1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the DAG Matcher optimizer.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel-opt"
15 #include "DAGISelMatcher.h"
16 #include "CodeGenDAGPatterns.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/StringSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
23 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
24 /// into single compound nodes like RecordChild.
25 static void ContractNodes(OwningPtr
<Matcher
> &MatcherPtr
,
26 const CodeGenDAGPatterns
&CGP
) {
27 // If we reached the end of the chain, we're done.
28 Matcher
*N
= MatcherPtr
.get();
31 // If we have a scope node, walk down all of the children.
32 if (ScopeMatcher
*Scope
= dyn_cast
<ScopeMatcher
>(N
)) {
33 for (unsigned i
= 0, e
= Scope
->getNumChildren(); i
!= e
; ++i
) {
34 OwningPtr
<Matcher
> Child(Scope
->takeChild(i
));
35 ContractNodes(Child
, CGP
);
36 Scope
->resetChild(i
, Child
.take());
41 // If we found a movechild node with a node that comes in a 'foochild' form,
43 if (MoveChildMatcher
*MC
= dyn_cast
<MoveChildMatcher
>(N
)) {
45 if (RecordMatcher
*RM
= dyn_cast
<RecordMatcher
>(MC
->getNext()))
46 if (MC
->getChildNo() < 8) // Only have RecordChild0...7
47 New
= new RecordChildMatcher(MC
->getChildNo(), RM
->getWhatFor(),
50 if (CheckTypeMatcher
*CT
= dyn_cast
<CheckTypeMatcher
>(MC
->getNext()))
51 if (MC
->getChildNo() < 8 && // Only have CheckChildType0...7
52 CT
->getResNo() == 0) // CheckChildType checks res #0
53 New
= new CheckChildTypeMatcher(MC
->getChildNo(), CT
->getType());
56 // Insert the new node.
57 New
->setNext(MatcherPtr
.take());
58 MatcherPtr
.reset(New
);
59 // Remove the old one.
60 MC
->setNext(MC
->getNext()->takeNext());
61 return ContractNodes(MatcherPtr
, CGP
);
65 // Zap movechild -> moveparent.
66 if (MoveChildMatcher
*MC
= dyn_cast
<MoveChildMatcher
>(N
))
67 if (MoveParentMatcher
*MP
=
68 dyn_cast
<MoveParentMatcher
>(MC
->getNext())) {
69 MatcherPtr
.reset(MP
->takeNext());
70 return ContractNodes(MatcherPtr
, CGP
);
73 // Turn EmitNode->MarkFlagResults->CompleteMatch into
74 // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
75 // MorphNodeTo formation. This is safe because MarkFlagResults never refers
76 // to the root of the pattern.
77 if (isa
<EmitNodeMatcher
>(N
) && isa
<MarkGlueResultsMatcher
>(N
->getNext()) &&
78 isa
<CompleteMatchMatcher
>(N
->getNext()->getNext())) {
79 // Unlink the two nodes from the list.
80 Matcher
*EmitNode
= MatcherPtr
.take();
81 Matcher
*MFR
= EmitNode
->takeNext();
82 Matcher
*Tail
= MFR
->takeNext();
85 MatcherPtr
.reset(MFR
);
86 MFR
->setNext(EmitNode
);
87 EmitNode
->setNext(Tail
);
88 return ContractNodes(MatcherPtr
, CGP
);
91 // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
92 if (EmitNodeMatcher
*EN
= dyn_cast
<EmitNodeMatcher
>(N
))
93 if (CompleteMatchMatcher
*CM
=
94 dyn_cast
<CompleteMatchMatcher
>(EN
->getNext())) {
95 // We can only use MorphNodeTo if the result values match up.
96 unsigned RootResultFirst
= EN
->getFirstResultSlot();
97 bool ResultsMatch
= true;
98 for (unsigned i
= 0, e
= CM
->getNumResults(); i
!= e
; ++i
)
99 if (CM
->getResult(i
) != RootResultFirst
+i
)
100 ResultsMatch
= false;
102 // If the selected node defines a subset of the glue/chain results, we
103 // can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
104 // matched pattern has a chain but the root node doesn't.
105 const PatternToMatch
&Pattern
= CM
->getPattern();
107 if (!EN
->hasChain() &&
108 Pattern
.getSrcPattern()->NodeHasProperty(SDNPHasChain
, CGP
))
109 ResultsMatch
= false;
111 // If the matched node has glue and the output root doesn't, we can't
114 // NOTE: Strictly speaking, we don't have to check for glue here
115 // because the code in the pattern generator doesn't handle it right. We
116 // do it anyway for thoroughness.
117 if (!EN
->hasOutFlag() &&
118 Pattern
.getSrcPattern()->NodeHasProperty(SDNPOutGlue
, CGP
))
119 ResultsMatch
= false;
122 // If the root result node defines more results than the source root node
123 // *and* has a chain or glue input, then we can't match it because it
124 // would end up replacing the extra result with the chain/glue.
126 if ((EN
->hasGlue() || EN
->hasChain()) &&
127 EN
->getNumNonChainGlueVTs() > ... need to get no results reliably
...)
132 const SmallVectorImpl
<MVT::SimpleValueType
> &VTs
= EN
->getVTList();
133 const SmallVectorImpl
<unsigned> &Operands
= EN
->getOperandList();
134 MatcherPtr
.reset(new MorphNodeToMatcher(EN
->getOpcodeName(),
135 VTs
.data(), VTs
.size(),
136 Operands
.data(),Operands
.size(),
137 EN
->hasChain(), EN
->hasInFlag(),
140 EN
->getNumFixedArityOperands(),
145 // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
149 ContractNodes(N
->getNextPtr(), CGP
);
152 // If we have a CheckType/CheckChildType/Record node followed by a
153 // CheckOpcode, invert the two nodes. We prefer to do structural checks
154 // before type checks, as this opens opportunities for factoring on targets
155 // like X86 where many operations are valid on multiple types.
156 if ((isa
<CheckTypeMatcher
>(N
) || isa
<CheckChildTypeMatcher
>(N
) ||
157 isa
<RecordMatcher
>(N
)) &&
158 isa
<CheckOpcodeMatcher
>(N
->getNext())) {
159 // Unlink the two nodes from the list.
160 Matcher
*CheckType
= MatcherPtr
.take();
161 Matcher
*CheckOpcode
= CheckType
->takeNext();
162 Matcher
*Tail
= CheckOpcode
->takeNext();
165 MatcherPtr
.reset(CheckOpcode
);
166 CheckOpcode
->setNext(CheckType
);
167 CheckType
->setNext(Tail
);
168 return ContractNodes(MatcherPtr
, CGP
);
172 /// SinkPatternPredicates - Pattern predicates can be checked at any level of
173 /// the matching tree. The generator dumps them at the top level of the pattern
174 /// though, which prevents factoring from being able to see past them. This
175 /// optimization sinks them as far down into the pattern as possible.
177 /// Conceptually, we'd like to sink these predicates all the way to the last
178 /// matcher predicate in the series. However, it turns out that some
179 /// ComplexPatterns have side effects on the graph, so we really don't want to
180 /// run a the complex pattern if the pattern predicate will fail. For this
181 /// reason, we refuse to sink the pattern predicate past a ComplexPattern.
183 static void SinkPatternPredicates(OwningPtr
<Matcher
> &MatcherPtr
) {
184 // Recursively scan for a PatternPredicate.
185 // If we reached the end of the chain, we're done.
186 Matcher
*N
= MatcherPtr
.get();
189 // Walk down all members of a scope node.
190 if (ScopeMatcher
*Scope
= dyn_cast
<ScopeMatcher
>(N
)) {
191 for (unsigned i
= 0, e
= Scope
->getNumChildren(); i
!= e
; ++i
) {
192 OwningPtr
<Matcher
> Child(Scope
->takeChild(i
));
193 SinkPatternPredicates(Child
);
194 Scope
->resetChild(i
, Child
.take());
199 // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
201 CheckPatternPredicateMatcher
*CPPM
=dyn_cast
<CheckPatternPredicateMatcher
>(N
);
203 return SinkPatternPredicates(N
->getNextPtr());
205 // Ok, we found one, lets try to sink it. Check if we can sink it past the
206 // next node in the chain. If not, we won't be able to change anything and
207 // might as well bail.
208 if (!CPPM
->getNext()->isSafeToReorderWithPatternPredicate())
211 // Okay, we know we can sink it past at least one node. Unlink it from the
212 // chain and scan for the new insertion point.
213 MatcherPtr
.take(); // Don't delete CPPM.
214 MatcherPtr
.reset(CPPM
->takeNext());
216 N
= MatcherPtr
.get();
217 while (N
->getNext()->isSafeToReorderWithPatternPredicate())
220 // At this point, we want to insert CPPM after N.
221 CPPM
->setNext(N
->takeNext());
225 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
226 /// specified kind. Return null if we didn't find one otherwise return the
228 static Matcher
*FindNodeWithKind(Matcher
*M
, Matcher::KindTy Kind
) {
229 for (; M
; M
= M
->getNext())
230 if (M
->getKind() == Kind
)
236 /// FactorNodes - Turn matches like this:
238 /// OPC_CheckType i32
240 /// OPC_CheckType i32
243 /// OPC_CheckType i32
248 static void FactorNodes(OwningPtr
<Matcher
> &MatcherPtr
) {
249 // If we reached the end of the chain, we're done.
250 Matcher
*N
= MatcherPtr
.get();
253 // If this is not a push node, just scan for one.
254 ScopeMatcher
*Scope
= dyn_cast
<ScopeMatcher
>(N
);
256 return FactorNodes(N
->getNextPtr());
258 // Okay, pull together the children of the scope node into a vector so we can
259 // inspect it more easily. While we're at it, bucket them up by the hash
260 // code of their first predicate.
261 SmallVector
<Matcher
*, 32> OptionsToMatch
;
263 for (unsigned i
= 0, e
= Scope
->getNumChildren(); i
!= e
; ++i
) {
264 // Factor the subexpression.
265 OwningPtr
<Matcher
> Child(Scope
->takeChild(i
));
268 if (Matcher
*N
= Child
.take())
269 OptionsToMatch
.push_back(N
);
272 SmallVector
<Matcher
*, 32> NewOptionsToMatch
;
274 // Loop over options to match, merging neighboring patterns with identical
275 // starting nodes into a shared matcher.
276 for (unsigned OptionIdx
= 0, e
= OptionsToMatch
.size(); OptionIdx
!= e
;) {
277 // Find the set of matchers that start with this node.
278 Matcher
*Optn
= OptionsToMatch
[OptionIdx
++];
280 if (OptionIdx
== e
) {
281 NewOptionsToMatch
.push_back(Optn
);
285 // See if the next option starts with the same matcher. If the two
286 // neighbors *do* start with the same matcher, we can factor the matcher out
287 // of at least these two patterns. See what the maximal set we can merge
289 SmallVector
<Matcher
*, 8> EqualMatchers
;
290 EqualMatchers
.push_back(Optn
);
292 // Factor all of the known-equal matchers after this one into the same
294 while (OptionIdx
!= e
&& OptionsToMatch
[OptionIdx
]->isEqual(Optn
))
295 EqualMatchers
.push_back(OptionsToMatch
[OptionIdx
++]);
297 // If we found a non-equal matcher, see if it is contradictory with the
298 // current node. If so, we know that the ordering relation between the
299 // current sets of nodes and this node don't matter. Look past it to see if
300 // we can merge anything else into this matching group.
301 unsigned Scan
= OptionIdx
;
303 // If we ran out of stuff to scan, we're done.
304 if (Scan
== e
) break;
306 Matcher
*ScanMatcher
= OptionsToMatch
[Scan
];
308 // If we found an entry that matches out matcher, merge it into the set to
310 if (Optn
->isEqual(ScanMatcher
)) {
311 // If is equal after all, add the option to EqualMatchers and remove it
312 // from OptionsToMatch.
313 EqualMatchers
.push_back(ScanMatcher
);
314 OptionsToMatch
.erase(OptionsToMatch
.begin()+Scan
);
319 // If the option we're checking for contradicts the start of the list,
321 if (Optn
->isContradictory(ScanMatcher
)) {
326 // If we're scanning for a simple node, see if it occurs later in the
327 // sequence. If so, and if we can move it up, it might be contradictory
328 // or the same as what we're looking for. If so, reorder it.
329 if (Optn
->isSimplePredicateOrRecordNode()) {
330 Matcher
*M2
= FindNodeWithKind(ScanMatcher
, Optn
->getKind());
331 if (M2
!= 0 && M2
!= ScanMatcher
&&
332 M2
->canMoveBefore(ScanMatcher
) &&
333 (M2
->isEqual(Optn
) || M2
->isContradictory(Optn
))) {
334 Matcher
*MatcherWithoutM2
= ScanMatcher
->unlinkNode(M2
);
335 M2
->setNext(MatcherWithoutM2
);
336 OptionsToMatch
[Scan
] = M2
;
341 // Otherwise, we don't know how to handle this entry, we have to bail.
346 // Don't print it's obvious nothing extra could be merged anyway.
348 DEBUG(errs() << "Couldn't merge this:\n";
349 Optn
->print(errs(), 4);
350 errs() << "into this:\n";
351 OptionsToMatch
[Scan
]->print(errs(), 4);
353 OptionsToMatch
[Scan
+1]->printOne(errs());
355 OptionsToMatch
[Scan
+2]->printOne(errs());
359 // If we only found one option starting with this matcher, no factoring is
361 if (EqualMatchers
.size() == 1) {
362 NewOptionsToMatch
.push_back(EqualMatchers
[0]);
366 // Factor these checks by pulling the first node off each entry and
367 // discarding it. Take the first one off the first entry to reuse.
368 Matcher
*Shared
= Optn
;
369 Optn
= Optn
->takeNext();
370 EqualMatchers
[0] = Optn
;
372 // Remove and delete the first node from the other matchers we're factoring.
373 for (unsigned i
= 1, e
= EqualMatchers
.size(); i
!= e
; ++i
) {
374 Matcher
*Tmp
= EqualMatchers
[i
]->takeNext();
375 delete EqualMatchers
[i
];
376 EqualMatchers
[i
] = Tmp
;
379 Shared
->setNext(new ScopeMatcher(&EqualMatchers
[0], EqualMatchers
.size()));
381 // Recursively factor the newly created node.
382 FactorNodes(Shared
->getNextPtr());
384 NewOptionsToMatch
.push_back(Shared
);
387 // If we're down to a single pattern to match, then we don't need this scope
389 if (NewOptionsToMatch
.size() == 1) {
390 MatcherPtr
.reset(NewOptionsToMatch
[0]);
394 if (NewOptionsToMatch
.empty()) {
399 // If our factoring failed (didn't achieve anything) see if we can simplify in
402 // Check to see if all of the leading entries are now opcode checks. If so,
403 // we can convert this Scope to be a OpcodeSwitch instead.
404 bool AllOpcodeChecks
= true, AllTypeChecks
= true;
405 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
) {
406 // Check to see if this breaks a series of CheckOpcodeMatchers.
407 if (AllOpcodeChecks
&&
408 !isa
<CheckOpcodeMatcher
>(NewOptionsToMatch
[i
])) {
411 errs() << "FAILING OPC #" << i
<< "\n";
412 NewOptionsToMatch
[i
]->dump();
415 AllOpcodeChecks
= false;
418 // Check to see if this breaks a series of CheckTypeMatcher's.
420 CheckTypeMatcher
*CTM
=
421 cast_or_null
<CheckTypeMatcher
>(FindNodeWithKind(NewOptionsToMatch
[i
],
422 Matcher::CheckType
));
424 // iPTR checks could alias any other case without us knowing, don't
426 CTM
->getType() == MVT::iPTR
||
427 // SwitchType only works for result #0.
428 CTM
->getResNo() != 0 ||
429 // If the CheckType isn't at the start of the list, see if we can move
431 !CTM
->canMoveBefore(NewOptionsToMatch
[i
])) {
433 if (i
> 3 && AllTypeChecks
) {
434 errs() << "FAILING TYPE #" << i
<< "\n";
435 NewOptionsToMatch
[i
]->dump();
438 AllTypeChecks
= false;
443 // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
444 if (AllOpcodeChecks
) {
446 SmallVector
<std::pair
<const SDNodeInfo
*, Matcher
*>, 8> Cases
;
447 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
) {
448 CheckOpcodeMatcher
*COM
= cast
<CheckOpcodeMatcher
>(NewOptionsToMatch
[i
]);
449 assert(Opcodes
.insert(COM
->getOpcode().getEnumName()) &&
450 "Duplicate opcodes not factored?");
451 Cases
.push_back(std::make_pair(&COM
->getOpcode(), COM
->getNext()));
454 MatcherPtr
.reset(new SwitchOpcodeMatcher(&Cases
[0], Cases
.size()));
458 // If all the options are CheckType's, we can form the SwitchType, woot.
460 DenseMap
<unsigned, unsigned> TypeEntry
;
461 SmallVector
<std::pair
<MVT::SimpleValueType
, Matcher
*>, 8> Cases
;
462 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
) {
463 CheckTypeMatcher
*CTM
=
464 cast_or_null
<CheckTypeMatcher
>(FindNodeWithKind(NewOptionsToMatch
[i
],
465 Matcher::CheckType
));
466 Matcher
*MatcherWithoutCTM
= NewOptionsToMatch
[i
]->unlinkNode(CTM
);
467 MVT::SimpleValueType CTMTy
= CTM
->getType();
470 unsigned &Entry
= TypeEntry
[CTMTy
];
472 // If we have unfactored duplicate types, then we should factor them.
473 Matcher
*PrevMatcher
= Cases
[Entry
-1].second
;
474 if (ScopeMatcher
*SM
= dyn_cast
<ScopeMatcher
>(PrevMatcher
)) {
475 SM
->setNumChildren(SM
->getNumChildren()+1);
476 SM
->resetChild(SM
->getNumChildren()-1, MatcherWithoutCTM
);
480 Matcher
*Entries
[2] = { PrevMatcher
, MatcherWithoutCTM
};
481 Cases
[Entry
-1].second
= new ScopeMatcher(Entries
, 2);
485 Entry
= Cases
.size()+1;
486 Cases
.push_back(std::make_pair(CTMTy
, MatcherWithoutCTM
));
489 if (Cases
.size() != 1) {
490 MatcherPtr
.reset(new SwitchTypeMatcher(&Cases
[0], Cases
.size()));
492 // If we factored and ended up with one case, create it now.
493 MatcherPtr
.reset(new CheckTypeMatcher(Cases
[0].first
, 0));
494 MatcherPtr
->setNext(Cases
[0].second
);
500 // Reassemble the Scope node with the adjusted children.
501 Scope
->setNumChildren(NewOptionsToMatch
.size());
502 for (unsigned i
= 0, e
= NewOptionsToMatch
.size(); i
!= e
; ++i
)
503 Scope
->resetChild(i
, NewOptionsToMatch
[i
]);
506 Matcher
*llvm::OptimizeMatcher(Matcher
*TheMatcher
,
507 const CodeGenDAGPatterns
&CGP
) {
508 OwningPtr
<Matcher
> MatcherPtr(TheMatcher
);
509 ContractNodes(MatcherPtr
, CGP
);
510 SinkPatternPredicates(MatcherPtr
);
511 FactorNodes(MatcherPtr
);
512 return MatcherPtr
.take();