1 //===- InstCombinePHI.cpp -------------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the visitPHINode function.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/STLExtras.h"
21 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
22 /// and if a/b/c and the add's all have a single use, turn this into a phi
23 /// and a single binop.
24 Instruction
*InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode
&PN
) {
25 Instruction
*FirstInst
= cast
<Instruction
>(PN
.getIncomingValue(0));
26 assert(isa
<BinaryOperator
>(FirstInst
) || isa
<CmpInst
>(FirstInst
));
27 unsigned Opc
= FirstInst
->getOpcode();
28 Value
*LHSVal
= FirstInst
->getOperand(0);
29 Value
*RHSVal
= FirstInst
->getOperand(1);
31 const Type
*LHSType
= LHSVal
->getType();
32 const Type
*RHSType
= RHSVal
->getType();
34 bool isNUW
= false, isNSW
= false, isExact
= false;
35 if (OverflowingBinaryOperator
*BO
=
36 dyn_cast
<OverflowingBinaryOperator
>(FirstInst
)) {
37 isNUW
= BO
->hasNoUnsignedWrap();
38 isNSW
= BO
->hasNoSignedWrap();
39 } else if (PossiblyExactOperator
*PEO
=
40 dyn_cast
<PossiblyExactOperator
>(FirstInst
))
41 isExact
= PEO
->isExact();
43 // Scan to see if all operands are the same opcode, and all have one use.
44 for (unsigned i
= 1; i
!= PN
.getNumIncomingValues(); ++i
) {
45 Instruction
*I
= dyn_cast
<Instruction
>(PN
.getIncomingValue(i
));
46 if (!I
|| I
->getOpcode() != Opc
|| !I
->hasOneUse() ||
47 // Verify type of the LHS matches so we don't fold cmp's of different
49 I
->getOperand(0)->getType() != LHSType
||
50 I
->getOperand(1)->getType() != RHSType
)
53 // If they are CmpInst instructions, check their predicates
54 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
55 if (CI
->getPredicate() != cast
<CmpInst
>(FirstInst
)->getPredicate())
59 isNUW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoUnsignedWrap();
61 isNSW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoSignedWrap();
63 isExact
= cast
<PossiblyExactOperator
>(I
)->isExact();
65 // Keep track of which operand needs a phi node.
66 if (I
->getOperand(0) != LHSVal
) LHSVal
= 0;
67 if (I
->getOperand(1) != RHSVal
) RHSVal
= 0;
70 // If both LHS and RHS would need a PHI, don't do this transformation,
71 // because it would increase the number of PHIs entering the block,
72 // which leads to higher register pressure. This is especially
73 // bad when the PHIs are in the header of a loop.
74 if (!LHSVal
&& !RHSVal
)
77 // Otherwise, this is safe to transform!
79 Value
*InLHS
= FirstInst
->getOperand(0);
80 Value
*InRHS
= FirstInst
->getOperand(1);
81 PHINode
*NewLHS
= 0, *NewRHS
= 0;
83 NewLHS
= PHINode::Create(LHSType
, PN
.getNumIncomingValues(),
84 FirstInst
->getOperand(0)->getName() + ".pn");
85 NewLHS
->addIncoming(InLHS
, PN
.getIncomingBlock(0));
86 InsertNewInstBefore(NewLHS
, PN
);
91 NewRHS
= PHINode::Create(RHSType
, PN
.getNumIncomingValues(),
92 FirstInst
->getOperand(1)->getName() + ".pn");
93 NewRHS
->addIncoming(InRHS
, PN
.getIncomingBlock(0));
94 InsertNewInstBefore(NewRHS
, PN
);
98 // Add all operands to the new PHIs.
99 if (NewLHS
|| NewRHS
) {
100 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
101 Instruction
*InInst
= cast
<Instruction
>(PN
.getIncomingValue(i
));
103 Value
*NewInLHS
= InInst
->getOperand(0);
104 NewLHS
->addIncoming(NewInLHS
, PN
.getIncomingBlock(i
));
107 Value
*NewInRHS
= InInst
->getOperand(1);
108 NewRHS
->addIncoming(NewInRHS
, PN
.getIncomingBlock(i
));
113 if (CmpInst
*CIOp
= dyn_cast
<CmpInst
>(FirstInst
)) {
114 CmpInst
*NewCI
= CmpInst::Create(CIOp
->getOpcode(), CIOp
->getPredicate(),
116 NewCI
->setDebugLoc(FirstInst
->getDebugLoc());
120 BinaryOperator
*BinOp
= cast
<BinaryOperator
>(FirstInst
);
121 BinaryOperator
*NewBinOp
=
122 BinaryOperator::Create(BinOp
->getOpcode(), LHSVal
, RHSVal
);
123 if (isNUW
) NewBinOp
->setHasNoUnsignedWrap();
124 if (isNSW
) NewBinOp
->setHasNoSignedWrap();
125 if (isExact
) NewBinOp
->setIsExact();
126 NewBinOp
->setDebugLoc(FirstInst
->getDebugLoc());
130 Instruction
*InstCombiner::FoldPHIArgGEPIntoPHI(PHINode
&PN
) {
131 GetElementPtrInst
*FirstInst
=cast
<GetElementPtrInst
>(PN
.getIncomingValue(0));
133 SmallVector
<Value
*, 16> FixedOperands(FirstInst
->op_begin(),
134 FirstInst
->op_end());
135 // This is true if all GEP bases are allocas and if all indices into them are
137 bool AllBasePointersAreAllocas
= true;
139 // We don't want to replace this phi if the replacement would require
140 // more than one phi, which leads to higher register pressure. This is
141 // especially bad when the PHIs are in the header of a loop.
142 bool NeededPhi
= false;
144 bool AllInBounds
= true;
146 // Scan to see if all operands are the same opcode, and all have one use.
147 for (unsigned i
= 1; i
!= PN
.getNumIncomingValues(); ++i
) {
148 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(PN
.getIncomingValue(i
));
149 if (!GEP
|| !GEP
->hasOneUse() || GEP
->getType() != FirstInst
->getType() ||
150 GEP
->getNumOperands() != FirstInst
->getNumOperands())
153 AllInBounds
&= GEP
->isInBounds();
155 // Keep track of whether or not all GEPs are of alloca pointers.
156 if (AllBasePointersAreAllocas
&&
157 (!isa
<AllocaInst
>(GEP
->getOperand(0)) ||
158 !GEP
->hasAllConstantIndices()))
159 AllBasePointersAreAllocas
= false;
161 // Compare the operand lists.
162 for (unsigned op
= 0, e
= FirstInst
->getNumOperands(); op
!= e
; ++op
) {
163 if (FirstInst
->getOperand(op
) == GEP
->getOperand(op
))
166 // Don't merge two GEPs when two operands differ (introducing phi nodes)
167 // if one of the PHIs has a constant for the index. The index may be
168 // substantially cheaper to compute for the constants, so making it a
169 // variable index could pessimize the path. This also handles the case
170 // for struct indices, which must always be constant.
171 if (isa
<ConstantInt
>(FirstInst
->getOperand(op
)) ||
172 isa
<ConstantInt
>(GEP
->getOperand(op
)))
175 if (FirstInst
->getOperand(op
)->getType() !=GEP
->getOperand(op
)->getType())
178 // If we already needed a PHI for an earlier operand, and another operand
179 // also requires a PHI, we'd be introducing more PHIs than we're
180 // eliminating, which increases register pressure on entry to the PHI's
185 FixedOperands
[op
] = 0; // Needs a PHI.
190 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
191 // bother doing this transformation. At best, this will just save a bit of
192 // offset calculation, but all the predecessors will have to materialize the
193 // stack address into a register anyway. We'd actually rather *clone* the
194 // load up into the predecessors so that we have a load of a gep of an alloca,
195 // which can usually all be folded into the load.
196 if (AllBasePointersAreAllocas
)
199 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
201 SmallVector
<PHINode
*, 16> OperandPhis(FixedOperands
.size());
203 bool HasAnyPHIs
= false;
204 for (unsigned i
= 0, e
= FixedOperands
.size(); i
!= e
; ++i
) {
205 if (FixedOperands
[i
]) continue; // operand doesn't need a phi.
206 Value
*FirstOp
= FirstInst
->getOperand(i
);
207 PHINode
*NewPN
= PHINode::Create(FirstOp
->getType(), e
,
208 FirstOp
->getName()+".pn");
209 InsertNewInstBefore(NewPN
, PN
);
211 NewPN
->addIncoming(FirstOp
, PN
.getIncomingBlock(0));
212 OperandPhis
[i
] = NewPN
;
213 FixedOperands
[i
] = NewPN
;
218 // Add all operands to the new PHIs.
220 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
221 GetElementPtrInst
*InGEP
=cast
<GetElementPtrInst
>(PN
.getIncomingValue(i
));
222 BasicBlock
*InBB
= PN
.getIncomingBlock(i
);
224 for (unsigned op
= 0, e
= OperandPhis
.size(); op
!= e
; ++op
)
225 if (PHINode
*OpPhi
= OperandPhis
[op
])
226 OpPhi
->addIncoming(InGEP
->getOperand(op
), InBB
);
230 Value
*Base
= FixedOperands
[0];
231 GetElementPtrInst
*NewGEP
=
232 GetElementPtrInst::Create(Base
, FixedOperands
.begin()+1,
233 FixedOperands
.end());
234 if (AllInBounds
) NewGEP
->setIsInBounds();
235 NewGEP
->setDebugLoc(FirstInst
->getDebugLoc());
240 /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
241 /// sink the load out of the block that defines it. This means that it must be
242 /// obvious the value of the load is not changed from the point of the load to
243 /// the end of the block it is in.
245 /// Finally, it is safe, but not profitable, to sink a load targeting a
246 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
248 static bool isSafeAndProfitableToSinkLoad(LoadInst
*L
) {
249 BasicBlock::iterator BBI
= L
, E
= L
->getParent()->end();
251 for (++BBI
; BBI
!= E
; ++BBI
)
252 if (BBI
->mayWriteToMemory())
255 // Check for non-address taken alloca. If not address-taken already, it isn't
256 // profitable to do this xform.
257 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(L
->getOperand(0))) {
258 bool isAddressTaken
= false;
259 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
262 if (isa
<LoadInst
>(U
)) continue;
263 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
264 // If storing TO the alloca, then the address isn't taken.
265 if (SI
->getOperand(1) == AI
) continue;
267 isAddressTaken
= true;
271 if (!isAddressTaken
&& AI
->isStaticAlloca())
275 // If this load is a load from a GEP with a constant offset from an alloca,
276 // then we don't want to sink it. In its present form, it will be
277 // load [constant stack offset]. Sinking it will cause us to have to
278 // materialize the stack addresses in each predecessor in a register only to
279 // do a shared load from register in the successor.
280 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(L
->getOperand(0)))
281 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(GEP
->getOperand(0)))
282 if (AI
->isStaticAlloca() && GEP
->hasAllConstantIndices())
288 Instruction
*InstCombiner::FoldPHIArgLoadIntoPHI(PHINode
&PN
) {
289 LoadInst
*FirstLI
= cast
<LoadInst
>(PN
.getIncomingValue(0));
291 // When processing loads, we need to propagate two bits of information to the
292 // sunk load: whether it is volatile, and what its alignment is. We currently
293 // don't sink loads when some have their alignment specified and some don't.
294 // visitLoadInst will propagate an alignment onto the load when TD is around,
295 // and if TD isn't around, we can't handle the mixed case.
296 bool isVolatile
= FirstLI
->isVolatile();
297 unsigned LoadAlignment
= FirstLI
->getAlignment();
298 unsigned LoadAddrSpace
= FirstLI
->getPointerAddressSpace();
300 // We can't sink the load if the loaded value could be modified between the
302 if (FirstLI
->getParent() != PN
.getIncomingBlock(0) ||
303 !isSafeAndProfitableToSinkLoad(FirstLI
))
306 // If the PHI is of volatile loads and the load block has multiple
307 // successors, sinking it would remove a load of the volatile value from
308 // the path through the other successor.
310 FirstLI
->getParent()->getTerminator()->getNumSuccessors() != 1)
313 // Check to see if all arguments are the same operation.
314 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
315 LoadInst
*LI
= dyn_cast
<LoadInst
>(PN
.getIncomingValue(i
));
316 if (!LI
|| !LI
->hasOneUse())
319 // We can't sink the load if the loaded value could be modified between
320 // the load and the PHI.
321 if (LI
->isVolatile() != isVolatile
||
322 LI
->getParent() != PN
.getIncomingBlock(i
) ||
323 LI
->getPointerAddressSpace() != LoadAddrSpace
||
324 !isSafeAndProfitableToSinkLoad(LI
))
327 // If some of the loads have an alignment specified but not all of them,
328 // we can't do the transformation.
329 if ((LoadAlignment
!= 0) != (LI
->getAlignment() != 0))
332 LoadAlignment
= std::min(LoadAlignment
, LI
->getAlignment());
334 // If the PHI is of volatile loads and the load block has multiple
335 // successors, sinking it would remove a load of the volatile value from
336 // the path through the other successor.
338 LI
->getParent()->getTerminator()->getNumSuccessors() != 1)
342 // Okay, they are all the same operation. Create a new PHI node of the
343 // correct type, and PHI together all of the LHS's of the instructions.
344 PHINode
*NewPN
= PHINode::Create(FirstLI
->getOperand(0)->getType(),
345 PN
.getNumIncomingValues(),
348 Value
*InVal
= FirstLI
->getOperand(0);
349 NewPN
->addIncoming(InVal
, PN
.getIncomingBlock(0));
351 // Add all operands to the new PHI.
352 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
353 Value
*NewInVal
= cast
<LoadInst
>(PN
.getIncomingValue(i
))->getOperand(0);
354 if (NewInVal
!= InVal
)
356 NewPN
->addIncoming(NewInVal
, PN
.getIncomingBlock(i
));
361 // The new PHI unions all of the same values together. This is really
362 // common, so we handle it intelligently here for compile-time speed.
366 InsertNewInstBefore(NewPN
, PN
);
370 // If this was a volatile load that we are merging, make sure to loop through
371 // and mark all the input loads as non-volatile. If we don't do this, we will
372 // insert a new volatile load and the old ones will not be deletable.
374 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
375 cast
<LoadInst
>(PN
.getIncomingValue(i
))->setVolatile(false);
377 LoadInst
*NewLI
= new LoadInst(PhiVal
, "", isVolatile
, LoadAlignment
);
378 NewLI
->setDebugLoc(FirstLI
->getDebugLoc());
384 /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
385 /// operator and they all are only used by the PHI, PHI together their
386 /// inputs, and do the operation once, to the result of the PHI.
387 Instruction
*InstCombiner::FoldPHIArgOpIntoPHI(PHINode
&PN
) {
388 Instruction
*FirstInst
= cast
<Instruction
>(PN
.getIncomingValue(0));
390 if (isa
<GetElementPtrInst
>(FirstInst
))
391 return FoldPHIArgGEPIntoPHI(PN
);
392 if (isa
<LoadInst
>(FirstInst
))
393 return FoldPHIArgLoadIntoPHI(PN
);
395 // Scan the instruction, looking for input operations that can be folded away.
396 // If all input operands to the phi are the same instruction (e.g. a cast from
397 // the same type or "+42") we can pull the operation through the PHI, reducing
398 // code size and simplifying code.
399 Constant
*ConstantOp
= 0;
400 const Type
*CastSrcTy
= 0;
401 bool isNUW
= false, isNSW
= false, isExact
= false;
403 if (isa
<CastInst
>(FirstInst
)) {
404 CastSrcTy
= FirstInst
->getOperand(0)->getType();
406 // Be careful about transforming integer PHIs. We don't want to pessimize
407 // the code by turning an i32 into an i1293.
408 if (PN
.getType()->isIntegerTy() && CastSrcTy
->isIntegerTy()) {
409 if (!ShouldChangeType(PN
.getType(), CastSrcTy
))
412 } else if (isa
<BinaryOperator
>(FirstInst
) || isa
<CmpInst
>(FirstInst
)) {
413 // Can fold binop, compare or shift here if the RHS is a constant,
414 // otherwise call FoldPHIArgBinOpIntoPHI.
415 ConstantOp
= dyn_cast
<Constant
>(FirstInst
->getOperand(1));
417 return FoldPHIArgBinOpIntoPHI(PN
);
419 if (OverflowingBinaryOperator
*BO
=
420 dyn_cast
<OverflowingBinaryOperator
>(FirstInst
)) {
421 isNUW
= BO
->hasNoUnsignedWrap();
422 isNSW
= BO
->hasNoSignedWrap();
423 } else if (PossiblyExactOperator
*PEO
=
424 dyn_cast
<PossiblyExactOperator
>(FirstInst
))
425 isExact
= PEO
->isExact();
427 return 0; // Cannot fold this operation.
430 // Check to see if all arguments are the same operation.
431 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
432 Instruction
*I
= dyn_cast
<Instruction
>(PN
.getIncomingValue(i
));
433 if (I
== 0 || !I
->hasOneUse() || !I
->isSameOperationAs(FirstInst
))
436 if (I
->getOperand(0)->getType() != CastSrcTy
)
437 return 0; // Cast operation must match.
438 } else if (I
->getOperand(1) != ConstantOp
) {
443 isNUW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoUnsignedWrap();
445 isNSW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoSignedWrap();
447 isExact
= cast
<PossiblyExactOperator
>(I
)->isExact();
450 // Okay, they are all the same operation. Create a new PHI node of the
451 // correct type, and PHI together all of the LHS's of the instructions.
452 PHINode
*NewPN
= PHINode::Create(FirstInst
->getOperand(0)->getType(),
453 PN
.getNumIncomingValues(),
456 Value
*InVal
= FirstInst
->getOperand(0);
457 NewPN
->addIncoming(InVal
, PN
.getIncomingBlock(0));
459 // Add all operands to the new PHI.
460 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
461 Value
*NewInVal
= cast
<Instruction
>(PN
.getIncomingValue(i
))->getOperand(0);
462 if (NewInVal
!= InVal
)
464 NewPN
->addIncoming(NewInVal
, PN
.getIncomingBlock(i
));
469 // The new PHI unions all of the same values together. This is really
470 // common, so we handle it intelligently here for compile-time speed.
474 InsertNewInstBefore(NewPN
, PN
);
478 // Insert and return the new operation.
479 if (CastInst
*FirstCI
= dyn_cast
<CastInst
>(FirstInst
)) {
480 CastInst
*NewCI
= CastInst::Create(FirstCI
->getOpcode(), PhiVal
,
482 NewCI
->setDebugLoc(FirstInst
->getDebugLoc());
486 if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(FirstInst
)) {
487 BinOp
= BinaryOperator::Create(BinOp
->getOpcode(), PhiVal
, ConstantOp
);
488 if (isNUW
) BinOp
->setHasNoUnsignedWrap();
489 if (isNSW
) BinOp
->setHasNoSignedWrap();
490 if (isExact
) BinOp
->setIsExact();
491 BinOp
->setDebugLoc(FirstInst
->getDebugLoc());
495 CmpInst
*CIOp
= cast
<CmpInst
>(FirstInst
);
496 CmpInst
*NewCI
= CmpInst::Create(CIOp
->getOpcode(), CIOp
->getPredicate(),
498 NewCI
->setDebugLoc(FirstInst
->getDebugLoc());
502 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
504 static bool DeadPHICycle(PHINode
*PN
,
505 SmallPtrSet
<PHINode
*, 16> &PotentiallyDeadPHIs
) {
506 if (PN
->use_empty()) return true;
507 if (!PN
->hasOneUse()) return false;
509 // Remember this node, and if we find the cycle, return.
510 if (!PotentiallyDeadPHIs
.insert(PN
))
513 // Don't scan crazily complex things.
514 if (PotentiallyDeadPHIs
.size() == 16)
517 if (PHINode
*PU
= dyn_cast
<PHINode
>(PN
->use_back()))
518 return DeadPHICycle(PU
, PotentiallyDeadPHIs
);
523 /// PHIsEqualValue - Return true if this phi node is always equal to
524 /// NonPhiInVal. This happens with mutually cyclic phi nodes like:
525 /// z = some value; x = phi (y, z); y = phi (x, z)
526 static bool PHIsEqualValue(PHINode
*PN
, Value
*NonPhiInVal
,
527 SmallPtrSet
<PHINode
*, 16> &ValueEqualPHIs
) {
528 // See if we already saw this PHI node.
529 if (!ValueEqualPHIs
.insert(PN
))
532 // Don't scan crazily complex things.
533 if (ValueEqualPHIs
.size() == 16)
536 // Scan the operands to see if they are either phi nodes or are equal to
538 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
539 Value
*Op
= PN
->getIncomingValue(i
);
540 if (PHINode
*OpPN
= dyn_cast
<PHINode
>(Op
)) {
541 if (!PHIsEqualValue(OpPN
, NonPhiInVal
, ValueEqualPHIs
))
543 } else if (Op
!= NonPhiInVal
)
552 struct PHIUsageRecord
{
553 unsigned PHIId
; // The ID # of the PHI (something determinstic to sort on)
554 unsigned Shift
; // The amount shifted.
555 Instruction
*Inst
; // The trunc instruction.
557 PHIUsageRecord(unsigned pn
, unsigned Sh
, Instruction
*User
)
558 : PHIId(pn
), Shift(Sh
), Inst(User
) {}
560 bool operator<(const PHIUsageRecord
&RHS
) const {
561 if (PHIId
< RHS
.PHIId
) return true;
562 if (PHIId
> RHS
.PHIId
) return false;
563 if (Shift
< RHS
.Shift
) return true;
564 if (Shift
> RHS
.Shift
) return false;
565 return Inst
->getType()->getPrimitiveSizeInBits() <
566 RHS
.Inst
->getType()->getPrimitiveSizeInBits();
570 struct LoweredPHIRecord
{
571 PHINode
*PN
; // The PHI that was lowered.
572 unsigned Shift
; // The amount shifted.
573 unsigned Width
; // The width extracted.
575 LoweredPHIRecord(PHINode
*pn
, unsigned Sh
, const Type
*Ty
)
576 : PN(pn
), Shift(Sh
), Width(Ty
->getPrimitiveSizeInBits()) {}
578 // Ctor form used by DenseMap.
579 LoweredPHIRecord(PHINode
*pn
, unsigned Sh
)
580 : PN(pn
), Shift(Sh
), Width(0) {}
586 struct DenseMapInfo
<LoweredPHIRecord
> {
587 static inline LoweredPHIRecord
getEmptyKey() {
588 return LoweredPHIRecord(0, 0);
590 static inline LoweredPHIRecord
getTombstoneKey() {
591 return LoweredPHIRecord(0, 1);
593 static unsigned getHashValue(const LoweredPHIRecord
&Val
) {
594 return DenseMapInfo
<PHINode
*>::getHashValue(Val
.PN
) ^ (Val
.Shift
>>3) ^
597 static bool isEqual(const LoweredPHIRecord
&LHS
,
598 const LoweredPHIRecord
&RHS
) {
599 return LHS
.PN
== RHS
.PN
&& LHS
.Shift
== RHS
.Shift
&&
600 LHS
.Width
== RHS
.Width
;
604 struct isPodLike
<LoweredPHIRecord
> { static const bool value
= true; };
608 /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
609 /// illegal type: see if it is only used by trunc or trunc(lshr) operations. If
610 /// so, we split the PHI into the various pieces being extracted. This sort of
611 /// thing is introduced when SROA promotes an aggregate to large integer values.
613 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
614 /// inttoptr. We should produce new PHIs in the right type.
616 Instruction
*InstCombiner::SliceUpIllegalIntegerPHI(PHINode
&FirstPhi
) {
617 // PHIUsers - Keep track of all of the truncated values extracted from a set
618 // of PHIs, along with their offset. These are the things we want to rewrite.
619 SmallVector
<PHIUsageRecord
, 16> PHIUsers
;
621 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
622 // nodes which are extracted from. PHIsToSlice is a set we use to avoid
623 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
624 // check the uses of (to ensure they are all extracts).
625 SmallVector
<PHINode
*, 8> PHIsToSlice
;
626 SmallPtrSet
<PHINode
*, 8> PHIsInspected
;
628 PHIsToSlice
.push_back(&FirstPhi
);
629 PHIsInspected
.insert(&FirstPhi
);
631 for (unsigned PHIId
= 0; PHIId
!= PHIsToSlice
.size(); ++PHIId
) {
632 PHINode
*PN
= PHIsToSlice
[PHIId
];
634 // Scan the input list of the PHI. If any input is an invoke, and if the
635 // input is defined in the predecessor, then we won't be split the critical
636 // edge which is required to insert a truncate. Because of this, we have to
638 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
639 InvokeInst
*II
= dyn_cast
<InvokeInst
>(PN
->getIncomingValue(i
));
640 if (II
== 0) continue;
641 if (II
->getParent() != PN
->getIncomingBlock(i
))
644 // If we have a phi, and if it's directly in the predecessor, then we have
645 // a critical edge where we need to put the truncate. Since we can't
646 // split the edge in instcombine, we have to bail out.
651 for (Value::use_iterator UI
= PN
->use_begin(), E
= PN
->use_end();
653 Instruction
*User
= cast
<Instruction
>(*UI
);
655 // If the user is a PHI, inspect its uses recursively.
656 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
657 if (PHIsInspected
.insert(UserPN
))
658 PHIsToSlice
.push_back(UserPN
);
662 // Truncates are always ok.
663 if (isa
<TruncInst
>(User
)) {
664 PHIUsers
.push_back(PHIUsageRecord(PHIId
, 0, User
));
668 // Otherwise it must be a lshr which can only be used by one trunc.
669 if (User
->getOpcode() != Instruction::LShr
||
670 !User
->hasOneUse() || !isa
<TruncInst
>(User
->use_back()) ||
671 !isa
<ConstantInt
>(User
->getOperand(1)))
674 unsigned Shift
= cast
<ConstantInt
>(User
->getOperand(1))->getZExtValue();
675 PHIUsers
.push_back(PHIUsageRecord(PHIId
, Shift
, User
->use_back()));
679 // If we have no users, they must be all self uses, just nuke the PHI.
680 if (PHIUsers
.empty())
681 return ReplaceInstUsesWith(FirstPhi
, UndefValue::get(FirstPhi
.getType()));
683 // If this phi node is transformable, create new PHIs for all the pieces
684 // extracted out of it. First, sort the users by their offset and size.
685 array_pod_sort(PHIUsers
.begin(), PHIUsers
.end());
687 DEBUG(errs() << "SLICING UP PHI: " << FirstPhi
<< '\n';
688 for (unsigned i
= 1, e
= PHIsToSlice
.size(); i
!= e
; ++i
)
689 errs() << "AND USER PHI #" << i
<< ": " << *PHIsToSlice
[i
] <<'\n';
692 // PredValues - This is a temporary used when rewriting PHI nodes. It is
693 // hoisted out here to avoid construction/destruction thrashing.
694 DenseMap
<BasicBlock
*, Value
*> PredValues
;
696 // ExtractedVals - Each new PHI we introduce is saved here so we don't
697 // introduce redundant PHIs.
698 DenseMap
<LoweredPHIRecord
, PHINode
*> ExtractedVals
;
700 for (unsigned UserI
= 0, UserE
= PHIUsers
.size(); UserI
!= UserE
; ++UserI
) {
701 unsigned PHIId
= PHIUsers
[UserI
].PHIId
;
702 PHINode
*PN
= PHIsToSlice
[PHIId
];
703 unsigned Offset
= PHIUsers
[UserI
].Shift
;
704 const Type
*Ty
= PHIUsers
[UserI
].Inst
->getType();
708 // If we've already lowered a user like this, reuse the previously lowered
710 if ((EltPHI
= ExtractedVals
[LoweredPHIRecord(PN
, Offset
, Ty
)]) == 0) {
712 // Otherwise, Create the new PHI node for this user.
713 EltPHI
= PHINode::Create(Ty
, PN
->getNumIncomingValues(),
714 PN
->getName()+".off"+Twine(Offset
), PN
);
715 assert(EltPHI
->getType() != PN
->getType() &&
716 "Truncate didn't shrink phi?");
718 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
719 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
720 Value
*&PredVal
= PredValues
[Pred
];
722 // If we already have a value for this predecessor, reuse it.
724 EltPHI
->addIncoming(PredVal
, Pred
);
728 // Handle the PHI self-reuse case.
729 Value
*InVal
= PN
->getIncomingValue(i
);
732 EltPHI
->addIncoming(PredVal
, Pred
);
736 if (PHINode
*InPHI
= dyn_cast
<PHINode
>(PN
)) {
737 // If the incoming value was a PHI, and if it was one of the PHIs we
738 // already rewrote it, just use the lowered value.
739 if (Value
*Res
= ExtractedVals
[LoweredPHIRecord(InPHI
, Offset
, Ty
)]) {
741 EltPHI
->addIncoming(PredVal
, Pred
);
746 // Otherwise, do an extract in the predecessor.
747 Builder
->SetInsertPoint(Pred
, Pred
->getTerminator());
750 Res
= Builder
->CreateLShr(Res
, ConstantInt::get(InVal
->getType(),
752 Res
= Builder
->CreateTrunc(Res
, Ty
, "extract.t");
754 EltPHI
->addIncoming(Res
, Pred
);
756 // If the incoming value was a PHI, and if it was one of the PHIs we are
757 // rewriting, we will ultimately delete the code we inserted. This
758 // means we need to revisit that PHI to make sure we extract out the
760 if (PHINode
*OldInVal
= dyn_cast
<PHINode
>(PN
->getIncomingValue(i
)))
761 if (PHIsInspected
.count(OldInVal
)) {
762 unsigned RefPHIId
= std::find(PHIsToSlice
.begin(),PHIsToSlice
.end(),
763 OldInVal
)-PHIsToSlice
.begin();
764 PHIUsers
.push_back(PHIUsageRecord(RefPHIId
, Offset
,
765 cast
<Instruction
>(Res
)));
771 DEBUG(errs() << " Made element PHI for offset " << Offset
<< ": "
773 ExtractedVals
[LoweredPHIRecord(PN
, Offset
, Ty
)] = EltPHI
;
776 // Replace the use of this piece with the PHI node.
777 ReplaceInstUsesWith(*PHIUsers
[UserI
].Inst
, EltPHI
);
780 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
782 Value
*Undef
= UndefValue::get(FirstPhi
.getType());
783 for (unsigned i
= 1, e
= PHIsToSlice
.size(); i
!= e
; ++i
)
784 ReplaceInstUsesWith(*PHIsToSlice
[i
], Undef
);
785 return ReplaceInstUsesWith(FirstPhi
, Undef
);
788 // PHINode simplification
790 Instruction
*InstCombiner::visitPHINode(PHINode
&PN
) {
791 if (Value
*V
= SimplifyInstruction(&PN
, TD
))
792 return ReplaceInstUsesWith(PN
, V
);
794 // If all PHI operands are the same operation, pull them through the PHI,
795 // reducing code size.
796 if (isa
<Instruction
>(PN
.getIncomingValue(0)) &&
797 isa
<Instruction
>(PN
.getIncomingValue(1)) &&
798 cast
<Instruction
>(PN
.getIncomingValue(0))->getOpcode() ==
799 cast
<Instruction
>(PN
.getIncomingValue(1))->getOpcode() &&
800 // FIXME: The hasOneUse check will fail for PHIs that use the value more
801 // than themselves more than once.
802 PN
.getIncomingValue(0)->hasOneUse())
803 if (Instruction
*Result
= FoldPHIArgOpIntoPHI(PN
))
806 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
807 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
808 // PHI)... break the cycle.
809 if (PN
.hasOneUse()) {
810 Instruction
*PHIUser
= cast
<Instruction
>(PN
.use_back());
811 if (PHINode
*PU
= dyn_cast
<PHINode
>(PHIUser
)) {
812 SmallPtrSet
<PHINode
*, 16> PotentiallyDeadPHIs
;
813 PotentiallyDeadPHIs
.insert(&PN
);
814 if (DeadPHICycle(PU
, PotentiallyDeadPHIs
))
815 return ReplaceInstUsesWith(PN
, UndefValue::get(PN
.getType()));
818 // If this phi has a single use, and if that use just computes a value for
819 // the next iteration of a loop, delete the phi. This occurs with unused
820 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
821 // common case here is good because the only other things that catch this
822 // are induction variable analysis (sometimes) and ADCE, which is only run
824 if (PHIUser
->hasOneUse() &&
825 (isa
<BinaryOperator
>(PHIUser
) || isa
<GetElementPtrInst
>(PHIUser
)) &&
826 PHIUser
->use_back() == &PN
) {
827 return ReplaceInstUsesWith(PN
, UndefValue::get(PN
.getType()));
831 // We sometimes end up with phi cycles that non-obviously end up being the
832 // same value, for example:
833 // z = some value; x = phi (y, z); y = phi (x, z)
834 // where the phi nodes don't necessarily need to be in the same block. Do a
835 // quick check to see if the PHI node only contains a single non-phi value, if
836 // so, scan to see if the phi cycle is actually equal to that value.
838 unsigned InValNo
= 0, NumIncomingVals
= PN
.getNumIncomingValues();
839 // Scan for the first non-phi operand.
840 while (InValNo
!= NumIncomingVals
&&
841 isa
<PHINode
>(PN
.getIncomingValue(InValNo
)))
844 if (InValNo
!= NumIncomingVals
) {
845 Value
*NonPhiInVal
= PN
.getIncomingValue(InValNo
);
847 // Scan the rest of the operands to see if there are any conflicts, if so
848 // there is no need to recursively scan other phis.
849 for (++InValNo
; InValNo
!= NumIncomingVals
; ++InValNo
) {
850 Value
*OpVal
= PN
.getIncomingValue(InValNo
);
851 if (OpVal
!= NonPhiInVal
&& !isa
<PHINode
>(OpVal
))
855 // If we scanned over all operands, then we have one unique value plus
856 // phi values. Scan PHI nodes to see if they all merge in each other or
858 if (InValNo
== NumIncomingVals
) {
859 SmallPtrSet
<PHINode
*, 16> ValueEqualPHIs
;
860 if (PHIsEqualValue(&PN
, NonPhiInVal
, ValueEqualPHIs
))
861 return ReplaceInstUsesWith(PN
, NonPhiInVal
);
866 // If there are multiple PHIs, sort their operands so that they all list
867 // the blocks in the same order. This will help identical PHIs be eliminated
868 // by other passes. Other passes shouldn't depend on this for correctness
870 PHINode
*FirstPN
= cast
<PHINode
>(PN
.getParent()->begin());
872 for (unsigned i
= 0, e
= FirstPN
->getNumIncomingValues(); i
!= e
; ++i
) {
873 BasicBlock
*BBA
= PN
.getIncomingBlock(i
);
874 BasicBlock
*BBB
= FirstPN
->getIncomingBlock(i
);
876 Value
*VA
= PN
.getIncomingValue(i
);
877 unsigned j
= PN
.getBasicBlockIndex(BBB
);
878 Value
*VB
= PN
.getIncomingValue(j
);
879 PN
.setIncomingBlock(i
, BBB
);
880 PN
.setIncomingValue(i
, VB
);
881 PN
.setIncomingBlock(j
, BBA
);
882 PN
.setIncomingValue(j
, VA
);
883 // NOTE: Instcombine normally would want us to "return &PN" if we
884 // modified any of the operands of an instruction. However, since we
885 // aren't adding or removing uses (just rearranging them) we don't do
886 // this in this case.
890 // If this is an integer PHI and we know that it has an illegal type, see if
891 // it is only used by trunc or trunc(lshr) operations. If so, we split the
892 // PHI into the various pieces being extracted. This sort of thing is
893 // introduced when SROA promotes an aggregate to a single large integer type.
894 if (PN
.getType()->isIntegerTy() && TD
&&
895 !TD
->isLegalInteger(PN
.getType()->getPrimitiveSizeInBits()))
896 if (Instruction
*Res
= SliceUpIllegalIntegerPHI(PN
))