1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
6 <title>Kaleidoscope: Extending the Language: User-defined Operators
</title>
7 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
8 <meta name=
"author" content=
"Chris Lattner">
9 <meta name=
"author" content=
"Erick Tryzelaar">
10 <link rel=
"stylesheet" href=
"../llvm.css" type=
"text/css">
15 <h1>Kaleidoscope: Extending the Language: User-defined Operators
</h1>
18 <li><a href=
"index.html">Up to Tutorial Index
</a></li>
21 <li><a href=
"#intro">Chapter
6 Introduction
</a></li>
22 <li><a href=
"#idea">User-defined Operators: the Idea
</a></li>
23 <li><a href=
"#binary">User-defined Binary Operators
</a></li>
24 <li><a href=
"#unary">User-defined Unary Operators
</a></li>
25 <li><a href=
"#example">Kicking the Tires
</a></li>
26 <li><a href=
"#code">Full Code Listing
</a></li>
29 <li><a href=
"OCamlLangImpl7.html">Chapter
7</a>: Extending the Language: Mutable
30 Variables / SSA Construction
</li>
33 <div class=
"doc_author">
35 Written by
<a href=
"mailto:sabre@nondot.org">Chris Lattner
</a>
36 and
<a href=
"mailto:idadesub@users.sourceforge.net">Erick Tryzelaar
</a>
40 <!-- *********************************************************************** -->
41 <h2><a name=
"intro">Chapter
6 Introduction
</a></h2>
42 <!-- *********************************************************************** -->
46 <p>Welcome to Chapter
6 of the
"<a href="index.html
">Implementing a language
47 with LLVM</a>" tutorial. At this point in our tutorial, we now have a fully
48 functional language that is fairly minimal, but also useful. There
49 is still one big problem with it, however. Our language doesn't have many
50 useful operators (like division, logical negation, or even any comparisons
51 besides less-than).
</p>
53 <p>This chapter of the tutorial takes a wild digression into adding user-defined
54 operators to the simple and beautiful Kaleidoscope language. This digression now
55 gives us a simple and ugly language in some ways, but also a powerful one at the
56 same time. One of the great things about creating your own language is that you
57 get to decide what is good or bad. In this tutorial we'll assume that it is
58 okay to use this as a way to show some interesting parsing techniques.
</p>
60 <p>At the end of this tutorial, we'll run through an example Kaleidoscope
61 application that
<a href=
"#example">renders the Mandelbrot set
</a>. This gives
62 an example of what you can build with Kaleidoscope and its feature set.
</p>
66 <!-- *********************************************************************** -->
67 <h2><a name=
"idea">User-defined Operators: the Idea
</a></h2>
68 <!-- *********************************************************************** -->
73 The
"operator overloading" that we will add to Kaleidoscope is more general than
74 languages like C++. In C++, you are only allowed to redefine existing
75 operators: you can't programatically change the grammar, introduce new
76 operators, change precedence levels, etc. In this chapter, we will add this
77 capability to Kaleidoscope, which will let the user round out the set of
78 operators that are supported.
</p>
80 <p>The point of going into user-defined operators in a tutorial like this is to
81 show the power and flexibility of using a hand-written parser. Thus far, the parser
82 we have been implementing uses recursive descent for most parts of the grammar and
83 operator precedence parsing for the expressions. See
<a
84 href=
"OCamlLangImpl2.html">Chapter
2</a> for details. Without using operator
85 precedence parsing, it would be very difficult to allow the programmer to
86 introduce new operators into the grammar: the grammar is dynamically extensible
89 <p>The two specific features we'll add are programmable unary operators (right
90 now, Kaleidoscope has no unary operators at all) as well as binary operators.
91 An example of this is:
</p>
93 <div class=
"doc_code">
102 # Define
> with the same precedence as
<.
103 def binary
> 10 (LHS RHS)
106 # Binary
"logical or", (note that it does not
"short circuit")
107 def binary|
5 (LHS RHS)
115 # Define = with slightly lower precedence than relationals.
116 def binary=
9 (LHS RHS)
117 !(LHS
< RHS | LHS
> RHS);
121 <p>Many languages aspire to being able to implement their standard runtime
122 library in the language itself. In Kaleidoscope, we can implement significant
123 parts of the language in the library!
</p>
125 <p>We will break down implementation of these features into two parts:
126 implementing support for user-defined binary operators and adding unary
131 <!-- *********************************************************************** -->
132 <h2><a name=
"binary">User-defined Binary Operators
</a></h2>
133 <!-- *********************************************************************** -->
137 <p>Adding support for user-defined binary operators is pretty simple with our
138 current framework. We'll first add support for the unary/binary keywords:
</p>
140 <div class=
"doc_code">
149 and lex_ident buffer = parser
151 |
"for" -
> [
< 'Token.For; stream
>]
152 |
"in" -
> [
< 'Token.In; stream
>]
153 <b>|
"binary" -
> [
< 'Token.Binary; stream
>]
154 |
"unary" -
> [
< 'Token.Unary; stream
>]
</b>
158 <p>This just adds lexer support for the unary and binary keywords, like we
159 did in
<a href=
"OCamlLangImpl5.html#iflexer">previous chapters
</a>. One nice
160 thing about our current AST, is that we represent binary operators with full
161 generalisation by using their ASCII code as the opcode. For our extended
162 operators, we'll use this same representation, so we don't need any new AST or
165 <p>On the other hand, we have to be able to represent the definitions of these
166 new operators, in the
"def binary| 5" part of the function definition. In our
167 grammar so far, the
"name" for the function definition is parsed as the
168 "prototype" production and into the
<tt>Ast.Prototype
</tt> AST node. To
169 represent our new user-defined operators as prototypes, we have to extend
170 the
<tt>Ast.Prototype
</tt> AST node like this:
</p>
172 <div class=
"doc_code">
174 (* proto - This type represents the
"prototype" for a function, which captures
175 * its name, and its argument names (thus implicitly the number of arguments the
176 * function takes). *)
178 | Prototype of string * string array
179 <b>| BinOpPrototype of string * string array * int
</b>
183 <p>Basically, in addition to knowing a name for the prototype, we now keep track
184 of whether it was an operator, and if it was, what precedence level the operator
185 is at. The precedence is only used for binary operators (as you'll see below,
186 it just doesn't apply for unary operators). Now that we have a way to represent
187 the prototype for a user-defined operator, we need to parse it:
</p>
189 <div class=
"doc_code">
193 <b>* ::= binary LETTER number? (id, id)
194 * ::= unary LETTER number? (id) *)
</b>
195 let parse_prototype =
196 let rec parse_args accumulator = parser
197 | [
< 'Token.Ident id; e=parse_args (id::accumulator)
>] -
> e
198 | [
< >] -
> accumulator
200 let parse_operator = parser
201 | [
< 'Token.Unary
>] -
> "unary",
1
202 | [
< 'Token.Binary
>] -
> "binary",
2
204 let parse_binary_precedence = parser
205 | [
< 'Token.Number n
>] -
> int_of_float n
206 | [
< >] -
> 30
209 | [
< 'Token.Ident id;
210 'Token.Kwd '(' ??
"expected '(' in prototype";
212 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
214 Ast.Prototype (id, Array.of_list (List.rev args))
215 <b>| [
< (prefix, kind)=parse_operator;
216 'Token.Kwd op ??
"expected an operator";
217 (* Read the precedence if present. *)
218 binary_precedence=parse_binary_precedence;
219 'Token.Kwd '(' ??
"expected '(' in prototype";
221 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
222 let name = prefix ^ (String.make
1 op) in
223 let args = Array.of_list (List.rev args) in
225 (* Verify right number of arguments for operator. *)
226 if Array.length args != kind
227 then raise (Stream.Error
"invalid number of operands for operator")
230 Ast.Prototype (name, args)
232 Ast.BinOpPrototype (name, args, binary_precedence)
</b>
234 raise (Stream.Error
"expected function name in prototype")
238 <p>This is all fairly straightforward parsing code, and we have already seen
239 a lot of similar code in the past. One interesting part about the code above is
240 the couple lines that set up
<tt>name
</tt> for binary operators. This builds
241 names like
"binary@" for a newly defined
"@" operator. This then takes
242 advantage of the fact that symbol names in the LLVM symbol table are allowed to
243 have any character in them, including embedded nul characters.
</p>
245 <p>The next interesting thing to add, is codegen support for these binary
246 operators. Given our current structure, this is a simple addition of a default
247 case for our existing binary operator node:
</p>
249 <div class=
"doc_code">
251 let codegen_expr = function
253 | Ast.Binary (op, lhs, rhs) -
>
254 let lhs_val = codegen_expr lhs in
255 let rhs_val = codegen_expr rhs in
258 | '+' -
> build_add lhs_val rhs_val
"addtmp" builder
259 | '-' -
> build_sub lhs_val rhs_val
"subtmp" builder
260 | '*' -
> build_mul lhs_val rhs_val
"multmp" builder
262 (* Convert bool
0/
1 to double
0.0 or
1.0 *)
263 let i = build_fcmp Fcmp.Ult lhs_val rhs_val
"cmptmp" builder in
264 build_uitofp i double_type
"booltmp" builder
266 (* If it wasn't a builtin binary operator, it must be a user defined
267 * one. Emit a call to it. *)
268 let callee =
"binary" ^ (String.make
1 op) in
270 match lookup_function callee the_module with
271 | Some callee -
> callee
272 | None -
> raise (Error
"binary operator not found!")
274 build_call callee [|lhs_val; rhs_val|]
"binop" builder
</b>
279 <p>As you can see above, the new code is actually really simple. It just does
280 a lookup for the appropriate operator in the symbol table and generates a
281 function call to it. Since user-defined operators are just built as normal
282 functions (because the
"prototype" boils down to a function with the right
283 name) everything falls into place.
</p>
285 <p>The final piece of code we are missing, is a bit of top level magic:
</p>
287 <div class=
"doc_code">
289 let codegen_func the_fpm = function
290 | Ast.Function (proto, body) -
>
291 Hashtbl.clear named_values;
292 let the_function = codegen_proto proto in
294 <b>(* If this is an operator, install it. *)
295 begin match proto with
296 | Ast.BinOpPrototype (name, args, prec) -
>
297 let op = name.[String.length name -
1] in
298 Hashtbl.add Parser.binop_precedence op prec;
302 (* Create a new basic block to start insertion into. *)
303 let bb = append_block context
"entry" the_function in
304 position_at_end bb builder;
309 <p>Basically, before codegening a function, if it is a user-defined operator, we
310 register it in the precedence table. This allows the binary operator parsing
311 logic we already have in place to handle it. Since we are working on a
312 fully-general operator precedence parser, this is all we need to do to
"extend
315 <p>Now we have useful user-defined binary operators. This builds a lot
316 on the previous framework we built for other operators. Adding unary operators
317 is a bit more challenging, because we don't have any framework for it yet - lets
318 see what it takes.
</p>
322 <!-- *********************************************************************** -->
323 <h2><a name=
"unary">User-defined Unary Operators
</a></h2>
324 <!-- *********************************************************************** -->
328 <p>Since we don't currently support unary operators in the Kaleidoscope
329 language, we'll need to add everything to support them. Above, we added simple
330 support for the 'unary' keyword to the lexer. In addition to that, we need an
333 <div class=
"doc_code">
337 (* variant for a unary operator. *)
338 | Unary of char * expr
343 <p>This AST node is very simple and obvious by now. It directly mirrors the
344 binary operator AST node, except that it only has one child. With this, we
345 need to add the parsing logic. Parsing a unary operator is pretty simple: we'll
346 add a new function to do it:
</p>
348 <div class=
"doc_code">
353 and parse_unary = parser
354 (* If this is a unary operator, read it. *)
355 | [
< 'Token.Kwd op when op != '('
&& op != ')'; operand=parse_expr
>] -
>
356 Ast.Unary (op, operand)
358 (* If the current token is not an operator, it must be a primary expr. *)
359 | [
< stream
>] -
> parse_primary stream
363 <p>The grammar we add is pretty straightforward here. If we see a unary
364 operator when parsing a primary operator, we eat the operator as a prefix and
365 parse the remaining piece as another unary operator. This allows us to handle
366 multiple unary operators (e.g.
"!!x"). Note that unary operators can't have
367 ambiguous parses like binary operators can, so there is no need for precedence
370 <p>The problem with this function, is that we need to call ParseUnary from
371 somewhere. To do this, we change previous callers of ParsePrimary to call
372 <tt>parse_unary
</tt> instead:
</p>
374 <div class=
"doc_code">
377 * ::= ('+' primary)* *)
378 and parse_bin_rhs expr_prec lhs stream =
380 <b>(* Parse the unary expression after the binary operator. *)
381 let rhs = parse_unary stream in
</b>
387 * ::= primary binoprhs *)
388 and parse_expr = parser
389 | [
< lhs=
<b>parse_unary
</b>; stream
>] -
> parse_bin_rhs
0 lhs stream
393 <p>With these two simple changes, we are now able to parse unary operators and build the
394 AST for them. Next up, we need to add parser support for prototypes, to parse
395 the unary operator prototype. We extend the binary operator code above
398 <div class=
"doc_code">
402 * ::= binary LETTER number? (id, id)
403 <b>* ::= unary LETTER number? (id)
</b> *)
404 let parse_prototype =
405 let rec parse_args accumulator = parser
406 | [
< 'Token.Ident id; e=parse_args (id::accumulator)
>] -
> e
407 | [
< >] -
> accumulator
409 <b>let parse_operator = parser
410 | [
< 'Token.Unary
>] -
> "unary",
1
411 | [
< 'Token.Binary
>] -
> "binary",
2
413 let parse_binary_precedence = parser
414 | [
< 'Token.Number n
>] -
> int_of_float n
415 | [
< >] -
> 30
418 | [
< 'Token.Ident id;
419 'Token.Kwd '(' ??
"expected '(' in prototype";
421 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
423 Ast.Prototype (id, Array.of_list (List.rev args))
424 <b>| [
< (prefix, kind)=parse_operator;
425 'Token.Kwd op ??
"expected an operator";
426 (* Read the precedence if present. *)
427 binary_precedence=parse_binary_precedence;
428 'Token.Kwd '(' ??
"expected '(' in prototype";
430 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
431 let name = prefix ^ (String.make
1 op) in
432 let args = Array.of_list (List.rev args) in
434 (* Verify right number of arguments for operator. *)
435 if Array.length args != kind
436 then raise (Stream.Error
"invalid number of operands for operator")
439 Ast.Prototype (name, args)
441 Ast.BinOpPrototype (name, args, binary_precedence)
</b>
443 raise (Stream.Error
"expected function name in prototype")
447 <p>As with binary operators, we name unary operators with a name that includes
448 the operator character. This assists us at code generation time. Speaking of,
449 the final piece we need to add is codegen support for unary operators. It looks
452 <div class=
"doc_code">
454 let rec codegen_expr = function
456 | Ast.Unary (op, operand) -
>
457 let operand = codegen_expr operand in
458 let callee =
"unary" ^ (String.make
1 op) in
460 match lookup_function callee the_module with
461 | Some callee -
> callee
462 | None -
> raise (Error
"unknown unary operator")
464 build_call callee [|operand|]
"unop" builder
468 <p>This code is similar to, but simpler than, the code for binary operators. It
469 is simpler primarily because it doesn't need to handle any predefined operators.
474 <!-- *********************************************************************** -->
475 <h2><a name=
"example">Kicking the Tires
</a></h2>
476 <!-- *********************************************************************** -->
480 <p>It is somewhat hard to believe, but with a few simple extensions we've
481 covered in the last chapters, we have grown a real-ish language. With this, we
482 can do a lot of interesting things, including I/O, math, and a bunch of other
483 things. For example, we can now add a nice sequencing operator (printd is
484 defined to print out the specified value and a newline):
</p>
486 <div class=
"doc_code">
488 ready
> <b>extern printd(x);
</b>
489 Read extern: declare double @printd(double)
490 ready
> <b>def binary :
1 (x y)
0; # Low-precedence operator that ignores operands.
</b>
492 ready
> <b>printd(
123) : printd(
456) : printd(
789);
</b>
496 Evaluated to
0.000000
500 <p>We can also define a bunch of other
"primitive" operations, such as:
</p>
502 <div class=
"doc_code">
515 # Define
> with the same precedence as
<.
516 def binary
> 10 (LHS RHS)
519 # Binary logical or, which does not short circuit.
520 def binary|
5 (LHS RHS)
528 # Binary logical and, which does not short circuit.
529 def binary
& 6 (LHS RHS)
535 # Define = with slightly lower precedence than relationals.
536 def binary =
9 (LHS RHS)
537 !(LHS
< RHS | LHS
> RHS);
543 <p>Given the previous if/then/else support, we can also define interesting
544 functions for I/O. For example, the following prints out a character whose
545 "density" reflects the value passed in: the lower the value, the denser the
548 <div class=
"doc_code">
552 extern putchard(char)
556 else if d
> 4 then
558 else if d
> 2 then
561 putchard(
42); # '*'
</b>
563 ready
> <b>printdensity(
1): printdensity(
2): printdensity(
3) :
564 printdensity(
4): printdensity(
5): printdensity(
9): putchard(
10);
</b>
566 Evaluated to
0.000000
570 <p>Based on these simple primitive operations, we can start to define more
571 interesting things. For example, here's a little function that solves for the
572 number of iterations it takes a function in the complex plane to
575 <div class=
"doc_code">
577 # determine whether the specific location diverges.
578 # Solve for z = z^
2 + c in the complex plane.
579 def mandleconverger(real imag iters creal cimag)
580 if iters
> 255 | (real*real + imag*imag
> 4) then
583 mandleconverger(real*real - imag*imag + creal,
585 iters+
1, creal, cimag);
587 # return the number of iterations required for the iteration to escape
588 def mandleconverge(real imag)
589 mandleconverger(real, imag,
0, real, imag);
593 <p>This
"z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis
594 for computation of the
<a
595 href=
"http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set
</a>. Our
596 <tt>mandelconverge
</tt> function returns the number of iterations that it takes
597 for a complex orbit to escape, saturating to
255. This is not a very useful
598 function by itself, but if you plot its value over a two-dimensional plane,
599 you can see the Mandelbrot set. Given that we are limited to using putchard
600 here, our amazing graphical output is limited, but we can whip together
601 something using the density plotter above:
</p>
603 <div class=
"doc_code">
605 # compute and plot the mandlebrot set with the specified
2 dimensional range
607 def mandelhelp(xmin xmax xstep ymin ymax ystep)
608 for y = ymin, y
< ymax, ystep in (
609 (for x = xmin, x
< xmax, xstep in
610 printdensity(mandleconverge(x,y)))
614 # mandel - This is a convenient helper function for ploting the mandelbrot set
615 # from the specified position with the specified Magnification.
616 def mandel(realstart imagstart realmag imagmag)
617 mandelhelp(realstart, realstart+realmag*
78, realmag,
618 imagstart, imagstart+imagmag*
40, imagmag);
622 <p>Given this, we can try plotting out the mandlebrot set! Lets try it out:
</p>
624 <div class=
"doc_code">
626 ready
> <b>mandel(-
2.3, -
1.3,
0.05,
0.07);
</b>
627 *******************************+++++++++++*************************************
628 *************************+++++++++++++++++++++++*******************************
629 **********************+++++++++++++++++++++++++++++****************************
630 *******************+++++++++++++++++++++.. ...++++++++*************************
631 *****************++++++++++++++++++++++.... ...+++++++++***********************
632 ***************+++++++++++++++++++++++..... ...+++++++++*********************
633 **************+++++++++++++++++++++++.... ....+++++++++********************
634 *************++++++++++++++++++++++...... .....++++++++*******************
635 ************+++++++++++++++++++++....... .......+++++++******************
636 ***********+++++++++++++++++++.... ... .+++++++*****************
637 **********+++++++++++++++++....... .+++++++****************
638 *********++++++++++++++........... ...+++++++***************
639 ********++++++++++++............ ...++++++++**************
640 ********++++++++++... .......... .++++++++**************
641 *******+++++++++..... .+++++++++*************
642 *******++++++++...... ..+++++++++*************
643 *******++++++....... ..+++++++++*************
644 *******+++++...... ..+++++++++*************
645 *******.... .... ...+++++++++*************
646 *******.... . ...+++++++++*************
647 *******+++++...... ...+++++++++*************
648 *******++++++....... ..+++++++++*************
649 *******++++++++...... .+++++++++*************
650 *******+++++++++..... ..+++++++++*************
651 ********++++++++++... .......... .++++++++**************
652 ********++++++++++++............ ...++++++++**************
653 *********++++++++++++++.......... ...+++++++***************
654 **********++++++++++++++++........ .+++++++****************
655 **********++++++++++++++++++++.... ... ..+++++++****************
656 ***********++++++++++++++++++++++....... .......++++++++*****************
657 ************+++++++++++++++++++++++...... ......++++++++******************
658 **************+++++++++++++++++++++++.... ....++++++++********************
659 ***************+++++++++++++++++++++++..... ...+++++++++*********************
660 *****************++++++++++++++++++++++.... ...++++++++***********************
661 *******************+++++++++++++++++++++......++++++++*************************
662 *********************++++++++++++++++++++++.++++++++***************************
663 *************************+++++++++++++++++++++++*******************************
664 ******************************+++++++++++++************************************
665 *******************************************************************************
666 *******************************************************************************
667 *******************************************************************************
668 Evaluated to
0.000000
669 ready
> <b>mandel(-
2, -
1,
0.02,
0.04);
</b>
670 **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
671 ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
672 *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
673 *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
674 *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
675 ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
676 **************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
677 ************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
678 ***********++++++++++++++++++++++++++++++++++++++++++++++++++........ .
679 **********++++++++++++++++++++++++++++++++++++++++++++++.............
680 ********+++++++++++++++++++++++++++++++++++++++++++..................
681 *******+++++++++++++++++++++++++++++++++++++++.......................
682 ******+++++++++++++++++++++++++++++++++++...........................
683 *****++++++++++++++++++++++++++++++++............................
684 *****++++++++++++++++++++++++++++...............................
685 ****++++++++++++++++++++++++++...... .........................
686 ***++++++++++++++++++++++++......... ...... ...........
687 ***++++++++++++++++++++++............
688 **+++++++++++++++++++++..............
689 **+++++++++++++++++++................
690 *++++++++++++++++++.................
691 *++++++++++++++++............ ...
692 *++++++++++++++..............
693 *+++....++++................
694 *.......... ...........
696 *.......... ...........
697 *+++....++++................
698 *++++++++++++++..............
699 *++++++++++++++++............ ...
700 *++++++++++++++++++.................
701 **+++++++++++++++++++................
702 **+++++++++++++++++++++..............
703 ***++++++++++++++++++++++............
704 ***++++++++++++++++++++++++......... ...... ...........
705 ****++++++++++++++++++++++++++...... .........................
706 *****++++++++++++++++++++++++++++...............................
707 *****++++++++++++++++++++++++++++++++............................
708 ******+++++++++++++++++++++++++++++++++++...........................
709 *******+++++++++++++++++++++++++++++++++++++++.......................
710 ********+++++++++++++++++++++++++++++++++++++++++++..................
711 Evaluated to
0.000000
712 ready
> <b>mandel(-
0.9, -
1.4,
0.02,
0.03);
</b>
713 *******************************************************************************
714 *******************************************************************************
715 *******************************************************************************
716 **********+++++++++++++++++++++************************************************
717 *+++++++++++++++++++++++++++++++++++++++***************************************
718 +++++++++++++++++++++++++++++++++++++++++++++**********************************
719 ++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
720 ++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
721 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
722 +++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
723 +++++++++++++++++++++++++++++++.... ......+++++++++++++++++++****************
724 +++++++++++++++++++++++++++++....... ........+++++++++++++++++++**************
725 ++++++++++++++++++++++++++++........ ........++++++++++++++++++++************
726 +++++++++++++++++++++++++++......... .. ...+++++++++++++++++++++**********
727 ++++++++++++++++++++++++++........... ....++++++++++++++++++++++********
728 ++++++++++++++++++++++++............. .......++++++++++++++++++++++******
729 +++++++++++++++++++++++............. ........+++++++++++++++++++++++****
730 ++++++++++++++++++++++........... ..........++++++++++++++++++++++***
731 ++++++++++++++++++++........... .........++++++++++++++++++++++*
732 ++++++++++++++++++............ ...........++++++++++++++++++++
733 ++++++++++++++++............... .............++++++++++++++++++
734 ++++++++++++++................. ...............++++++++++++++++
735 ++++++++++++.................. .................++++++++++++++
736 +++++++++.................. .................+++++++++++++
737 ++++++........ . ......... ..++++++++++++
738 ++............ ...... ....++++++++++
739 .............. ...++++++++++
740 .............. ....+++++++++
741 .............. .....++++++++
742 ............. ......++++++++
743 ........... .......++++++++
744 ......... ........+++++++
745 ......... ........+++++++
746 ......... ....+++++++
754 Evaluated to
0.000000
759 <p>At this point, you may be starting to realize that Kaleidoscope is a real
760 and powerful language. It may not be self-similar :), but it can be used to
761 plot things that are!
</p>
763 <p>With this, we conclude the
"adding user-defined operators" chapter of the
764 tutorial. We have successfully augmented our language, adding the ability to
765 extend the language in the library, and we have shown how this can be used to
766 build a simple but interesting end-user application in Kaleidoscope. At this
767 point, Kaleidoscope can build a variety of applications that are functional and
768 can call functions with side-effects, but it can't actually define and mutate a
771 <p>Strikingly, variable mutation is an important feature of some
772 languages, and it is not at all obvious how to
<a href=
"OCamlLangImpl7.html">add
773 support for mutable variables
</a> without having to add an
"SSA construction"
774 phase to your front-end. In the next chapter, we will describe how you can
775 add variable mutation without building SSA in your front-end.
</p>
780 <!-- *********************************************************************** -->
781 <h2><a name=
"code">Full Code Listing
</a></h2>
782 <!-- *********************************************************************** -->
787 Here is the complete code listing for our running example, enhanced with the
788 if/then/else and for expressions.. To build this example, use:
791 <div class=
"doc_code">
800 <p>Here is the code:
</p>
804 <dd class=
"doc_code">
806 <{lexer,parser}.ml
>: use_camlp4, pp(camlp4of)
807 <*.{byte,native}
>: g++, use_llvm, use_llvm_analysis
808 <*.{byte,native}
>: use_llvm_executionengine, use_llvm_target
809 <*.{byte,native}
>: use_llvm_scalar_opts, use_bindings
813 <dt>myocamlbuild.ml:
</dt>
814 <dd class=
"doc_code">
816 open Ocamlbuild_plugin;;
818 ocaml_lib ~extern:true
"llvm";;
819 ocaml_lib ~extern:true
"llvm_analysis";;
820 ocaml_lib ~extern:true
"llvm_executionengine";;
821 ocaml_lib ~extern:true
"llvm_target";;
822 ocaml_lib ~extern:true
"llvm_scalar_opts";;
824 flag [
"link";
"ocaml";
"g++"] (S[A
"-cc"; A
"g++"; A
"-cclib"; A
"-rdynamic"]);;
825 dep [
"link";
"ocaml";
"use_bindings"] [
"bindings.o"];;
830 <dd class=
"doc_code">
832 (*===----------------------------------------------------------------------===
834 *===----------------------------------------------------------------------===*)
836 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
837 * these others for known things. *)
843 | Ident of string | Number of float
858 <dd class=
"doc_code">
860 (*===----------------------------------------------------------------------===
862 *===----------------------------------------------------------------------===*)
865 (* Skip any whitespace. *)
866 | [
< ' (' ' | '\n' | '\r' | '\t'); stream
>] -
> lex stream
868 (* identifier: [a-zA-Z][a-zA-Z0-
9] *)
869 | [
< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream
>] -
>
870 let buffer = Buffer.create
1 in
871 Buffer.add_char buffer c;
872 lex_ident buffer stream
874 (* number: [
0-
9.]+ *)
875 | [
< ' ('
0' .. '
9' as c); stream
>] -
>
876 let buffer = Buffer.create
1 in
877 Buffer.add_char buffer c;
878 lex_number buffer stream
880 (* Comment until end of line. *)
881 | [
< ' ('#'); stream
>] -
>
884 (* Otherwise, just return the character as its ascii value. *)
885 | [
< 'c; stream
>] -
>
886 [
< 'Token.Kwd c; lex stream
>]
889 | [
< >] -
> [
< >]
891 and lex_number buffer = parser
892 | [
< ' ('
0' .. '
9' | '.' as c); stream
>] -
>
893 Buffer.add_char buffer c;
894 lex_number buffer stream
895 | [
< stream=lex
>] -
>
896 [
< 'Token.Number (float_of_string (Buffer.contents buffer)); stream
>]
898 and lex_ident buffer = parser
899 | [
< ' ('A' .. 'Z' | 'a' .. 'z' | '
0' .. '
9' as c); stream
>] -
>
900 Buffer.add_char buffer c;
901 lex_ident buffer stream
902 | [
< stream=lex
>] -
>
903 match Buffer.contents buffer with
904 |
"def" -
> [
< 'Token.Def; stream
>]
905 |
"extern" -
> [
< 'Token.Extern; stream
>]
906 |
"if" -
> [
< 'Token.If; stream
>]
907 |
"then" -
> [
< 'Token.Then; stream
>]
908 |
"else" -
> [
< 'Token.Else; stream
>]
909 |
"for" -
> [
< 'Token.For; stream
>]
910 |
"in" -
> [
< 'Token.In; stream
>]
911 |
"binary" -
> [
< 'Token.Binary; stream
>]
912 |
"unary" -
> [
< 'Token.Unary; stream
>]
913 | id -
> [
< 'Token.Ident id; stream
>]
915 and lex_comment = parser
916 | [
< ' ('\n'); stream=lex
>] -
> stream
917 | [
< 'c; e=lex_comment
>] -
> e
918 | [
< >] -
> [
< >]
923 <dd class=
"doc_code">
925 (*===----------------------------------------------------------------------===
926 * Abstract Syntax Tree (aka Parse Tree)
927 *===----------------------------------------------------------------------===*)
929 (* expr - Base type for all expression nodes. *)
931 (* variant for numeric literals like
"1.0". *)
934 (* variant for referencing a variable, like
"a". *)
937 (* variant for a unary operator. *)
938 | Unary of char * expr
940 (* variant for a binary operator. *)
941 | Binary of char * expr * expr
943 (* variant for function calls. *)
944 | Call of string * expr array
946 (* variant for if/then/else. *)
947 | If of expr * expr * expr
949 (* variant for for/in. *)
950 | For of string * expr * expr * expr option * expr
952 (* proto - This type represents the
"prototype" for a function, which captures
953 * its name, and its argument names (thus implicitly the number of arguments the
954 * function takes). *)
956 | Prototype of string * string array
957 | BinOpPrototype of string * string array * int
959 (* func - This type represents a function definition itself. *)
960 type func = Function of proto * expr
965 <dd class=
"doc_code">
967 (*===---------------------------------------------------------------------===
969 *===---------------------------------------------------------------------===*)
971 (* binop_precedence - This holds the precedence for each binary operator that is
973 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create
10
975 (* precedence - Get the precedence of the pending binary operator token. *)
976 let precedence c = try Hashtbl.find binop_precedence c with Not_found -
> -
1
984 let rec parse_primary = parser
985 (* numberexpr ::= number *)
986 | [
< 'Token.Number n
>] -
> Ast.Number n
988 (* parenexpr ::= '(' expression ')' *)
989 | [
< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ??
"expected ')'" >] -
> e
993 * ::= identifier '(' argumentexpr ')' *)
994 | [
< 'Token.Ident id; stream
>] -
>
995 let rec parse_args accumulator = parser
996 | [
< e=parse_expr; stream
>] -
>
998 | [
< 'Token.Kwd ','; e=parse_args (e :: accumulator)
>] -
> e
999 | [
< >] -
> e :: accumulator
1001 | [
< >] -
> accumulator
1003 let rec parse_ident id = parser
1005 | [
< 'Token.Kwd '(';
1007 'Token.Kwd ')' ??
"expected ')'">] -
>
1008 Ast.Call (id, Array.of_list (List.rev args))
1010 (* Simple variable ref. *)
1011 | [
< >] -
> Ast.Variable id
1013 parse_ident id stream
1015 (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
1016 | [
< 'Token.If; c=parse_expr;
1017 'Token.Then ??
"expected 'then'"; t=parse_expr;
1018 'Token.Else ??
"expected 'else'"; e=parse_expr
>] -
>
1022 ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
1024 'Token.Ident id ??
"expected identifier after for";
1025 'Token.Kwd '=' ??
"expected '=' after for";
1030 'Token.Kwd ',' ??
"expected ',' after for";
1035 | [
< 'Token.Kwd ','; step=parse_expr
>] -
> Some step
1036 | [
< >] -
> None
1040 | [
< 'Token.In; body=parse_expr
>] -
>
1041 Ast.For (id, start, end_, step, body)
1043 raise (Stream.Error
"expected 'in' after for")
1046 raise (Stream.Error
"expected '=' after for")
1049 | [
< >] -
> raise (Stream.Error
"unknown token when expecting an expression.")
1054 and parse_unary = parser
1055 (* If this is a unary operator, read it. *)
1056 | [
< 'Token.Kwd op when op != '('
&& op != ')'; operand=parse_expr
>] -
>
1057 Ast.Unary (op, operand)
1059 (* If the current token is not an operator, it must be a primary expr. *)
1060 | [
< stream
>] -
> parse_primary stream
1063 * ::= ('+' primary)* *)
1064 and parse_bin_rhs expr_prec lhs stream =
1065 match Stream.peek stream with
1066 (* If this is a binop, find its precedence. *)
1067 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -
>
1068 let token_prec = precedence c in
1070 (* If this is a binop that binds at least as tightly as the current binop,
1071 * consume it, otherwise we are done. *)
1072 if token_prec
< expr_prec then lhs else begin
1073 (* Eat the binop. *)
1076 (* Parse the unary expression after the binary operator. *)
1077 let rhs = parse_unary stream in
1079 (* Okay, we know this is a binop. *)
1081 match Stream.peek stream with
1082 | Some (Token.Kwd c2) -
>
1083 (* If BinOp binds less tightly with rhs than the operator after
1084 * rhs, let the pending operator take rhs as its lhs. *)
1085 let next_prec = precedence c2 in
1086 if token_prec
< next_prec
1087 then parse_bin_rhs (token_prec +
1) rhs stream
1092 (* Merge lhs/rhs. *)
1093 let lhs = Ast.Binary (c, lhs, rhs) in
1094 parse_bin_rhs expr_prec lhs stream
1099 * ::= primary binoprhs *)
1100 and parse_expr = parser
1101 | [
< lhs=parse_unary; stream
>] -
> parse_bin_rhs
0 lhs stream
1104 * ::= id '(' id* ')'
1105 * ::= binary LETTER number? (id, id)
1106 * ::= unary LETTER number? (id) *)
1107 let parse_prototype =
1108 let rec parse_args accumulator = parser
1109 | [
< 'Token.Ident id; e=parse_args (id::accumulator)
>] -
> e
1110 | [
< >] -
> accumulator
1112 let parse_operator = parser
1113 | [
< 'Token.Unary
>] -
> "unary",
1
1114 | [
< 'Token.Binary
>] -
> "binary",
2
1116 let parse_binary_precedence = parser
1117 | [
< 'Token.Number n
>] -
> int_of_float n
1118 | [
< >] -
> 30
1121 | [
< 'Token.Ident id;
1122 'Token.Kwd '(' ??
"expected '(' in prototype";
1124 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
1126 Ast.Prototype (id, Array.of_list (List.rev args))
1127 | [
< (prefix, kind)=parse_operator;
1128 'Token.Kwd op ??
"expected an operator";
1129 (* Read the precedence if present. *)
1130 binary_precedence=parse_binary_precedence;
1131 'Token.Kwd '(' ??
"expected '(' in prototype";
1133 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
1134 let name = prefix ^ (String.make
1 op) in
1135 let args = Array.of_list (List.rev args) in
1137 (* Verify right number of arguments for operator. *)
1138 if Array.length args != kind
1139 then raise (Stream.Error
"invalid number of operands for operator")
1142 Ast.Prototype (name, args)
1144 Ast.BinOpPrototype (name, args, binary_precedence)
1146 raise (Stream.Error
"expected function name in prototype")
1148 (* definition ::= 'def' prototype expression *)
1149 let parse_definition = parser
1150 | [
< 'Token.Def; p=parse_prototype; e=parse_expr
>] -
>
1153 (* toplevelexpr ::= expression *)
1154 let parse_toplevel = parser
1155 | [
< e=parse_expr
>] -
>
1156 (* Make an anonymous proto. *)
1157 Ast.Function (Ast.Prototype (
"", [||]), e)
1159 (* external ::= 'extern' prototype *)
1160 let parse_extern = parser
1161 | [
< 'Token.Extern; e=parse_prototype
>] -
> e
1165 <dt>codegen.ml:
</dt>
1166 <dd class=
"doc_code">
1168 (*===----------------------------------------------------------------------===
1170 *===----------------------------------------------------------------------===*)
1174 exception Error of string
1176 let context = global_context ()
1177 let the_module = create_module context
"my cool jit"
1178 let builder = builder context
1179 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create
10
1180 let double_type = double_type context
1182 let rec codegen_expr = function
1183 | Ast.Number n -
> const_float double_type n
1184 | Ast.Variable name -
>
1185 (try Hashtbl.find named_values name with
1186 | Not_found -
> raise (Error
"unknown variable name"))
1187 | Ast.Unary (op, operand) -
>
1188 let operand = codegen_expr operand in
1189 let callee =
"unary" ^ (String.make
1 op) in
1191 match lookup_function callee the_module with
1192 | Some callee -
> callee
1193 | None -
> raise (Error
"unknown unary operator")
1195 build_call callee [|operand|]
"unop" builder
1196 | Ast.Binary (op, lhs, rhs) -
>
1197 let lhs_val = codegen_expr lhs in
1198 let rhs_val = codegen_expr rhs in
1201 | '+' -
> build_add lhs_val rhs_val
"addtmp" builder
1202 | '-' -
> build_sub lhs_val rhs_val
"subtmp" builder
1203 | '*' -
> build_mul lhs_val rhs_val
"multmp" builder
1205 (* Convert bool
0/
1 to double
0.0 or
1.0 *)
1206 let i = build_fcmp Fcmp.Ult lhs_val rhs_val
"cmptmp" builder in
1207 build_uitofp i double_type
"booltmp" builder
1209 (* If it wasn't a builtin binary operator, it must be a user defined
1210 * one. Emit a call to it. *)
1211 let callee =
"binary" ^ (String.make
1 op) in
1213 match lookup_function callee the_module with
1214 | Some callee -
> callee
1215 | None -
> raise (Error
"binary operator not found!")
1217 build_call callee [|lhs_val; rhs_val|]
"binop" builder
1219 | Ast.Call (callee, args) -
>
1220 (* Look up the name in the module table. *)
1222 match lookup_function callee the_module with
1223 | Some callee -
> callee
1224 | None -
> raise (Error
"unknown function referenced")
1226 let params = params callee in
1228 (* If argument mismatch error. *)
1229 if Array.length params == Array.length args then () else
1230 raise (Error
"incorrect # arguments passed");
1231 let args = Array.map codegen_expr args in
1232 build_call callee args
"calltmp" builder
1233 | Ast.If (cond, then_, else_) -
>
1234 let cond = codegen_expr cond in
1236 (* Convert condition to a bool by comparing equal to
0.0 *)
1237 let zero = const_float double_type
0.0 in
1238 let cond_val = build_fcmp Fcmp.One cond zero
"ifcond" builder in
1240 (* Grab the first block so that we might later add the conditional branch
1241 * to it at the end of the function. *)
1242 let start_bb = insertion_block builder in
1243 let the_function = block_parent start_bb in
1245 let then_bb = append_block context
"then" the_function in
1247 (* Emit 'then' value. *)
1248 position_at_end then_bb builder;
1249 let then_val = codegen_expr then_ in
1251 (* Codegen of 'then' can change the current block, update then_bb for the
1252 * phi. We create a new name because one is used for the phi node, and the
1253 * other is used for the conditional branch. *)
1254 let new_then_bb = insertion_block builder in
1256 (* Emit 'else' value. *)
1257 let else_bb = append_block context
"else" the_function in
1258 position_at_end else_bb builder;
1259 let else_val = codegen_expr else_ in
1261 (* Codegen of 'else' can change the current block, update else_bb for the
1263 let new_else_bb = insertion_block builder in
1265 (* Emit merge block. *)
1266 let merge_bb = append_block context
"ifcont" the_function in
1267 position_at_end merge_bb builder;
1268 let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
1269 let phi = build_phi incoming
"iftmp" builder in
1271 (* Return to the start block to add the conditional branch. *)
1272 position_at_end start_bb builder;
1273 ignore (build_cond_br cond_val then_bb else_bb builder);
1275 (* Set a unconditional branch at the end of the 'then' block and the
1276 * 'else' block to the 'merge' block. *)
1277 position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
1278 position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
1280 (* Finally, set the builder to the end of the merge block. *)
1281 position_at_end merge_bb builder;
1284 | Ast.For (var_name, start, end_, step, body) -
>
1285 (* Emit the start code first, without 'variable' in scope. *)
1286 let start_val = codegen_expr start in
1288 (* Make the new basic block for the loop header, inserting after current
1290 let preheader_bb = insertion_block builder in
1291 let the_function = block_parent preheader_bb in
1292 let loop_bb = append_block context
"loop" the_function in
1294 (* Insert an explicit fall through from the current block to the
1296 ignore (build_br loop_bb builder);
1298 (* Start insertion in loop_bb. *)
1299 position_at_end loop_bb builder;
1301 (* Start the PHI node with an entry for start. *)
1302 let variable = build_phi [(start_val, preheader_bb)] var_name builder in
1304 (* Within the loop, the variable is defined equal to the PHI node. If it
1305 * shadows an existing variable, we have to restore it, so save it
1308 try Some (Hashtbl.find named_values var_name) with Not_found -
> None
1310 Hashtbl.add named_values var_name variable;
1312 (* Emit the body of the loop. This, like any other expr, can change the
1313 * current BB. Note that we ignore the value computed by the body, but
1314 * don't allow an error *)
1315 ignore (codegen_expr body);
1317 (* Emit the step value. *)
1320 | Some step -
> codegen_expr step
1321 (* If not specified, use
1.0. *)
1322 | None -
> const_float double_type
1.0
1325 let next_var = build_add variable step_val
"nextvar" builder in
1327 (* Compute the end condition. *)
1328 let end_cond = codegen_expr end_ in
1330 (* Convert condition to a bool by comparing equal to
0.0. *)
1331 let zero = const_float double_type
0.0 in
1332 let end_cond = build_fcmp Fcmp.One end_cond zero
"loopcond" builder in
1334 (* Create the
"after loop" block and insert it. *)
1335 let loop_end_bb = insertion_block builder in
1336 let after_bb = append_block context
"afterloop" the_function in
1338 (* Insert the conditional branch into the end of loop_end_bb. *)
1339 ignore (build_cond_br end_cond loop_bb after_bb builder);
1341 (* Any new code will be inserted in after_bb. *)
1342 position_at_end after_bb builder;
1344 (* Add a new entry to the PHI node for the backedge. *)
1345 add_incoming (next_var, loop_end_bb) variable;
1347 (* Restore the unshadowed variable. *)
1348 begin match old_val with
1349 | Some old_val -
> Hashtbl.add named_values var_name old_val
1353 (* for expr always returns
0.0. *)
1354 const_null double_type
1356 let codegen_proto = function
1357 | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -
>
1358 (* Make the function type: double(double,double) etc. *)
1359 let doubles = Array.make (Array.length args) double_type in
1360 let ft = function_type double_type doubles in
1362 match lookup_function name the_module with
1363 | None -
> declare_function name ft the_module
1365 (* If 'f' conflicted, there was already something named 'name'. If it
1366 * has a body, don't allow redefinition or reextern. *)
1368 (* If 'f' already has a body, reject this. *)
1369 if block_begin f
<> At_end f then
1370 raise (Error
"redefinition of function");
1372 (* If 'f' took a different number of arguments, reject. *)
1373 if element_type (type_of f)
<> ft then
1374 raise (Error
"redefinition of function with different # args");
1378 (* Set names for all arguments. *)
1379 Array.iteri (fun i a -
>
1382 Hashtbl.add named_values n a;
1386 let codegen_func the_fpm = function
1387 | Ast.Function (proto, body) -
>
1388 Hashtbl.clear named_values;
1389 let the_function = codegen_proto proto in
1391 (* If this is an operator, install it. *)
1392 begin match proto with
1393 | Ast.BinOpPrototype (name, args, prec) -
>
1394 let op = name.[String.length name -
1] in
1395 Hashtbl.add Parser.binop_precedence op prec;
1399 (* Create a new basic block to start insertion into. *)
1400 let bb = append_block context
"entry" the_function in
1401 position_at_end bb builder;
1404 let ret_val = codegen_expr body in
1406 (* Finish off the function. *)
1407 let _ = build_ret ret_val builder in
1409 (* Validate the generated code, checking for consistency. *)
1410 Llvm_analysis.assert_valid_function the_function;
1412 (* Optimize the function. *)
1413 let _ = PassManager.run_function the_function the_fpm in
1417 delete_function the_function;
1422 <dt>toplevel.ml:
</dt>
1423 <dd class=
"doc_code">
1425 (*===----------------------------------------------------------------------===
1426 * Top-Level parsing and JIT Driver
1427 *===----------------------------------------------------------------------===*)
1430 open Llvm_executionengine
1432 (* top ::= definition | external | expression | ';' *)
1433 let rec main_loop the_fpm the_execution_engine stream =
1434 match Stream.peek stream with
1437 (* ignore top-level semicolons. *)
1438 | Some (Token.Kwd ';') -
>
1440 main_loop the_fpm the_execution_engine stream
1444 try match token with
1446 let e = Parser.parse_definition stream in
1447 print_endline
"parsed a function definition.";
1448 dump_value (Codegen.codegen_func the_fpm e);
1449 | Token.Extern -
>
1450 let e = Parser.parse_extern stream in
1451 print_endline
"parsed an extern.";
1452 dump_value (Codegen.codegen_proto e);
1454 (* Evaluate a top-level expression into an anonymous function. *)
1455 let e = Parser.parse_toplevel stream in
1456 print_endline
"parsed a top-level expr";
1457 let the_function = Codegen.codegen_func the_fpm e in
1458 dump_value the_function;
1460 (* JIT the function, returning a function pointer. *)
1461 let result = ExecutionEngine.run_function the_function [||]
1462 the_execution_engine in
1464 print_string
"Evaluated to ";
1465 print_float (GenericValue.as_float Codegen.double_type result);
1467 with Stream.Error s | Codegen.Error s -
>
1468 (* Skip token for error recovery. *)
1472 print_string
"ready> "; flush stdout;
1473 main_loop the_fpm the_execution_engine stream
1478 <dd class=
"doc_code">
1480 (*===----------------------------------------------------------------------===
1482 *===----------------------------------------------------------------------===*)
1485 open Llvm_executionengine
1487 open Llvm_scalar_opts
1490 ignore (initialize_native_target ());
1492 (* Install standard binary operators.
1493 *
1 is the lowest precedence. *)
1494 Hashtbl.add Parser.binop_precedence '
<'
10;
1495 Hashtbl.add Parser.binop_precedence '+'
20;
1496 Hashtbl.add Parser.binop_precedence '-'
20;
1497 Hashtbl.add Parser.binop_precedence '*'
40; (* highest. *)
1499 (* Prime the first token. *)
1500 print_string
"ready> "; flush stdout;
1501 let stream = Lexer.lex (Stream.of_channel stdin) in
1503 (* Create the JIT. *)
1504 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
1505 let the_fpm = PassManager.create_function Codegen.the_module in
1507 (* Set up the optimizer pipeline. Start with registering info about how the
1508 * target lays out data structures. *)
1509 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
1511 (* Do simple
"peephole" optimizations and bit-twiddling optzn. *)
1512 add_instruction_combination the_fpm;
1514 (* reassociate expressions. *)
1515 add_reassociation the_fpm;
1517 (* Eliminate Common SubExpressions. *)
1520 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
1521 add_cfg_simplification the_fpm;
1523 ignore (PassManager.initialize the_fpm);
1525 (* Run the main
"interpreter loop" now. *)
1526 Toplevel.main_loop the_fpm the_execution_engine stream;
1528 (* Print out all the generated code. *)
1529 dump_module Codegen.the_module
1537 <dd class=
"doc_code">
1539 #include
<stdio.h
>
1541 /* putchard - putchar that takes a double and returns
0. */
1542 extern double putchard(double X) {
1547 /* printd - printf that takes a double prints it as
"%f\n", returning
0. */
1548 extern double printd(double X) {
1556 <a href=
"OCamlLangImpl7.html">Next: Extending the language: mutable variables /
1557 SSA construction
</a>
1560 <!-- *********************************************************************** -->
1563 <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
1564 src=
"http://jigsaw.w3.org/css-validator/images/vcss" alt=
"Valid CSS!"></a>
1565 <a href=
"http://validator.w3.org/check/referer"><img
1566 src=
"http://www.w3.org/Icons/valid-html401" alt=
"Valid HTML 4.01!"></a>
1568 <a href=
"mailto:sabre@nondot.org">Chris Lattner
</a><br>
1569 <a href=
"mailto:idadesub@users.sourceforge.net">Erick Tryzelaar
</a><br>
1570 <a href=
"http://llvm.org/">The LLVM Compiler Infrastructure
</a><br>
1571 Last modified: $Date$