <!-- _______________________________________________________________________ -->
4402 <a name=
"i_load">'
<tt>load
</tt>' Instruction
</a>
4409 <result
> = load
<ty
>*
<pointer
>[, align
<alignment
>][, !nontemporal !
<index
>]
4410 <result
> = volatile load
<ty
>*
<pointer
>[, align
<alignment
>][, !nontemporal !
<index
>]
4411 !
<index
> = !{ i32
1 }
4415 <p>The '
<tt>load
</tt>' instruction is used to read from memory.
</p>
4418 <p>The argument to the '
<tt>load
</tt>' instruction specifies the memory address
4419 from which to load. The pointer must point to
4420 a
<a href=
"#t_firstclass">first class
</a> type. If the
<tt>load
</tt> is
4421 marked as
<tt>volatile
</tt>, then the optimizer is not allowed to modify the
4422 number or order of execution of this
<tt>load
</tt> with other
<a
4423 href=
"#volatile">volatile operations
</a>.
</p>
4425 <p>The optional constant
<tt>align
</tt> argument specifies the alignment of the
4426 operation (that is, the alignment of the memory address). A value of
0 or an
4427 omitted
<tt>align
</tt> argument means that the operation has the preferential
4428 alignment for the target. It is the responsibility of the code emitter to
4429 ensure that the alignment information is correct. Overestimating the
4430 alignment results in undefined behavior. Underestimating the alignment may
4431 produce less efficient code. An alignment of
1 is always safe.
</p>
4433 <p>The optional
<tt>!nontemporal
</tt> metadata must reference a single
4434 metatadata name
<index
> corresponding to a metadata node with
4435 one
<tt>i32
</tt> entry of value
1. The existence of
4436 the
<tt>!nontemporal
</tt> metatadata on the instruction tells the optimizer
4437 and code generator that this load is not expected to be reused in the cache.
4438 The code generator may select special instructions to save cache bandwidth,
4439 such as the
<tt>MOVNT
</tt> instruction on x86.
</p>
4442 <p>The location of memory pointed to is loaded. If the value being loaded is of
4443 scalar type then the number of bytes read does not exceed the minimum number
4444 of bytes needed to hold all bits of the type. For example, loading an
4445 <tt>i24
</tt> reads at most three bytes. When loading a value of a type like
4446 <tt>i20
</tt> with a size that is not an integral number of bytes, the result
4447 is undefined if the value was not originally written using a store of the
4452 %ptr =
<a href=
"#i_alloca">alloca
</a> i32
<i>; yields {i32*}:ptr
</i>
4453 <a href=
"#i_store">store
</a> i32
3, i32* %ptr
<i>; yields {void}
</i>
4454 %val = load i32* %ptr
<i>; yields {i32}:val = i32
3</i>
4459 <!-- _______________________________________________________________________ -->
4461 <a name=
"i_store">'
<tt>store
</tt>' Instruction
</a>
4468 store
<ty
> <value
>,
<ty
>*
<pointer
>[, align
<alignment
>][, !nontemporal !
<index
>]
<i>; yields {void}
</i>
4469 volatile store
<ty
> <value
>,
<ty
>*
<pointer
>[, align
<alignment
>][, !nontemporal !
<index
>]
<i>; yields {void}
</i>
4473 <p>The '
<tt>store
</tt>' instruction is used to write to memory.
</p>
4476 <p>There are two arguments to the '
<tt>store
</tt>' instruction: a value to store
4477 and an address at which to store it. The type of the
4478 '
<tt><pointer
></tt>' operand must be a pointer to
4479 the
<a href=
"#t_firstclass">first class
</a> type of the
4480 '
<tt><value
></tt>' operand. If the
<tt>store
</tt> is marked as
4481 <tt>volatile
</tt>, then the optimizer is not allowed to modify the number or
4482 order of execution of this
<tt>store
</tt> with other
<a
4483 href=
"#volatile">volatile operations
</a>.
</p>
4485 <p>The optional constant
"align" argument specifies the alignment of the
4486 operation (that is, the alignment of the memory address). A value of
0 or an
4487 omitted
"align" argument means that the operation has the preferential
4488 alignment for the target. It is the responsibility of the code emitter to
4489 ensure that the alignment information is correct. Overestimating the
4490 alignment results in an undefined behavior. Underestimating the alignment may
4491 produce less efficient code. An alignment of
1 is always safe.
</p>
4493 <p>The optional !nontemporal metadata must reference a single metatadata
4494 name
<index
> corresponding to a metadata node with one i32 entry of
4495 value
1. The existence of the !nontemporal metatadata on the
4496 instruction tells the optimizer and code generator that this load is
4497 not expected to be reused in the cache. The code generator may
4498 select special instructions to save cache bandwidth, such as the
4499 MOVNT instruction on x86.
</p>
4503 <p>The contents of memory are updated to contain '
<tt><value
></tt>' at the
4504 location specified by the '
<tt><pointer
></tt>' operand. If
4505 '
<tt><value
></tt>' is of scalar type then the number of bytes written
4506 does not exceed the minimum number of bytes needed to hold all bits of the
4507 type. For example, storing an
<tt>i24
</tt> writes at most three bytes. When
4508 writing a value of a type like
<tt>i20
</tt> with a size that is not an
4509 integral number of bytes, it is unspecified what happens to the extra bits
4510 that do not belong to the type, but they will typically be overwritten.
</p>
4514 %ptr =
<a href=
"#i_alloca">alloca
</a> i32
<i>; yields {i32*}:ptr
</i>
4515 store i32
3, i32* %ptr
<i>; yields {void}
</i>
4516 %val =
<a href=
"#i_load">load
</a> i32* %ptr
<i>; yields {i32}:val = i32
3</i>
4521 <!-- _______________________________________________________________________ -->
4523 <a name=
"i_getelementptr">'
<tt>getelementptr
</tt>' Instruction
</a>
4530 <result
> = getelementptr
<pty
>*
<ptrval
>{,
<ty
> <idx
>}*
4531 <result
> = getelementptr inbounds
<pty
>*
<ptrval
>{,
<ty
> <idx
>}*
4535 <p>The '
<tt>getelementptr
</tt>' instruction is used to get the address of a
4536 subelement of an
<a href=
"#t_aggregate">aggregate
</a> data structure.
4537 It performs address calculation only and does not access memory.
</p>
4540 <p>The first argument is always a pointer, and forms the basis of the
4541 calculation. The remaining arguments are indices that indicate which of the
4542 elements of the aggregate object are indexed. The interpretation of each
4543 index is dependent on the type being indexed into. The first index always
4544 indexes the pointer value given as the first argument, the second index
4545 indexes a value of the type pointed to (not necessarily the value directly
4546 pointed to, since the first index can be non-zero), etc. The first type
4547 indexed into must be a pointer value, subsequent types can be arrays,
4548 vectors, and structs. Note that subsequent types being indexed into
4549 can never be pointers, since that would require loading the pointer before
4550 continuing calculation.
</p>
4552 <p>The type of each index argument depends on the type it is indexing into.
4553 When indexing into a (optionally packed) structure, only
<tt>i32
</tt>
4554 integer
<b>constants
</b> are allowed. When indexing into an array, pointer
4555 or vector, integers of any width are allowed, and they are not required to be
4558 <p>For example, let's consider a C code fragment and how it gets compiled to
4561 <pre class=
"doc_code">
4573 int *foo(struct ST *s) {
4574 return
&s[
1].Z.B[
5][
13];
4578 <p>The LLVM code generated by the GCC frontend is:
</p>
4580 <pre class=
"doc_code">
4581 %RT =
<a href=
"#namedtypes">type
</a> { i8 , [
10 x [
20 x i32]], i8 }
4582 %ST =
<a href=
"#namedtypes">type
</a> { i32, double, %RT }
4584 define i32* @foo(%ST* %s) {
4586 %reg = getelementptr %ST* %s, i32
1, i32
2, i32
1, i32
5, i32
13
4592 <p>In the example above, the first index is indexing into the '
<tt>%ST*
</tt>'
4593 type, which is a pointer, yielding a '
<tt>%ST
</tt>' = '
<tt>{ i32, double, %RT
4594 }
</tt>' type, a structure. The second index indexes into the third element
4595 of the structure, yielding a '
<tt>%RT
</tt>' = '
<tt>{ i8 , [
10 x [
20 x i32]],
4596 i8 }
</tt>' type, another structure. The third index indexes into the second
4597 element of the structure, yielding a '
<tt>[
10 x [
20 x i32]]
</tt>' type, an
4598 array. The two dimensions of the array are subscripted into, yielding an
4599 '
<tt>i32
</tt>' type. The '
<tt>getelementptr
</tt>' instruction returns a
4600 pointer to this element, thus computing a value of '
<tt>i32*
</tt>' type.
</p>
4602 <p>Note that it is perfectly legal to index partially through a structure,
4603 returning a pointer to an inner element. Because of this, the LLVM code for
4604 the given testcase is equivalent to:
</p>
4607 define i32* @foo(%ST* %s) {
4608 %t1 = getelementptr %ST* %s, i32
1 <i>; yields %ST*:%t1
</i>
4609 %t2 = getelementptr %ST* %t1, i32
0, i32
2 <i>; yields %RT*:%t2
</i>
4610 %t3 = getelementptr %RT* %t2, i32
0, i32
1 <i>; yields [
10 x [
20 x i32]]*:%t3
</i>
4611 %t4 = getelementptr [
10 x [
20 x i32]]* %t3, i32
0, i32
5 <i>; yields [
20 x i32]*:%t4
</i>
4612 %t5 = getelementptr [
20 x i32]* %t4, i32
0, i32
13 <i>; yields i32*:%t5
</i>
4617 <p>If the
<tt>inbounds
</tt> keyword is present, the result value of the
4618 <tt>getelementptr
</tt> is a
<a href=
"#trapvalues">trap value
</a> if the
4619 base pointer is not an
<i>in bounds
</i> address of an allocated object,
4620 or if any of the addresses that would be formed by successive addition of
4621 the offsets implied by the indices to the base address with infinitely
4622 precise arithmetic are not an
<i>in bounds
</i> address of that allocated
4623 object. The
<i>in bounds
</i> addresses for an allocated object are all
4624 the addresses that point into the object, plus the address one byte past
4627 <p>If the
<tt>inbounds
</tt> keyword is not present, the offsets are added to
4628 the base address with silently-wrapping two's complement arithmetic, and
4629 the result value of the
<tt>getelementptr
</tt> may be outside the object
4630 pointed to by the base pointer. The result value may not necessarily be
4631 used to access memory though, even if it happens to point into allocated
4632 storage. See the
<a href=
"#pointeraliasing">Pointer Aliasing Rules
</a>
4633 section for more information.
</p>
4635 <p>The getelementptr instruction is often confusing. For some more insight into
4636 how it works, see
<a href=
"GetElementPtr.html">the getelementptr FAQ
</a>.
</p>
4640 <i>; yields [
12 x i8]*:aptr
</i>
4641 %aptr = getelementptr {i32, [
12 x i8]}* %saptr, i64
0, i32
1
4642 <i>; yields i8*:vptr
</i>
4643 %vptr = getelementptr {i32,
<2 x i8
>}* %svptr, i64
0, i32
1, i32
1
4644 <i>; yields i8*:eptr
</i>
4645 %eptr = getelementptr [
12 x i8]* %aptr, i64
0, i32
1
4646 <i>; yields i32*:iptr
</i>
4647 %iptr = getelementptr [
10 x i32]* @arr, i16
0, i16
0
4654 <!-- ======================================================================= -->
4656 <a name=
"convertops">Conversion Operations
</a>
4661 <p>The instructions in this category are the conversion instructions (casting)
4662 which all take a single operand and a type. They perform various bit
4663 conversions on the operand.
</p>
4665 <!-- _______________________________________________________________________ -->
4667 <a name=
"i_trunc">'
<tt>trunc .. to
</tt>' Instruction
</a>
4674 <result
> = trunc
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4678 <p>The '
<tt>trunc
</tt>' instruction truncates its operand to the
4679 type
<tt>ty2
</tt>.
</p>
4682 <p>The '
<tt>trunc
</tt>' instruction takes a value to trunc, and a type to trunc it to.
4683 Both types must be of
<a href=
"#t_integer">integer
</a> types, or vectors
4684 of the same number of integers.
4685 The bit size of the
<tt>value
</tt> must be larger than
4686 the bit size of the destination type,
<tt>ty2
</tt>.
4687 Equal sized types are not allowed.
</p>
4690 <p>The '
<tt>trunc
</tt>' instruction truncates the high order bits
4691 in
<tt>value
</tt> and converts the remaining bits to
<tt>ty2
</tt>. Since the
4692 source size must be larger than the destination size,
<tt>trunc
</tt> cannot
4693 be a
<i>no-op cast
</i>. It will always truncate bits.
</p>
4697 %X = trunc i32
257 to i8
<i>; yields i8:
1</i>
4698 %Y = trunc i32
123 to i1
<i>; yields i1:true
</i>
4699 %Z = trunc i32
122 to i1
<i>; yields i1:false
</i>
4700 %W = trunc
<2 x i16
> <i16
8, i16
7> to
<2 x i8
> <i>; yields
<i8
8, i8
7></i>
4705 <!-- _______________________________________________________________________ -->
4707 <a name=
"i_zext">'
<tt>zext .. to
</tt>' Instruction
</a>
4714 <result
> = zext
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4718 <p>The '
<tt>zext
</tt>' instruction zero extends its operand to type
4723 <p>The '
<tt>zext
</tt>' instruction takes a value to cast, and a type to cast it to.
4724 Both types must be of
<a href=
"#t_integer">integer
</a> types, or vectors
4725 of the same number of integers.
4726 The bit size of the
<tt>value
</tt> must be smaller than
4727 the bit size of the destination type,
4731 <p>The
<tt>zext
</tt> fills the high order bits of the
<tt>value
</tt> with zero
4732 bits until it reaches the size of the destination type,
<tt>ty2
</tt>.
</p>
4734 <p>When zero extending from i1, the result will always be either
0 or
1.
</p>
4738 %X = zext i32
257 to i64
<i>; yields i64:
257</i>
4739 %Y = zext i1 true to i32
<i>; yields i32:
1</i>
4740 %Z = zext
<2 x i16
> <i16
8, i16
7> to
<2 x i32
> <i>; yields
<i32
8, i32
7></i>
4745 <!-- _______________________________________________________________________ -->
4747 <a name=
"i_sext">'
<tt>sext .. to
</tt>' Instruction
</a>
4754 <result
> = sext
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4758 <p>The '
<tt>sext
</tt>' sign extends
<tt>value
</tt> to the type
<tt>ty2
</tt>.
</p>
4761 <p>The '
<tt>sext
</tt>' instruction takes a value to cast, and a type to cast it to.
4762 Both types must be of
<a href=
"#t_integer">integer
</a> types, or vectors
4763 of the same number of integers.
4764 The bit size of the
<tt>value
</tt> must be smaller than
4765 the bit size of the destination type,
4769 <p>The '
<tt>sext
</tt>' instruction performs a sign extension by copying the sign
4770 bit (highest order bit) of the
<tt>value
</tt> until it reaches the bit size
4771 of the type
<tt>ty2
</tt>.
</p>
4773 <p>When sign extending from i1, the extension always results in -
1 or
0.
</p>
4777 %X = sext i8 -
1 to i16
<i>; yields i16 :
65535</i>
4778 %Y = sext i1 true to i32
<i>; yields i32:-
1</i>
4779 %Z = sext
<2 x i16
> <i16
8, i16
7> to
<2 x i32
> <i>; yields
<i32
8, i32
7></i>
4784 <!-- _______________________________________________________________________ -->
4786 <a name=
"i_fptrunc">'
<tt>fptrunc .. to
</tt>' Instruction
</a>
4793 <result
> = fptrunc
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4797 <p>The '
<tt>fptrunc
</tt>' instruction truncates
<tt>value
</tt> to type
4801 <p>The '
<tt>fptrunc
</tt>' instruction takes a
<a href=
"#t_floating">floating
4802 point
</a> value to cast and a
<a href=
"#t_floating">floating point
</a> type
4803 to cast it to. The size of
<tt>value
</tt> must be larger than the size of
4804 <tt>ty2
</tt>. This implies that
<tt>fptrunc
</tt> cannot be used to make a
4805 <i>no-op cast
</i>.
</p>
4808 <p>The '
<tt>fptrunc
</tt>' instruction truncates a
<tt>value
</tt> from a larger
4809 <a href=
"#t_floating">floating point
</a> type to a smaller
4810 <a href=
"#t_floating">floating point
</a> type. If the value cannot fit
4811 within the destination type,
<tt>ty2
</tt>, then the results are
4816 %X = fptrunc double
123.0 to float
<i>; yields float:
123.0</i>
4817 %Y = fptrunc double
1.0E+300 to float
<i>; yields undefined
</i>
4822 <!-- _______________________________________________________________________ -->
4824 <a name=
"i_fpext">'
<tt>fpext .. to
</tt>' Instruction
</a>
4831 <result
> = fpext
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4835 <p>The '
<tt>fpext
</tt>' extends a floating point
<tt>value
</tt> to a larger
4836 floating point value.
</p>
4839 <p>The '
<tt>fpext
</tt>' instruction takes a
4840 <a href=
"#t_floating">floating point
</a> <tt>value
</tt> to cast, and
4841 a
<a href=
"#t_floating">floating point
</a> type to cast it to. The source
4842 type must be smaller than the destination type.
</p>
4845 <p>The '
<tt>fpext
</tt>' instruction extends the
<tt>value
</tt> from a smaller
4846 <a href=
"#t_floating">floating point
</a> type to a larger
4847 <a href=
"#t_floating">floating point
</a> type. The
<tt>fpext
</tt> cannot be
4848 used to make a
<i>no-op cast
</i> because it always changes bits. Use
4849 <tt>bitcast
</tt> to make a
<i>no-op cast
</i> for a floating point cast.
</p>
4853 %X = fpext float
3.125 to double
<i>; yields double:
3.125000e+00</i>
4854 %Y = fpext double %X to fp128
<i>; yields fp128:
0xL00000000000000004000900000000000
</i>
4859 <!-- _______________________________________________________________________ -->
4861 <a name=
"i_fptoui">'
<tt>fptoui .. to
</tt>' Instruction
</a>
4868 <result
> = fptoui
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4872 <p>The '
<tt>fptoui
</tt>' converts a floating point
<tt>value
</tt> to its
4873 unsigned integer equivalent of type
<tt>ty2
</tt>.
</p>
4876 <p>The '
<tt>fptoui
</tt>' instruction takes a value to cast, which must be a
4877 scalar or vector
<a href=
"#t_floating">floating point
</a> value, and a type
4878 to cast it to
<tt>ty2
</tt>, which must be an
<a href=
"#t_integer">integer
</a>
4879 type. If
<tt>ty
</tt> is a vector floating point type,
<tt>ty2
</tt> must be a
4880 vector integer type with the same number of elements as
<tt>ty
</tt></p>
4883 <p>The '
<tt>fptoui
</tt>' instruction converts its
4884 <a href=
"#t_floating">floating point
</a> operand into the nearest (rounding
4885 towards zero) unsigned integer value. If the value cannot fit
4886 in
<tt>ty2
</tt>, the results are undefined.
</p>
4890 %X = fptoui double
123.0 to i32
<i>; yields i32:
123</i>
4891 %Y = fptoui float
1.0E+300 to i1
<i>; yields undefined:
1</i>
4892 %Z = fptoui float
1.04E+17 to i8
<i>; yields undefined:
1</i>
4897 <!-- _______________________________________________________________________ -->
4899 <a name=
"i_fptosi">'
<tt>fptosi .. to
</tt>' Instruction
</a>
4906 <result
> = fptosi
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4910 <p>The '
<tt>fptosi
</tt>' instruction converts
4911 <a href=
"#t_floating">floating point
</a> <tt>value
</tt> to
4912 type
<tt>ty2
</tt>.
</p>
4915 <p>The '
<tt>fptosi
</tt>' instruction takes a value to cast, which must be a
4916 scalar or vector
<a href=
"#t_floating">floating point
</a> value, and a type
4917 to cast it to
<tt>ty2
</tt>, which must be an
<a href=
"#t_integer">integer
</a>
4918 type. If
<tt>ty
</tt> is a vector floating point type,
<tt>ty2
</tt> must be a
4919 vector integer type with the same number of elements as
<tt>ty
</tt></p>
4922 <p>The '
<tt>fptosi
</tt>' instruction converts its
4923 <a href=
"#t_floating">floating point
</a> operand into the nearest (rounding
4924 towards zero) signed integer value. If the value cannot fit in
<tt>ty2
</tt>,
4925 the results are undefined.
</p>
4929 %X = fptosi double -
123.0 to i32
<i>; yields i32:-
123</i>
4930 %Y = fptosi float
1.0E-247 to i1
<i>; yields undefined:
1</i>
4931 %Z = fptosi float
1.04E+17 to i8
<i>; yields undefined:
1</i>
4936 <!-- _______________________________________________________________________ -->
4938 <a name=
"i_uitofp">'
<tt>uitofp .. to
</tt>' Instruction
</a>
4945 <result
> = uitofp
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4949 <p>The '
<tt>uitofp
</tt>' instruction regards
<tt>value
</tt> as an unsigned
4950 integer and converts that value to the
<tt>ty2
</tt> type.
</p>
4953 <p>The '
<tt>uitofp
</tt>' instruction takes a value to cast, which must be a
4954 scalar or vector
<a href=
"#t_integer">integer
</a> value, and a type to cast
4955 it to
<tt>ty2
</tt>, which must be an
<a href=
"#t_floating">floating point
</a>
4956 type. If
<tt>ty
</tt> is a vector integer type,
<tt>ty2
</tt> must be a vector
4957 floating point type with the same number of elements as
<tt>ty
</tt></p>
4960 <p>The '
<tt>uitofp
</tt>' instruction interprets its operand as an unsigned
4961 integer quantity and converts it to the corresponding floating point
4962 value. If the value cannot fit in the floating point value, the results are
4967 %X = uitofp i32
257 to float
<i>; yields float:
257.0</i>
4968 %Y = uitofp i8 -
1 to double
<i>; yields double:
255.0</i>
4973 <!-- _______________________________________________________________________ -->
4975 <a name=
"i_sitofp">'
<tt>sitofp .. to
</tt>' Instruction
</a>
4982 <result
> = sitofp
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
4986 <p>The '
<tt>sitofp
</tt>' instruction regards
<tt>value
</tt> as a signed integer
4987 and converts that value to the
<tt>ty2
</tt> type.
</p>
4990 <p>The '
<tt>sitofp
</tt>' instruction takes a value to cast, which must be a
4991 scalar or vector
<a href=
"#t_integer">integer
</a> value, and a type to cast
4992 it to
<tt>ty2
</tt>, which must be an
<a href=
"#t_floating">floating point
</a>
4993 type. If
<tt>ty
</tt> is a vector integer type,
<tt>ty2
</tt> must be a vector
4994 floating point type with the same number of elements as
<tt>ty
</tt></p>
4997 <p>The '
<tt>sitofp
</tt>' instruction interprets its operand as a signed integer
4998 quantity and converts it to the corresponding floating point value. If the
4999 value cannot fit in the floating point value, the results are undefined.
</p>
5003 %X = sitofp i32
257 to float
<i>; yields float:
257.0</i>
5004 %Y = sitofp i8 -
1 to double
<i>; yields double:-
1.0</i>
5009 <!-- _______________________________________________________________________ -->
5011 <a name=
"i_ptrtoint">'
<tt>ptrtoint .. to
</tt>' Instruction
</a>
5018 <result
> = ptrtoint
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
5022 <p>The '
<tt>ptrtoint
</tt>' instruction converts the pointer
<tt>value
</tt> to
5023 the integer type
<tt>ty2
</tt>.
</p>
5026 <p>The '
<tt>ptrtoint
</tt>' instruction takes a
<tt>value
</tt> to cast, which
5027 must be a
<a href=
"#t_pointer">pointer
</a> value, and a type to cast it to
5028 <tt>ty2
</tt>, which must be an
<a href=
"#t_integer">integer
</a> type.
</p>
5031 <p>The '
<tt>ptrtoint
</tt>' instruction converts
<tt>value
</tt> to integer type
5032 <tt>ty2
</tt> by interpreting the pointer value as an integer and either
5033 truncating or zero extending that value to the size of the integer type. If
5034 <tt>value
</tt> is smaller than
<tt>ty2
</tt> then a zero extension is done. If
5035 <tt>value
</tt> is larger than
<tt>ty2
</tt> then a truncation is done. If they
5036 are the same size, then nothing is done (
<i>no-op cast
</i>) other than a type
5041 %X = ptrtoint i32* %X to i8
<i>; yields truncation on
32-bit architecture
</i>
5042 %Y = ptrtoint i32* %x to i64
<i>; yields zero extension on
32-bit architecture
</i>
5047 <!-- _______________________________________________________________________ -->
5049 <a name=
"i_inttoptr">'
<tt>inttoptr .. to
</tt>' Instruction
</a>
5056 <result
> = inttoptr
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
5060 <p>The '
<tt>inttoptr
</tt>' instruction converts an integer
<tt>value
</tt> to a
5061 pointer type,
<tt>ty2
</tt>.
</p>
5064 <p>The '
<tt>inttoptr
</tt>' instruction takes an
<a href=
"#t_integer">integer
</a>
5065 value to cast, and a type to cast it to, which must be a
5066 <a href=
"#t_pointer">pointer
</a> type.
</p>
5069 <p>The '
<tt>inttoptr
</tt>' instruction converts
<tt>value
</tt> to type
5070 <tt>ty2
</tt> by applying either a zero extension or a truncation depending on
5071 the size of the integer
<tt>value
</tt>. If
<tt>value
</tt> is larger than the
5072 size of a pointer then a truncation is done. If
<tt>value
</tt> is smaller
5073 than the size of a pointer then a zero extension is done. If they are the
5074 same size, nothing is done (
<i>no-op cast
</i>).
</p>
5078 %X = inttoptr i32
255 to i32*
<i>; yields zero extension on
64-bit architecture
</i>
5079 %Y = inttoptr i32
255 to i32*
<i>; yields no-op on
32-bit architecture
</i>
5080 %Z = inttoptr i64
0 to i32*
<i>; yields truncation on
32-bit architecture
</i>
5085 <!-- _______________________________________________________________________ -->
5087 <a name=
"i_bitcast">'
<tt>bitcast .. to
</tt>' Instruction
</a>
5094 <result
> = bitcast
<ty
> <value
> to
<ty2
> <i>; yields ty2
</i>
5098 <p>The '
<tt>bitcast
</tt>' instruction converts
<tt>value
</tt> to type
5099 <tt>ty2
</tt> without changing any bits.
</p>
5102 <p>The '
<tt>bitcast
</tt>' instruction takes a value to cast, which must be a
5103 non-aggregate first class value, and a type to cast it to, which must also be
5104 a non-aggregate
<a href=
"#t_firstclass">first class
</a> type. The bit sizes
5105 of
<tt>value
</tt> and the destination type,
<tt>ty2
</tt>, must be
5106 identical. If the source type is a pointer, the destination type must also be
5107 a pointer. This instruction supports bitwise conversion of vectors to
5108 integers and to vectors of other types (as long as they have the same
5112 <p>The '
<tt>bitcast
</tt>' instruction converts
<tt>value
</tt> to type
5113 <tt>ty2
</tt>. It is always a
<i>no-op cast
</i> because no bits change with
5114 this conversion. The conversion is done as if the
<tt>value
</tt> had been
5115 stored to memory and read back as type
<tt>ty2
</tt>. Pointer types may only
5116 be converted to other pointer types with this instruction. To convert
5117 pointers to other types, use the
<a href=
"#i_inttoptr">inttoptr
</a> or
5118 <a href=
"#i_ptrtoint">ptrtoint
</a> instructions first.
</p>
5122 %X = bitcast i8
255 to i8
<i>; yields i8 :-
1</i>
5123 %Y = bitcast i32* %x to sint*
<i>; yields sint*:%x
</i>
5124 %Z = bitcast
<2 x int
> %V to i64;
<i>; yields i64: %V
</i>
5131 <!-- ======================================================================= -->
5133 <a name=
"otherops">Other Operations
</a>
5138 <p>The instructions in this category are the
"miscellaneous" instructions, which
5139 defy better classification.
</p>
5141 <!-- _______________________________________________________________________ -->
5143 <a name=
"i_icmp">'
<tt>icmp
</tt>' Instruction
</a>
5150 <result
> = icmp
<cond
> <ty
> <op1
>,
<op2
> <i>; yields {i1} or {
<N x i1
>}:result
</i>
5154 <p>The '
<tt>icmp
</tt>' instruction returns a boolean value or a vector of
5155 boolean values based on comparison of its two integer, integer vector, or
5156 pointer operands.
</p>
5159 <p>The '
<tt>icmp
</tt>' instruction takes three operands. The first operand is
5160 the condition code indicating the kind of comparison to perform. It is not a
5161 value, just a keyword. The possible condition code are:
</p>
5164 <li><tt>eq
</tt>: equal
</li>
5165 <li><tt>ne
</tt>: not equal
</li>
5166 <li><tt>ugt
</tt>: unsigned greater than
</li>
5167 <li><tt>uge
</tt>: unsigned greater or equal
</li>
5168 <li><tt>ult
</tt>: unsigned less than
</li>
5169 <li><tt>ule
</tt>: unsigned less or equal
</li>
5170 <li><tt>sgt
</tt>: signed greater than
</li>
5171 <li><tt>sge
</tt>: signed greater or equal
</li>
5172 <li><tt>slt
</tt>: signed less than
</li>
5173 <li><tt>sle
</tt>: signed less or equal
</li>
5176 <p>The remaining two arguments must be
<a href=
"#t_integer">integer
</a> or
5177 <a href=
"#t_pointer">pointer
</a> or integer
<a href=
"#t_vector">vector
</a>
5178 typed. They must also be identical types.
</p>
5181 <p>The '
<tt>icmp
</tt>' compares
<tt>op1
</tt> and
<tt>op2
</tt> according to the
5182 condition code given as
<tt>cond
</tt>. The comparison performed always yields
5183 either an
<a href=
"#t_integer"><tt>i1
</tt></a> or vector of
<tt>i1
</tt>
5184 result, as follows:
</p>
5187 <li><tt>eq
</tt>: yields
<tt>true
</tt> if the operands are equal,
5188 <tt>false
</tt> otherwise. No sign interpretation is necessary or
5191 <li><tt>ne
</tt>: yields
<tt>true
</tt> if the operands are unequal,
5192 <tt>false
</tt> otherwise. No sign interpretation is necessary or
5195 <li><tt>ugt
</tt>: interprets the operands as unsigned values and yields
5196 <tt>true
</tt> if
<tt>op1
</tt> is greater than
<tt>op2
</tt>.
</li>
5198 <li><tt>uge
</tt>: interprets the operands as unsigned values and yields
5199 <tt>true
</tt> if
<tt>op1
</tt> is greater than or equal
5200 to
<tt>op2
</tt>.
</li>
5202 <li><tt>ult
</tt>: interprets the operands as unsigned values and yields
5203 <tt>true
</tt> if
<tt>op1
</tt> is less than
<tt>op2
</tt>.
</li>
5205 <li><tt>ule
</tt>: interprets the operands as unsigned values and yields
5206 <tt>true
</tt> if
<tt>op1
</tt> is less than or equal to
<tt>op2
</tt>.
</li>
5208 <li><tt>sgt
</tt>: interprets the operands as signed values and yields
5209 <tt>true
</tt> if
<tt>op1
</tt> is greater than
<tt>op2
</tt>.
</li>
5211 <li><tt>sge
</tt>: interprets the operands as signed values and yields
5212 <tt>true
</tt> if
<tt>op1
</tt> is greater than or equal
5213 to
<tt>op2
</tt>.
</li>
5215 <li><tt>slt
</tt>: interprets the operands as signed values and yields
5216 <tt>true
</tt> if
<tt>op1
</tt> is less than
<tt>op2
</tt>.
</li>
5218 <li><tt>sle
</tt>: interprets the operands as signed values and yields
5219 <tt>true
</tt> if
<tt>op1
</tt> is less than or equal to
<tt>op2
</tt>.
</li>
5222 <p>If the operands are
<a href=
"#t_pointer">pointer
</a> typed, the pointer
5223 values are compared as if they were integers.
</p>
5225 <p>If the operands are integer vectors, then they are compared element by
5226 element. The result is an
<tt>i1
</tt> vector with the same number of elements
5227 as the values being compared. Otherwise, the result is an
<tt>i1
</tt>.
</p>
5231 <result
> = icmp eq i32
4,
5 <i>; yields: result=false
</i>
5232 <result
> = icmp ne float* %X, %X
<i>; yields: result=false
</i>
5233 <result
> = icmp ult i16
4,
5 <i>; yields: result=true
</i>
5234 <result
> = icmp sgt i16
4,
5 <i>; yields: result=false
</i>
5235 <result
> = icmp ule i16 -
4,
5 <i>; yields: result=false
</i>
5236 <result
> = icmp sge i16
4,
5 <i>; yields: result=false
</i>
5239 <p>Note that the code generator does not yet support vector types with
5240 the
<tt>icmp
</tt> instruction.
</p>
5244 <!-- _______________________________________________________________________ -->
5246 <a name=
"i_fcmp">'
<tt>fcmp
</tt>' Instruction
</a>
5253 <result
> = fcmp
<cond
> <ty
> <op1
>,
<op2
> <i>; yields {i1} or {
<N x i1
>}:result
</i>
5257 <p>The '
<tt>fcmp
</tt>' instruction returns a boolean value or vector of boolean
5258 values based on comparison of its operands.
</p>
5260 <p>If the operands are floating point scalars, then the result type is a boolean
5261 (
<a href=
"#t_integer"><tt>i1
</tt></a>).
</p>
5263 <p>If the operands are floating point vectors, then the result type is a vector
5264 of boolean with the same number of elements as the operands being
5268 <p>The '
<tt>fcmp
</tt>' instruction takes three operands. The first operand is
5269 the condition code indicating the kind of comparison to perform. It is not a
5270 value, just a keyword. The possible condition code are:
</p>
5273 <li><tt>false
</tt>: no comparison, always returns false
</li>
5274 <li><tt>oeq
</tt>: ordered and equal
</li>
5275 <li><tt>ogt
</tt>: ordered and greater than
</li>
5276 <li><tt>oge
</tt>: ordered and greater than or equal
</li>
5277 <li><tt>olt
</tt>: ordered and less than
</li>
5278 <li><tt>ole
</tt>: ordered and less than or equal
</li>
5279 <li><tt>one
</tt>: ordered and not equal
</li>
5280 <li><tt>ord
</tt>: ordered (no nans)
</li>
5281 <li><tt>ueq
</tt>: unordered or equal
</li>
5282 <li><tt>ugt
</tt>: unordered or greater than
</li>
5283 <li><tt>uge
</tt>: unordered or greater than or equal
</li>
5284 <li><tt>ult
</tt>: unordered or less than
</li>
5285 <li><tt>ule
</tt>: unordered or less than or equal
</li>
5286 <li><tt>une
</tt>: unordered or not equal
</li>
5287 <li><tt>uno
</tt>: unordered (either nans)
</li>
5288 <li><tt>true
</tt>: no comparison, always returns true
</li>
5291 <p><i>Ordered
</i> means that neither operand is a QNAN while
5292 <i>unordered
</i> means that either operand may be a QNAN.
</p>
5294 <p>Each of
<tt>val1
</tt> and
<tt>val2
</tt> arguments must be either
5295 a
<a href=
"#t_floating">floating point
</a> type or
5296 a
<a href=
"#t_vector">vector
</a> of floating point type. They must have
5297 identical types.
</p>
5300 <p>The '
<tt>fcmp
</tt>' instruction compares
<tt>op1
</tt> and
<tt>op2
</tt>
5301 according to the condition code given as
<tt>cond
</tt>. If the operands are
5302 vectors, then the vectors are compared element by element. Each comparison
5303 performed always yields an
<a href=
"#t_integer">i1
</a> result, as
5307 <li><tt>false
</tt>: always yields
<tt>false
</tt>, regardless of operands.
</li>
5309 <li><tt>oeq
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
5310 <tt>op1
</tt> is equal to
<tt>op2
</tt>.
</li>
5312 <li><tt>ogt
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
5313 <tt>op1
</tt> is greater than
<tt>op2
</tt>.
</li>
5315 <li><tt>oge
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
5316 <tt>op1
</tt> is greater than or equal to
<tt>op2
</tt>.
</li>
5318 <li><tt>olt
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
5319 <tt>op1
</tt> is less than
<tt>op2
</tt>.
</li>
5321 <li><tt>ole
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
5322 <tt>op1
</tt> is less than or equal to
<tt>op2
</tt>.
</li>
5324 <li><tt>one
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN and
5325 <tt>op1
</tt> is not equal to
<tt>op2
</tt>.
</li>
5327 <li><tt>ord
</tt>: yields
<tt>true
</tt> if both operands are not a QNAN.
</li>
5329 <li><tt>ueq
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
5330 <tt>op1
</tt> is equal to
<tt>op2
</tt>.
</li>
5332 <li><tt>ugt
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
5333 <tt>op1
</tt> is greater than
<tt>op2
</tt>.
</li>
5335 <li><tt>uge
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
5336 <tt>op1
</tt> is greater than or equal to
<tt>op2
</tt>.
</li>
5338 <li><tt>ult
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
5339 <tt>op1
</tt> is less than
<tt>op2
</tt>.
</li>
5341 <li><tt>ule
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
5342 <tt>op1
</tt> is less than or equal to
<tt>op2
</tt>.
</li>
5344 <li><tt>une
</tt>: yields
<tt>true
</tt> if either operand is a QNAN or
5345 <tt>op1
</tt> is not equal to
<tt>op2
</tt>.
</li>
5347 <li><tt>uno
</tt>: yields
<tt>true
</tt> if either operand is a QNAN.
</li>
5349 <li><tt>true
</tt>: always yields
<tt>true
</tt>, regardless of operands.
</li>
5354 <result
> = fcmp oeq float
4.0,
5.0 <i>; yields: result=false
</i>
5355 <result
> = fcmp one float
4.0,
5.0 <i>; yields: result=true
</i>
5356 <result
> = fcmp olt float
4.0,
5.0 <i>; yields: result=true
</i>
5357 <result
> = fcmp ueq double
1.0,
2.0 <i>; yields: result=false
</i>
5360 <p>Note that the code generator does not yet support vector types with
5361 the
<tt>fcmp
</tt> instruction.
</p>
5365 <!-- _______________________________________________________________________ -->
5367 <a name=
"i_phi">'
<tt>phi
</tt>' Instruction
</a>
5374 <result
> = phi
<ty
> [
<val0
>,
<label0
>], ...
5378 <p>The '
<tt>phi
</tt>' instruction is used to implement the
φ node in the
5379 SSA graph representing the function.
</p>
5382 <p>The type of the incoming values is specified with the first type field. After
5383 this, the '
<tt>phi
</tt>' instruction takes a list of pairs as arguments, with
5384 one pair for each predecessor basic block of the current block. Only values
5385 of
<a href=
"#t_firstclass">first class
</a> type may be used as the value
5386 arguments to the PHI node. Only labels may be used as the label
5389 <p>There must be no non-phi instructions between the start of a basic block and
5390 the PHI instructions: i.e. PHI instructions must be first in a basic
5393 <p>For the purposes of the SSA form, the use of each incoming value is deemed to
5394 occur on the edge from the corresponding predecessor block to the current
5395 block (but after any definition of an '
<tt>invoke
</tt>' instruction's return
5396 value on the same edge).
</p>
5399 <p>At runtime, the '
<tt>phi
</tt>' instruction logically takes on the value
5400 specified by the pair corresponding to the predecessor basic block that
5401 executed just prior to the current block.
</p>
5405 Loop: ; Infinite loop that counts from
0 on up...
5406 %indvar = phi i32 [
0, %LoopHeader ], [ %nextindvar, %Loop ]
5407 %nextindvar = add i32 %indvar,
1
5413 <!-- _______________________________________________________________________ -->
5415 <a name=
"i_select">'
<tt>select
</tt>' Instruction
</a>
5422 <result
> = select
<i>selty
</i> <cond
>,
<ty
> <val1
>,
<ty
> <val2
> <i>; yields ty
</i>
5424 <i>selty
</i> is either i1 or {
<N x i1
>}
5428 <p>The '
<tt>select
</tt>' instruction is used to choose one value based on a
5429 condition, without branching.
</p>
5433 <p>The '
<tt>select
</tt>' instruction requires an 'i1' value or a vector of 'i1'
5434 values indicating the condition, and two values of the
5435 same
<a href=
"#t_firstclass">first class
</a> type. If the val1/val2 are
5436 vectors and the condition is a scalar, then entire vectors are selected, not
5437 individual elements.
</p>
5440 <p>If the condition is an i1 and it evaluates to
1, the instruction returns the
5441 first value argument; otherwise, it returns the second value argument.
</p>
5443 <p>If the condition is a vector of i1, then the value arguments must be vectors
5444 of the same size, and the selection is done element by element.
</p>
5448 %X = select i1 true, i8
17, i8
42 <i>; yields i8:
17</i>
5451 <p>Note that the code generator does not yet support conditions
5452 with vector type.
</p>
5456 <!-- _______________________________________________________________________ -->
5458 <a name=
"i_call">'
<tt>call
</tt>' Instruction
</a>
5465 <result
> = [tail] call [
<a href=
"#callingconv">cconv
</a>] [
<a href=
"#paramattrs">ret attrs
</a>]
<ty
> [
<fnty
>*]
<fnptrval
>(
<function args
>) [
<a href=
"#fnattrs">fn attrs
</a>]
5469 <p>The '
<tt>call
</tt>' instruction represents a simple function call.
</p>
5472 <p>This instruction requires several arguments:
</p>
5475 <li>The optional
"tail" marker indicates that the callee function does not
5476 access any allocas or varargs in the caller. Note that calls may be
5477 marked
"tail" even if they do not occur before
5478 a
<a href=
"#i_ret"><tt>ret
</tt></a> instruction. If the
"tail" marker is
5479 present, the function call is eligible for tail call optimization,
5480 but
<a href=
"CodeGenerator.html#tailcallopt">might not in fact be
5481 optimized into a jump
</a>. The code generator may optimize calls marked
5482 "tail" with either
1) automatic
<a href=
"CodeGenerator.html#sibcallopt">
5483 sibling call optimization
</a> when the caller and callee have
5484 matching signatures, or
2) forced tail call optimization when the
5485 following extra requirements are met:
5487 <li>Caller and callee both have the calling
5488 convention
<tt>fastcc
</tt>.
</li>
5489 <li>The call is in tail position (ret immediately follows call and ret
5490 uses value of call or is void).
</li>
5491 <li>Option
<tt>-tailcallopt
</tt> is enabled,
5492 or
<code>llvm::GuaranteedTailCallOpt
</code> is
<code>true
</code>.
</li>
5493 <li><a href=
"CodeGenerator.html#tailcallopt">Platform specific
5494 constraints are met.
</a></li>
5498 <li>The optional
"cconv" marker indicates which
<a href=
"#callingconv">calling
5499 convention
</a> the call should use. If none is specified, the call
5500 defaults to using C calling conventions. The calling convention of the
5501 call must match the calling convention of the target function, or else the
5502 behavior is undefined.
</li>
5504 <li>The optional
<a href=
"#paramattrs">Parameter Attributes
</a> list for
5505 return values. Only '
<tt>zeroext
</tt>', '
<tt>signext
</tt>', and
5506 '
<tt>inreg
</tt>' attributes are valid here.
</li>
5508 <li>'
<tt>ty
</tt>': the type of the call instruction itself which is also the
5509 type of the return value. Functions that return no value are marked
5510 <tt><a href=
"#t_void">void
</a></tt>.
</li>
5512 <li>'
<tt>fnty
</tt>': shall be the signature of the pointer to function value
5513 being invoked. The argument types must match the types implied by this
5514 signature. This type can be omitted if the function is not varargs and if
5515 the function type does not return a pointer to a function.
</li>
5517 <li>'
<tt>fnptrval
</tt>': An LLVM value containing a pointer to a function to
5518 be invoked. In most cases, this is a direct function invocation, but
5519 indirect
<tt>call
</tt>s are just as possible, calling an arbitrary pointer
5520 to function value.
</li>
5522 <li>'
<tt>function args
</tt>': argument list whose types match the function
5523 signature argument types and parameter attributes. All arguments must be
5524 of
<a href=
"#t_firstclass">first class
</a> type. If the function
5525 signature indicates the function accepts a variable number of arguments,
5526 the extra arguments can be specified.
</li>
5528 <li>The optional
<a href=
"#fnattrs">function attributes
</a> list. Only
5529 '
<tt>noreturn
</tt>', '
<tt>nounwind
</tt>', '
<tt>readonly
</tt>' and
5530 '
<tt>readnone
</tt>' attributes are valid here.
</li>
5534 <p>The '
<tt>call
</tt>' instruction is used to cause control flow to transfer to
5535 a specified function, with its incoming arguments bound to the specified
5536 values. Upon a '
<tt><a href=
"#i_ret">ret
</a></tt>' instruction in the called
5537 function, control flow continues with the instruction after the function
5538 call, and the return value of the function is bound to the result
5543 %retval = call i32 @test(i32 %argc)
5544 call i32 (i8*, ...)* @printf(i8* %msg, i32
12, i8
42)
<i>; yields i32
</i>
5545 %X = tail call i32 @foo()
<i>; yields i32
</i>
5546 %Y = tail call
<a href=
"#callingconv">fastcc
</a> i32 @foo()
<i>; yields i32
</i>
5547 call void %foo(i8
97 signext)
5549 %struct.A = type { i32, i8 }
5550 %r = call %struct.A @foo()
<i>; yields {
32, i8 }
</i>
5551 %gr = extractvalue %struct.A %r,
0 <i>; yields i32
</i>
5552 %gr1 = extractvalue %struct.A %r,
1 <i>; yields i8
</i>
5553 %Z = call void @foo() noreturn
<i>; indicates that %foo never returns normally
</i>
5554 %ZZ = call zeroext i32 @bar()
<i>; Return value is %zero extended
</i>
5557 <p>llvm treats calls to some functions with names and arguments that match the
5558 standard C99 library as being the C99 library functions, and may perform
5559 optimizations or generate code for them under that assumption. This is
5560 something we'd like to change in the future to provide better support for
5561 freestanding environments and non-C-based languages.
</p>
5565 <!-- _______________________________________________________________________ -->
5567 <a name=
"i_va_arg">'
<tt>va_arg
</tt>' Instruction
</a>
5574 <resultval
> = va_arg
<va_list*
> <arglist
>,
<argty
>
5578 <p>The '
<tt>va_arg
</tt>' instruction is used to access arguments passed through
5579 the
"variable argument" area of a function call. It is used to implement the
5580 <tt>va_arg
</tt> macro in C.
</p>
5583 <p>This instruction takes a
<tt>va_list*
</tt> value and the type of the
5584 argument. It returns a value of the specified argument type and increments
5585 the
<tt>va_list
</tt> to point to the next argument. The actual type
5586 of
<tt>va_list
</tt> is target specific.
</p>
5589 <p>The '
<tt>va_arg
</tt>' instruction loads an argument of the specified type
5590 from the specified
<tt>va_list
</tt> and causes the
<tt>va_list
</tt> to point
5591 to the next argument. For more information, see the variable argument
5592 handling
<a href=
"#int_varargs">Intrinsic Functions
</a>.
</p>
5594 <p>It is legal for this instruction to be called in a function which does not
5595 take a variable number of arguments, for example, the
<tt>vfprintf
</tt>
5598 <p><tt>va_arg
</tt> is an LLVM instruction instead of
5599 an
<a href=
"#intrinsics">intrinsic function
</a> because it takes a type as an
5603 <p>See the
<a href=
"#int_varargs">variable argument processing
</a> section.
</p>
5605 <p>Note that the code generator does not yet fully support va_arg on many
5606 targets. Also, it does not currently support va_arg with aggregate types on
5615 <!-- *********************************************************************** -->
5616 <h2><a name=
"intrinsics">Intrinsic Functions
</a></h2>
5617 <!-- *********************************************************************** -->
5621 <p>LLVM supports the notion of an
"intrinsic function". These functions have
5622 well known names and semantics and are required to follow certain
5623 restrictions. Overall, these intrinsics represent an extension mechanism for
5624 the LLVM language that does not require changing all of the transformations
5625 in LLVM when adding to the language (or the bitcode reader/writer, the
5626 parser, etc...).
</p>
5628 <p>Intrinsic function names must all start with an
"<tt>llvm.</tt>" prefix. This
5629 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5630 begin with this prefix. Intrinsic functions must always be external
5631 functions: you cannot define the body of intrinsic functions. Intrinsic
5632 functions may only be used in call or invoke instructions: it is illegal to
5633 take the address of an intrinsic function. Additionally, because intrinsic
5634 functions are part of the LLVM language, it is required if any are added that
5635 they be documented here.
</p>
5637 <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5638 family of functions that perform the same operation but on different data
5639 types. Because LLVM can represent over
8 million different integer types,
5640 overloading is used commonly to allow an intrinsic function to operate on any
5641 integer type. One or more of the argument types or the result type can be
5642 overloaded to accept any integer type. Argument types may also be defined as
5643 exactly matching a previous argument's type or the result type. This allows
5644 an intrinsic function which accepts multiple arguments, but needs all of them
5645 to be of the same type, to only be overloaded with respect to a single
5646 argument or the result.
</p>
5648 <p>Overloaded intrinsics will have the names of its overloaded argument types
5649 encoded into its function name, each preceded by a period. Only those types
5650 which are overloaded result in a name suffix. Arguments whose type is matched
5651 against another type do not. For example, the
<tt>llvm.ctpop
</tt> function
5652 can take an integer of any width and returns an integer of exactly the same
5653 integer width. This leads to a family of functions such as
5654 <tt>i8 @llvm.ctpop.i8(i8 %val)
</tt> and
<tt>i29 @llvm.ctpop.i29(i29
5655 %val)
</tt>. Only one type, the return type, is overloaded, and only one type
5656 suffix is required. Because the argument's type is matched against the return
5657 type, it does not require its own name suffix.
</p>
5659 <p>To learn how to add an intrinsic function, please see the
5660 <a href=
"ExtendingLLVM.html">Extending LLVM Guide
</a>.
</p>
5662 <!-- ======================================================================= -->
5664 <a name=
"int_varargs">Variable Argument Handling Intrinsics
</a>
5669 <p>Variable argument support is defined in LLVM with
5670 the
<a href=
"#i_va_arg"><tt>va_arg
</tt></a> instruction and these three
5671 intrinsic functions. These functions are related to the similarly named
5672 macros defined in the
<tt><stdarg.h
></tt> header file.
</p>
5674 <p>All of these functions operate on arguments that use a target-specific value
5675 type
"<tt>va_list</tt>". The LLVM assembly language reference manual does
5676 not define what this type is, so all transformations should be prepared to
5677 handle these functions regardless of the type used.
</p>
5679 <p>This example shows how the
<a href=
"#i_va_arg"><tt>va_arg
</tt></a>
5680 instruction and the variable argument handling intrinsic functions are
5683 <pre class=
"doc_code">
5684 define i32 @test(i32 %X, ...) {
5685 ; Initialize variable argument processing
5687 %ap2 = bitcast i8** %ap to i8*
5688 call void @llvm.va_start(i8* %ap2)
5690 ; Read a single integer argument
5691 %tmp = va_arg i8** %ap, i32
5693 ; Demonstrate usage of llvm.va_copy and llvm.va_end
5695 %aq2 = bitcast i8** %aq to i8*
5696 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
5697 call void @llvm.va_end(i8* %aq2)
5699 ; Stop processing of arguments.
5700 call void @llvm.va_end(i8* %ap2)
5704 declare void @llvm.va_start(i8*)
5705 declare void @llvm.va_copy(i8*, i8*)
5706 declare void @llvm.va_end(i8*)
5709 <!-- _______________________________________________________________________ -->
5711 <a name=
"int_va_start">'
<tt>llvm.va_start
</tt>' Intrinsic
</a>
5719 declare void %llvm.va_start(i8*
<arglist
>)
5723 <p>The '
<tt>llvm.va_start
</tt>' intrinsic initializes
<tt>*
<arglist
></tt>
5724 for subsequent use by
<tt><a href=
"#i_va_arg">va_arg
</a></tt>.
</p>
5727 <p>The argument is a pointer to a
<tt>va_list
</tt> element to initialize.
</p>
5730 <p>The '
<tt>llvm.va_start
</tt>' intrinsic works just like the
<tt>va_start
</tt>
5731 macro available in C. In a target-dependent way, it initializes
5732 the
<tt>va_list
</tt> element to which the argument points, so that the next
5733 call to
<tt>va_arg
</tt> will produce the first variable argument passed to
5734 the function. Unlike the C
<tt>va_start
</tt> macro, this intrinsic does not
5735 need to know the last argument of the function as the compiler can figure
5740 <!-- _______________________________________________________________________ -->
5742 <a name=
"int_va_end">'
<tt>llvm.va_end
</tt>' Intrinsic
</a>
5749 declare void @llvm.va_end(i8*
<arglist
>)
5753 <p>The '
<tt>llvm.va_end
</tt>' intrinsic destroys
<tt>*
<arglist
></tt>,
5754 which has been initialized previously
5755 with
<tt><a href=
"#int_va_start">llvm.va_start
</a></tt>
5756 or
<tt><a href=
"#i_va_copy">llvm.va_copy
</a></tt>.
</p>
5759 <p>The argument is a pointer to a
<tt>va_list
</tt> to destroy.
</p>
5762 <p>The '
<tt>llvm.va_end
</tt>' intrinsic works just like the
<tt>va_end
</tt>
5763 macro available in C. In a target-dependent way, it destroys
5764 the
<tt>va_list
</tt> element to which the argument points. Calls
5765 to
<a href=
"#int_va_start"><tt>llvm.va_start
</tt></a>
5766 and
<a href=
"#int_va_copy"> <tt>llvm.va_copy
</tt></a> must be matched exactly
5767 with calls to
<tt>llvm.va_end
</tt>.
</p>
5771 <!-- _______________________________________________________________________ -->
5773 <a name=
"int_va_copy">'
<tt>llvm.va_copy
</tt>' Intrinsic
</a>
5780 declare void @llvm.va_copy(i8*
<destarglist
>, i8*
<srcarglist
>)
5784 <p>The '
<tt>llvm.va_copy
</tt>' intrinsic copies the current argument position
5785 from the source argument list to the destination argument list.
</p>
5788 <p>The first argument is a pointer to a
<tt>va_list
</tt> element to initialize.
5789 The second argument is a pointer to a
<tt>va_list
</tt> element to copy
5793 <p>The '
<tt>llvm.va_copy
</tt>' intrinsic works just like the
<tt>va_copy
</tt>
5794 macro available in C. In a target-dependent way, it copies the
5795 source
<tt>va_list
</tt> element into the destination
<tt>va_list
</tt>
5796 element. This intrinsic is necessary because
5797 the
<tt><a href=
"#int_va_start"> llvm.va_start
</a></tt> intrinsic may be
5798 arbitrarily complex and require, for example, memory allocation.
</p>
5804 <!-- ======================================================================= -->
5806 <a name=
"int_gc">Accurate Garbage Collection Intrinsics
</a>
5811 <p>LLVM support for
<a href=
"GarbageCollection.html">Accurate Garbage
5812 Collection
</a> (GC) requires the implementation and generation of these
5813 intrinsics. These intrinsics allow identification of
<a href=
"#int_gcroot">GC
5814 roots on the stack
</a>, as well as garbage collector implementations that
5815 require
<a href=
"#int_gcread">read
</a> and
<a href=
"#int_gcwrite">write
</a>
5816 barriers. Front-ends for type-safe garbage collected languages should generate
5817 these intrinsics to make use of the LLVM garbage collectors. For more details,
5818 see
<a href=
"GarbageCollection.html">Accurate Garbage Collection with
5821 <p>The garbage collection intrinsics only operate on objects in the generic
5822 address space (address space zero).
</p>
5824 <!-- _______________________________________________________________________ -->
5826 <a name=
"int_gcroot">'
<tt>llvm.gcroot
</tt>' Intrinsic
</a>
5833 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
5837 <p>The '
<tt>llvm.gcroot
</tt>' intrinsic declares the existence of a GC root to
5838 the code generator, and allows some metadata to be associated with it.
</p>
5841 <p>The first argument specifies the address of a stack object that contains the
5842 root pointer. The second pointer (which must be either a constant or a
5843 global value address) contains the meta-data to be associated with the
5847 <p>At runtime, a call to this intrinsic stores a null pointer into the
"ptrloc"
5848 location. At compile-time, the code generator generates information to allow
5849 the runtime to find the pointer at GC safe points. The '
<tt>llvm.gcroot
</tt>'
5850 intrinsic may only be used in a function which
<a href=
"#gc">specifies a GC
5855 <!-- _______________________________________________________________________ -->
5857 <a name=
"int_gcread">'
<tt>llvm.gcread
</tt>' Intrinsic
</a>
5864 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
5868 <p>The '
<tt>llvm.gcread
</tt>' intrinsic identifies reads of references from heap
5869 locations, allowing garbage collector implementations that require read
5873 <p>The second argument is the address to read from, which should be an address
5874 allocated from the garbage collector. The first object is a pointer to the
5875 start of the referenced object, if needed by the language runtime (otherwise
5879 <p>The '
<tt>llvm.gcread
</tt>' intrinsic has the same semantics as a load
5880 instruction, but may be replaced with substantially more complex code by the
5881 garbage collector runtime, as needed. The '
<tt>llvm.gcread
</tt>' intrinsic
5882 may only be used in a function which
<a href=
"#gc">specifies a GC
5887 <!-- _______________________________________________________________________ -->
5889 <a name=
"int_gcwrite">'
<tt>llvm.gcwrite
</tt>' Intrinsic
</a>
5896 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
5900 <p>The '
<tt>llvm.gcwrite
</tt>' intrinsic identifies writes of references to heap
5901 locations, allowing garbage collector implementations that require write
5902 barriers (such as generational or reference counting collectors).
</p>
5905 <p>The first argument is the reference to store, the second is the start of the
5906 object to store it to, and the third is the address of the field of Obj to
5907 store to. If the runtime does not require a pointer to the object, Obj may
5911 <p>The '
<tt>llvm.gcwrite
</tt>' intrinsic has the same semantics as a store
5912 instruction, but may be replaced with substantially more complex code by the
5913 garbage collector runtime, as needed. The '
<tt>llvm.gcwrite
</tt>' intrinsic
5914 may only be used in a function which
<a href=
"#gc">specifies a GC
5921 <!-- ======================================================================= -->
5923 <a name=
"int_codegen">Code Generator Intrinsics
</a>
5928 <p>These intrinsics are provided by LLVM to expose special features that may
5929 only be implemented with code generator support.
</p>
5931 <!-- _______________________________________________________________________ -->
5933 <a name=
"int_returnaddress">'
<tt>llvm.returnaddress
</tt>' Intrinsic
</a>
5940 declare i8 *@llvm.returnaddress(i32
<level
>)
5944 <p>The '
<tt>llvm.returnaddress
</tt>' intrinsic attempts to compute a
5945 target-specific value indicating the return address of the current function
5946 or one of its callers.
</p>
5949 <p>The argument to this intrinsic indicates which function to return the address
5950 for. Zero indicates the calling function, one indicates its caller, etc.
5951 The argument is
<b>required
</b> to be a constant integer value.
</p>
5954 <p>The '
<tt>llvm.returnaddress
</tt>' intrinsic either returns a pointer
5955 indicating the return address of the specified call frame, or zero if it
5956 cannot be identified. The value returned by this intrinsic is likely to be
5957 incorrect or
0 for arguments other than zero, so it should only be used for
5958 debugging purposes.
</p>
5960 <p>Note that calling this intrinsic does not prevent function inlining or other
5961 aggressive transformations, so the value returned may not be that of the
5962 obvious source-language caller.
</p>
5966 <!-- _______________________________________________________________________ -->
5968 <a name=
"int_frameaddress">'
<tt>llvm.frameaddress
</tt>' Intrinsic
</a>
5975 declare i8* @llvm.frameaddress(i32
<level
>)
5979 <p>The '
<tt>llvm.frameaddress
</tt>' intrinsic attempts to return the
5980 target-specific frame pointer value for the specified stack frame.
</p>
5983 <p>The argument to this intrinsic indicates which function to return the frame
5984 pointer for. Zero indicates the calling function, one indicates its caller,
5985 etc. The argument is
<b>required
</b> to be a constant integer value.
</p>
5988 <p>The '
<tt>llvm.frameaddress
</tt>' intrinsic either returns a pointer
5989 indicating the frame address of the specified call frame, or zero if it
5990 cannot be identified. The value returned by this intrinsic is likely to be
5991 incorrect or
0 for arguments other than zero, so it should only be used for
5992 debugging purposes.
</p>
5994 <p>Note that calling this intrinsic does not prevent function inlining or other
5995 aggressive transformations, so the value returned may not be that of the
5996 obvious source-language caller.
</p>
6000 <!-- _______________________________________________________________________ -->
6002 <a name=
"int_stacksave">'
<tt>llvm.stacksave
</tt>' Intrinsic
</a>
6009 declare i8* @llvm.stacksave()
6013 <p>The '
<tt>llvm.stacksave
</tt>' intrinsic is used to remember the current state
6014 of the function stack, for use
6015 with
<a href=
"#int_stackrestore"> <tt>llvm.stackrestore
</tt></a>. This is
6016 useful for implementing language features like scoped automatic variable
6017 sized arrays in C99.
</p>
6020 <p>This intrinsic returns a opaque pointer value that can be passed
6021 to
<a href=
"#int_stackrestore"><tt>llvm.stackrestore
</tt></a>. When
6022 an
<tt>llvm.stackrestore
</tt> intrinsic is executed with a value saved
6023 from
<tt>llvm.stacksave
</tt>, it effectively restores the state of the stack
6024 to the state it was in when the
<tt>llvm.stacksave
</tt> intrinsic executed.
6025 In practice, this pops any
<a href=
"#i_alloca">alloca
</a> blocks from the
6026 stack that were allocated after the
<tt>llvm.stacksave
</tt> was executed.
</p>
6030 <!-- _______________________________________________________________________ -->
6032 <a name=
"int_stackrestore">'
<tt>llvm.stackrestore
</tt>' Intrinsic
</a>
6039 declare void @llvm.stackrestore(i8* %ptr)
6043 <p>The '
<tt>llvm.stackrestore
</tt>' intrinsic is used to restore the state of
6044 the function stack to the state it was in when the
6045 corresponding
<a href=
"#int_stacksave"><tt>llvm.stacksave
</tt></a> intrinsic
6046 executed. This is useful for implementing language features like scoped
6047 automatic variable sized arrays in C99.
</p>
6050 <p>See the description
6051 for
<a href=
"#int_stacksave"><tt>llvm.stacksave
</tt></a>.
</p>
6055 <!-- _______________________________________________________________________ -->
6057 <a name=
"int_prefetch">'
<tt>llvm.prefetch
</tt>' Intrinsic
</a>
6064 declare void @llvm.prefetch(i8*
<address
>, i32
<rw
>, i32
<locality
>)
6068 <p>The '
<tt>llvm.prefetch
</tt>' intrinsic is a hint to the code generator to
6069 insert a prefetch instruction if supported; otherwise, it is a noop.
6070 Prefetches have no effect on the behavior of the program but can change its
6071 performance characteristics.
</p>
6074 <p><tt>address
</tt> is the address to be prefetched,
<tt>rw
</tt> is the
6075 specifier determining if the fetch should be for a read (
0) or write (
1),
6076 and
<tt>locality
</tt> is a temporal locality specifier ranging from (
0) - no
6077 locality, to (
3) - extremely local keep in cache. The
<tt>rw
</tt>
6078 and
<tt>locality
</tt> arguments must be constant integers.
</p>
6081 <p>This intrinsic does not modify the behavior of the program. In particular,
6082 prefetches cannot trap and do not produce a value. On targets that support
6083 this intrinsic, the prefetch can provide hints to the processor cache for
6084 better performance.
</p>
6088 <!-- _______________________________________________________________________ -->
6090 <a name=
"int_pcmarker">'
<tt>llvm.pcmarker
</tt>' Intrinsic
</a>
6097 declare void @llvm.pcmarker(i32
<id
>)
6101 <p>The '
<tt>llvm.pcmarker
</tt>' intrinsic is a method to export a Program
6102 Counter (PC) in a region of code to simulators and other tools. The method
6103 is target specific, but it is expected that the marker will use exported
6104 symbols to transmit the PC of the marker. The marker makes no guarantees
6105 that it will remain with any specific instruction after optimizations. It is
6106 possible that the presence of a marker will inhibit optimizations. The
6107 intended use is to be inserted after optimizations to allow correlations of
6108 simulation runs.
</p>
6111 <p><tt>id
</tt> is a numerical id identifying the marker.
</p>
6114 <p>This intrinsic does not modify the behavior of the program. Backends that do
6115 not support this intrinsic may ignore it.
</p>
6119 <!-- _______________________________________________________________________ -->
6121 <a name=
"int_readcyclecounter">'
<tt>llvm.readcyclecounter
</tt>' Intrinsic
</a>
6128 declare i64 @llvm.readcyclecounter()
6132 <p>The '
<tt>llvm.readcyclecounter
</tt>' intrinsic provides access to the cycle
6133 counter register (or similar low latency, high accuracy clocks) on those
6134 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6135 should map to RPCC. As the backing counters overflow quickly (on the order
6136 of
9 seconds on alpha), this should only be used for small timings.
</p>
6139 <p>When directly supported, reading the cycle counter should not modify any
6140 memory. Implementations are allowed to either return a application specific
6141 value or a system wide value. On backends without support, this is lowered
6142 to a constant
0.
</p>
6148 <!-- ======================================================================= -->
6150 <a name=
"int_libc">Standard C Library Intrinsics
</a>
6155 <p>LLVM provides intrinsics for a few important standard C library functions.
6156 These intrinsics allow source-language front-ends to pass information about
6157 the alignment of the pointer arguments to the code generator, providing
6158 opportunity for more efficient code generation.
</p>
6160 <!-- _______________________________________________________________________ -->
6162 <a name=
"int_memcpy">'
<tt>llvm.memcpy
</tt>' Intrinsic
</a>
6168 <p>This is an overloaded intrinsic. You can use
<tt>llvm.memcpy
</tt> on any
6169 integer bit width and for different address spaces. Not all targets support
6170 all bit widths however.
</p>
6173 declare void @llvm.memcpy.p0i8.p0i8.i32(i8*
<dest
>, i8*
<src
>,
6174 i32
<len
>, i32
<align
>, i1
<isvolatile
>)
6175 declare void @llvm.memcpy.p0i8.p0i8.i64(i8*
<dest
>, i8*
<src
>,
6176 i64
<len
>, i32
<align
>, i1
<isvolatile
>)
6180 <p>The '
<tt>llvm.memcpy.*
</tt>' intrinsics copy a block of memory from the
6181 source location to the destination location.
</p>
6183 <p>Note that, unlike the standard libc function, the
<tt>llvm.memcpy.*
</tt>
6184 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6185 and the pointers can be in specified address spaces.
</p>
6189 <p>The first argument is a pointer to the destination, the second is a pointer
6190 to the source. The third argument is an integer argument specifying the
6191 number of bytes to copy, the fourth argument is the alignment of the
6192 source and destination locations, and the fifth is a boolean indicating a
6193 volatile access.
</p>
6195 <p>If the call to this intrinsic has an alignment value that is not
0 or
1,
6196 then the caller guarantees that both the source and destination pointers are
6197 aligned to that boundary.
</p>
6199 <p>If the
<tt>isvolatile
</tt> parameter is
<tt>true
</tt>, the
6200 <tt>llvm.memcpy
</tt> call is a
<a href=
"#volatile">volatile operation
</a>.
6201 The detailed access behavior is not very cleanly specified and it is unwise
6202 to depend on it.
</p>
6206 <p>The '
<tt>llvm.memcpy.*
</tt>' intrinsics copy a block of memory from the
6207 source location to the destination location, which are not allowed to
6208 overlap. It copies
"len" bytes of memory over. If the argument is known to
6209 be aligned to some boundary, this can be specified as the fourth argument,
6210 otherwise it should be set to
0 or
1.
</p>
6214 <!-- _______________________________________________________________________ -->
6216 <a name=
"int_memmove">'
<tt>llvm.memmove
</tt>' Intrinsic
</a>
6222 <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
6223 width and for different address space. Not all targets support all bit
6227 declare void @llvm.memmove.p0i8.p0i8.i32(i8*
<dest
>, i8*
<src
>,
6228 i32
<len
>, i32
<align
>, i1
<isvolatile
>)
6229 declare void @llvm.memmove.p0i8.p0i8.i64(i8*
<dest
>, i8*
<src
>,
6230 i64
<len
>, i32
<align
>, i1
<isvolatile
>)
6234 <p>The '
<tt>llvm.memmove.*
</tt>' intrinsics move a block of memory from the
6235 source location to the destination location. It is similar to the
6236 '
<tt>llvm.memcpy
</tt>' intrinsic but allows the two memory locations to
6239 <p>Note that, unlike the standard libc function, the
<tt>llvm.memmove.*
</tt>
6240 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6241 and the pointers can be in specified address spaces.
</p>
6245 <p>The first argument is a pointer to the destination, the second is a pointer
6246 to the source. The third argument is an integer argument specifying the
6247 number of bytes to copy, the fourth argument is the alignment of the
6248 source and destination locations, and the fifth is a boolean indicating a
6249 volatile access.
</p>
6251 <p>If the call to this intrinsic has an alignment value that is not
0 or
1,
6252 then the caller guarantees that the source and destination pointers are
6253 aligned to that boundary.
</p>
6255 <p>If the
<tt>isvolatile
</tt> parameter is
<tt>true
</tt>, the
6256 <tt>llvm.memmove
</tt> call is a
<a href=
"#volatile">volatile operation
</a>.
6257 The detailed access behavior is not very cleanly specified and it is unwise
6258 to depend on it.
</p>
6262 <p>The '
<tt>llvm.memmove.*
</tt>' intrinsics copy a block of memory from the
6263 source location to the destination location, which may overlap. It copies
6264 "len" bytes of memory over. If the argument is known to be aligned to some
6265 boundary, this can be specified as the fourth argument, otherwise it should
6266 be set to
0 or
1.
</p>
6270 <!-- _______________________________________________________________________ -->
6272 <a name=
"int_memset">'
<tt>llvm.memset.*
</tt>' Intrinsics
</a>
6278 <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
6279 width and for different address spaces. However, not all targets support all
6283 declare void @llvm.memset.p0i8.i32(i8*
<dest
>, i8
<val
>,
6284 i32
<len
>, i32
<align
>, i1
<isvolatile
>)
6285 declare void @llvm.memset.p0i8.i64(i8*
<dest
>, i8
<val
>,
6286 i64
<len
>, i32
<align
>, i1
<isvolatile
>)
6290 <p>The '
<tt>llvm.memset.*
</tt>' intrinsics fill a block of memory with a
6291 particular byte value.
</p>
6293 <p>Note that, unlike the standard libc function, the
<tt>llvm.memset
</tt>
6294 intrinsic does not return a value and takes extra alignment/volatile
6295 arguments. Also, the destination can be in an arbitrary address space.
</p>
6298 <p>The first argument is a pointer to the destination to fill, the second is the
6299 byte value with which to fill it, the third argument is an integer argument
6300 specifying the number of bytes to fill, and the fourth argument is the known
6301 alignment of the destination location.
</p>
6303 <p>If the call to this intrinsic has an alignment value that is not
0 or
1,
6304 then the caller guarantees that the destination pointer is aligned to that
6307 <p>If the
<tt>isvolatile
</tt> parameter is
<tt>true
</tt>, the
6308 <tt>llvm.memset
</tt> call is a
<a href=
"#volatile">volatile operation
</a>.
6309 The detailed access behavior is not very cleanly specified and it is unwise
6310 to depend on it.
</p>
6313 <p>The '
<tt>llvm.memset.*
</tt>' intrinsics fill
"len" bytes of memory starting
6314 at the destination location. If the argument is known to be aligned to some
6315 boundary, this can be specified as the fourth argument, otherwise it should
6316 be set to
0 or
1.
</p>
6320 <!-- _______________________________________________________________________ -->
6322 <a name=
"int_sqrt">'
<tt>llvm.sqrt.*
</tt>' Intrinsic
</a>
6328 <p>This is an overloaded intrinsic. You can use
<tt>llvm.sqrt
</tt> on any
6329 floating point or vector of floating point type. Not all targets support all
6333 declare float @llvm.sqrt.f32(float %Val)
6334 declare double @llvm.sqrt.f64(double %Val)
6335 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6336 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6337 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6341 <p>The '
<tt>llvm.sqrt
</tt>' intrinsics return the sqrt of the specified operand,
6342 returning the same value as the libm '
<tt>sqrt
</tt>' functions would.
6343 Unlike
<tt>sqrt
</tt> in libm, however,
<tt>llvm.sqrt
</tt> has undefined
6344 behavior for negative numbers other than -
0.0 (which allows for better
6345 optimization, because there is no need to worry about errno being
6346 set).
<tt>llvm.sqrt(-
0.0)
</tt> is defined to return -
0.0 like IEEE sqrt.
</p>
6349 <p>The argument and return value are floating point numbers of the same
6353 <p>This function returns the sqrt of the specified operand if it is a
6354 nonnegative floating point number.
</p>
6358 <!-- _______________________________________________________________________ -->
6360 <a name=
"int_powi">'
<tt>llvm.powi.*
</tt>' Intrinsic
</a>
6366 <p>This is an overloaded intrinsic. You can use
<tt>llvm.powi
</tt> on any
6367 floating point or vector of floating point type. Not all targets support all
6371 declare float @llvm.powi.f32(float %Val, i32 %power)
6372 declare double @llvm.powi.f64(double %Val, i32 %power)
6373 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6374 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6375 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6379 <p>The '
<tt>llvm.powi.*
</tt>' intrinsics return the first operand raised to the
6380 specified (positive or negative) power. The order of evaluation of
6381 multiplications is not defined. When a vector of floating point type is
6382 used, the second argument remains a scalar integer value.
</p>
6385 <p>The second argument is an integer power, and the first is a value to raise to
6389 <p>This function returns the first value raised to the second power with an
6390 unspecified sequence of rounding operations.
</p>
6394 <!-- _______________________________________________________________________ -->
6396 <a name=
"int_sin">'
<tt>llvm.sin.*
</tt>' Intrinsic
</a>
6402 <p>This is an overloaded intrinsic. You can use
<tt>llvm.sin
</tt> on any
6403 floating point or vector of floating point type. Not all targets support all
6407 declare float @llvm.sin.f32(float %Val)
6408 declare double @llvm.sin.f64(double %Val)
6409 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6410 declare fp128 @llvm.sin.f128(fp128 %Val)
6411 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6415 <p>The '
<tt>llvm.sin.*
</tt>' intrinsics return the sine of the operand.
</p>
6418 <p>The argument and return value are floating point numbers of the same
6422 <p>This function returns the sine of the specified operand, returning the same
6423 values as the libm
<tt>sin
</tt> functions would, and handles error conditions
6424 in the same way.
</p>
6428 <!-- _______________________________________________________________________ -->
6430 <a name=
"int_cos">'
<tt>llvm.cos.*
</tt>' Intrinsic
</a>
6436 <p>This is an overloaded intrinsic. You can use
<tt>llvm.cos
</tt> on any
6437 floating point or vector of floating point type. Not all targets support all
6441 declare float @llvm.cos.f32(float %Val)
6442 declare double @llvm.cos.f64(double %Val)
6443 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6444 declare fp128 @llvm.cos.f128(fp128 %Val)
6445 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6449 <p>The '
<tt>llvm.cos.*
</tt>' intrinsics return the cosine of the operand.
</p>
6452 <p>The argument and return value are floating point numbers of the same
6456 <p>This function returns the cosine of the specified operand, returning the same
6457 values as the libm
<tt>cos
</tt> functions would, and handles error conditions
6458 in the same way.
</p>
6462 <!-- _______________________________________________________________________ -->
6464 <a name=
"int_pow">'
<tt>llvm.pow.*
</tt>' Intrinsic
</a>
6470 <p>This is an overloaded intrinsic. You can use
<tt>llvm.pow
</tt> on any
6471 floating point or vector of floating point type. Not all targets support all
6475 declare float @llvm.pow.f32(float %Val, float %Power)
6476 declare double @llvm.pow.f64(double %Val, double %Power)
6477 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6478 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6479 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6483 <p>The '
<tt>llvm.pow.*
</tt>' intrinsics return the first operand raised to the
6484 specified (positive or negative) power.
</p>
6487 <p>The second argument is a floating point power, and the first is a value to
6488 raise to that power.
</p>
6491 <p>This function returns the first value raised to the second power, returning
6492 the same values as the libm
<tt>pow
</tt> functions would, and handles error
6493 conditions in the same way.
</p>
6499 <!-- ======================================================================= -->
6501 <a name=
"int_manip">Bit Manipulation Intrinsics
</a>
6506 <p>LLVM provides intrinsics for a few important bit manipulation operations.
6507 These allow efficient code generation for some algorithms.
</p>
6509 <!-- _______________________________________________________________________ -->
6511 <a name=
"int_bswap">'
<tt>llvm.bswap.*
</tt>' Intrinsics
</a>
6517 <p>This is an overloaded intrinsic function. You can use bswap on any integer
6518 type that is an even number of bytes (i.e. BitWidth %
16 ==
0).
</p>
6521 declare i16 @llvm.bswap.i16(i16
<id
>)
6522 declare i32 @llvm.bswap.i32(i32
<id
>)
6523 declare i64 @llvm.bswap.i64(i64
<id
>)
6527 <p>The '
<tt>llvm.bswap
</tt>' family of intrinsics is used to byte swap integer
6528 values with an even number of bytes (positive multiple of
16 bits). These
6529 are useful for performing operations on data that is not in the target's
6530 native byte order.
</p>
6533 <p>The
<tt>llvm.bswap.i16
</tt> intrinsic returns an i16 value that has the high
6534 and low byte of the input i16 swapped. Similarly,
6535 the
<tt>llvm.bswap.i32
</tt> intrinsic returns an i32 value that has the four
6536 bytes of the input i32 swapped, so that if the input bytes are numbered
0,
1,
6537 2,
3 then the returned i32 will have its bytes in
3,
2,
1,
0 order.
6538 The
<tt>llvm.bswap.i48
</tt>,
<tt>llvm.bswap.i64
</tt> and other intrinsics
6539 extend this concept to additional even-byte lengths (
6 bytes,
8 bytes and
6540 more, respectively).
</p>
6544 <!-- _______________________________________________________________________ -->
6546 <a name=
"int_ctpop">'
<tt>llvm.ctpop.*
</tt>' Intrinsic
</a>
6552 <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
6553 width. Not all targets support all bit widths however.
</p>
6556 declare i8 @llvm.ctpop.i8(i8
<src
>)
6557 declare i16 @llvm.ctpop.i16(i16
<src
>)
6558 declare i32 @llvm.ctpop.i32(i32
<src
>)
6559 declare i64 @llvm.ctpop.i64(i64
<src
>)
6560 declare i256 @llvm.ctpop.i256(i256
<src
>)
6564 <p>The '
<tt>llvm.ctpop
</tt>' family of intrinsics counts the number of bits set
6568 <p>The only argument is the value to be counted. The argument may be of any
6569 integer type. The return type must match the argument type.
</p>
6572 <p>The '
<tt>llvm.ctpop
</tt>' intrinsic counts the
1's in a variable.
</p>
6576 <!-- _______________________________________________________________________ -->
6578 <a name=
"int_ctlz">'
<tt>llvm.ctlz.*
</tt>' Intrinsic
</a>
6584 <p>This is an overloaded intrinsic. You can use
<tt>llvm.ctlz
</tt> on any
6585 integer bit width. Not all targets support all bit widths however.
</p>
6588 declare i8 @llvm.ctlz.i8 (i8
<src
>)
6589 declare i16 @llvm.ctlz.i16(i16
<src
>)
6590 declare i32 @llvm.ctlz.i32(i32
<src
>)
6591 declare i64 @llvm.ctlz.i64(i64
<src
>)
6592 declare i256 @llvm.ctlz.i256(i256
<src
>)
6596 <p>The '
<tt>llvm.ctlz
</tt>' family of intrinsic functions counts the number of
6597 leading zeros in a variable.
</p>
6600 <p>The only argument is the value to be counted. The argument may be of any
6601 integer type. The return type must match the argument type.
</p>
6604 <p>The '
<tt>llvm.ctlz
</tt>' intrinsic counts the leading (most significant)
6605 zeros in a variable. If the src ==
0 then the result is the size in bits of
6606 the type of src. For example,
<tt>llvm.ctlz(i32
2) =
30</tt>.
</p>
6610 <!-- _______________________________________________________________________ -->
6612 <a name=
"int_cttz">'
<tt>llvm.cttz.*
</tt>' Intrinsic
</a>
6618 <p>This is an overloaded intrinsic. You can use
<tt>llvm.cttz
</tt> on any
6619 integer bit width. Not all targets support all bit widths however.
</p>
6622 declare i8 @llvm.cttz.i8 (i8
<src
>)
6623 declare i16 @llvm.cttz.i16(i16
<src
>)
6624 declare i32 @llvm.cttz.i32(i32
<src
>)
6625 declare i64 @llvm.cttz.i64(i64
<src
>)
6626 declare i256 @llvm.cttz.i256(i256
<src
>)
6630 <p>The '
<tt>llvm.cttz
</tt>' family of intrinsic functions counts the number of
6634 <p>The only argument is the value to be counted. The argument may be of any
6635 integer type. The return type must match the argument type.
</p>
6638 <p>The '
<tt>llvm.cttz
</tt>' intrinsic counts the trailing (least significant)
6639 zeros in a variable. If the src ==
0 then the result is the size in bits of
6640 the type of src. For example,
<tt>llvm.cttz(
2) =
1</tt>.
</p>
6646 <!-- ======================================================================= -->
6648 <a name=
"int_overflow">Arithmetic with Overflow Intrinsics
</a>
6653 <p>LLVM provides intrinsics for some arithmetic with overflow operations.
</p>
6655 <!-- _______________________________________________________________________ -->
6657 <a name=
"int_sadd_overflow">
6658 '
<tt>llvm.sadd.with.overflow.*
</tt>' Intrinsics
6665 <p>This is an overloaded intrinsic. You can use
<tt>llvm.sadd.with.overflow
</tt>
6666 on any integer bit width.
</p>
6669 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6670 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6671 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6675 <p>The '
<tt>llvm.sadd.with.overflow
</tt>' family of intrinsic functions perform
6676 a signed addition of the two arguments, and indicate whether an overflow
6677 occurred during the signed summation.
</p>
6680 <p>The arguments (%a and %b) and the first element of the result structure may
6681 be of integer types of any bit width, but they must have the same bit
6682 width. The second element of the result structure must be of
6683 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6684 undergo signed addition.
</p>
6687 <p>The '
<tt>llvm.sadd.with.overflow
</tt>' family of intrinsic functions perform
6688 a signed addition of the two variables. They return a structure
— the
6689 first element of which is the signed summation, and the second element of
6690 which is a bit specifying if the signed summation resulted in an
6695 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6696 %sum = extractvalue {i32, i1} %res,
0
6697 %obit = extractvalue {i32, i1} %res,
1
6698 br i1 %obit, label %overflow, label %normal
6703 <!-- _______________________________________________________________________ -->
6705 <a name=
"int_uadd_overflow">
6706 '
<tt>llvm.uadd.with.overflow.*
</tt>' Intrinsics
6713 <p>This is an overloaded intrinsic. You can use
<tt>llvm.uadd.with.overflow
</tt>
6714 on any integer bit width.
</p>
6717 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6718 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6719 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6723 <p>The '
<tt>llvm.uadd.with.overflow
</tt>' family of intrinsic functions perform
6724 an unsigned addition of the two arguments, and indicate whether a carry
6725 occurred during the unsigned summation.
</p>
6728 <p>The arguments (%a and %b) and the first element of the result structure may
6729 be of integer types of any bit width, but they must have the same bit
6730 width. The second element of the result structure must be of
6731 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6732 undergo unsigned addition.
</p>
6735 <p>The '
<tt>llvm.uadd.with.overflow
</tt>' family of intrinsic functions perform
6736 an unsigned addition of the two arguments. They return a structure
—
6737 the first element of which is the sum, and the second element of which is a
6738 bit specifying if the unsigned summation resulted in a carry.
</p>
6742 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6743 %sum = extractvalue {i32, i1} %res,
0
6744 %obit = extractvalue {i32, i1} %res,
1
6745 br i1 %obit, label %carry, label %normal
6750 <!-- _______________________________________________________________________ -->
6752 <a name=
"int_ssub_overflow">
6753 '
<tt>llvm.ssub.with.overflow.*
</tt>' Intrinsics
6760 <p>This is an overloaded intrinsic. You can use
<tt>llvm.ssub.with.overflow
</tt>
6761 on any integer bit width.
</p>
6764 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6765 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6766 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6770 <p>The '
<tt>llvm.ssub.with.overflow
</tt>' family of intrinsic functions perform
6771 a signed subtraction of the two arguments, and indicate whether an overflow
6772 occurred during the signed subtraction.
</p>
6775 <p>The arguments (%a and %b) and the first element of the result structure may
6776 be of integer types of any bit width, but they must have the same bit
6777 width. The second element of the result structure must be of
6778 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6779 undergo signed subtraction.
</p>
6782 <p>The '
<tt>llvm.ssub.with.overflow
</tt>' family of intrinsic functions perform
6783 a signed subtraction of the two arguments. They return a structure
—
6784 the first element of which is the subtraction, and the second element of
6785 which is a bit specifying if the signed subtraction resulted in an
6790 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6791 %sum = extractvalue {i32, i1} %res,
0
6792 %obit = extractvalue {i32, i1} %res,
1
6793 br i1 %obit, label %overflow, label %normal
6798 <!-- _______________________________________________________________________ -->
6800 <a name=
"int_usub_overflow">
6801 '
<tt>llvm.usub.with.overflow.*
</tt>' Intrinsics
6808 <p>This is an overloaded intrinsic. You can use
<tt>llvm.usub.with.overflow
</tt>
6809 on any integer bit width.
</p>
6812 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6813 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6814 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6818 <p>The '
<tt>llvm.usub.with.overflow
</tt>' family of intrinsic functions perform
6819 an unsigned subtraction of the two arguments, and indicate whether an
6820 overflow occurred during the unsigned subtraction.
</p>
6823 <p>The arguments (%a and %b) and the first element of the result structure may
6824 be of integer types of any bit width, but they must have the same bit
6825 width. The second element of the result structure must be of
6826 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6827 undergo unsigned subtraction.
</p>
6830 <p>The '
<tt>llvm.usub.with.overflow
</tt>' family of intrinsic functions perform
6831 an unsigned subtraction of the two arguments. They return a structure
—
6832 the first element of which is the subtraction, and the second element of
6833 which is a bit specifying if the unsigned subtraction resulted in an
6838 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6839 %sum = extractvalue {i32, i1} %res,
0
6840 %obit = extractvalue {i32, i1} %res,
1
6841 br i1 %obit, label %overflow, label %normal
6846 <!-- _______________________________________________________________________ -->
6848 <a name=
"int_smul_overflow">
6849 '
<tt>llvm.smul.with.overflow.*
</tt>' Intrinsics
6856 <p>This is an overloaded intrinsic. You can use
<tt>llvm.smul.with.overflow
</tt>
6857 on any integer bit width.
</p>
6860 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6861 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6862 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6867 <p>The '
<tt>llvm.smul.with.overflow
</tt>' family of intrinsic functions perform
6868 a signed multiplication of the two arguments, and indicate whether an
6869 overflow occurred during the signed multiplication.
</p>
6872 <p>The arguments (%a and %b) and the first element of the result structure may
6873 be of integer types of any bit width, but they must have the same bit
6874 width. The second element of the result structure must be of
6875 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6876 undergo signed multiplication.
</p>
6879 <p>The '
<tt>llvm.smul.with.overflow
</tt>' family of intrinsic functions perform
6880 a signed multiplication of the two arguments. They return a structure
—
6881 the first element of which is the multiplication, and the second element of
6882 which is a bit specifying if the signed multiplication resulted in an
6887 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6888 %sum = extractvalue {i32, i1} %res,
0
6889 %obit = extractvalue {i32, i1} %res,
1
6890 br i1 %obit, label %overflow, label %normal
6895 <!-- _______________________________________________________________________ -->
6897 <a name=
"int_umul_overflow">
6898 '
<tt>llvm.umul.with.overflow.*
</tt>' Intrinsics
6905 <p>This is an overloaded intrinsic. You can use
<tt>llvm.umul.with.overflow
</tt>
6906 on any integer bit width.
</p>
6909 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6910 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6911 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6915 <p>The '
<tt>llvm.umul.with.overflow
</tt>' family of intrinsic functions perform
6916 a unsigned multiplication of the two arguments, and indicate whether an
6917 overflow occurred during the unsigned multiplication.
</p>
6920 <p>The arguments (%a and %b) and the first element of the result structure may
6921 be of integer types of any bit width, but they must have the same bit
6922 width. The second element of the result structure must be of
6923 type
<tt>i1
</tt>.
<tt>%a
</tt> and
<tt>%b
</tt> are the two values that will
6924 undergo unsigned multiplication.
</p>
6927 <p>The '
<tt>llvm.umul.with.overflow
</tt>' family of intrinsic functions perform
6928 an unsigned multiplication of the two arguments. They return a structure
6929 — the first element of which is the multiplication, and the second
6930 element of which is a bit specifying if the unsigned multiplication resulted
6935 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6936 %sum = extractvalue {i32, i1} %res,
0
6937 %obit = extractvalue {i32, i1} %res,
1
6938 br i1 %obit, label %overflow, label %normal
6945 <!-- ======================================================================= -->
6947 <a name=
"int_fp16">Half Precision Floating Point Intrinsics
</a>
6952 <p>Half precision floating point is a storage-only format. This means that it is
6953 a dense encoding (in memory) but does not support computation in the
6956 <p>This means that code must first load the half-precision floating point
6957 value as an i16, then convert it to float with
<a
6958 href=
"#int_convert_from_fp16"><tt>llvm.convert.from.fp16
</tt></a>.
6959 Computation can then be performed on the float value (including extending to
6960 double etc). To store the value back to memory, it is first converted to
6961 float if needed, then converted to i16 with
6962 <a href=
"#int_convert_to_fp16"><tt>llvm.convert.to.fp16
</tt></a>, then
6963 storing as an i16 value.
</p>
6965 <!-- _______________________________________________________________________ -->
6967 <a name=
"int_convert_to_fp16">
6968 '
<tt>llvm.convert.to.fp16
</tt>' Intrinsic
6976 declare i16 @llvm.convert.to.fp16(f32 %a)
6980 <p>The '
<tt>llvm.convert.to.fp16
</tt>' intrinsic function performs
6981 a conversion from single precision floating point format to half precision
6982 floating point format.
</p>
6985 <p>The intrinsic function contains single argument - the value to be
6989 <p>The '
<tt>llvm.convert.to.fp16
</tt>' intrinsic function performs
6990 a conversion from single precision floating point format to half precision
6991 floating point format. The return value is an
<tt>i16
</tt> which
6992 contains the converted number.
</p>
6996 %res = call i16 @llvm.convert.to.fp16(f32 %a)
6997 store i16 %res, i16* @x, align
2
7002 <!-- _______________________________________________________________________ -->
7004 <a name=
"int_convert_from_fp16">
7005 '
<tt>llvm.convert.from.fp16
</tt>' Intrinsic
7013 declare f32 @llvm.convert.from.fp16(i16 %a)
7017 <p>The '
<tt>llvm.convert.from.fp16
</tt>' intrinsic function performs
7018 a conversion from half precision floating point format to single precision
7019 floating point format.
</p>
7022 <p>The intrinsic function contains single argument - the value to be
7026 <p>The '
<tt>llvm.convert.from.fp16
</tt>' intrinsic function performs a
7027 conversion from half single precision floating point format to single
7028 precision floating point format. The input half-float value is represented by
7029 an
<tt>i16
</tt> value.
</p>
7033 %a = load i16* @x, align
2
7034 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7041 <!-- ======================================================================= -->
7043 <a name=
"int_debugger">Debugger Intrinsics
</a>
7048 <p>The LLVM debugger intrinsics (which all start with
<tt>llvm.dbg.
</tt>
7049 prefix), are described in
7050 the
<a href=
"SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7051 Level Debugging
</a> document.
</p>
7055 <!-- ======================================================================= -->
7057 <a name=
"int_eh">Exception Handling Intrinsics
</a>
7062 <p>The LLVM exception handling intrinsics (which all start with
7063 <tt>llvm.eh.
</tt> prefix), are described in
7064 the
<a href=
"ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7065 Handling
</a> document.
</p>
7069 <!-- ======================================================================= -->
7071 <a name=
"int_trampoline">Trampoline Intrinsic
</a>
7076 <p>This intrinsic makes it possible to excise one parameter, marked with
7077 the
<a href=
"#nest"><tt>nest
</tt></a> attribute, from a function.
7078 The result is a callable
7079 function pointer lacking the nest parameter - the caller does not need to
7080 provide a value for it. Instead, the value to use is stored in advance in a
7081 "trampoline", a block of memory usually allocated on the stack, which also
7082 contains code to splice the nest value into the argument list. This is used
7083 to implement the GCC nested function address extension.
</p>
7085 <p>For example, if the function is
7086 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)
</tt> then the resulting function
7087 pointer has signature
<tt>i32 (i32, i32)*
</tt>. It can be created as
7090 <pre class=
"doc_code">
7091 %tramp = alloca [
10 x i8], align
4 ; size and alignment only correct for X86
7092 %tramp1 = getelementptr [
10 x i8]* %tramp, i32
0, i32
0
7093 %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
7094 %fp = bitcast i8* %p to i32 (i32, i32)*
7097 <p>The call
<tt>%val = call i32 %fp(i32 %x, i32 %y)
</tt> is then equivalent
7098 to
<tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)
</tt>.
</p>
7100 <!-- _______________________________________________________________________ -->
7103 '
<tt>llvm.init.trampoline
</tt>' Intrinsic
7111 declare i8* @llvm.init.trampoline(i8*
<tramp
>, i8*
<func
>, i8*
<nval
>)
7115 <p>This fills the memory pointed to by
<tt>tramp
</tt> with code and returns a
7116 function pointer suitable for executing it.
</p>
7119 <p>The
<tt>llvm.init.trampoline
</tt> intrinsic takes three arguments, all
7120 pointers. The
<tt>tramp
</tt> argument must point to a sufficiently large and
7121 sufficiently aligned block of memory; this memory is written to by the
7122 intrinsic. Note that the size and the alignment are target-specific - LLVM
7123 currently provides no portable way of determining them, so a front-end that
7124 generates this intrinsic needs to have some target-specific knowledge.
7125 The
<tt>func
</tt> argument must hold a function bitcast to
7126 an
<tt>i8*
</tt>.
</p>
7129 <p>The block of memory pointed to by
<tt>tramp
</tt> is filled with target
7130 dependent code, turning it into a function. A pointer to this function is
7131 returned, but needs to be bitcast to an
<a href=
"#int_trampoline">appropriate
7132 function pointer type
</a> before being called. The new function's signature
7133 is the same as that of
<tt>func
</tt> with any arguments marked with
7134 the
<tt>nest
</tt> attribute removed. At most one such
<tt>nest
</tt> argument
7135 is allowed, and it must be of pointer type. Calling the new function is
7136 equivalent to calling
<tt>func
</tt> with the same argument list, but
7137 with
<tt>nval
</tt> used for the missing
<tt>nest
</tt> argument. If, after
7138 calling
<tt>llvm.init.trampoline
</tt>, the memory pointed to
7139 by
<tt>tramp
</tt> is modified, then the effect of any later call to the
7140 returned function pointer is undefined.
</p>
7146 <!-- ======================================================================= -->
7148 <a name=
"int_atomics">Atomic Operations and Synchronization Intrinsics
</a>
7153 <p>These intrinsic functions expand the
"universal IR" of LLVM to represent
7154 hardware constructs for atomic operations and memory synchronization. This
7155 provides an interface to the hardware, not an interface to the programmer. It
7156 is aimed at a low enough level to allow any programming models or APIs
7157 (Application Programming Interfaces) which need atomic behaviors to map
7158 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
7159 hardware provides a
"universal IR" for source languages, it also provides a
7160 starting point for developing a
"universal" atomic operation and
7161 synchronization IR.
</p>
7163 <p>These do
<em>not
</em> form an API such as high-level threading libraries,
7164 software transaction memory systems, atomic primitives, and intrinsic
7165 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
7166 application libraries. The hardware interface provided by LLVM should allow
7167 a clean implementation of all of these APIs and parallel programming models.
7168 No one model or paradigm should be selected above others unless the hardware
7169 itself ubiquitously does so.
</p>
7171 <!-- _______________________________________________________________________ -->
7173 <a name=
"int_memory_barrier">'
<tt>llvm.memory.barrier
</tt>' Intrinsic
</a>
7179 declare void @llvm.memory.barrier(i1
<ll
>, i1
<ls
>, i1
<sl
>, i1
<ss
>, i1
<device
>)
7183 <p>The
<tt>llvm.memory.barrier
</tt> intrinsic guarantees ordering between
7184 specific pairs of memory access types.
</p>
7187 <p>The
<tt>llvm.memory.barrier
</tt> intrinsic requires five boolean arguments.
7188 The first four arguments enables a specific barrier as listed below. The
7189 fifth argument specifies that the barrier applies to io or device or uncached
7193 <li><tt>ll
</tt>: load-load barrier
</li>
7194 <li><tt>ls
</tt>: load-store barrier
</li>
7195 <li><tt>sl
</tt>: store-load barrier
</li>
7196 <li><tt>ss
</tt>: store-store barrier
</li>
7197 <li><tt>device
</tt>: barrier applies to device and uncached memory also.
</li>
7201 <p>This intrinsic causes the system to enforce some ordering constraints upon
7202 the loads and stores of the program. This barrier does not
7203 indicate
<em>when
</em> any events will occur, it only enforces
7204 an
<em>order
</em> in which they occur. For any of the specified pairs of load
7205 and store operations (f.ex. load-load, or store-load), all of the first
7206 operations preceding the barrier will complete before any of the second
7207 operations succeeding the barrier begin. Specifically the semantics for each
7208 pairing is as follows:
</p>
7211 <li><tt>ll
</tt>: All loads before the barrier must complete before any load
7212 after the barrier begins.
</li>
7213 <li><tt>ls
</tt>: All loads before the barrier must complete before any
7214 store after the barrier begins.
</li>
7215 <li><tt>ss
</tt>: All stores before the barrier must complete before any
7216 store after the barrier begins.
</li>
7217 <li><tt>sl
</tt>: All stores before the barrier must complete before any
7218 load after the barrier begins.
</li>
7221 <p>These semantics are applied with a logical
"and" behavior when more than one
7222 is enabled in a single memory barrier intrinsic.
</p>
7224 <p>Backends may implement stronger barriers than those requested when they do
7225 not support as fine grained a barrier as requested. Some architectures do
7226 not need all types of barriers and on such architectures, these become
7231 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
7232 %ptr = bitcast i8* %mallocP to i32*
7235 %result1 = load i32* %ptr
<i>; yields {i32}:result1 =
4</i>
7236 call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false)
7237 <i>; guarantee the above finishes
</i>
7238 store i32
8, %ptr
<i>; before this begins
</i>
7243 <!-- _______________________________________________________________________ -->
7245 <a name=
"int_atomic_cmp_swap">'
<tt>llvm.atomic.cmp.swap.*
</tt>' Intrinsic
</a>
7251 <p>This is an overloaded intrinsic. You can use
<tt>llvm.atomic.cmp.swap
</tt> on
7252 any integer bit width and for different address spaces. Not all targets
7253 support all bit widths however.
</p>
7256 declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8*
<ptr
>, i8
<cmp
>, i8
<val
>)
7257 declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16*
<ptr
>, i16
<cmp
>, i16
<val
>)
7258 declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32*
<ptr
>, i32
<cmp
>, i32
<val
>)
7259 declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64*
<ptr
>, i64
<cmp
>, i64
<val
>)
7263 <p>This loads a value in memory and compares it to a given value. If they are
7264 equal, it stores a new value into the memory.
</p>
7267 <p>The
<tt>llvm.atomic.cmp.swap
</tt> intrinsic takes three arguments. The result
7268 as well as both
<tt>cmp
</tt> and
<tt>val
</tt> must be integer values with the
7269 same bit width. The
<tt>ptr
</tt> argument must be a pointer to a value of
7270 this integer type. While any bit width integer may be used, targets may only
7271 lower representations they support in hardware.
</p>
7274 <p>This entire intrinsic must be executed atomically. It first loads the value
7275 in memory pointed to by
<tt>ptr
</tt> and compares it with the
7276 value
<tt>cmp
</tt>. If they are equal,
<tt>val
</tt> is stored into the
7277 memory. The loaded value is yielded in all cases. This provides the
7278 equivalent of an atomic compare-and-swap operation within the SSA
7283 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
7284 %ptr = bitcast i8* %mallocP to i32*
7287 %val1 = add i32
4,
4
7288 %result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32
4, %val1)
7289 <i>; yields {i32}:result1 =
4</i>
7290 %stored1 = icmp eq i32 %result1,
4 <i>; yields {i1}:stored1 = true
</i>
7291 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 =
8</i>
7293 %val2 = add i32
1,
1
7294 %result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32
5, %val2)
7295 <i>; yields {i32}:result2 =
8</i>
7296 %stored2 = icmp eq i32 %result2,
5 <i>; yields {i1}:stored2 = false
</i>
7298 %memval2 = load i32* %ptr
<i>; yields {i32}:memval2 =
8</i>
7303 <!-- _______________________________________________________________________ -->
7305 <a name=
"int_atomic_swap">'
<tt>llvm.atomic.swap.*
</tt>' Intrinsic
</a>
7311 <p>This is an overloaded intrinsic. You can use
<tt>llvm.atomic.swap
</tt> on any
7312 integer bit width. Not all targets support all bit widths however.
</p>
7315 declare i8 @llvm.atomic.swap.i8.p0i8(i8*
<ptr
>, i8
<val
>)
7316 declare i16 @llvm.atomic.swap.i16.p0i16(i16*
<ptr
>, i16
<val
>)
7317 declare i32 @llvm.atomic.swap.i32.p0i32(i32*
<ptr
>, i32
<val
>)
7318 declare i64 @llvm.atomic.swap.i64.p0i64(i64*
<ptr
>, i64
<val
>)
7322 <p>This intrinsic loads the value stored in memory at
<tt>ptr
</tt> and yields
7323 the value from memory. It then stores the value in
<tt>val
</tt> in the memory
7324 at
<tt>ptr
</tt>.
</p>
7327 <p>The
<tt>llvm.atomic.swap
</tt> intrinsic takes two arguments. Both
7328 the
<tt>val
</tt> argument and the result must be integers of the same bit
7329 width. The first argument,
<tt>ptr
</tt>, must be a pointer to a value of this
7330 integer type. The targets may only lower integer representations they
7334 <p>This intrinsic loads the value pointed to by
<tt>ptr
</tt>, yields it, and
7335 stores
<tt>val
</tt> back into
<tt>ptr
</tt> atomically. This provides the
7336 equivalent of an atomic swap operation within the SSA framework.
</p>
7340 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
7341 %ptr = bitcast i8* %mallocP to i32*
7344 %val1 = add i32
4,
4
7345 %result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
7346 <i>; yields {i32}:result1 =
4</i>
7347 %stored1 = icmp eq i32 %result1,
4 <i>; yields {i1}:stored1 = true
</i>
7348 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 =
8</i>
7350 %val2 = add i32
1,
1
7351 %result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
7352 <i>; yields {i32}:result2 =
8</i>
7354 %stored2 = icmp eq i32 %result2,
8 <i>; yields {i1}:stored2 = true
</i>
7355 %memval2 = load i32* %ptr
<i>; yields {i32}:memval2 =
2</i>
7360 <!-- _______________________________________________________________________ -->
7362 <a name=
"int_atomic_load_add">'
<tt>llvm.atomic.load.add.*
</tt>' Intrinsic
</a>
7368 <p>This is an overloaded intrinsic. You can use
<tt>llvm.atomic.load.add
</tt> on
7369 any integer bit width. Not all targets support all bit widths however.
</p>
7372 declare i8 @llvm.atomic.load.add.i8.p0i8(i8*
<ptr
>, i8
<delta
>)
7373 declare i16 @llvm.atomic.load.add.i16.p0i16(i16*
<ptr
>, i16
<delta
>)
7374 declare i32 @llvm.atomic.load.add.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7375 declare i64 @llvm.atomic.load.add.i64.p0i64(i64*
<ptr
>, i64
<delta
>)
7379 <p>This intrinsic adds
<tt>delta
</tt> to the value stored in memory
7380 at
<tt>ptr
</tt>. It yields the original value at
<tt>ptr
</tt>.
</p>
7383 <p>The intrinsic takes two arguments, the first a pointer to an integer value
7384 and the second an integer value. The result is also an integer value. These
7385 integer types can have any bit width, but they must all have the same bit
7386 width. The targets may only lower integer representations they support.
</p>
7389 <p>This intrinsic does a series of operations atomically. It first loads the
7390 value stored at
<tt>ptr
</tt>. It then adds
<tt>delta
</tt>, stores the result
7391 to
<tt>ptr
</tt>. It yields the original value stored at
<tt>ptr
</tt>.
</p>
7395 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
7396 %ptr = bitcast i8* %mallocP to i32*
7398 %result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32
4)
7399 <i>; yields {i32}:result1 =
4</i>
7400 %result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32
2)
7401 <i>; yields {i32}:result2 =
8</i>
7402 %result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32
5)
7403 <i>; yields {i32}:result3 =
10</i>
7404 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 =
15</i>
7409 <!-- _______________________________________________________________________ -->
7411 <a name=
"int_atomic_load_sub">'
<tt>llvm.atomic.load.sub.*
</tt>' Intrinsic
</a>
7417 <p>This is an overloaded intrinsic. You can use
<tt>llvm.atomic.load.sub
</tt> on
7418 any integer bit width and for different address spaces. Not all targets
7419 support all bit widths however.
</p>
7422 declare i8 @llvm.atomic.load.sub.i8.p0i32(i8*
<ptr
>, i8
<delta
>)
7423 declare i16 @llvm.atomic.load.sub.i16.p0i32(i16*
<ptr
>, i16
<delta
>)
7424 declare i32 @llvm.atomic.load.sub.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7425 declare i64 @llvm.atomic.load.sub.i64.p0i32(i64*
<ptr
>, i64
<delta
>)
7429 <p>This intrinsic subtracts
<tt>delta
</tt> to the value stored in memory at
7430 <tt>ptr
</tt>. It yields the original value at
<tt>ptr
</tt>.
</p>
7433 <p>The intrinsic takes two arguments, the first a pointer to an integer value
7434 and the second an integer value. The result is also an integer value. These
7435 integer types can have any bit width, but they must all have the same bit
7436 width. The targets may only lower integer representations they support.
</p>
7439 <p>This intrinsic does a series of operations atomically. It first loads the
7440 value stored at
<tt>ptr
</tt>. It then subtracts
<tt>delta
</tt>, stores the
7441 result to
<tt>ptr
</tt>. It yields the original value stored
7442 at
<tt>ptr
</tt>.
</p>
7446 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
7447 %ptr = bitcast i8* %mallocP to i32*
7449 %result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32
4)
7450 <i>; yields {i32}:result1 =
8</i>
7451 %result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32
2)
7452 <i>; yields {i32}:result2 =
4</i>
7453 %result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32
5)
7454 <i>; yields {i32}:result3 =
2</i>
7455 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 = -
3</i>
7460 <!-- _______________________________________________________________________ -->
7462 <a name=
"int_atomic_load_and">
7463 '
<tt>llvm.atomic.load.and.*
</tt>' Intrinsic
7466 <a name=
"int_atomic_load_nand">
7467 '
<tt>llvm.atomic.load.nand.*
</tt>' Intrinsic
7470 <a name=
"int_atomic_load_or">
7471 '
<tt>llvm.atomic.load.or.*
</tt>' Intrinsic
7474 <a name=
"int_atomic_load_xor">
7475 '
<tt>llvm.atomic.load.xor.*
</tt>' Intrinsic
7482 <p>These are overloaded intrinsics. You can
7483 use
<tt>llvm.atomic.load_and
</tt>,
<tt>llvm.atomic.load_nand
</tt>,
7484 <tt>llvm.atomic.load_or
</tt>, and
<tt>llvm.atomic.load_xor
</tt> on any integer
7485 bit width and for different address spaces. Not all targets support all bit
7489 declare i8 @llvm.atomic.load.and.i8.p0i8(i8*
<ptr
>, i8
<delta
>)
7490 declare i16 @llvm.atomic.load.and.i16.p0i16(i16*
<ptr
>, i16
<delta
>)
7491 declare i32 @llvm.atomic.load.and.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7492 declare i64 @llvm.atomic.load.and.i64.p0i64(i64*
<ptr
>, i64
<delta
>)
7496 declare i8 @llvm.atomic.load.or.i8.p0i8(i8*
<ptr
>, i8
<delta
>)
7497 declare i16 @llvm.atomic.load.or.i16.p0i16(i16*
<ptr
>, i16
<delta
>)
7498 declare i32 @llvm.atomic.load.or.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7499 declare i64 @llvm.atomic.load.or.i64.p0i64(i64*
<ptr
>, i64
<delta
>)
7503 declare i8 @llvm.atomic.load.nand.i8.p0i32(i8*
<ptr
>, i8
<delta
>)
7504 declare i16 @llvm.atomic.load.nand.i16.p0i32(i16*
<ptr
>, i16
<delta
>)
7505 declare i32 @llvm.atomic.load.nand.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7506 declare i64 @llvm.atomic.load.nand.i64.p0i32(i64*
<ptr
>, i64
<delta
>)
7510 declare i8 @llvm.atomic.load.xor.i8.p0i32(i8*
<ptr
>, i8
<delta
>)
7511 declare i16 @llvm.atomic.load.xor.i16.p0i32(i16*
<ptr
>, i16
<delta
>)
7512 declare i32 @llvm.atomic.load.xor.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7513 declare i64 @llvm.atomic.load.xor.i64.p0i32(i64*
<ptr
>, i64
<delta
>)
7517 <p>These intrinsics bitwise the operation (and, nand, or, xor)
<tt>delta
</tt> to
7518 the value stored in memory at
<tt>ptr
</tt>. It yields the original value
7519 at
<tt>ptr
</tt>.
</p>
7522 <p>These intrinsics take two arguments, the first a pointer to an integer value
7523 and the second an integer value. The result is also an integer value. These
7524 integer types can have any bit width, but they must all have the same bit
7525 width. The targets may only lower integer representations they support.
</p>
7528 <p>These intrinsics does a series of operations atomically. They first load the
7529 value stored at
<tt>ptr
</tt>. They then do the bitwise
7530 operation
<tt>delta
</tt>, store the result to
<tt>ptr
</tt>. They yield the
7531 original value stored at
<tt>ptr
</tt>.
</p>
7535 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
7536 %ptr = bitcast i8* %mallocP to i32*
7537 store i32
0x0F0F, %ptr
7538 %result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32
0xFF)
7539 <i>; yields {i32}:result0 =
0x0F0F</i>
7540 %result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32
0xFF)
7541 <i>; yields {i32}:result1 =
0xFFFFFFF0</i>
7542 %result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32
0F)
7543 <i>; yields {i32}:result2 =
0xF0</i>
7544 %result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32
0F)
7545 <i>; yields {i32}:result3 = FF
</i>
7546 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 = F0
</i>
7551 <!-- _______________________________________________________________________ -->
7553 <a name=
"int_atomic_load_max">
7554 '
<tt>llvm.atomic.load.max.*
</tt>' Intrinsic
7557 <a name=
"int_atomic_load_min">
7558 '
<tt>llvm.atomic.load.min.*
</tt>' Intrinsic
7561 <a name=
"int_atomic_load_umax">
7562 '
<tt>llvm.atomic.load.umax.*
</tt>' Intrinsic
7565 <a name=
"int_atomic_load_umin">
7566 '
<tt>llvm.atomic.load.umin.*
</tt>' Intrinsic
7573 <p>These are overloaded intrinsics. You can use
<tt>llvm.atomic.load_max
</tt>,
7574 <tt>llvm.atomic.load_min
</tt>,
<tt>llvm.atomic.load_umax
</tt>, and
7575 <tt>llvm.atomic.load_umin
</tt> on any integer bit width and for different
7576 address spaces. Not all targets support all bit widths however.
</p>
7579 declare i8 @llvm.atomic.load.max.i8.p0i8(i8*
<ptr
>, i8
<delta
>)
7580 declare i16 @llvm.atomic.load.max.i16.p0i16(i16*
<ptr
>, i16
<delta
>)
7581 declare i32 @llvm.atomic.load.max.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7582 declare i64 @llvm.atomic.load.max.i64.p0i64(i64*
<ptr
>, i64
<delta
>)
7586 declare i8 @llvm.atomic.load.min.i8.p0i8(i8*
<ptr
>, i8
<delta
>)
7587 declare i16 @llvm.atomic.load.min.i16.p0i16(i16*
<ptr
>, i16
<delta
>)
7588 declare i32 @llvm.atomic.load.min.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7589 declare i64 @llvm.atomic.load.min.i64.p0i64(i64*
<ptr
>, i64
<delta
>)
7593 declare i8 @llvm.atomic.load.umax.i8.p0i8(i8*
<ptr
>, i8
<delta
>)
7594 declare i16 @llvm.atomic.load.umax.i16.p0i16(i16*
<ptr
>, i16
<delta
>)
7595 declare i32 @llvm.atomic.load.umax.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7596 declare i64 @llvm.atomic.load.umax.i64.p0i64(i64*
<ptr
>, i64
<delta
>)
7600 declare i8 @llvm.atomic.load.umin.i8.p0i8(i8*
<ptr
>, i8
<delta
>)
7601 declare i16 @llvm.atomic.load.umin.i16.p0i16(i16*
<ptr
>, i16
<delta
>)
7602 declare i32 @llvm.atomic.load.umin.i32.p0i32(i32*
<ptr
>, i32
<delta
>)
7603 declare i64 @llvm.atomic.load.umin.i64.p0i64(i64*
<ptr
>, i64
<delta
>)
7607 <p>These intrinsics takes the signed or unsigned minimum or maximum of
7608 <tt>delta
</tt> and the value stored in memory at
<tt>ptr
</tt>. It yields the
7609 original value at
<tt>ptr
</tt>.
</p>
7612 <p>These intrinsics take two arguments, the first a pointer to an integer value
7613 and the second an integer value. The result is also an integer value. These
7614 integer types can have any bit width, but they must all have the same bit
7615 width. The targets may only lower integer representations they support.
</p>
7618 <p>These intrinsics does a series of operations atomically. They first load the
7619 value stored at
<tt>ptr
</tt>. They then do the signed or unsigned min or
7620 max
<tt>delta
</tt> and the value, store the result to
<tt>ptr
</tt>. They
7621 yield the original value stored at
<tt>ptr
</tt>.
</p>
7625 %mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32
1) to i32))
7626 %ptr = bitcast i8* %mallocP to i32*
7628 %result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -
2)
7629 <i>; yields {i32}:result0 =
7</i>
7630 %result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32
8)
7631 <i>; yields {i32}:result1 = -
2</i>
7632 %result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32
10)
7633 <i>; yields {i32}:result2 =
8</i>
7634 %result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32
30)
7635 <i>; yields {i32}:result3 =
8</i>
7636 %memval1 = load i32* %ptr
<i>; yields {i32}:memval1 =
30</i>
7643 <!-- ======================================================================= -->
7645 <a name=
"int_memorymarkers">Memory Use Markers
</a>
7650 <p>This class of intrinsics exists to information about the lifetime of memory
7651 objects and ranges where variables are immutable.
</p>
7653 <!-- _______________________________________________________________________ -->
7655 <a name=
"int_lifetime_start">'
<tt>llvm.lifetime.start
</tt>' Intrinsic
</a>
7662 declare void @llvm.lifetime.start(i64
<size
>, i8* nocapture
<ptr
>)
7666 <p>The '
<tt>llvm.lifetime.start
</tt>' intrinsic specifies the start of a memory
7667 object's lifetime.
</p>
7670 <p>The first argument is a constant integer representing the size of the
7671 object, or -
1 if it is variable sized. The second argument is a pointer to
7675 <p>This intrinsic indicates that before this point in the code, the value of the
7676 memory pointed to by
<tt>ptr
</tt> is dead. This means that it is known to
7677 never be used and has an undefined value. A load from the pointer that
7678 precedes this intrinsic can be replaced with
7679 <tt>'
<a href=
"#undefvalues">undef
</a>'
</tt>.
</p>
7683 <!-- _______________________________________________________________________ -->
7685 <a name=
"int_lifetime_end">'
<tt>llvm.lifetime.end
</tt>' Intrinsic
</a>
7692 declare void @llvm.lifetime.end(i64
<size
>, i8* nocapture
<ptr
>)
7696 <p>The '
<tt>llvm.lifetime.end
</tt>' intrinsic specifies the end of a memory
7697 object's lifetime.
</p>
7700 <p>The first argument is a constant integer representing the size of the
7701 object, or -
1 if it is variable sized. The second argument is a pointer to
7705 <p>This intrinsic indicates that after this point in the code, the value of the
7706 memory pointed to by
<tt>ptr
</tt> is dead. This means that it is known to
7707 never be used and has an undefined value. Any stores into the memory object
7708 following this intrinsic may be removed as dead.
7712 <!-- _______________________________________________________________________ -->
7714 <a name=
"int_invariant_start">'
<tt>llvm.invariant.start
</tt>' Intrinsic
</a>
7721 declare {}* @llvm.invariant.start(i64
<size
>, i8* nocapture
<ptr
>)
7725 <p>The '
<tt>llvm.invariant.start
</tt>' intrinsic specifies that the contents of
7726 a memory object will not change.
</p>
7729 <p>The first argument is a constant integer representing the size of the
7730 object, or -
1 if it is variable sized. The second argument is a pointer to
7734 <p>This intrinsic indicates that until an
<tt>llvm.invariant.end
</tt> that uses
7735 the return value, the referenced memory location is constant and
7740 <!-- _______________________________________________________________________ -->
7742 <a name=
"int_invariant_end">'
<tt>llvm.invariant.end
</tt>' Intrinsic
</a>
7749 declare void @llvm.invariant.end({}*
<start
>, i64
<size
>, i8* nocapture
<ptr
>)
7753 <p>The '
<tt>llvm.invariant.end
</tt>' intrinsic specifies that the contents of
7754 a memory object are mutable.
</p>
7757 <p>The first argument is the matching
<tt>llvm.invariant.start
</tt> intrinsic.
7758 The second argument is a constant integer representing the size of the
7759 object, or -
1 if it is variable sized and the third argument is a pointer
7763 <p>This intrinsic indicates that the memory is mutable again.
</p>
7769 <!-- ======================================================================= -->
7771 <a name=
"int_general">General Intrinsics
</a>
7776 <p>This class of intrinsics is designed to be generic and has no specific
7779 <!-- _______________________________________________________________________ -->
7781 <a name=
"int_var_annotation">'
<tt>llvm.var.annotation
</tt>' Intrinsic
</a>
7788 declare void @llvm.var.annotation(i8*
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
>)
7792 <p>The '
<tt>llvm.var.annotation
</tt>' intrinsic.
</p>
7795 <p>The first argument is a pointer to a value, the second is a pointer to a
7796 global string, the third is a pointer to a global string which is the source
7797 file name, and the last argument is the line number.
</p>
7800 <p>This intrinsic allows annotation of local variables with arbitrary strings.
7801 This can be useful for special purpose optimizations that want to look for
7802 these annotations. These have no other defined use, they are ignored by code
7803 generation and optimization.
</p>
7807 <!-- _______________________________________________________________________ -->
7809 <a name=
"int_annotation">'
<tt>llvm.annotation.*
</tt>' Intrinsic
</a>
7815 <p>This is an overloaded intrinsic. You can use '
<tt>llvm.annotation
</tt>' on
7816 any integer bit width.
</p>
7819 declare i8 @llvm.annotation.i8(i8
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
>)
7820 declare i16 @llvm.annotation.i16(i16
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
>)
7821 declare i32 @llvm.annotation.i32(i32
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
>)
7822 declare i64 @llvm.annotation.i64(i64
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
>)
7823 declare i256 @llvm.annotation.i256(i256
<val
>, i8*
<str
>, i8*
<str
>, i32
<int
>)
7827 <p>The '
<tt>llvm.annotation
</tt>' intrinsic.
</p>
7830 <p>The first argument is an integer value (result of some expression), the
7831 second is a pointer to a global string, the third is a pointer to a global
7832 string which is the source file name, and the last argument is the line
7833 number. It returns the value of the first argument.
</p>
7836 <p>This intrinsic allows annotations to be put on arbitrary expressions with
7837 arbitrary strings. This can be useful for special purpose optimizations that
7838 want to look for these annotations. These have no other defined use, they
7839 are ignored by code generation and optimization.
</p>
7843 <!-- _______________________________________________________________________ -->
7845 <a name=
"int_trap">'
<tt>llvm.trap
</tt>' Intrinsic
</a>
7852 declare void @llvm.trap()
7856 <p>The '
<tt>llvm.trap
</tt>' intrinsic.
</p>
7862 <p>This intrinsics is lowered to the target dependent trap instruction. If the
7863 target does not have a trap instruction, this intrinsic will be lowered to
7864 the call of the
<tt>abort()
</tt> function.
</p>
7868 <!-- _______________________________________________________________________ -->
7870 <a name=
"int_stackprotector">'
<tt>llvm.stackprotector
</tt>' Intrinsic
</a>
7877 declare void @llvm.stackprotector(i8*
<guard
>, i8**
<slot
>)
7881 <p>The
<tt>llvm.stackprotector
</tt> intrinsic takes the
<tt>guard
</tt> and
7882 stores it onto the stack at
<tt>slot
</tt>. The stack slot is adjusted to
7883 ensure that it is placed on the stack before local variables.
</p>
7886 <p>The
<tt>llvm.stackprotector
</tt> intrinsic requires two pointer
7887 arguments. The first argument is the value loaded from the stack
7888 guard
<tt>@__stack_chk_guard
</tt>. The second variable is an
<tt>alloca
</tt>
7889 that has enough space to hold the value of the guard.
</p>
7892 <p>This intrinsic causes the prologue/epilogue inserter to force the position of
7893 the
<tt>AllocaInst
</tt> stack slot to be before local variables on the
7894 stack. This is to ensure that if a local variable on the stack is
7895 overwritten, it will destroy the value of the guard. When the function exits,
7896 the guard on the stack is checked against the original guard. If they are
7897 different, then the program aborts by calling the
<tt>__stack_chk_fail()
</tt>
7902 <!-- _______________________________________________________________________ -->
7904 <a name=
"int_objectsize">'
<tt>llvm.objectsize
</tt>' Intrinsic
</a>
7911 declare i32 @llvm.objectsize.i32(i8*
<object
>, i1
<type
>)
7912 declare i64 @llvm.objectsize.i64(i8*
<object
>, i1
<type
>)
7916 <p>The
<tt>llvm.objectsize
</tt> intrinsic is designed to provide information to
7917 the optimizers to determine at compile time whether a) an operation (like
7918 memcpy) will overflow a buffer that corresponds to an object, or b) that a
7919 runtime check for overflow isn't necessary. An object in this context means
7920 an allocation of a specific class, structure, array, or other object.
</p>
7923 <p>The
<tt>llvm.objectsize
</tt> intrinsic takes two arguments. The first
7924 argument is a pointer to or into the
<tt>object
</tt>. The second argument
7925 is a boolean
0 or
1. This argument determines whether you want the
7926 maximum (
0) or minimum (
1) bytes remaining. This needs to be a literal
0 or
7927 1, variables are not allowed.
</p>
7930 <p>The
<tt>llvm.objectsize
</tt> intrinsic is lowered to either a constant
7931 representing the size of the object concerned, or
<tt>i32/i64 -
1 or
0</tt>,
7932 depending on the
<tt>type
</tt> argument, if the size cannot be determined at
7941 <!-- *********************************************************************** -->
7944 <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
7945 src=
"http://jigsaw.w3.org/css-validator/images/vcss-blue" alt=
"Valid CSS"></a>
7946 <a href=
"http://validator.w3.org/check/referer"><img
7947 src=
"http://www.w3.org/Icons/valid-html401-blue" alt=
"Valid HTML 4.01"></a>
7949 <a href=
"mailto:sabre@nondot.org">Chris Lattner
</a><br>
7950 <a href=
"http://llvm.org/">The LLVM Compiler Infrastructure
</a><br>
7951 Last modified: $Date$