There is only one register coalescer. Merge it into the base class and
[llvm/stm8.git] / lib / CodeGen / RegisterCoalescer.h
blobec83b818829d5fed8b58d7d6943b9f0cb06def71
1 //===-- RegisterCoalescer.h - Register Coalescing Interface ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the abstract interface for register coalescers,
11 // allowing them to interact with and query register allocators.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterClassInfo.h"
16 #include "llvm/Support/IncludeFile.h"
17 #include "llvm/CodeGen/LiveInterval.h"
18 #include "llvm/ADT/SmallPtrSet.h"
20 #ifndef LLVM_CODEGEN_REGISTER_COALESCER_H
21 #define LLVM_CODEGEN_REGISTER_COALESCER_H
23 namespace llvm {
25 class MachineFunction;
26 class RegallocQuery;
27 class AnalysisUsage;
28 class MachineInstr;
29 class TargetRegisterInfo;
30 class TargetRegisterClass;
31 class TargetInstrInfo;
32 class LiveDebugVariables;
33 class VirtRegMap;
34 class MachineLoopInfo;
36 class CoalescerPair;
38 /// An abstract interface for register coalescers. Coalescers must
39 /// implement this interface to be part of the coalescer analysis
40 /// group.
41 class RegisterCoalescer : public MachineFunctionPass {
42 MachineFunction* mf_;
43 MachineRegisterInfo* mri_;
44 const TargetMachine* tm_;
45 const TargetRegisterInfo* tri_;
46 const TargetInstrInfo* tii_;
47 LiveIntervals *li_;
48 LiveDebugVariables *ldv_;
49 const MachineLoopInfo* loopInfo;
50 AliasAnalysis *AA;
51 RegisterClassInfo RegClassInfo;
53 /// JoinedCopies - Keep track of copies eliminated due to coalescing.
54 ///
55 SmallPtrSet<MachineInstr*, 32> JoinedCopies;
57 /// ReMatCopies - Keep track of copies eliminated due to remat.
58 ///
59 SmallPtrSet<MachineInstr*, 32> ReMatCopies;
61 /// ReMatDefs - Keep track of definition instructions which have
62 /// been remat'ed.
63 SmallPtrSet<MachineInstr*, 8> ReMatDefs;
65 /// joinIntervals - join compatible live intervals
66 void joinIntervals();
68 /// CopyCoalesceInMBB - Coalesce copies in the specified MBB, putting
69 /// copies that cannot yet be coalesced into the "TryAgain" list.
70 void CopyCoalesceInMBB(MachineBasicBlock *MBB,
71 std::vector<MachineInstr*> &TryAgain);
73 /// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
74 /// which are the src/dst of the copy instruction CopyMI. This returns true
75 /// if the copy was successfully coalesced away. If it is not currently
76 /// possible to coalesce this interval, but it may be possible if other
77 /// things get coalesced, then it returns true by reference in 'Again'.
78 bool JoinCopy(MachineInstr *TheCopy, bool &Again);
80 /// JoinIntervals - Attempt to join these two intervals. On failure, this
81 /// returns false. The output "SrcInt" will not have been modified, so we can
82 /// use this information below to update aliases.
83 bool JoinIntervals(CoalescerPair &CP);
85 /// AdjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
86 /// the source value number is defined by a copy from the destination reg
87 /// see if we can merge these two destination reg valno# into a single
88 /// value number, eliminating a copy.
89 bool AdjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
91 /// HasOtherReachingDefs - Return true if there are definitions of IntB
92 /// other than BValNo val# that can reach uses of AValno val# of IntA.
93 bool HasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
94 VNInfo *AValNo, VNInfo *BValNo);
96 /// RemoveCopyByCommutingDef - We found a non-trivially-coalescable copy.
97 /// If the source value number is defined by a commutable instruction and
98 /// its other operand is coalesced to the copy dest register, see if we
99 /// can transform the copy into a noop by commuting the definition.
100 bool RemoveCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
102 /// ReMaterializeTrivialDef - If the source of a copy is defined by a trivial
103 /// computation, replace the copy by rematerialize the definition.
104 /// If PreserveSrcInt is true, make sure SrcInt is valid after the call.
105 bool ReMaterializeTrivialDef(LiveInterval &SrcInt, bool PreserveSrcInt,
106 unsigned DstReg, unsigned DstSubIdx,
107 MachineInstr *CopyMI);
109 /// shouldJoinPhys - Return true if a physreg copy should be joined.
110 bool shouldJoinPhys(CoalescerPair &CP);
112 /// isWinToJoinCrossClass - Return true if it's profitable to coalesce
113 /// two virtual registers from different register classes.
114 bool isWinToJoinCrossClass(unsigned SrcReg,
115 unsigned DstReg,
116 const TargetRegisterClass *SrcRC,
117 const TargetRegisterClass *DstRC,
118 const TargetRegisterClass *NewRC);
120 /// UpdateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
121 /// update the subregister number if it is not zero. If DstReg is a
122 /// physical register and the existing subregister number of the def / use
123 /// being updated is not zero, make sure to set it to the correct physical
124 /// subregister.
125 void UpdateRegDefsUses(const CoalescerPair &CP);
127 /// RemoveDeadDef - If a def of a live interval is now determined dead,
128 /// remove the val# it defines. If the live interval becomes empty, remove
129 /// it as well.
130 bool RemoveDeadDef(LiveInterval &li, MachineInstr *DefMI);
132 /// RemoveCopyFlag - If DstReg is no longer defined by CopyMI, clear the
133 /// VNInfo copy flag for DstReg and all aliases.
134 void RemoveCopyFlag(unsigned DstReg, const MachineInstr *CopyMI);
136 /// markAsJoined - Remember that CopyMI has already been joined.
137 void markAsJoined(MachineInstr *CopyMI);
139 public:
140 static char ID; // Class identification, replacement for typeinfo
141 RegisterCoalescer() : MachineFunctionPass(ID) {
142 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
145 /// Run the coalescer on this function, providing interference
146 /// data to query. Return whether we removed any copies.
147 virtual bool coalesceFunction(MachineFunction &mf,
148 RegallocQuery &ifd) {
149 // This runs as an independent pass, so don't do anything.
150 return false;
153 /// Reset state. Can be used to allow a coalescer run by
154 /// PassManager to be run again by the register allocator.
155 virtual void reset(MachineFunction &mf) {}
157 /// Register allocators must call this from their own
158 /// getAnalysisUsage to cover the case where the coalescer is not
159 /// a Pass in the proper sense and isn't managed by PassManager.
160 /// PassManager needs to know which analyses to make available and
161 /// which to invalidate when running the register allocator or any
162 /// pass that might call coalescing. The long-term solution is to
163 /// allow hierarchies of PassManagers.
164 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
166 virtual void releaseMemory();
168 /// runOnMachineFunction - pass entry point
169 virtual bool runOnMachineFunction(MachineFunction&);
171 /// print - Implement the dump method.
172 virtual void print(raw_ostream &O, const Module* = 0) const;
175 /// An abstract interface for register allocators to interact with
176 /// coalescers
178 /// Example:
180 /// This is simply an example of how to use the RegallocQuery
181 /// interface. It is not meant to be used in production.
183 /// class LinearScanRegallocQuery : public RegallocQuery {
184 /// private:
185 /// const LiveIntervals \&li;
187 /// public:
188 /// LinearScanRegallocQuery(LiveIntervals &intervals)
189 /// : li(intervals) {}
191 /// /// This is pretty slow and conservative, but since linear scan
192 /// /// allocation doesn't pre-compute interference information it's
193 /// /// the best we can do. Coalescers are always free to ignore this
194 /// /// and implement their own discovery strategy. See
195 /// /// RegisterCoalescer for an example.
196 /// void getInterferences(IntervalSet &interferences,
197 /// const LiveInterval &a) const {
198 /// for(LiveIntervals::const_iterator iv = li.begin(),
199 /// ivend = li.end();
200 /// iv != ivend;
201 /// ++iv) {
202 /// if (interfere(a, iv->second)) {
203 /// interferences.insert(&iv->second);
204 /// }
205 /// }
206 /// }
208 /// /// This is *really* slow and stupid. See above.
209 /// int getNumberOfInterferences(const LiveInterval &a) const {
210 /// IntervalSet intervals;
211 /// getInterferences(intervals, a);
212 /// return intervals.size();
213 /// }
214 /// };
216 /// In the allocator:
218 /// RegisterCoalescer &coalescer = getAnalysis<RegisterCoalescer>();
220 /// // We don't reset the coalescer so if it's already been run this
221 /// // takes almost no time.
222 /// LinearScanRegallocQuery ifd(*li_);
223 /// coalescer.coalesceFunction(fn, ifd);
225 class RegallocQuery {
226 public:
227 typedef SmallPtrSet<const LiveInterval *, 8> IntervalSet;
229 virtual ~RegallocQuery() {}
231 /// Return whether two live ranges interfere.
232 virtual bool interfere(const LiveInterval &a,
233 const LiveInterval &b) const {
234 // A naive test
235 return a.overlaps(b);
238 /// Return the set of intervals that interfere with this one.
239 virtual void getInterferences(IntervalSet &interferences,
240 const LiveInterval &a) const = 0;
242 /// This can often be cheaper than actually returning the
243 /// interferences.
244 virtual int getNumberOfInterferences(const LiveInterval &a) const = 0;
246 /// Make any data structure updates necessary to reflect
247 /// coalescing or other modifications.
248 virtual void updateDataForMerge(const LiveInterval &a,
249 const LiveInterval &b,
250 const MachineInstr &copy) {}
252 /// Allow the register allocator to communicate when it doesn't
253 /// want a copy coalesced. This may be due to assumptions made by
254 /// the allocator about various invariants and so this question is
255 /// a matter of legality, not performance. Performance decisions
256 /// about which copies to coalesce should be made by the
257 /// coalescer.
258 virtual bool isLegalToCoalesce(const MachineInstr &inst) const {
259 return true;
264 /// CoalescerPair - A helper class for register coalescers. When deciding if
265 /// two registers can be coalesced, CoalescerPair can determine if a copy
266 /// instruction would become an identity copy after coalescing.
267 class CoalescerPair {
268 const TargetInstrInfo &tii_;
269 const TargetRegisterInfo &tri_;
271 /// dstReg_ - The register that will be left after coalescing. It can be a
272 /// virtual or physical register.
273 unsigned dstReg_;
275 /// srcReg_ - the virtual register that will be coalesced into dstReg.
276 unsigned srcReg_;
278 /// subReg_ - The subregister index of srcReg in dstReg_. It is possible the
279 /// coalesce srcReg_ into a subreg of the larger dstReg_ when dstReg_ is a
280 /// virtual register.
281 unsigned subIdx_;
283 /// partial_ - True when the original copy was a partial subregister copy.
284 bool partial_;
286 /// crossClass_ - True when both regs are virtual, and newRC is constrained.
287 bool crossClass_;
289 /// flipped_ - True when DstReg and SrcReg are reversed from the oriignal copy
290 /// instruction.
291 bool flipped_;
293 /// newRC_ - The register class of the coalesced register, or NULL if dstReg_
294 /// is a physreg.
295 const TargetRegisterClass *newRC_;
297 /// compose - Compose subreg indices a and b, either may be 0.
298 unsigned compose(unsigned, unsigned) const;
300 /// isMoveInstr - Return true if MI is a move or subreg instruction.
301 bool isMoveInstr(const MachineInstr *MI, unsigned &Src, unsigned &Dst,
302 unsigned &SrcSub, unsigned &DstSub) const;
304 public:
305 CoalescerPair(const TargetInstrInfo &tii, const TargetRegisterInfo &tri)
306 : tii_(tii), tri_(tri), dstReg_(0), srcReg_(0), subIdx_(0),
307 partial_(false), crossClass_(false), flipped_(false), newRC_(0) {}
309 /// setRegisters - set registers to match the copy instruction MI. Return
310 /// false if MI is not a coalescable copy instruction.
311 bool setRegisters(const MachineInstr*);
313 /// flip - Swap srcReg_ and dstReg_. Return false if swapping is impossible
314 /// because dstReg_ is a physical register, or subIdx_ is set.
315 bool flip();
317 /// isCoalescable - Return true if MI is a copy instruction that will become
318 /// an identity copy after coalescing.
319 bool isCoalescable(const MachineInstr*) const;
321 /// isPhys - Return true if DstReg is a physical register.
322 bool isPhys() const { return !newRC_; }
324 /// isPartial - Return true if the original copy instruction did not copy the
325 /// full register, but was a subreg operation.
326 bool isPartial() const { return partial_; }
328 /// isCrossClass - Return true if DstReg is virtual and NewRC is a smaller register class than DstReg's.
329 bool isCrossClass() const { return crossClass_; }
331 /// isFlipped - Return true when getSrcReg is the register being defined by
332 /// the original copy instruction.
333 bool isFlipped() const { return flipped_; }
335 /// getDstReg - Return the register (virtual or physical) that will remain
336 /// after coalescing.
337 unsigned getDstReg() const { return dstReg_; }
339 /// getSrcReg - Return the virtual register that will be coalesced away.
340 unsigned getSrcReg() const { return srcReg_; }
342 /// getSubIdx - Return the subregister index in DstReg that SrcReg will be
343 /// coalesced into, or 0.
344 unsigned getSubIdx() const { return subIdx_; }
346 /// getNewRC - Return the register class of the coalesced register.
347 const TargetRegisterClass *getNewRC() const { return newRC_; }
349 } // End llvm namespace
351 #endif