1 //===-- Value.cpp - Implement the Value class -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Value, ValueHandle, and User classes.
12 //===----------------------------------------------------------------------===//
14 #include "LLVMContextImpl.h"
15 #include "llvm/Constant.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InstrTypes.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Operator.h"
21 #include "llvm/Module.h"
22 #include "llvm/ValueSymbolTable.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/LeakDetector.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/ValueHandle.h"
30 #include "llvm/ADT/DenseMap.h"
34 //===----------------------------------------------------------------------===//
36 //===----------------------------------------------------------------------===//
38 static inline const Type
*checkType(const Type
*Ty
) {
39 assert(Ty
&& "Value defined with a null type: Error!");
43 Value::Value(const Type
*ty
, unsigned scid
)
44 : SubclassID(scid
), HasValueHandle(0),
45 SubclassOptionalData(0), SubclassData(0), VTy(checkType(ty
)),
47 if (isa
<CallInst
>(this) || isa
<InvokeInst
>(this))
48 assert((VTy
->isFirstClassType() || VTy
->isVoidTy() ||
49 ty
->isOpaqueTy() || VTy
->isStructTy()) &&
50 "invalid CallInst type!");
51 else if (!isa
<Constant
>(this) && !isa
<BasicBlock
>(this))
52 assert((VTy
->isFirstClassType() || VTy
->isVoidTy() ||
54 "Cannot create non-first-class values except for constants!");
58 // Notify all ValueHandles (if present) that this value is going away.
60 ValueHandleBase::ValueIsDeleted(this);
62 #ifndef NDEBUG // Only in -g mode...
63 // Check to make sure that there are no uses of this value that are still
64 // around when the value is destroyed. If there are, then we have a dangling
65 // reference and something is wrong. This code is here to print out what is
66 // still being referenced. The value in question should be printed as
70 dbgs() << "While deleting: " << *VTy
<< " %" << getNameStr() << "\n";
71 for (use_iterator I
= use_begin(), E
= use_end(); I
!= E
; ++I
)
72 dbgs() << "Use still stuck around after Def is destroyed:"
76 assert(use_empty() && "Uses remain when a value is destroyed!");
78 // If this value is named, destroy the name. This should not be in a symtab
83 // There should be no uses of this object anymore, remove it.
84 LeakDetector::removeGarbageObject(this);
87 /// hasNUses - Return true if this Value has exactly N users.
89 bool Value::hasNUses(unsigned N
) const {
90 const_use_iterator UI
= use_begin(), E
= use_end();
93 if (UI
== E
) return false; // Too few.
97 /// hasNUsesOrMore - Return true if this value has N users or more. This is
98 /// logically equivalent to getNumUses() >= N.
100 bool Value::hasNUsesOrMore(unsigned N
) const {
101 const_use_iterator UI
= use_begin(), E
= use_end();
104 if (UI
== E
) return false; // Too few.
109 /// isUsedInBasicBlock - Return true if this value is used in the specified
111 bool Value::isUsedInBasicBlock(const BasicBlock
*BB
) const {
112 for (const_use_iterator I
= use_begin(), E
= use_end(); I
!= E
; ++I
) {
113 const Instruction
*User
= dyn_cast
<Instruction
>(*I
);
114 if (User
&& User
->getParent() == BB
)
121 /// getNumUses - This method computes the number of uses of this Value. This
122 /// is a linear time operation. Use hasOneUse or hasNUses to check for specific
124 unsigned Value::getNumUses() const {
125 return (unsigned)std::distance(use_begin(), use_end());
128 static bool getSymTab(Value
*V
, ValueSymbolTable
*&ST
) {
130 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
131 if (BasicBlock
*P
= I
->getParent())
132 if (Function
*PP
= P
->getParent())
133 ST
= &PP
->getValueSymbolTable();
134 } else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(V
)) {
135 if (Function
*P
= BB
->getParent())
136 ST
= &P
->getValueSymbolTable();
137 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
138 if (Module
*P
= GV
->getParent())
139 ST
= &P
->getValueSymbolTable();
140 } else if (Argument
*A
= dyn_cast
<Argument
>(V
)) {
141 if (Function
*P
= A
->getParent())
142 ST
= &P
->getValueSymbolTable();
143 } else if (isa
<MDString
>(V
))
146 assert(isa
<Constant
>(V
) && "Unknown value type!");
147 return true; // no name is setable for this.
152 StringRef
Value::getName() const {
153 // Make sure the empty string is still a C string. For historical reasons,
154 // some clients want to call .data() on the result and expect it to be null
156 if (!Name
) return StringRef("", 0);
157 return Name
->getKey();
160 std::string
Value::getNameStr() const {
161 return getName().str();
164 void Value::setName(const Twine
&NewName
) {
165 // Fast path for common IRBuilder case of setName("") when there is no name.
166 if (NewName
.isTriviallyEmpty() && !hasName())
169 SmallString
<256> NameData
;
170 StringRef NameRef
= NewName
.toStringRef(NameData
);
172 // Name isn't changing?
173 if (getName() == NameRef
)
176 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
178 // Get the symbol table to update for this object.
179 ValueSymbolTable
*ST
;
180 if (getSymTab(this, ST
))
181 return; // Cannot set a name on this value (e.g. constant).
183 if (!ST
) { // No symbol table to update? Just do the change.
184 if (NameRef
.empty()) {
185 // Free the name for this value.
194 // NOTE: Could optimize for the case the name is shrinking to not deallocate
197 // Create the new name.
198 Name
= ValueName::Create(NameRef
.begin(), NameRef
.end());
199 Name
->setValue(this);
203 // NOTE: Could optimize for the case the name is shrinking to not deallocate
207 ST
->removeValueName(Name
);
215 // Name is changing to something new.
216 Name
= ST
->createValueName(NameRef
, this);
220 /// takeName - transfer the name from V to this value, setting V's name to
221 /// empty. It is an error to call V->takeName(V).
222 void Value::takeName(Value
*V
) {
223 ValueSymbolTable
*ST
= 0;
224 // If this value has a name, drop it.
226 // Get the symtab this is in.
227 if (getSymTab(this, ST
)) {
228 // We can't set a name on this value, but we need to clear V's name if
230 if (V
->hasName()) V
->setName("");
231 return; // Cannot set a name on this value (e.g. constant).
236 ST
->removeValueName(Name
);
241 // Now we know that this has no name.
243 // If V has no name either, we're done.
244 if (!V
->hasName()) return;
246 // Get this's symtab if we didn't before.
248 if (getSymTab(this, ST
)) {
251 return; // Cannot set a name on this value (e.g. constant).
255 // Get V's ST, this should always succed, because V has a name.
256 ValueSymbolTable
*VST
;
257 bool Failure
= getSymTab(V
, VST
);
258 assert(!Failure
&& "V has a name, so it should have a ST!"); (void)Failure
;
260 // If these values are both in the same symtab, we can do this very fast.
261 // This works even if both values have no symtab yet.
266 Name
->setValue(this);
270 // Otherwise, things are slightly more complex. Remove V's name from VST and
271 // then reinsert it into ST.
274 VST
->removeValueName(V
->Name
);
277 Name
->setValue(this);
280 ST
->reinsertValue(this);
284 // uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith,
285 // except that it doesn't have all of the asserts. The asserts fail because we
286 // are half-way done resolving types, which causes some types to exist as two
287 // different Type*'s at the same time. This is a sledgehammer to work around
290 void Value::uncheckedReplaceAllUsesWith(Value
*New
) {
291 // Notify all ValueHandles (if present) that this value is going away.
293 ValueHandleBase::ValueIsRAUWd(this, New
);
295 while (!use_empty()) {
297 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
298 // constant because they are uniqued.
299 if (Constant
*C
= dyn_cast
<Constant
>(U
.getUser())) {
300 if (!isa
<GlobalValue
>(C
)) {
301 C
->replaceUsesOfWithOnConstant(this, New
, &U
);
309 if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(this))
310 BB
->replaceSuccessorsPhiUsesWith(cast
<BasicBlock
>(New
));
313 void Value::replaceAllUsesWith(Value
*New
) {
314 assert(New
&& "Value::replaceAllUsesWith(<null>) is invalid!");
315 assert(New
!= this && "this->replaceAllUsesWith(this) is NOT valid!");
316 assert(New
->getType() == getType() &&
317 "replaceAllUses of value with new value of different type!");
319 uncheckedReplaceAllUsesWith(New
);
322 Value
*Value::stripPointerCasts() {
323 if (!getType()->isPointerTy())
326 // Even though we don't look through PHI nodes, we could be called on an
327 // instruction in an unreachable block, which may be on a cycle.
328 SmallPtrSet
<Value
*, 4> Visited
;
333 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
334 if (!GEP
->hasAllZeroIndices())
336 V
= GEP
->getPointerOperand();
337 } else if (Operator::getOpcode(V
) == Instruction::BitCast
) {
338 V
= cast
<Operator
>(V
)->getOperand(0);
339 } else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(V
)) {
340 if (GA
->mayBeOverridden())
342 V
= GA
->getAliasee();
346 assert(V
->getType()->isPointerTy() && "Unexpected operand type!");
347 } while (Visited
.insert(V
));
352 /// isDereferenceablePointer - Test if this value is always a pointer to
353 /// allocated and suitably aligned memory for a simple load or store.
354 bool Value::isDereferenceablePointer() const {
355 // Note that it is not safe to speculate into a malloc'd region because
356 // malloc may return null.
357 // It's also not always safe to follow a bitcast, for example:
358 // bitcast i8* (alloca i8) to i32*
359 // would result in a 4-byte load from a 1-byte alloca. Some cases could
360 // be handled using TargetData to check sizes and alignments though.
362 // These are obviously ok.
363 if (isa
<AllocaInst
>(this)) return true;
365 // Global variables which can't collapse to null are ok.
366 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(this))
367 return !GV
->hasExternalWeakLinkage();
369 // byval arguments are ok.
370 if (const Argument
*A
= dyn_cast
<Argument
>(this))
371 return A
->hasByValAttr();
373 // For GEPs, determine if the indexing lands within the allocated object.
374 if (const GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(this)) {
375 // Conservatively require that the base pointer be fully dereferenceable.
376 if (!GEP
->getOperand(0)->isDereferenceablePointer())
378 // Check the indices.
379 gep_type_iterator GTI
= gep_type_begin(GEP
);
380 for (User::const_op_iterator I
= GEP
->op_begin()+1,
381 E
= GEP
->op_end(); I
!= E
; ++I
) {
383 const Type
*Ty
= *GTI
++;
384 // Struct indices can't be out of bounds.
385 if (isa
<StructType
>(Ty
))
387 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Index
);
390 // Zero is always ok.
393 // Check to see that it's within the bounds of an array.
394 const ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
);
397 if (CI
->getValue().getActiveBits() > 64)
399 if (CI
->getZExtValue() >= ATy
->getNumElements())
402 // Indices check out; this is dereferenceable.
406 // If we don't know, assume the worst.
410 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
411 /// return the value in the PHI node corresponding to PredBB. If not, return
412 /// ourself. This is useful if you want to know the value something has in a
413 /// predecessor block.
414 Value
*Value::DoPHITranslation(const BasicBlock
*CurBB
,
415 const BasicBlock
*PredBB
) {
416 PHINode
*PN
= dyn_cast
<PHINode
>(this);
417 if (PN
&& PN
->getParent() == CurBB
)
418 return PN
->getIncomingValueForBlock(PredBB
);
422 LLVMContext
&Value::getContext() const { return VTy
->getContext(); }
424 //===----------------------------------------------------------------------===//
425 // ValueHandleBase Class
426 //===----------------------------------------------------------------------===//
428 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
429 /// List is known to point into the existing use list.
430 void ValueHandleBase::AddToExistingUseList(ValueHandleBase
**List
) {
431 assert(List
&& "Handle list is null?");
433 // Splice ourselves into the list.
438 Next
->setPrevPtr(&Next
);
439 assert(VP
== Next
->VP
&& "Added to wrong list?");
443 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase
*List
) {
444 assert(List
&& "Must insert after existing node");
447 setPrevPtr(&List
->Next
);
450 Next
->setPrevPtr(&Next
);
453 /// AddToUseList - Add this ValueHandle to the use list for VP.
454 void ValueHandleBase::AddToUseList() {
455 assert(VP
&& "Null pointer doesn't have a use list!");
457 LLVMContextImpl
*pImpl
= VP
->getContext().pImpl
;
459 if (VP
->HasValueHandle
) {
460 // If this value already has a ValueHandle, then it must be in the
461 // ValueHandles map already.
462 ValueHandleBase
*&Entry
= pImpl
->ValueHandles
[VP
];
463 assert(Entry
!= 0 && "Value doesn't have any handles?");
464 AddToExistingUseList(&Entry
);
468 // Ok, it doesn't have any handles yet, so we must insert it into the
469 // DenseMap. However, doing this insertion could cause the DenseMap to
470 // reallocate itself, which would invalidate all of the PrevP pointers that
471 // point into the old table. Handle this by checking for reallocation and
472 // updating the stale pointers only if needed.
473 DenseMap
<Value
*, ValueHandleBase
*> &Handles
= pImpl
->ValueHandles
;
474 const void *OldBucketPtr
= Handles
.getPointerIntoBucketsArray();
476 ValueHandleBase
*&Entry
= Handles
[VP
];
477 assert(Entry
== 0 && "Value really did already have handles?");
478 AddToExistingUseList(&Entry
);
479 VP
->HasValueHandle
= true;
481 // If reallocation didn't happen or if this was the first insertion, don't
483 if (Handles
.isPointerIntoBucketsArray(OldBucketPtr
) ||
484 Handles
.size() == 1) {
488 // Okay, reallocation did happen. Fix the Prev Pointers.
489 for (DenseMap
<Value
*, ValueHandleBase
*>::iterator I
= Handles
.begin(),
490 E
= Handles
.end(); I
!= E
; ++I
) {
491 assert(I
->second
&& I
->first
== I
->second
->VP
&& "List invariant broken!");
492 I
->second
->setPrevPtr(&I
->second
);
496 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
497 void ValueHandleBase::RemoveFromUseList() {
498 assert(VP
&& VP
->HasValueHandle
&& "Pointer doesn't have a use list!");
500 // Unlink this from its use list.
501 ValueHandleBase
**PrevPtr
= getPrevPtr();
502 assert(*PrevPtr
== this && "List invariant broken");
506 assert(Next
->getPrevPtr() == &Next
&& "List invariant broken");
507 Next
->setPrevPtr(PrevPtr
);
511 // If the Next pointer was null, then it is possible that this was the last
512 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
514 LLVMContextImpl
*pImpl
= VP
->getContext().pImpl
;
515 DenseMap
<Value
*, ValueHandleBase
*> &Handles
= pImpl
->ValueHandles
;
516 if (Handles
.isPointerIntoBucketsArray(PrevPtr
)) {
518 VP
->HasValueHandle
= false;
523 void ValueHandleBase::ValueIsDeleted(Value
*V
) {
524 assert(V
->HasValueHandle
&& "Should only be called if ValueHandles present");
526 // Get the linked list base, which is guaranteed to exist since the
527 // HasValueHandle flag is set.
528 LLVMContextImpl
*pImpl
= V
->getContext().pImpl
;
529 ValueHandleBase
*Entry
= pImpl
->ValueHandles
[V
];
530 assert(Entry
&& "Value bit set but no entries exist");
532 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
533 // and remove themselves from the list without breaking our iteration. This
534 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
535 // Note that we deliberately do not the support the case when dropping a value
536 // handle results in a new value handle being permanently added to the list
537 // (as might occur in theory for CallbackVH's): the new value handle will not
538 // be processed and the checking code will mete out righteous punishment if
539 // the handle is still present once we have finished processing all the other
540 // value handles (it is fine to momentarily add then remove a value handle).
541 for (ValueHandleBase
Iterator(Assert
, *Entry
); Entry
; Entry
= Iterator
.Next
) {
542 Iterator
.RemoveFromUseList();
543 Iterator
.AddToExistingUseListAfter(Entry
);
544 assert(Entry
->Next
== &Iterator
&& "Loop invariant broken.");
546 switch (Entry
->getKind()) {
550 // Mark that this value has been deleted by setting it to an invalid Value
552 Entry
->operator=(DenseMapInfo
<Value
*>::getTombstoneKey());
555 // Weak just goes to null, which will unlink it from the list.
559 // Forward to the subclass's implementation.
560 static_cast<CallbackVH
*>(Entry
)->deleted();
565 // All callbacks, weak references, and assertingVHs should be dropped by now.
566 if (V
->HasValueHandle
) {
567 #ifndef NDEBUG // Only in +Asserts mode...
568 dbgs() << "While deleting: " << *V
->getType() << " %" << V
->getNameStr()
570 if (pImpl
->ValueHandles
[V
]->getKind() == Assert
)
571 llvm_unreachable("An asserting value handle still pointed to this"
575 llvm_unreachable("All references to V were not removed?");
580 void ValueHandleBase::ValueIsRAUWd(Value
*Old
, Value
*New
) {
581 assert(Old
->HasValueHandle
&&"Should only be called if ValueHandles present");
582 assert(Old
!= New
&& "Changing value into itself!");
584 // Get the linked list base, which is guaranteed to exist since the
585 // HasValueHandle flag is set.
586 LLVMContextImpl
*pImpl
= Old
->getContext().pImpl
;
587 ValueHandleBase
*Entry
= pImpl
->ValueHandles
[Old
];
589 assert(Entry
&& "Value bit set but no entries exist");
591 // We use a local ValueHandleBase as an iterator so that
592 // ValueHandles can add and remove themselves from the list without
593 // breaking our iteration. This is not really an AssertingVH; we
594 // just have to give ValueHandleBase some kind.
595 for (ValueHandleBase
Iterator(Assert
, *Entry
); Entry
; Entry
= Iterator
.Next
) {
596 Iterator
.RemoveFromUseList();
597 Iterator
.AddToExistingUseListAfter(Entry
);
598 assert(Entry
->Next
== &Iterator
&& "Loop invariant broken.");
600 switch (Entry
->getKind()) {
602 // Asserting handle does not follow RAUW implicitly.
605 // Tracking goes to new value like a WeakVH. Note that this may make it
606 // something incompatible with its templated type. We don't want to have a
607 // virtual (or inline) interface to handle this though, so instead we make
608 // the TrackingVH accessors guarantee that a client never sees this value.
612 // Weak goes to the new value, which will unlink it from Old's list.
613 Entry
->operator=(New
);
616 // Forward to the subclass's implementation.
617 static_cast<CallbackVH
*>(Entry
)->allUsesReplacedWith(New
);
623 // If any new tracking or weak value handles were added while processing the
624 // list, then complain about it now.
625 if (Old
->HasValueHandle
)
626 for (Entry
= pImpl
->ValueHandles
[Old
]; Entry
; Entry
= Entry
->Next
)
627 switch (Entry
->getKind()) {
630 dbgs() << "After RAUW from " << *Old
->getType() << " %"
631 << Old
->getNameStr() << " to " << *New
->getType() << " %"
632 << New
->getNameStr() << "\n";
633 llvm_unreachable("A tracking or weak value handle still pointed to the"
641 /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
643 CallbackVH::~CallbackVH() {}