1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPerfectShuffle.h"
17 #include "PPCPredicates.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Constants.h"
31 #include "llvm/Function.h"
32 #include "llvm/Intrinsics.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/DerivedTypes.h"
41 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo
, MVT
&ValVT
, MVT
&LocVT
,
42 CCValAssign::LocInfo
&LocInfo
,
43 ISD::ArgFlagsTy
&ArgFlags
,
45 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo
, MVT
&ValVT
,
47 CCValAssign::LocInfo
&LocInfo
,
48 ISD::ArgFlagsTy
&ArgFlags
,
50 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo
, MVT
&ValVT
,
52 CCValAssign::LocInfo
&LocInfo
,
53 ISD::ArgFlagsTy
&ArgFlags
,
56 static cl::opt
<bool> EnablePPCPreinc("enable-ppc-preinc",
57 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
60 static TargetLoweringObjectFile
*CreateTLOF(const PPCTargetMachine
&TM
) {
61 if (TM
.getSubtargetImpl()->isDarwin())
62 return new TargetLoweringObjectFileMachO();
64 return new TargetLoweringObjectFileELF();
67 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine
&TM
)
68 : TargetLowering(TM
, CreateTLOF(TM
)), PPCSubTarget(*TM
.getSubtargetImpl()) {
72 // Use _setjmp/_longjmp instead of setjmp/longjmp.
73 setUseUnderscoreSetJmp(true);
74 setUseUnderscoreLongJmp(true);
76 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77 // arguments are at least 4/8 bytes aligned.
78 setMinStackArgumentAlignment(TM
.getSubtarget
<PPCSubtarget
>().isPPC64() ? 8:4);
80 // Set up the register classes.
81 addRegisterClass(MVT::i32
, PPC::GPRCRegisterClass
);
82 addRegisterClass(MVT::f32
, PPC::F4RCRegisterClass
);
83 addRegisterClass(MVT::f64
, PPC::F8RCRegisterClass
);
85 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86 setLoadExtAction(ISD::SEXTLOAD
, MVT::i1
, Promote
);
87 setLoadExtAction(ISD::SEXTLOAD
, MVT::i8
, Expand
);
89 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
91 // PowerPC has pre-inc load and store's.
92 setIndexedLoadAction(ISD::PRE_INC
, MVT::i1
, Legal
);
93 setIndexedLoadAction(ISD::PRE_INC
, MVT::i8
, Legal
);
94 setIndexedLoadAction(ISD::PRE_INC
, MVT::i16
, Legal
);
95 setIndexedLoadAction(ISD::PRE_INC
, MVT::i32
, Legal
);
96 setIndexedLoadAction(ISD::PRE_INC
, MVT::i64
, Legal
);
97 setIndexedStoreAction(ISD::PRE_INC
, MVT::i1
, Legal
);
98 setIndexedStoreAction(ISD::PRE_INC
, MVT::i8
, Legal
);
99 setIndexedStoreAction(ISD::PRE_INC
, MVT::i16
, Legal
);
100 setIndexedStoreAction(ISD::PRE_INC
, MVT::i32
, Legal
);
101 setIndexedStoreAction(ISD::PRE_INC
, MVT::i64
, Legal
);
103 // This is used in the ppcf128->int sequence. Note it has different semantics
104 // from FP_ROUND: that rounds to nearest, this rounds to zero.
105 setOperationAction(ISD::FP_ROUND_INREG
, MVT::ppcf128
, Custom
);
107 // PowerPC has no SREM/UREM instructions
108 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
109 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
110 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
111 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
113 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
115 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
116 setOperationAction(ISD::UMUL_LOHI
, MVT::i64
, Expand
);
117 setOperationAction(ISD::SMUL_LOHI
, MVT::i64
, Expand
);
118 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
119 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
120 setOperationAction(ISD::UDIVREM
, MVT::i64
, Expand
);
121 setOperationAction(ISD::SDIVREM
, MVT::i64
, Expand
);
123 // We don't support sin/cos/sqrt/fmod/pow
124 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
125 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
126 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
127 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
128 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
129 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
130 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
131 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
132 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
133 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
135 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
137 // If we're enabling GP optimizations, use hardware square root
138 if (!TM
.getSubtarget
<PPCSubtarget
>().hasFSQRT()) {
139 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
140 setOperationAction(ISD::FSQRT
, MVT::f32
, Expand
);
143 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
144 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
146 // PowerPC does not have BSWAP, CTPOP or CTTZ
147 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
148 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
149 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
150 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
151 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
152 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
154 // PowerPC does not have ROTR
155 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
156 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
158 // PowerPC does not have Select
159 setOperationAction(ISD::SELECT
, MVT::i32
, Expand
);
160 setOperationAction(ISD::SELECT
, MVT::i64
, Expand
);
161 setOperationAction(ISD::SELECT
, MVT::f32
, Expand
);
162 setOperationAction(ISD::SELECT
, MVT::f64
, Expand
);
164 // PowerPC wants to turn select_cc of FP into fsel when possible.
165 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
166 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
168 // PowerPC wants to optimize integer setcc a bit
169 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
171 // PowerPC does not have BRCOND which requires SetCC
172 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
174 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
176 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
177 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
179 // PowerPC does not have [U|S]INT_TO_FP
180 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Expand
);
181 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
183 setOperationAction(ISD::BITCAST
, MVT::f32
, Expand
);
184 setOperationAction(ISD::BITCAST
, MVT::i32
, Expand
);
185 setOperationAction(ISD::BITCAST
, MVT::i64
, Expand
);
186 setOperationAction(ISD::BITCAST
, MVT::f64
, Expand
);
188 // We cannot sextinreg(i1). Expand to shifts.
189 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
191 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
192 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
193 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
194 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
197 // We want to legalize GlobalAddress and ConstantPool nodes into the
198 // appropriate instructions to materialize the address.
199 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
200 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
201 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
202 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
203 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
204 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
205 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
206 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
207 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
208 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
211 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
213 // TRAMPOLINE is custom lowered.
214 setOperationAction(ISD::TRAMPOLINE
, MVT::Other
, Custom
);
216 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
217 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
219 // VAARG is custom lowered with the 32-bit SVR4 ABI.
220 if (TM
.getSubtarget
<PPCSubtarget
>().isSVR4ABI()
221 && !TM
.getSubtarget
<PPCSubtarget
>().isPPC64()) {
222 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
223 setOperationAction(ISD::VAARG
, MVT::i64
, Custom
);
225 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
227 // Use the default implementation.
228 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
229 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
230 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
231 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Custom
);
232 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
233 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Custom
);
235 // We want to custom lower some of our intrinsics.
236 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
238 // Comparisons that require checking two conditions.
239 setCondCodeAction(ISD::SETULT
, MVT::f32
, Expand
);
240 setCondCodeAction(ISD::SETULT
, MVT::f64
, Expand
);
241 setCondCodeAction(ISD::SETUGT
, MVT::f32
, Expand
);
242 setCondCodeAction(ISD::SETUGT
, MVT::f64
, Expand
);
243 setCondCodeAction(ISD::SETUEQ
, MVT::f32
, Expand
);
244 setCondCodeAction(ISD::SETUEQ
, MVT::f64
, Expand
);
245 setCondCodeAction(ISD::SETOGE
, MVT::f32
, Expand
);
246 setCondCodeAction(ISD::SETOGE
, MVT::f64
, Expand
);
247 setCondCodeAction(ISD::SETOLE
, MVT::f32
, Expand
);
248 setCondCodeAction(ISD::SETOLE
, MVT::f64
, Expand
);
249 setCondCodeAction(ISD::SETONE
, MVT::f32
, Expand
);
250 setCondCodeAction(ISD::SETONE
, MVT::f64
, Expand
);
252 if (TM
.getSubtarget
<PPCSubtarget
>().has64BitSupport()) {
253 // They also have instructions for converting between i64 and fp.
254 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
255 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
256 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
257 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
258 // This is just the low 32 bits of a (signed) fp->i64 conversion.
259 // We cannot do this with Promote because i64 is not a legal type.
260 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
262 // FIXME: disable this lowered code. This generates 64-bit register values,
263 // and we don't model the fact that the top part is clobbered by calls. We
264 // need to flag these together so that the value isn't live across a call.
265 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
267 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
268 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
271 if (TM
.getSubtarget
<PPCSubtarget
>().use64BitRegs()) {
272 // 64-bit PowerPC implementations can support i64 types directly
273 addRegisterClass(MVT::i64
, PPC::G8RCRegisterClass
);
274 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
275 setOperationAction(ISD::BUILD_PAIR
, MVT::i64
, Expand
);
276 // 64-bit PowerPC wants to expand i128 shifts itself.
277 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
278 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
279 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
281 // 32-bit PowerPC wants to expand i64 shifts itself.
282 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
283 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
284 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
287 if (TM
.getSubtarget
<PPCSubtarget
>().hasAltivec()) {
288 // First set operation action for all vector types to expand. Then we
289 // will selectively turn on ones that can be effectively codegen'd.
290 for (unsigned i
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
291 i
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++i
) {
292 MVT::SimpleValueType VT
= (MVT::SimpleValueType
)i
;
294 // add/sub are legal for all supported vector VT's.
295 setOperationAction(ISD::ADD
, VT
, Legal
);
296 setOperationAction(ISD::SUB
, VT
, Legal
);
298 // We promote all shuffles to v16i8.
299 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Promote
);
300 AddPromotedToType (ISD::VECTOR_SHUFFLE
, VT
, MVT::v16i8
);
302 // We promote all non-typed operations to v4i32.
303 setOperationAction(ISD::AND
, VT
, Promote
);
304 AddPromotedToType (ISD::AND
, VT
, MVT::v4i32
);
305 setOperationAction(ISD::OR
, VT
, Promote
);
306 AddPromotedToType (ISD::OR
, VT
, MVT::v4i32
);
307 setOperationAction(ISD::XOR
, VT
, Promote
);
308 AddPromotedToType (ISD::XOR
, VT
, MVT::v4i32
);
309 setOperationAction(ISD::LOAD
, VT
, Promote
);
310 AddPromotedToType (ISD::LOAD
, VT
, MVT::v4i32
);
311 setOperationAction(ISD::SELECT
, VT
, Promote
);
312 AddPromotedToType (ISD::SELECT
, VT
, MVT::v4i32
);
313 setOperationAction(ISD::STORE
, VT
, Promote
);
314 AddPromotedToType (ISD::STORE
, VT
, MVT::v4i32
);
316 // No other operations are legal.
317 setOperationAction(ISD::MUL
, VT
, Expand
);
318 setOperationAction(ISD::SDIV
, VT
, Expand
);
319 setOperationAction(ISD::SREM
, VT
, Expand
);
320 setOperationAction(ISD::UDIV
, VT
, Expand
);
321 setOperationAction(ISD::UREM
, VT
, Expand
);
322 setOperationAction(ISD::FDIV
, VT
, Expand
);
323 setOperationAction(ISD::FNEG
, VT
, Expand
);
324 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Expand
);
325 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Expand
);
326 setOperationAction(ISD::BUILD_VECTOR
, VT
, Expand
);
327 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
328 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
329 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
330 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
331 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
332 setOperationAction(ISD::FPOW
, VT
, Expand
);
333 setOperationAction(ISD::CTPOP
, VT
, Expand
);
334 setOperationAction(ISD::CTLZ
, VT
, Expand
);
335 setOperationAction(ISD::CTTZ
, VT
, Expand
);
338 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
339 // with merges, splats, etc.
340 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v16i8
, Custom
);
342 setOperationAction(ISD::AND
, MVT::v4i32
, Legal
);
343 setOperationAction(ISD::OR
, MVT::v4i32
, Legal
);
344 setOperationAction(ISD::XOR
, MVT::v4i32
, Legal
);
345 setOperationAction(ISD::LOAD
, MVT::v4i32
, Legal
);
346 setOperationAction(ISD::SELECT
, MVT::v4i32
, Expand
);
347 setOperationAction(ISD::STORE
, MVT::v4i32
, Legal
);
349 addRegisterClass(MVT::v4f32
, PPC::VRRCRegisterClass
);
350 addRegisterClass(MVT::v4i32
, PPC::VRRCRegisterClass
);
351 addRegisterClass(MVT::v8i16
, PPC::VRRCRegisterClass
);
352 addRegisterClass(MVT::v16i8
, PPC::VRRCRegisterClass
);
354 setOperationAction(ISD::MUL
, MVT::v4f32
, Legal
);
355 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
356 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
357 setOperationAction(ISD::MUL
, MVT::v16i8
, Custom
);
359 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f32
, Custom
);
360 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i32
, Custom
);
362 setOperationAction(ISD::BUILD_VECTOR
, MVT::v16i8
, Custom
);
363 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i16
, Custom
);
364 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i32
, Custom
);
365 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
368 setBooleanContents(ZeroOrOneBooleanContent
);
370 if (TM
.getSubtarget
<PPCSubtarget
>().isPPC64()) {
371 setStackPointerRegisterToSaveRestore(PPC::X1
);
372 setExceptionPointerRegister(PPC::X3
);
373 setExceptionSelectorRegister(PPC::X4
);
375 setStackPointerRegisterToSaveRestore(PPC::R1
);
376 setExceptionPointerRegister(PPC::R3
);
377 setExceptionSelectorRegister(PPC::R4
);
380 // We have target-specific dag combine patterns for the following nodes:
381 setTargetDAGCombine(ISD::SINT_TO_FP
);
382 setTargetDAGCombine(ISD::STORE
);
383 setTargetDAGCombine(ISD::BR_CC
);
384 setTargetDAGCombine(ISD::BSWAP
);
386 // Darwin long double math library functions have $LDBL128 appended.
387 if (TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
388 setLibcallName(RTLIB::COS_PPCF128
, "cosl$LDBL128");
389 setLibcallName(RTLIB::POW_PPCF128
, "powl$LDBL128");
390 setLibcallName(RTLIB::REM_PPCF128
, "fmodl$LDBL128");
391 setLibcallName(RTLIB::SIN_PPCF128
, "sinl$LDBL128");
392 setLibcallName(RTLIB::SQRT_PPCF128
, "sqrtl$LDBL128");
393 setLibcallName(RTLIB::LOG_PPCF128
, "logl$LDBL128");
394 setLibcallName(RTLIB::LOG2_PPCF128
, "log2l$LDBL128");
395 setLibcallName(RTLIB::LOG10_PPCF128
, "log10l$LDBL128");
396 setLibcallName(RTLIB::EXP_PPCF128
, "expl$LDBL128");
397 setLibcallName(RTLIB::EXP2_PPCF128
, "exp2l$LDBL128");
400 setMinFunctionAlignment(2);
401 if (PPCSubTarget
.isDarwin())
402 setPrefFunctionAlignment(4);
404 computeRegisterProperties();
407 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
408 /// function arguments in the caller parameter area.
409 unsigned PPCTargetLowering::getByValTypeAlignment(const Type
*Ty
) const {
410 const TargetMachine
&TM
= getTargetMachine();
411 // Darwin passes everything on 4 byte boundary.
412 if (TM
.getSubtarget
<PPCSubtarget
>().isDarwin())
418 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode
) const {
421 case PPCISD::FSEL
: return "PPCISD::FSEL";
422 case PPCISD::FCFID
: return "PPCISD::FCFID";
423 case PPCISD::FCTIDZ
: return "PPCISD::FCTIDZ";
424 case PPCISD::FCTIWZ
: return "PPCISD::FCTIWZ";
425 case PPCISD::STFIWX
: return "PPCISD::STFIWX";
426 case PPCISD::VMADDFP
: return "PPCISD::VMADDFP";
427 case PPCISD::VNMSUBFP
: return "PPCISD::VNMSUBFP";
428 case PPCISD::VPERM
: return "PPCISD::VPERM";
429 case PPCISD::Hi
: return "PPCISD::Hi";
430 case PPCISD::Lo
: return "PPCISD::Lo";
431 case PPCISD::TOC_ENTRY
: return "PPCISD::TOC_ENTRY";
432 case PPCISD::TOC_RESTORE
: return "PPCISD::TOC_RESTORE";
433 case PPCISD::LOAD
: return "PPCISD::LOAD";
434 case PPCISD::LOAD_TOC
: return "PPCISD::LOAD_TOC";
435 case PPCISD::DYNALLOC
: return "PPCISD::DYNALLOC";
436 case PPCISD::GlobalBaseReg
: return "PPCISD::GlobalBaseReg";
437 case PPCISD::SRL
: return "PPCISD::SRL";
438 case PPCISD::SRA
: return "PPCISD::SRA";
439 case PPCISD::SHL
: return "PPCISD::SHL";
440 case PPCISD::EXTSW_32
: return "PPCISD::EXTSW_32";
441 case PPCISD::STD_32
: return "PPCISD::STD_32";
442 case PPCISD::CALL_SVR4
: return "PPCISD::CALL_SVR4";
443 case PPCISD::CALL_Darwin
: return "PPCISD::CALL_Darwin";
444 case PPCISD::NOP
: return "PPCISD::NOP";
445 case PPCISD::MTCTR
: return "PPCISD::MTCTR";
446 case PPCISD::BCTRL_Darwin
: return "PPCISD::BCTRL_Darwin";
447 case PPCISD::BCTRL_SVR4
: return "PPCISD::BCTRL_SVR4";
448 case PPCISD::RET_FLAG
: return "PPCISD::RET_FLAG";
449 case PPCISD::MFCR
: return "PPCISD::MFCR";
450 case PPCISD::VCMP
: return "PPCISD::VCMP";
451 case PPCISD::VCMPo
: return "PPCISD::VCMPo";
452 case PPCISD::LBRX
: return "PPCISD::LBRX";
453 case PPCISD::STBRX
: return "PPCISD::STBRX";
454 case PPCISD::LARX
: return "PPCISD::LARX";
455 case PPCISD::STCX
: return "PPCISD::STCX";
456 case PPCISD::COND_BRANCH
: return "PPCISD::COND_BRANCH";
457 case PPCISD::MFFS
: return "PPCISD::MFFS";
458 case PPCISD::MTFSB0
: return "PPCISD::MTFSB0";
459 case PPCISD::MTFSB1
: return "PPCISD::MTFSB1";
460 case PPCISD::FADDRTZ
: return "PPCISD::FADDRTZ";
461 case PPCISD::MTFSF
: return "PPCISD::MTFSF";
462 case PPCISD::TC_RETURN
: return "PPCISD::TC_RETURN";
466 MVT::SimpleValueType
PPCTargetLowering::getSetCCResultType(EVT VT
) const {
470 //===----------------------------------------------------------------------===//
471 // Node matching predicates, for use by the tblgen matching code.
472 //===----------------------------------------------------------------------===//
474 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
475 static bool isFloatingPointZero(SDValue Op
) {
476 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
477 return CFP
->getValueAPF().isZero();
478 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
479 // Maybe this has already been legalized into the constant pool?
480 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(Op
.getOperand(1)))
481 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
482 return CFP
->getValueAPF().isZero();
487 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
488 /// true if Op is undef or if it matches the specified value.
489 static bool isConstantOrUndef(int Op
, int Val
) {
490 return Op
< 0 || Op
== Val
;
493 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
494 /// VPKUHUM instruction.
495 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode
*N
, bool isUnary
) {
497 for (unsigned i
= 0; i
!= 16; ++i
)
498 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+1))
501 for (unsigned i
= 0; i
!= 8; ++i
)
502 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+1) ||
503 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+1))
509 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
510 /// VPKUWUM instruction.
511 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode
*N
, bool isUnary
) {
513 for (unsigned i
= 0; i
!= 16; i
+= 2)
514 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+2) ||
515 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+3))
518 for (unsigned i
= 0; i
!= 8; i
+= 2)
519 if (!isConstantOrUndef(N
->getMaskElt(i
), i
*2+2) ||
520 !isConstantOrUndef(N
->getMaskElt(i
+1), i
*2+3) ||
521 !isConstantOrUndef(N
->getMaskElt(i
+8), i
*2+2) ||
522 !isConstantOrUndef(N
->getMaskElt(i
+9), i
*2+3))
528 /// isVMerge - Common function, used to match vmrg* shuffles.
530 static bool isVMerge(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
531 unsigned LHSStart
, unsigned RHSStart
) {
532 assert(N
->getValueType(0) == MVT::v16i8
&&
533 "PPC only supports shuffles by bytes!");
534 assert((UnitSize
== 1 || UnitSize
== 2 || UnitSize
== 4) &&
535 "Unsupported merge size!");
537 for (unsigned i
= 0; i
!= 8/UnitSize
; ++i
) // Step over units
538 for (unsigned j
= 0; j
!= UnitSize
; ++j
) { // Step over bytes within unit
539 if (!isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+j
),
540 LHSStart
+j
+i
*UnitSize
) ||
541 !isConstantOrUndef(N
->getMaskElt(i
*UnitSize
*2+UnitSize
+j
),
542 RHSStart
+j
+i
*UnitSize
))
548 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
549 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
550 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
553 return isVMerge(N
, UnitSize
, 8, 24);
554 return isVMerge(N
, UnitSize
, 8, 8);
557 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
558 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
559 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode
*N
, unsigned UnitSize
,
562 return isVMerge(N
, UnitSize
, 0, 16);
563 return isVMerge(N
, UnitSize
, 0, 0);
567 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
568 /// amount, otherwise return -1.
569 int PPC::isVSLDOIShuffleMask(SDNode
*N
, bool isUnary
) {
570 assert(N
->getValueType(0) == MVT::v16i8
&&
571 "PPC only supports shuffles by bytes!");
573 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
575 // Find the first non-undef value in the shuffle mask.
577 for (i
= 0; i
!= 16 && SVOp
->getMaskElt(i
) < 0; ++i
)
580 if (i
== 16) return -1; // all undef.
582 // Otherwise, check to see if the rest of the elements are consecutively
583 // numbered from this value.
584 unsigned ShiftAmt
= SVOp
->getMaskElt(i
);
585 if (ShiftAmt
< i
) return -1;
589 // Check the rest of the elements to see if they are consecutive.
590 for (++i
; i
!= 16; ++i
)
591 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), ShiftAmt
+i
))
594 // Check the rest of the elements to see if they are consecutive.
595 for (++i
; i
!= 16; ++i
)
596 if (!isConstantOrUndef(SVOp
->getMaskElt(i
), (ShiftAmt
+i
) & 15))
602 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
603 /// specifies a splat of a single element that is suitable for input to
604 /// VSPLTB/VSPLTH/VSPLTW.
605 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode
*N
, unsigned EltSize
) {
606 assert(N
->getValueType(0) == MVT::v16i8
&&
607 (EltSize
== 1 || EltSize
== 2 || EltSize
== 4));
609 // This is a splat operation if each element of the permute is the same, and
610 // if the value doesn't reference the second vector.
611 unsigned ElementBase
= N
->getMaskElt(0);
613 // FIXME: Handle UNDEF elements too!
614 if (ElementBase
>= 16)
617 // Check that the indices are consecutive, in the case of a multi-byte element
618 // splatted with a v16i8 mask.
619 for (unsigned i
= 1; i
!= EltSize
; ++i
)
620 if (N
->getMaskElt(i
) < 0 || N
->getMaskElt(i
) != (int)(i
+ElementBase
))
623 for (unsigned i
= EltSize
, e
= 16; i
!= e
; i
+= EltSize
) {
624 if (N
->getMaskElt(i
) < 0) continue;
625 for (unsigned j
= 0; j
!= EltSize
; ++j
)
626 if (N
->getMaskElt(i
+j
) != N
->getMaskElt(j
))
632 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
634 bool PPC::isAllNegativeZeroVector(SDNode
*N
) {
635 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(N
);
637 APInt APVal
, APUndef
;
641 if (BV
->isConstantSplat(APVal
, APUndef
, BitSize
, HasAnyUndefs
, 32, true))
642 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N
->getOperand(0)))
643 return CFP
->getValueAPF().isNegZero();
648 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
649 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
650 unsigned PPC::getVSPLTImmediate(SDNode
*N
, unsigned EltSize
) {
651 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(N
);
652 assert(isSplatShuffleMask(SVOp
, EltSize
));
653 return SVOp
->getMaskElt(0) / EltSize
;
656 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
657 /// by using a vspltis[bhw] instruction of the specified element size, return
658 /// the constant being splatted. The ByteSize field indicates the number of
659 /// bytes of each element [124] -> [bhw].
660 SDValue
PPC::get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
) {
663 // If ByteSize of the splat is bigger than the element size of the
664 // build_vector, then we have a case where we are checking for a splat where
665 // multiple elements of the buildvector are folded together into a single
666 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
667 unsigned EltSize
= 16/N
->getNumOperands();
668 if (EltSize
< ByteSize
) {
669 unsigned Multiple
= ByteSize
/EltSize
; // Number of BV entries per spltval.
670 SDValue UniquedVals
[4];
671 assert(Multiple
> 1 && Multiple
<= 4 && "How can this happen?");
673 // See if all of the elements in the buildvector agree across.
674 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
675 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
676 // If the element isn't a constant, bail fully out.
677 if (!isa
<ConstantSDNode
>(N
->getOperand(i
))) return SDValue();
680 if (UniquedVals
[i
&(Multiple
-1)].getNode() == 0)
681 UniquedVals
[i
&(Multiple
-1)] = N
->getOperand(i
);
682 else if (UniquedVals
[i
&(Multiple
-1)] != N
->getOperand(i
))
683 return SDValue(); // no match.
686 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
687 // either constant or undef values that are identical for each chunk. See
688 // if these chunks can form into a larger vspltis*.
690 // Check to see if all of the leading entries are either 0 or -1. If
691 // neither, then this won't fit into the immediate field.
692 bool LeadingZero
= true;
693 bool LeadingOnes
= true;
694 for (unsigned i
= 0; i
!= Multiple
-1; ++i
) {
695 if (UniquedVals
[i
].getNode() == 0) continue; // Must have been undefs.
697 LeadingZero
&= cast
<ConstantSDNode
>(UniquedVals
[i
])->isNullValue();
698 LeadingOnes
&= cast
<ConstantSDNode
>(UniquedVals
[i
])->isAllOnesValue();
700 // Finally, check the least significant entry.
702 if (UniquedVals
[Multiple
-1].getNode() == 0)
703 return DAG
.getTargetConstant(0, MVT::i32
); // 0,0,0,undef
704 int Val
= cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getZExtValue();
706 return DAG
.getTargetConstant(Val
, MVT::i32
); // 0,0,0,4 -> vspltisw(4)
709 if (UniquedVals
[Multiple
-1].getNode() == 0)
710 return DAG
.getTargetConstant(~0U, MVT::i32
); // -1,-1,-1,undef
711 int Val
=cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getSExtValue();
712 if (Val
>= -16) // -1,-1,-1,-2 -> vspltisw(-2)
713 return DAG
.getTargetConstant(Val
, MVT::i32
);
719 // Check to see if this buildvec has a single non-undef value in its elements.
720 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
721 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
722 if (OpVal
.getNode() == 0)
723 OpVal
= N
->getOperand(i
);
724 else if (OpVal
!= N
->getOperand(i
))
728 if (OpVal
.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
730 unsigned ValSizeInBytes
= EltSize
;
732 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
733 Value
= CN
->getZExtValue();
734 } else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
)) {
735 assert(CN
->getValueType(0) == MVT::f32
&& "Only one legal FP vector type!");
736 Value
= FloatToBits(CN
->getValueAPF().convertToFloat());
739 // If the splat value is larger than the element value, then we can never do
740 // this splat. The only case that we could fit the replicated bits into our
741 // immediate field for would be zero, and we prefer to use vxor for it.
742 if (ValSizeInBytes
< ByteSize
) return SDValue();
744 // If the element value is larger than the splat value, cut it in half and
745 // check to see if the two halves are equal. Continue doing this until we
746 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
747 while (ValSizeInBytes
> ByteSize
) {
748 ValSizeInBytes
>>= 1;
750 // If the top half equals the bottom half, we're still ok.
751 if (((Value
>> (ValSizeInBytes
*8)) & ((1 << (8*ValSizeInBytes
))-1)) !=
752 (Value
& ((1 << (8*ValSizeInBytes
))-1)))
756 // Properly sign extend the value.
757 int ShAmt
= (4-ByteSize
)*8;
758 int MaskVal
= ((int)Value
<< ShAmt
) >> ShAmt
;
760 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
761 if (MaskVal
== 0) return SDValue();
763 // Finally, if this value fits in a 5 bit sext field, return it
764 if (((MaskVal
<< (32-5)) >> (32-5)) == MaskVal
)
765 return DAG
.getTargetConstant(MaskVal
, MVT::i32
);
769 //===----------------------------------------------------------------------===//
770 // Addressing Mode Selection
771 //===----------------------------------------------------------------------===//
773 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
774 /// or 64-bit immediate, and if the value can be accurately represented as a
775 /// sign extension from a 16-bit value. If so, this returns true and the
777 static bool isIntS16Immediate(SDNode
*N
, short &Imm
) {
778 if (N
->getOpcode() != ISD::Constant
)
781 Imm
= (short)cast
<ConstantSDNode
>(N
)->getZExtValue();
782 if (N
->getValueType(0) == MVT::i32
)
783 return Imm
== (int32_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
785 return Imm
== (int64_t)cast
<ConstantSDNode
>(N
)->getZExtValue();
787 static bool isIntS16Immediate(SDValue Op
, short &Imm
) {
788 return isIntS16Immediate(Op
.getNode(), Imm
);
792 /// SelectAddressRegReg - Given the specified addressed, check to see if it
793 /// can be represented as an indexed [r+r] operation. Returns false if it
794 /// can be more efficiently represented with [r+imm].
795 bool PPCTargetLowering::SelectAddressRegReg(SDValue N
, SDValue
&Base
,
797 SelectionDAG
&DAG
) const {
799 if (N
.getOpcode() == ISD::ADD
) {
800 if (isIntS16Immediate(N
.getOperand(1), imm
))
802 if (N
.getOperand(1).getOpcode() == PPCISD::Lo
)
805 Base
= N
.getOperand(0);
806 Index
= N
.getOperand(1);
808 } else if (N
.getOpcode() == ISD::OR
) {
809 if (isIntS16Immediate(N
.getOperand(1), imm
))
810 return false; // r+i can fold it if we can.
812 // If this is an or of disjoint bitfields, we can codegen this as an add
813 // (for better address arithmetic) if the LHS and RHS of the OR are provably
815 APInt LHSKnownZero
, LHSKnownOne
;
816 APInt RHSKnownZero
, RHSKnownOne
;
817 DAG
.ComputeMaskedBits(N
.getOperand(0),
818 APInt::getAllOnesValue(N
.getOperand(0)
819 .getValueSizeInBits()),
820 LHSKnownZero
, LHSKnownOne
);
822 if (LHSKnownZero
.getBoolValue()) {
823 DAG
.ComputeMaskedBits(N
.getOperand(1),
824 APInt::getAllOnesValue(N
.getOperand(1)
825 .getValueSizeInBits()),
826 RHSKnownZero
, RHSKnownOne
);
827 // If all of the bits are known zero on the LHS or RHS, the add won't
829 if (~(LHSKnownZero
| RHSKnownZero
) == 0) {
830 Base
= N
.getOperand(0);
831 Index
= N
.getOperand(1);
840 /// Returns true if the address N can be represented by a base register plus
841 /// a signed 16-bit displacement [r+imm], and if it is not better
842 /// represented as reg+reg.
843 bool PPCTargetLowering::SelectAddressRegImm(SDValue N
, SDValue
&Disp
,
845 SelectionDAG
&DAG
) const {
846 // FIXME dl should come from parent load or store, not from address
847 DebugLoc dl
= N
.getDebugLoc();
848 // If this can be more profitably realized as r+r, fail.
849 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
))
852 if (N
.getOpcode() == ISD::ADD
) {
854 if (isIntS16Immediate(N
.getOperand(1), imm
)) {
855 Disp
= DAG
.getTargetConstant((int)imm
& 0xFFFF, MVT::i32
);
856 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
857 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
859 Base
= N
.getOperand(0);
861 return true; // [r+i]
862 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
863 // Match LOAD (ADD (X, Lo(G))).
864 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getZExtValue()
865 && "Cannot handle constant offsets yet!");
866 Disp
= N
.getOperand(1).getOperand(0); // The global address.
867 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
868 Disp
.getOpcode() == ISD::TargetConstantPool
||
869 Disp
.getOpcode() == ISD::TargetJumpTable
);
870 Base
= N
.getOperand(0);
871 return true; // [&g+r]
873 } else if (N
.getOpcode() == ISD::OR
) {
875 if (isIntS16Immediate(N
.getOperand(1), imm
)) {
876 // If this is an or of disjoint bitfields, we can codegen this as an add
877 // (for better address arithmetic) if the LHS and RHS of the OR are
878 // provably disjoint.
879 APInt LHSKnownZero
, LHSKnownOne
;
880 DAG
.ComputeMaskedBits(N
.getOperand(0),
881 APInt::getAllOnesValue(N
.getOperand(0)
882 .getValueSizeInBits()),
883 LHSKnownZero
, LHSKnownOne
);
885 if ((LHSKnownZero
.getZExtValue()|~(uint64_t)imm
) == ~0ULL) {
886 // If all of the bits are known zero on the LHS or RHS, the add won't
888 Base
= N
.getOperand(0);
889 Disp
= DAG
.getTargetConstant((int)imm
& 0xFFFF, MVT::i32
);
893 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
894 // Loading from a constant address.
896 // If this address fits entirely in a 16-bit sext immediate field, codegen
899 if (isIntS16Immediate(CN
, Imm
)) {
900 Disp
= DAG
.getTargetConstant(Imm
, CN
->getValueType(0));
901 Base
= DAG
.getRegister(PPCSubTarget
.isPPC64() ? PPC::X0
: PPC::R0
,
902 CN
->getValueType(0));
906 // Handle 32-bit sext immediates with LIS + addr mode.
907 if (CN
->getValueType(0) == MVT::i32
||
908 (int64_t)CN
->getZExtValue() == (int)CN
->getZExtValue()) {
909 int Addr
= (int)CN
->getZExtValue();
911 // Otherwise, break this down into an LIS + disp.
912 Disp
= DAG
.getTargetConstant((short)Addr
, MVT::i32
);
914 Base
= DAG
.getTargetConstant((Addr
- (signed short)Addr
) >> 16, MVT::i32
);
915 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
916 Base
= SDValue(DAG
.getMachineNode(Opc
, dl
, CN
->getValueType(0), Base
), 0);
921 Disp
= DAG
.getTargetConstant(0, getPointerTy());
922 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
))
923 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
926 return true; // [r+0]
929 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
930 /// represented as an indexed [r+r] operation.
931 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N
, SDValue
&Base
,
933 SelectionDAG
&DAG
) const {
934 // Check to see if we can easily represent this as an [r+r] address. This
935 // will fail if it thinks that the address is more profitably represented as
936 // reg+imm, e.g. where imm = 0.
937 if (SelectAddressRegReg(N
, Base
, Index
, DAG
))
940 // If the operand is an addition, always emit this as [r+r], since this is
941 // better (for code size, and execution, as the memop does the add for free)
942 // than emitting an explicit add.
943 if (N
.getOpcode() == ISD::ADD
) {
944 Base
= N
.getOperand(0);
945 Index
= N
.getOperand(1);
949 // Otherwise, do it the hard way, using R0 as the base register.
950 Base
= DAG
.getRegister(PPCSubTarget
.isPPC64() ? PPC::X0
: PPC::R0
,
956 /// SelectAddressRegImmShift - Returns true if the address N can be
957 /// represented by a base register plus a signed 14-bit displacement
958 /// [r+imm*4]. Suitable for use by STD and friends.
959 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N
, SDValue
&Disp
,
961 SelectionDAG
&DAG
) const {
962 // FIXME dl should come from the parent load or store, not the address
963 DebugLoc dl
= N
.getDebugLoc();
964 // If this can be more profitably realized as r+r, fail.
965 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
))
968 if (N
.getOpcode() == ISD::ADD
) {
970 if (isIntS16Immediate(N
.getOperand(1), imm
) && (imm
& 3) == 0) {
971 Disp
= DAG
.getTargetConstant(((int)imm
& 0xFFFF) >> 2, MVT::i32
);
972 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
973 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
975 Base
= N
.getOperand(0);
977 return true; // [r+i]
978 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
979 // Match LOAD (ADD (X, Lo(G))).
980 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getZExtValue()
981 && "Cannot handle constant offsets yet!");
982 Disp
= N
.getOperand(1).getOperand(0); // The global address.
983 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
984 Disp
.getOpcode() == ISD::TargetConstantPool
||
985 Disp
.getOpcode() == ISD::TargetJumpTable
);
986 Base
= N
.getOperand(0);
987 return true; // [&g+r]
989 } else if (N
.getOpcode() == ISD::OR
) {
991 if (isIntS16Immediate(N
.getOperand(1), imm
) && (imm
& 3) == 0) {
992 // If this is an or of disjoint bitfields, we can codegen this as an add
993 // (for better address arithmetic) if the LHS and RHS of the OR are
994 // provably disjoint.
995 APInt LHSKnownZero
, LHSKnownOne
;
996 DAG
.ComputeMaskedBits(N
.getOperand(0),
997 APInt::getAllOnesValue(N
.getOperand(0)
998 .getValueSizeInBits()),
999 LHSKnownZero
, LHSKnownOne
);
1000 if ((LHSKnownZero
.getZExtValue()|~(uint64_t)imm
) == ~0ULL) {
1001 // If all of the bits are known zero on the LHS or RHS, the add won't
1003 Base
= N
.getOperand(0);
1004 Disp
= DAG
.getTargetConstant(((int)imm
& 0xFFFF) >> 2, MVT::i32
);
1008 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
1009 // Loading from a constant address. Verify low two bits are clear.
1010 if ((CN
->getZExtValue() & 3) == 0) {
1011 // If this address fits entirely in a 14-bit sext immediate field, codegen
1014 if (isIntS16Immediate(CN
, Imm
)) {
1015 Disp
= DAG
.getTargetConstant((unsigned short)Imm
>> 2, getPointerTy());
1016 Base
= DAG
.getRegister(PPCSubTarget
.isPPC64() ? PPC::X0
: PPC::R0
,
1017 CN
->getValueType(0));
1021 // Fold the low-part of 32-bit absolute addresses into addr mode.
1022 if (CN
->getValueType(0) == MVT::i32
||
1023 (int64_t)CN
->getZExtValue() == (int)CN
->getZExtValue()) {
1024 int Addr
= (int)CN
->getZExtValue();
1026 // Otherwise, break this down into an LIS + disp.
1027 Disp
= DAG
.getTargetConstant((short)Addr
>> 2, MVT::i32
);
1028 Base
= DAG
.getTargetConstant((Addr
-(signed short)Addr
) >> 16, MVT::i32
);
1029 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
1030 Base
= SDValue(DAG
.getMachineNode(Opc
, dl
, CN
->getValueType(0), Base
),0);
1036 Disp
= DAG
.getTargetConstant(0, getPointerTy());
1037 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
))
1038 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
1041 return true; // [r+0]
1045 /// getPreIndexedAddressParts - returns true by value, base pointer and
1046 /// offset pointer and addressing mode by reference if the node's address
1047 /// can be legally represented as pre-indexed load / store address.
1048 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
1050 ISD::MemIndexedMode
&AM
,
1051 SelectionDAG
&DAG
) const {
1052 // Disabled by default for now.
1053 if (!EnablePPCPreinc
) return false;
1057 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
1058 Ptr
= LD
->getBasePtr();
1059 VT
= LD
->getMemoryVT();
1061 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
1062 Ptr
= ST
->getBasePtr();
1063 VT
= ST
->getMemoryVT();
1067 // PowerPC doesn't have preinc load/store instructions for vectors.
1071 // TODO: Check reg+reg first.
1073 // LDU/STU use reg+imm*4, others use reg+imm.
1074 if (VT
!= MVT::i64
) {
1076 if (!SelectAddressRegImm(Ptr
, Offset
, Base
, DAG
))
1080 if (!SelectAddressRegImmShift(Ptr
, Offset
, Base
, DAG
))
1084 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
1085 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1086 // sext i32 to i64 when addr mode is r+i.
1087 if (LD
->getValueType(0) == MVT::i64
&& LD
->getMemoryVT() == MVT::i32
&&
1088 LD
->getExtensionType() == ISD::SEXTLOAD
&&
1089 isa
<ConstantSDNode
>(Offset
))
1097 //===----------------------------------------------------------------------===//
1098 // LowerOperation implementation
1099 //===----------------------------------------------------------------------===//
1101 /// GetLabelAccessInfo - Return true if we should reference labels using a
1102 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1103 static bool GetLabelAccessInfo(const TargetMachine
&TM
, unsigned &HiOpFlags
,
1104 unsigned &LoOpFlags
, const GlobalValue
*GV
= 0) {
1105 HiOpFlags
= PPCII::MO_HA16
;
1106 LoOpFlags
= PPCII::MO_LO16
;
1108 // Don't use the pic base if not in PIC relocation model. Or if we are on a
1109 // non-darwin platform. We don't support PIC on other platforms yet.
1110 bool isPIC
= TM
.getRelocationModel() == Reloc::PIC_
&&
1111 TM
.getSubtarget
<PPCSubtarget
>().isDarwin();
1113 HiOpFlags
|= PPCII::MO_PIC_FLAG
;
1114 LoOpFlags
|= PPCII::MO_PIC_FLAG
;
1117 // If this is a reference to a global value that requires a non-lazy-ptr, make
1118 // sure that instruction lowering adds it.
1119 if (GV
&& TM
.getSubtarget
<PPCSubtarget
>().hasLazyResolverStub(GV
, TM
)) {
1120 HiOpFlags
|= PPCII::MO_NLP_FLAG
;
1121 LoOpFlags
|= PPCII::MO_NLP_FLAG
;
1123 if (GV
->hasHiddenVisibility()) {
1124 HiOpFlags
|= PPCII::MO_NLP_HIDDEN_FLAG
;
1125 LoOpFlags
|= PPCII::MO_NLP_HIDDEN_FLAG
;
1132 static SDValue
LowerLabelRef(SDValue HiPart
, SDValue LoPart
, bool isPIC
,
1133 SelectionDAG
&DAG
) {
1134 EVT PtrVT
= HiPart
.getValueType();
1135 SDValue Zero
= DAG
.getConstant(0, PtrVT
);
1136 DebugLoc DL
= HiPart
.getDebugLoc();
1138 SDValue Hi
= DAG
.getNode(PPCISD::Hi
, DL
, PtrVT
, HiPart
, Zero
);
1139 SDValue Lo
= DAG
.getNode(PPCISD::Lo
, DL
, PtrVT
, LoPart
, Zero
);
1141 // With PIC, the first instruction is actually "GR+hi(&G)".
1143 Hi
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
,
1144 DAG
.getNode(PPCISD::GlobalBaseReg
, DL
, PtrVT
), Hi
);
1146 // Generate non-pic code that has direct accesses to the constant pool.
1147 // The address of the global is just (hi(&g)+lo(&g)).
1148 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
1151 SDValue
PPCTargetLowering::LowerConstantPool(SDValue Op
,
1152 SelectionDAG
&DAG
) const {
1153 EVT PtrVT
= Op
.getValueType();
1154 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
1155 const Constant
*C
= CP
->getConstVal();
1157 unsigned MOHiFlag
, MOLoFlag
;
1158 bool isPIC
= GetLabelAccessInfo(DAG
.getTarget(), MOHiFlag
, MOLoFlag
);
1160 DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlignment(), 0, MOHiFlag
);
1162 DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlignment(), 0, MOLoFlag
);
1163 return LowerLabelRef(CPIHi
, CPILo
, isPIC
, DAG
);
1166 SDValue
PPCTargetLowering::LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const {
1167 EVT PtrVT
= Op
.getValueType();
1168 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
1170 unsigned MOHiFlag
, MOLoFlag
;
1171 bool isPIC
= GetLabelAccessInfo(DAG
.getTarget(), MOHiFlag
, MOLoFlag
);
1172 SDValue JTIHi
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
, MOHiFlag
);
1173 SDValue JTILo
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
, MOLoFlag
);
1174 return LowerLabelRef(JTIHi
, JTILo
, isPIC
, DAG
);
1177 SDValue
PPCTargetLowering::LowerBlockAddress(SDValue Op
,
1178 SelectionDAG
&DAG
) const {
1179 EVT PtrVT
= Op
.getValueType();
1181 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
1183 unsigned MOHiFlag
, MOLoFlag
;
1184 bool isPIC
= GetLabelAccessInfo(DAG
.getTarget(), MOHiFlag
, MOLoFlag
);
1185 SDValue TgtBAHi
= DAG
.getBlockAddress(BA
, PtrVT
, /*isTarget=*/true, MOHiFlag
);
1186 SDValue TgtBALo
= DAG
.getBlockAddress(BA
, PtrVT
, /*isTarget=*/true, MOLoFlag
);
1187 return LowerLabelRef(TgtBAHi
, TgtBALo
, isPIC
, DAG
);
1190 SDValue
PPCTargetLowering::LowerGlobalAddress(SDValue Op
,
1191 SelectionDAG
&DAG
) const {
1192 EVT PtrVT
= Op
.getValueType();
1193 GlobalAddressSDNode
*GSDN
= cast
<GlobalAddressSDNode
>(Op
);
1194 DebugLoc DL
= GSDN
->getDebugLoc();
1195 const GlobalValue
*GV
= GSDN
->getGlobal();
1197 // 64-bit SVR4 ABI code is always position-independent.
1198 // The actual address of the GlobalValue is stored in the TOC.
1199 if (PPCSubTarget
.isSVR4ABI() && PPCSubTarget
.isPPC64()) {
1200 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, GSDN
->getOffset());
1201 return DAG
.getNode(PPCISD::TOC_ENTRY
, DL
, MVT::i64
, GA
,
1202 DAG
.getRegister(PPC::X2
, MVT::i64
));
1205 unsigned MOHiFlag
, MOLoFlag
;
1206 bool isPIC
= GetLabelAccessInfo(DAG
.getTarget(), MOHiFlag
, MOLoFlag
, GV
);
1209 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, GSDN
->getOffset(), MOHiFlag
);
1211 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, GSDN
->getOffset(), MOLoFlag
);
1213 SDValue Ptr
= LowerLabelRef(GAHi
, GALo
, isPIC
, DAG
);
1215 // If the global reference is actually to a non-lazy-pointer, we have to do an
1216 // extra load to get the address of the global.
1217 if (MOHiFlag
& PPCII::MO_NLP_FLAG
)
1218 Ptr
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Ptr
, MachinePointerInfo(),
1223 SDValue
PPCTargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
1224 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
1225 DebugLoc dl
= Op
.getDebugLoc();
1227 // If we're comparing for equality to zero, expose the fact that this is
1228 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1229 // fold the new nodes.
1230 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1231 if (C
->isNullValue() && CC
== ISD::SETEQ
) {
1232 EVT VT
= Op
.getOperand(0).getValueType();
1233 SDValue Zext
= Op
.getOperand(0);
1234 if (VT
.bitsLT(MVT::i32
)) {
1236 Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Op
.getOperand(0));
1238 unsigned Log2b
= Log2_32(VT
.getSizeInBits());
1239 SDValue Clz
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Zext
);
1240 SDValue Scc
= DAG
.getNode(ISD::SRL
, dl
, VT
, Clz
,
1241 DAG
.getConstant(Log2b
, MVT::i32
));
1242 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Scc
);
1244 // Leave comparisons against 0 and -1 alone for now, since they're usually
1245 // optimized. FIXME: revisit this when we can custom lower all setcc
1247 if (C
->isAllOnesValue() || C
->isNullValue())
1251 // If we have an integer seteq/setne, turn it into a compare against zero
1252 // by xor'ing the rhs with the lhs, which is faster than setting a
1253 // condition register, reading it back out, and masking the correct bit. The
1254 // normal approach here uses sub to do this instead of xor. Using xor exposes
1255 // the result to other bit-twiddling opportunities.
1256 EVT LHSVT
= Op
.getOperand(0).getValueType();
1257 if (LHSVT
.isInteger() && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1258 EVT VT
= Op
.getValueType();
1259 SDValue Sub
= DAG
.getNode(ISD::XOR
, dl
, LHSVT
, Op
.getOperand(0),
1261 return DAG
.getSetCC(dl
, VT
, Sub
, DAG
.getConstant(0, LHSVT
), CC
);
1266 SDValue
PPCTargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
,
1267 const PPCSubtarget
&Subtarget
) const {
1268 SDNode
*Node
= Op
.getNode();
1269 EVT VT
= Node
->getValueType(0);
1270 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1271 SDValue InChain
= Node
->getOperand(0);
1272 SDValue VAListPtr
= Node
->getOperand(1);
1273 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
1274 DebugLoc dl
= Node
->getDebugLoc();
1276 assert(!Subtarget
.isPPC64() && "LowerVAARG is PPC32 only");
1279 SDValue GprIndex
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, MVT::i32
, InChain
,
1280 VAListPtr
, MachinePointerInfo(SV
), MVT::i8
,
1282 InChain
= GprIndex
.getValue(1);
1284 if (VT
== MVT::i64
) {
1285 // Check if GprIndex is even
1286 SDValue GprAnd
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, GprIndex
,
1287 DAG
.getConstant(1, MVT::i32
));
1288 SDValue CC64
= DAG
.getSetCC(dl
, MVT::i32
, GprAnd
,
1289 DAG
.getConstant(0, MVT::i32
), ISD::SETNE
);
1290 SDValue GprIndexPlusOne
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, GprIndex
,
1291 DAG
.getConstant(1, MVT::i32
));
1292 // Align GprIndex to be even if it isn't
1293 GprIndex
= DAG
.getNode(ISD::SELECT
, dl
, MVT::i32
, CC64
, GprIndexPlusOne
,
1297 // fpr index is 1 byte after gpr
1298 SDValue FprPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAListPtr
,
1299 DAG
.getConstant(1, MVT::i32
));
1302 SDValue FprIndex
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, MVT::i32
, InChain
,
1303 FprPtr
, MachinePointerInfo(SV
), MVT::i8
,
1305 InChain
= FprIndex
.getValue(1);
1307 SDValue RegSaveAreaPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAListPtr
,
1308 DAG
.getConstant(8, MVT::i32
));
1310 SDValue OverflowAreaPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAListPtr
,
1311 DAG
.getConstant(4, MVT::i32
));
1314 SDValue OverflowArea
= DAG
.getLoad(MVT::i32
, dl
, InChain
, OverflowAreaPtr
,
1315 MachinePointerInfo(), false, false, 0);
1316 InChain
= OverflowArea
.getValue(1);
1318 SDValue RegSaveArea
= DAG
.getLoad(MVT::i32
, dl
, InChain
, RegSaveAreaPtr
,
1319 MachinePointerInfo(), false, false, 0);
1320 InChain
= RegSaveArea
.getValue(1);
1322 // select overflow_area if index > 8
1323 SDValue CC
= DAG
.getSetCC(dl
, MVT::i32
, VT
.isInteger() ? GprIndex
: FprIndex
,
1324 DAG
.getConstant(8, MVT::i32
), ISD::SETLT
);
1326 // adjustment constant gpr_index * 4/8
1327 SDValue RegConstant
= DAG
.getNode(ISD::MUL
, dl
, MVT::i32
,
1328 VT
.isInteger() ? GprIndex
: FprIndex
,
1329 DAG
.getConstant(VT
.isInteger() ? 4 : 8,
1332 // OurReg = RegSaveArea + RegConstant
1333 SDValue OurReg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, RegSaveArea
,
1336 // Floating types are 32 bytes into RegSaveArea
1337 if (VT
.isFloatingPoint())
1338 OurReg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, OurReg
,
1339 DAG
.getConstant(32, MVT::i32
));
1341 // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1342 SDValue IndexPlus1
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
,
1343 VT
.isInteger() ? GprIndex
: FprIndex
,
1344 DAG
.getConstant(VT
== MVT::i64
? 2 : 1,
1347 InChain
= DAG
.getTruncStore(InChain
, dl
, IndexPlus1
,
1348 VT
.isInteger() ? VAListPtr
: FprPtr
,
1349 MachinePointerInfo(SV
),
1350 MVT::i8
, false, false, 0);
1352 // determine if we should load from reg_save_area or overflow_area
1353 SDValue Result
= DAG
.getNode(ISD::SELECT
, dl
, PtrVT
, CC
, OurReg
, OverflowArea
);
1355 // increase overflow_area by 4/8 if gpr/fpr > 8
1356 SDValue OverflowAreaPlusN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, OverflowArea
,
1357 DAG
.getConstant(VT
.isInteger() ? 4 : 8,
1360 OverflowArea
= DAG
.getNode(ISD::SELECT
, dl
, MVT::i32
, CC
, OverflowArea
,
1363 InChain
= DAG
.getTruncStore(InChain
, dl
, OverflowArea
,
1365 MachinePointerInfo(),
1366 MVT::i32
, false, false, 0);
1368 return DAG
.getLoad(VT
, dl
, InChain
, Result
, MachinePointerInfo(), false, false, 0);
1371 SDValue
PPCTargetLowering::LowerTRAMPOLINE(SDValue Op
,
1372 SelectionDAG
&DAG
) const {
1373 SDValue Chain
= Op
.getOperand(0);
1374 SDValue Trmp
= Op
.getOperand(1); // trampoline
1375 SDValue FPtr
= Op
.getOperand(2); // nested function
1376 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
1377 DebugLoc dl
= Op
.getDebugLoc();
1379 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1380 bool isPPC64
= (PtrVT
== MVT::i64
);
1381 const Type
*IntPtrTy
=
1382 DAG
.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1385 TargetLowering::ArgListTy Args
;
1386 TargetLowering::ArgListEntry Entry
;
1388 Entry
.Ty
= IntPtrTy
;
1389 Entry
.Node
= Trmp
; Args
.push_back(Entry
);
1391 // TrampSize == (isPPC64 ? 48 : 40);
1392 Entry
.Node
= DAG
.getConstant(isPPC64
? 48 : 40,
1393 isPPC64
? MVT::i64
: MVT::i32
);
1394 Args
.push_back(Entry
);
1396 Entry
.Node
= FPtr
; Args
.push_back(Entry
);
1397 Entry
.Node
= Nest
; Args
.push_back(Entry
);
1399 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1400 std::pair
<SDValue
, SDValue
> CallResult
=
1401 LowerCallTo(Chain
, Op
.getValueType().getTypeForEVT(*DAG
.getContext()),
1402 false, false, false, false, 0, CallingConv::C
, false,
1403 /*isReturnValueUsed=*/true,
1404 DAG
.getExternalSymbol("__trampoline_setup", PtrVT
),
1408 { CallResult
.first
, CallResult
.second
};
1410 return DAG
.getMergeValues(Ops
, 2, dl
);
1413 SDValue
PPCTargetLowering::LowerVASTART(SDValue Op
, SelectionDAG
&DAG
,
1414 const PPCSubtarget
&Subtarget
) const {
1415 MachineFunction
&MF
= DAG
.getMachineFunction();
1416 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1418 DebugLoc dl
= Op
.getDebugLoc();
1420 if (Subtarget
.isDarwinABI() || Subtarget
.isPPC64()) {
1421 // vastart just stores the address of the VarArgsFrameIndex slot into the
1422 // memory location argument.
1423 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1424 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
1425 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
1426 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
1427 MachinePointerInfo(SV
),
1431 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1432 // We suppose the given va_list is already allocated.
1435 // char gpr; /* index into the array of 8 GPRs
1436 // * stored in the register save area
1437 // * gpr=0 corresponds to r3,
1438 // * gpr=1 to r4, etc.
1440 // char fpr; /* index into the array of 8 FPRs
1441 // * stored in the register save area
1442 // * fpr=0 corresponds to f1,
1443 // * fpr=1 to f2, etc.
1445 // char *overflow_arg_area;
1446 // /* location on stack that holds
1447 // * the next overflow argument
1449 // char *reg_save_area;
1450 // /* where r3:r10 and f1:f8 (if saved)
1456 SDValue ArgGPR
= DAG
.getConstant(FuncInfo
->getVarArgsNumGPR(), MVT::i32
);
1457 SDValue ArgFPR
= DAG
.getConstant(FuncInfo
->getVarArgsNumFPR(), MVT::i32
);
1460 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1462 SDValue StackOffsetFI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackOffset(),
1464 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
1467 uint64_t FrameOffset
= PtrVT
.getSizeInBits()/8;
1468 SDValue ConstFrameOffset
= DAG
.getConstant(FrameOffset
, PtrVT
);
1470 uint64_t StackOffset
= PtrVT
.getSizeInBits()/8 - 1;
1471 SDValue ConstStackOffset
= DAG
.getConstant(StackOffset
, PtrVT
);
1473 uint64_t FPROffset
= 1;
1474 SDValue ConstFPROffset
= DAG
.getConstant(FPROffset
, PtrVT
);
1476 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
1478 // Store first byte : number of int regs
1479 SDValue firstStore
= DAG
.getTruncStore(Op
.getOperand(0), dl
, ArgGPR
,
1481 MachinePointerInfo(SV
),
1482 MVT::i8
, false, false, 0);
1483 uint64_t nextOffset
= FPROffset
;
1484 SDValue nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Op
.getOperand(1),
1487 // Store second byte : number of float regs
1488 SDValue secondStore
=
1489 DAG
.getTruncStore(firstStore
, dl
, ArgFPR
, nextPtr
,
1490 MachinePointerInfo(SV
, nextOffset
), MVT::i8
,
1492 nextOffset
+= StackOffset
;
1493 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstStackOffset
);
1495 // Store second word : arguments given on stack
1496 SDValue thirdStore
=
1497 DAG
.getStore(secondStore
, dl
, StackOffsetFI
, nextPtr
,
1498 MachinePointerInfo(SV
, nextOffset
),
1500 nextOffset
+= FrameOffset
;
1501 nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, nextPtr
, ConstFrameOffset
);
1503 // Store third word : arguments given in registers
1504 return DAG
.getStore(thirdStore
, dl
, FR
, nextPtr
,
1505 MachinePointerInfo(SV
, nextOffset
),
1510 #include "PPCGenCallingConv.inc"
1512 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo
, MVT
&ValVT
, MVT
&LocVT
,
1513 CCValAssign::LocInfo
&LocInfo
,
1514 ISD::ArgFlagsTy
&ArgFlags
,
1519 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo
, MVT
&ValVT
,
1521 CCValAssign::LocInfo
&LocInfo
,
1522 ISD::ArgFlagsTy
&ArgFlags
,
1524 static const unsigned ArgRegs
[] = {
1525 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1526 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1528 const unsigned NumArgRegs
= array_lengthof(ArgRegs
);
1530 unsigned RegNum
= State
.getFirstUnallocated(ArgRegs
, NumArgRegs
);
1532 // Skip one register if the first unallocated register has an even register
1533 // number and there are still argument registers available which have not been
1534 // allocated yet. RegNum is actually an index into ArgRegs, which means we
1535 // need to skip a register if RegNum is odd.
1536 if (RegNum
!= NumArgRegs
&& RegNum
% 2 == 1) {
1537 State
.AllocateReg(ArgRegs
[RegNum
]);
1540 // Always return false here, as this function only makes sure that the first
1541 // unallocated register has an odd register number and does not actually
1542 // allocate a register for the current argument.
1546 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo
, MVT
&ValVT
,
1548 CCValAssign::LocInfo
&LocInfo
,
1549 ISD::ArgFlagsTy
&ArgFlags
,
1551 static const unsigned ArgRegs
[] = {
1552 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1556 const unsigned NumArgRegs
= array_lengthof(ArgRegs
);
1558 unsigned RegNum
= State
.getFirstUnallocated(ArgRegs
, NumArgRegs
);
1560 // If there is only one Floating-point register left we need to put both f64
1561 // values of a split ppc_fp128 value on the stack.
1562 if (RegNum
!= NumArgRegs
&& ArgRegs
[RegNum
] == PPC::F8
) {
1563 State
.AllocateReg(ArgRegs
[RegNum
]);
1566 // Always return false here, as this function only makes sure that the two f64
1567 // values a ppc_fp128 value is split into are both passed in registers or both
1568 // passed on the stack and does not actually allocate a register for the
1569 // current argument.
1573 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1575 static const unsigned *GetFPR() {
1576 static const unsigned FPR
[] = {
1577 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1578 PPC::F8
, PPC::F9
, PPC::F10
, PPC::F11
, PPC::F12
, PPC::F13
1584 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1586 static unsigned CalculateStackSlotSize(EVT ArgVT
, ISD::ArgFlagsTy Flags
,
1587 unsigned PtrByteSize
) {
1588 unsigned ArgSize
= ArgVT
.getSizeInBits()/8;
1589 if (Flags
.isByVal())
1590 ArgSize
= Flags
.getByValSize();
1591 ArgSize
= ((ArgSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
1597 PPCTargetLowering::LowerFormalArguments(SDValue Chain
,
1598 CallingConv::ID CallConv
, bool isVarArg
,
1599 const SmallVectorImpl
<ISD::InputArg
>
1601 DebugLoc dl
, SelectionDAG
&DAG
,
1602 SmallVectorImpl
<SDValue
> &InVals
)
1604 if (PPCSubTarget
.isSVR4ABI() && !PPCSubTarget
.isPPC64()) {
1605 return LowerFormalArguments_SVR4(Chain
, CallConv
, isVarArg
, Ins
,
1608 return LowerFormalArguments_Darwin(Chain
, CallConv
, isVarArg
, Ins
,
1614 PPCTargetLowering::LowerFormalArguments_SVR4(
1616 CallingConv::ID CallConv
, bool isVarArg
,
1617 const SmallVectorImpl
<ISD::InputArg
>
1619 DebugLoc dl
, SelectionDAG
&DAG
,
1620 SmallVectorImpl
<SDValue
> &InVals
) const {
1622 // 32-bit SVR4 ABI Stack Frame Layout:
1623 // +-----------------------------------+
1624 // +--> | Back chain |
1625 // | +-----------------------------------+
1626 // | | Floating-point register save area |
1627 // | +-----------------------------------+
1628 // | | General register save area |
1629 // | +-----------------------------------+
1630 // | | CR save word |
1631 // | +-----------------------------------+
1632 // | | VRSAVE save word |
1633 // | +-----------------------------------+
1634 // | | Alignment padding |
1635 // | +-----------------------------------+
1636 // | | Vector register save area |
1637 // | +-----------------------------------+
1638 // | | Local variable space |
1639 // | +-----------------------------------+
1640 // | | Parameter list area |
1641 // | +-----------------------------------+
1642 // | | LR save word |
1643 // | +-----------------------------------+
1644 // SP--> +--- | Back chain |
1645 // +-----------------------------------+
1648 // System V Application Binary Interface PowerPC Processor Supplement
1649 // AltiVec Technology Programming Interface Manual
1651 MachineFunction
&MF
= DAG
.getMachineFunction();
1652 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1653 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1655 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1656 // Potential tail calls could cause overwriting of argument stack slots.
1657 bool isImmutable
= !(GuaranteedTailCallOpt
&& (CallConv
==CallingConv::Fast
));
1658 unsigned PtrByteSize
= 4;
1660 // Assign locations to all of the incoming arguments.
1661 SmallVector
<CCValAssign
, 16> ArgLocs
;
1662 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(),
1663 getTargetMachine(), ArgLocs
, *DAG
.getContext());
1665 // Reserve space for the linkage area on the stack.
1666 CCInfo
.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize
);
1668 CCInfo
.AnalyzeFormalArguments(Ins
, CC_PPC_SVR4
);
1670 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1671 CCValAssign
&VA
= ArgLocs
[i
];
1673 // Arguments stored in registers.
1674 if (VA
.isRegLoc()) {
1675 TargetRegisterClass
*RC
;
1676 EVT ValVT
= VA
.getValVT();
1678 switch (ValVT
.getSimpleVT().SimpleTy
) {
1680 llvm_unreachable("ValVT not supported by formal arguments Lowering");
1682 RC
= PPC::GPRCRegisterClass
;
1685 RC
= PPC::F4RCRegisterClass
;
1688 RC
= PPC::F8RCRegisterClass
;
1694 RC
= PPC::VRRCRegisterClass
;
1698 // Transform the arguments stored in physical registers into virtual ones.
1699 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
1700 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, ValVT
);
1702 InVals
.push_back(ArgValue
);
1704 // Argument stored in memory.
1705 assert(VA
.isMemLoc());
1707 unsigned ArgSize
= VA
.getLocVT().getSizeInBits() / 8;
1708 int FI
= MFI
->CreateFixedObject(ArgSize
, VA
.getLocMemOffset(),
1711 // Create load nodes to retrieve arguments from the stack.
1712 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
1713 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
1714 MachinePointerInfo(),
1719 // Assign locations to all of the incoming aggregate by value arguments.
1720 // Aggregates passed by value are stored in the local variable space of the
1721 // caller's stack frame, right above the parameter list area.
1722 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
1723 CCState
CCByValInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(),
1724 getTargetMachine(), ByValArgLocs
, *DAG
.getContext());
1726 // Reserve stack space for the allocations in CCInfo.
1727 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrByteSize
);
1729 CCByValInfo
.AnalyzeFormalArguments(Ins
, CC_PPC_SVR4_ByVal
);
1731 // Area that is at least reserved in the caller of this function.
1732 unsigned MinReservedArea
= CCByValInfo
.getNextStackOffset();
1734 // Set the size that is at least reserved in caller of this function. Tail
1735 // call optimized function's reserved stack space needs to be aligned so that
1736 // taking the difference between two stack areas will result in an aligned
1738 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
1741 std::max(MinReservedArea
,
1742 PPCFrameLowering::getMinCallFrameSize(false, false));
1744 unsigned TargetAlign
= DAG
.getMachineFunction().getTarget().getFrameLowering()->
1745 getStackAlignment();
1746 unsigned AlignMask
= TargetAlign
-1;
1747 MinReservedArea
= (MinReservedArea
+ AlignMask
) & ~AlignMask
;
1749 FI
->setMinReservedArea(MinReservedArea
);
1751 SmallVector
<SDValue
, 8> MemOps
;
1753 // If the function takes variable number of arguments, make a frame index for
1754 // the start of the first vararg value... for expansion of llvm.va_start.
1756 static const unsigned GPArgRegs
[] = {
1757 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1758 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1760 const unsigned NumGPArgRegs
= array_lengthof(GPArgRegs
);
1762 static const unsigned FPArgRegs
[] = {
1763 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1766 const unsigned NumFPArgRegs
= array_lengthof(FPArgRegs
);
1768 FuncInfo
->setVarArgsNumGPR(CCInfo
.getFirstUnallocated(GPArgRegs
,
1770 FuncInfo
->setVarArgsNumFPR(CCInfo
.getFirstUnallocated(FPArgRegs
,
1773 // Make room for NumGPArgRegs and NumFPArgRegs.
1774 int Depth
= NumGPArgRegs
* PtrVT
.getSizeInBits()/8 +
1775 NumFPArgRegs
* EVT(MVT::f64
).getSizeInBits()/8;
1777 FuncInfo
->setVarArgsStackOffset(
1778 MFI
->CreateFixedObject(PtrVT
.getSizeInBits()/8,
1779 CCInfo
.getNextStackOffset(), true));
1781 FuncInfo
->setVarArgsFrameIndex(MFI
->CreateStackObject(Depth
, 8, false));
1782 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
1784 // The fixed integer arguments of a variadic function are stored to the
1785 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1786 // the result of va_next.
1787 for (unsigned GPRIndex
= 0; GPRIndex
!= NumGPArgRegs
; ++GPRIndex
) {
1788 // Get an existing live-in vreg, or add a new one.
1789 unsigned VReg
= MF
.getRegInfo().getLiveInVirtReg(GPArgRegs
[GPRIndex
]);
1791 VReg
= MF
.addLiveIn(GPArgRegs
[GPRIndex
], &PPC::GPRCRegClass
);
1793 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
1794 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1795 MachinePointerInfo(), false, false, 0);
1796 MemOps
.push_back(Store
);
1797 // Increment the address by four for the next argument to store
1798 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, PtrVT
);
1799 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
1802 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1804 // The double arguments are stored to the VarArgsFrameIndex
1806 for (unsigned FPRIndex
= 0; FPRIndex
!= NumFPArgRegs
; ++FPRIndex
) {
1807 // Get an existing live-in vreg, or add a new one.
1808 unsigned VReg
= MF
.getRegInfo().getLiveInVirtReg(FPArgRegs
[FPRIndex
]);
1810 VReg
= MF
.addLiveIn(FPArgRegs
[FPRIndex
], &PPC::F8RCRegClass
);
1812 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::f64
);
1813 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
1814 MachinePointerInfo(), false, false, 0);
1815 MemOps
.push_back(Store
);
1816 // Increment the address by eight for the next argument to store
1817 SDValue PtrOff
= DAG
.getConstant(EVT(MVT::f64
).getSizeInBits()/8,
1819 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
1823 if (!MemOps
.empty())
1824 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
,
1825 MVT::Other
, &MemOps
[0], MemOps
.size());
1831 PPCTargetLowering::LowerFormalArguments_Darwin(
1833 CallingConv::ID CallConv
, bool isVarArg
,
1834 const SmallVectorImpl
<ISD::InputArg
>
1836 DebugLoc dl
, SelectionDAG
&DAG
,
1837 SmallVectorImpl
<SDValue
> &InVals
) const {
1838 // TODO: add description of PPC stack frame format, or at least some docs.
1840 MachineFunction
&MF
= DAG
.getMachineFunction();
1841 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1842 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
1844 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1845 bool isPPC64
= PtrVT
== MVT::i64
;
1846 // Potential tail calls could cause overwriting of argument stack slots.
1847 bool isImmutable
= !(GuaranteedTailCallOpt
&& (CallConv
==CallingConv::Fast
));
1848 unsigned PtrByteSize
= isPPC64
? 8 : 4;
1850 unsigned ArgOffset
= PPCFrameLowering::getLinkageSize(isPPC64
, true);
1851 // Area that is at least reserved in caller of this function.
1852 unsigned MinReservedArea
= ArgOffset
;
1854 static const unsigned GPR_32
[] = { // 32-bit registers.
1855 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1856 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1858 static const unsigned GPR_64
[] = { // 64-bit registers.
1859 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
1860 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
1863 static const unsigned *FPR
= GetFPR();
1865 static const unsigned VR
[] = {
1866 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
1867 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
1870 const unsigned Num_GPR_Regs
= array_lengthof(GPR_32
);
1871 const unsigned Num_FPR_Regs
= 13;
1872 const unsigned Num_VR_Regs
= array_lengthof( VR
);
1874 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
1876 const unsigned *GPR
= isPPC64
? GPR_64
: GPR_32
;
1878 // In 32-bit non-varargs functions, the stack space for vectors is after the
1879 // stack space for non-vectors. We do not use this space unless we have
1880 // too many vectors to fit in registers, something that only occurs in
1881 // constructed examples:), but we have to walk the arglist to figure
1882 // that out...for the pathological case, compute VecArgOffset as the
1883 // start of the vector parameter area. Computing VecArgOffset is the
1884 // entire point of the following loop.
1885 unsigned VecArgOffset
= ArgOffset
;
1886 if (!isVarArg
&& !isPPC64
) {
1887 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
;
1889 EVT ObjectVT
= Ins
[ArgNo
].VT
;
1890 unsigned ObjSize
= ObjectVT
.getSizeInBits()/8;
1891 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
1893 if (Flags
.isByVal()) {
1894 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1895 ObjSize
= Flags
.getByValSize();
1897 ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
1898 VecArgOffset
+= ArgSize
;
1902 switch(ObjectVT
.getSimpleVT().SimpleTy
) {
1903 default: llvm_unreachable("Unhandled argument type!");
1906 VecArgOffset
+= isPPC64
? 8 : 4;
1908 case MVT::i64
: // PPC64
1916 // Nothing to do, we're only looking at Nonvector args here.
1921 // We've found where the vector parameter area in memory is. Skip the
1922 // first 12 parameters; these don't use that memory.
1923 VecArgOffset
= ((VecArgOffset
+15)/16)*16;
1924 VecArgOffset
+= 12*16;
1926 // Add DAG nodes to load the arguments or copy them out of registers. On
1927 // entry to a function on PPC, the arguments start after the linkage area,
1928 // although the first ones are often in registers.
1930 SmallVector
<SDValue
, 8> MemOps
;
1931 unsigned nAltivecParamsAtEnd
= 0;
1932 for (unsigned ArgNo
= 0, e
= Ins
.size(); ArgNo
!= e
; ++ArgNo
) {
1934 bool needsLoad
= false;
1935 EVT ObjectVT
= Ins
[ArgNo
].VT
;
1936 unsigned ObjSize
= ObjectVT
.getSizeInBits()/8;
1937 unsigned ArgSize
= ObjSize
;
1938 ISD::ArgFlagsTy Flags
= Ins
[ArgNo
].Flags
;
1940 unsigned CurArgOffset
= ArgOffset
;
1942 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1943 if (ObjectVT
==MVT::v4f32
|| ObjectVT
==MVT::v4i32
||
1944 ObjectVT
==MVT::v8i16
|| ObjectVT
==MVT::v16i8
) {
1945 if (isVarArg
|| isPPC64
) {
1946 MinReservedArea
= ((MinReservedArea
+15)/16)*16;
1947 MinReservedArea
+= CalculateStackSlotSize(ObjectVT
,
1950 } else nAltivecParamsAtEnd
++;
1952 // Calculate min reserved area.
1953 MinReservedArea
+= CalculateStackSlotSize(Ins
[ArgNo
].VT
,
1957 // FIXME the codegen can be much improved in some cases.
1958 // We do not have to keep everything in memory.
1959 if (Flags
.isByVal()) {
1960 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1961 ObjSize
= Flags
.getByValSize();
1962 ArgSize
= ((ObjSize
+ PtrByteSize
- 1)/PtrByteSize
) * PtrByteSize
;
1963 // Objects of size 1 and 2 are right justified, everything else is
1964 // left justified. This means the memory address is adjusted forwards.
1965 if (ObjSize
==1 || ObjSize
==2) {
1966 CurArgOffset
= CurArgOffset
+ (4 - ObjSize
);
1968 // The value of the object is its address.
1969 int FI
= MFI
->CreateFixedObject(ObjSize
, CurArgOffset
, true);
1970 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
1971 InVals
.push_back(FIN
);
1972 if (ObjSize
==1 || ObjSize
==2) {
1973 if (GPR_idx
!= Num_GPR_Regs
) {
1976 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
1978 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
1979 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
1980 SDValue Store
= DAG
.getTruncStore(Val
.getValue(1), dl
, Val
, FIN
,
1981 MachinePointerInfo(),
1982 ObjSize
==1 ? MVT::i8
: MVT::i16
,
1984 MemOps
.push_back(Store
);
1988 ArgOffset
+= PtrByteSize
;
1992 for (unsigned j
= 0; j
< ArgSize
; j
+= PtrByteSize
) {
1993 // Store whatever pieces of the object are in registers
1994 // to memory. ArgVal will be address of the beginning of
1996 if (GPR_idx
!= Num_GPR_Regs
) {
1999 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
2001 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
2002 int FI
= MFI
->CreateFixedObject(PtrByteSize
, ArgOffset
, true);
2003 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
2004 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
2005 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
2006 MachinePointerInfo(),
2008 MemOps
.push_back(Store
);
2010 ArgOffset
+= PtrByteSize
;
2012 ArgOffset
+= ArgSize
- (ArgOffset
-CurArgOffset
);
2019 switch (ObjectVT
.getSimpleVT().SimpleTy
) {
2020 default: llvm_unreachable("Unhandled argument type!");
2023 if (GPR_idx
!= Num_GPR_Regs
) {
2024 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
2025 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
2029 ArgSize
= PtrByteSize
;
2031 // All int arguments reserve stack space in the Darwin ABI.
2032 ArgOffset
+= PtrByteSize
;
2036 case MVT::i64
: // PPC64
2037 if (GPR_idx
!= Num_GPR_Regs
) {
2038 unsigned VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
2039 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i64
);
2041 if (ObjectVT
== MVT::i32
) {
2042 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2043 // value to MVT::i64 and then truncate to the correct register size.
2045 ArgVal
= DAG
.getNode(ISD::AssertSext
, dl
, MVT::i64
, ArgVal
,
2046 DAG
.getValueType(ObjectVT
));
2047 else if (Flags
.isZExt())
2048 ArgVal
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i64
, ArgVal
,
2049 DAG
.getValueType(ObjectVT
));
2051 ArgVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, ArgVal
);
2057 ArgSize
= PtrByteSize
;
2059 // All int arguments reserve stack space in the Darwin ABI.
2065 // Every 4 bytes of argument space consumes one of the GPRs available for
2066 // argument passing.
2067 if (GPR_idx
!= Num_GPR_Regs
) {
2069 if (ObjSize
== 8 && GPR_idx
!= Num_GPR_Regs
&& !isPPC64
)
2072 if (FPR_idx
!= Num_FPR_Regs
) {
2075 if (ObjectVT
== MVT::f32
)
2076 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], &PPC::F4RCRegClass
);
2078 VReg
= MF
.addLiveIn(FPR
[FPR_idx
], &PPC::F8RCRegClass
);
2080 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
2086 // All FP arguments reserve stack space in the Darwin ABI.
2087 ArgOffset
+= isPPC64
? 8 : ObjSize
;
2093 // Note that vector arguments in registers don't reserve stack space,
2094 // except in varargs functions.
2095 if (VR_idx
!= Num_VR_Regs
) {
2096 unsigned VReg
= MF
.addLiveIn(VR
[VR_idx
], &PPC::VRRCRegClass
);
2097 ArgVal
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, ObjectVT
);
2099 while ((ArgOffset
% 16) != 0) {
2100 ArgOffset
+= PtrByteSize
;
2101 if (GPR_idx
!= Num_GPR_Regs
)
2105 GPR_idx
= std::min(GPR_idx
+4, Num_GPR_Regs
); // FIXME correct for ppc64?
2109 if (!isVarArg
&& !isPPC64
) {
2110 // Vectors go after all the nonvectors.
2111 CurArgOffset
= VecArgOffset
;
2114 // Vectors are aligned.
2115 ArgOffset
= ((ArgOffset
+15)/16)*16;
2116 CurArgOffset
= ArgOffset
;
2124 // We need to load the argument to a virtual register if we determined above
2125 // that we ran out of physical registers of the appropriate type.
2127 int FI
= MFI
->CreateFixedObject(ObjSize
,
2128 CurArgOffset
+ (ArgSize
- ObjSize
),
2130 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
2131 ArgVal
= DAG
.getLoad(ObjectVT
, dl
, Chain
, FIN
, MachinePointerInfo(),
2135 InVals
.push_back(ArgVal
);
2138 // Set the size that is at least reserved in caller of this function. Tail
2139 // call optimized function's reserved stack space needs to be aligned so that
2140 // taking the difference between two stack areas will result in an aligned
2142 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
2143 // Add the Altivec parameters at the end, if needed.
2144 if (nAltivecParamsAtEnd
) {
2145 MinReservedArea
= ((MinReservedArea
+15)/16)*16;
2146 MinReservedArea
+= 16*nAltivecParamsAtEnd
;
2149 std::max(MinReservedArea
,
2150 PPCFrameLowering::getMinCallFrameSize(isPPC64
, true));
2151 unsigned TargetAlign
= DAG
.getMachineFunction().getTarget().getFrameLowering()->
2152 getStackAlignment();
2153 unsigned AlignMask
= TargetAlign
-1;
2154 MinReservedArea
= (MinReservedArea
+ AlignMask
) & ~AlignMask
;
2155 FI
->setMinReservedArea(MinReservedArea
);
2157 // If the function takes variable number of arguments, make a frame index for
2158 // the start of the first vararg value... for expansion of llvm.va_start.
2160 int Depth
= ArgOffset
;
2162 FuncInfo
->setVarArgsFrameIndex(
2163 MFI
->CreateFixedObject(PtrVT
.getSizeInBits()/8,
2165 SDValue FIN
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
2167 // If this function is vararg, store any remaining integer argument regs
2168 // to their spots on the stack so that they may be loaded by deferencing the
2169 // result of va_next.
2170 for (; GPR_idx
!= Num_GPR_Regs
; ++GPR_idx
) {
2174 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::G8RCRegClass
);
2176 VReg
= MF
.addLiveIn(GPR
[GPR_idx
], &PPC::GPRCRegClass
);
2178 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, PtrVT
);
2179 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
2180 MachinePointerInfo(), false, false, 0);
2181 MemOps
.push_back(Store
);
2182 // Increment the address by four for the next argument to store
2183 SDValue PtrOff
= DAG
.getConstant(PtrVT
.getSizeInBits()/8, PtrVT
);
2184 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrOff
.getValueType(), FIN
, PtrOff
);
2188 if (!MemOps
.empty())
2189 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
,
2190 MVT::Other
, &MemOps
[0], MemOps
.size());
2195 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2196 /// linkage area for the Darwin ABI.
2198 CalculateParameterAndLinkageAreaSize(SelectionDAG
&DAG
,
2202 const SmallVectorImpl
<ISD::OutputArg
>
2204 const SmallVectorImpl
<SDValue
> &OutVals
,
2205 unsigned &nAltivecParamsAtEnd
) {
2206 // Count how many bytes are to be pushed on the stack, including the linkage
2207 // area, and parameter passing area. We start with 24/48 bytes, which is
2208 // prereserved space for [SP][CR][LR][3 x unused].
2209 unsigned NumBytes
= PPCFrameLowering::getLinkageSize(isPPC64
, true);
2210 unsigned NumOps
= Outs
.size();
2211 unsigned PtrByteSize
= isPPC64
? 8 : 4;
2213 // Add up all the space actually used.
2214 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2215 // they all go in registers, but we must reserve stack space for them for
2216 // possible use by the caller. In varargs or 64-bit calls, parameters are
2217 // assigned stack space in order, with padding so Altivec parameters are
2219 nAltivecParamsAtEnd
= 0;
2220 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
2221 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2222 EVT ArgVT
= Outs
[i
].VT
;
2223 // Varargs Altivec parameters are padded to a 16 byte boundary.
2224 if (ArgVT
==MVT::v4f32
|| ArgVT
==MVT::v4i32
||
2225 ArgVT
==MVT::v8i16
|| ArgVT
==MVT::v16i8
) {
2226 if (!isVarArg
&& !isPPC64
) {
2227 // Non-varargs Altivec parameters go after all the non-Altivec
2228 // parameters; handle those later so we know how much padding we need.
2229 nAltivecParamsAtEnd
++;
2232 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2233 NumBytes
= ((NumBytes
+15)/16)*16;
2235 NumBytes
+= CalculateStackSlotSize(ArgVT
, Flags
, PtrByteSize
);
2238 // Allow for Altivec parameters at the end, if needed.
2239 if (nAltivecParamsAtEnd
) {
2240 NumBytes
= ((NumBytes
+15)/16)*16;
2241 NumBytes
+= 16*nAltivecParamsAtEnd
;
2244 // The prolog code of the callee may store up to 8 GPR argument registers to
2245 // the stack, allowing va_start to index over them in memory if its varargs.
2246 // Because we cannot tell if this is needed on the caller side, we have to
2247 // conservatively assume that it is needed. As such, make sure we have at
2248 // least enough stack space for the caller to store the 8 GPRs.
2249 NumBytes
= std::max(NumBytes
,
2250 PPCFrameLowering::getMinCallFrameSize(isPPC64
, true));
2252 // Tail call needs the stack to be aligned.
2253 if (CC
==CallingConv::Fast
&& GuaranteedTailCallOpt
) {
2254 unsigned TargetAlign
= DAG
.getMachineFunction().getTarget().getFrameLowering()->
2255 getStackAlignment();
2256 unsigned AlignMask
= TargetAlign
-1;
2257 NumBytes
= (NumBytes
+ AlignMask
) & ~AlignMask
;
2263 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2264 /// adjusted to accommodate the arguments for the tailcall.
2265 static int CalculateTailCallSPDiff(SelectionDAG
& DAG
, bool isTailCall
,
2266 unsigned ParamSize
) {
2268 if (!isTailCall
) return 0;
2270 PPCFunctionInfo
*FI
= DAG
.getMachineFunction().getInfo
<PPCFunctionInfo
>();
2271 unsigned CallerMinReservedArea
= FI
->getMinReservedArea();
2272 int SPDiff
= (int)CallerMinReservedArea
- (int)ParamSize
;
2273 // Remember only if the new adjustement is bigger.
2274 if (SPDiff
< FI
->getTailCallSPDelta())
2275 FI
->setTailCallSPDelta(SPDiff
);
2280 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2281 /// for tail call optimization. Targets which want to do tail call
2282 /// optimization should implement this function.
2284 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee
,
2285 CallingConv::ID CalleeCC
,
2287 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2288 SelectionDAG
& DAG
) const {
2289 if (!GuaranteedTailCallOpt
)
2292 // Variable argument functions are not supported.
2296 MachineFunction
&MF
= DAG
.getMachineFunction();
2297 CallingConv::ID CallerCC
= MF
.getFunction()->getCallingConv();
2298 if (CalleeCC
== CallingConv::Fast
&& CallerCC
== CalleeCC
) {
2299 // Functions containing by val parameters are not supported.
2300 for (unsigned i
= 0; i
!= Ins
.size(); i
++) {
2301 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
2302 if (Flags
.isByVal()) return false;
2305 // Non PIC/GOT tail calls are supported.
2306 if (getTargetMachine().getRelocationModel() != Reloc::PIC_
)
2309 // At the moment we can only do local tail calls (in same module, hidden
2310 // or protected) if we are generating PIC.
2311 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2312 return G
->getGlobal()->hasHiddenVisibility()
2313 || G
->getGlobal()->hasProtectedVisibility();
2319 /// isCallCompatibleAddress - Return the immediate to use if the specified
2320 /// 32-bit value is representable in the immediate field of a BxA instruction.
2321 static SDNode
*isBLACompatibleAddress(SDValue Op
, SelectionDAG
&DAG
) {
2322 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
2325 int Addr
= C
->getZExtValue();
2326 if ((Addr
& 3) != 0 || // Low 2 bits are implicitly zero.
2327 (Addr
<< 6 >> 6) != Addr
)
2328 return 0; // Top 6 bits have to be sext of immediate.
2330 return DAG
.getConstant((int)C
->getZExtValue() >> 2,
2331 DAG
.getTargetLoweringInfo().getPointerTy()).getNode();
2336 struct TailCallArgumentInfo
{
2341 TailCallArgumentInfo() : FrameIdx(0) {}
2346 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2348 StoreTailCallArgumentsToStackSlot(SelectionDAG
&DAG
,
2350 const SmallVector
<TailCallArgumentInfo
, 8> &TailCallArgs
,
2351 SmallVector
<SDValue
, 8> &MemOpChains
,
2353 for (unsigned i
= 0, e
= TailCallArgs
.size(); i
!= e
; ++i
) {
2354 SDValue Arg
= TailCallArgs
[i
].Arg
;
2355 SDValue FIN
= TailCallArgs
[i
].FrameIdxOp
;
2356 int FI
= TailCallArgs
[i
].FrameIdx
;
2357 // Store relative to framepointer.
2358 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, FIN
,
2359 MachinePointerInfo::getFixedStack(FI
),
2364 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2365 /// the appropriate stack slot for the tail call optimized function call.
2366 static SDValue
EmitTailCallStoreFPAndRetAddr(SelectionDAG
&DAG
,
2367 MachineFunction
&MF
,
2376 // Calculate the new stack slot for the return address.
2377 int SlotSize
= isPPC64
? 8 : 4;
2378 int NewRetAddrLoc
= SPDiff
+ PPCFrameLowering::getReturnSaveOffset(isPPC64
,
2380 int NewRetAddr
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
,
2381 NewRetAddrLoc
, true);
2382 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
2383 SDValue NewRetAddrFrIdx
= DAG
.getFrameIndex(NewRetAddr
, VT
);
2384 Chain
= DAG
.getStore(Chain
, dl
, OldRetAddr
, NewRetAddrFrIdx
,
2385 MachinePointerInfo::getFixedStack(NewRetAddr
),
2388 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2389 // slot as the FP is never overwritten.
2392 SPDiff
+ PPCFrameLowering::getFramePointerSaveOffset(isPPC64
, isDarwinABI
);
2393 int NewFPIdx
= MF
.getFrameInfo()->CreateFixedObject(SlotSize
, NewFPLoc
,
2395 SDValue NewFramePtrIdx
= DAG
.getFrameIndex(NewFPIdx
, VT
);
2396 Chain
= DAG
.getStore(Chain
, dl
, OldFP
, NewFramePtrIdx
,
2397 MachinePointerInfo::getFixedStack(NewFPIdx
),
2404 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2405 /// the position of the argument.
2407 CalculateTailCallArgDest(SelectionDAG
&DAG
, MachineFunction
&MF
, bool isPPC64
,
2408 SDValue Arg
, int SPDiff
, unsigned ArgOffset
,
2409 SmallVector
<TailCallArgumentInfo
, 8>& TailCallArguments
) {
2410 int Offset
= ArgOffset
+ SPDiff
;
2411 uint32_t OpSize
= (Arg
.getValueType().getSizeInBits()+7)/8;
2412 int FI
= MF
.getFrameInfo()->CreateFixedObject(OpSize
, Offset
, true);
2413 EVT VT
= isPPC64
? MVT::i64
: MVT::i32
;
2414 SDValue FIN
= DAG
.getFrameIndex(FI
, VT
);
2415 TailCallArgumentInfo Info
;
2417 Info
.FrameIdxOp
= FIN
;
2419 TailCallArguments
.push_back(Info
);
2422 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2423 /// stack slot. Returns the chain as result and the loaded frame pointers in
2424 /// LROpOut/FPOpout. Used when tail calling.
2425 SDValue
PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG
& DAG
,
2431 DebugLoc dl
) const {
2433 // Load the LR and FP stack slot for later adjusting.
2434 EVT VT
= PPCSubTarget
.isPPC64() ? MVT::i64
: MVT::i32
;
2435 LROpOut
= getReturnAddrFrameIndex(DAG
);
2436 LROpOut
= DAG
.getLoad(VT
, dl
, Chain
, LROpOut
, MachinePointerInfo(),
2438 Chain
= SDValue(LROpOut
.getNode(), 1);
2440 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2441 // slot as the FP is never overwritten.
2443 FPOpOut
= getFramePointerFrameIndex(DAG
);
2444 FPOpOut
= DAG
.getLoad(VT
, dl
, Chain
, FPOpOut
, MachinePointerInfo(),
2446 Chain
= SDValue(FPOpOut
.getNode(), 1);
2452 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2453 /// by "Src" to address "Dst" of size "Size". Alignment information is
2454 /// specified by the specific parameter attribute. The copy will be passed as
2455 /// a byval function parameter.
2456 /// Sometimes what we are copying is the end of a larger object, the part that
2457 /// does not fit in registers.
2459 CreateCopyOfByValArgument(SDValue Src
, SDValue Dst
, SDValue Chain
,
2460 ISD::ArgFlagsTy Flags
, SelectionDAG
&DAG
,
2462 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), MVT::i32
);
2463 return DAG
.getMemcpy(Chain
, dl
, Dst
, Src
, SizeNode
, Flags
.getByValAlign(),
2464 false, false, MachinePointerInfo(0),
2465 MachinePointerInfo(0));
2468 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2471 LowerMemOpCallTo(SelectionDAG
&DAG
, MachineFunction
&MF
, SDValue Chain
,
2472 SDValue Arg
, SDValue PtrOff
, int SPDiff
,
2473 unsigned ArgOffset
, bool isPPC64
, bool isTailCall
,
2474 bool isVector
, SmallVector
<SDValue
, 8> &MemOpChains
,
2475 SmallVector
<TailCallArgumentInfo
, 8> &TailCallArguments
,
2477 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2482 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
2484 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
2485 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
2486 DAG
.getConstant(ArgOffset
, PtrVT
));
2488 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
2489 MachinePointerInfo(), false, false, 0));
2490 // Calculate and remember argument location.
2491 } else CalculateTailCallArgDest(DAG
, MF
, isPPC64
, Arg
, SPDiff
, ArgOffset
,
2496 void PrepareTailCall(SelectionDAG
&DAG
, SDValue
&InFlag
, SDValue
&Chain
,
2497 DebugLoc dl
, bool isPPC64
, int SPDiff
, unsigned NumBytes
,
2498 SDValue LROp
, SDValue FPOp
, bool isDarwinABI
,
2499 SmallVector
<TailCallArgumentInfo
, 8> &TailCallArguments
) {
2500 MachineFunction
&MF
= DAG
.getMachineFunction();
2502 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2503 // might overwrite each other in case of tail call optimization.
2504 SmallVector
<SDValue
, 8> MemOpChains2
;
2505 // Do not flag preceding copytoreg stuff together with the following stuff.
2507 StoreTailCallArgumentsToStackSlot(DAG
, Chain
, TailCallArguments
,
2509 if (!MemOpChains2
.empty())
2510 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
2511 &MemOpChains2
[0], MemOpChains2
.size());
2513 // Store the return address to the appropriate stack slot.
2514 Chain
= EmitTailCallStoreFPAndRetAddr(DAG
, MF
, Chain
, LROp
, FPOp
, SPDiff
,
2515 isPPC64
, isDarwinABI
, dl
);
2517 // Emit callseq_end just before tailcall node.
2518 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
2519 DAG
.getIntPtrConstant(0, true), InFlag
);
2520 InFlag
= Chain
.getValue(1);
2524 unsigned PrepareCall(SelectionDAG
&DAG
, SDValue
&Callee
, SDValue
&InFlag
,
2525 SDValue
&Chain
, DebugLoc dl
, int SPDiff
, bool isTailCall
,
2526 SmallVector
<std::pair
<unsigned, SDValue
>, 8> &RegsToPass
,
2527 SmallVector
<SDValue
, 8> &Ops
, std::vector
<EVT
> &NodeTys
,
2528 const PPCSubtarget
&PPCSubTarget
) {
2530 bool isPPC64
= PPCSubTarget
.isPPC64();
2531 bool isSVR4ABI
= PPCSubTarget
.isSVR4ABI();
2533 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2534 NodeTys
.push_back(MVT::Other
); // Returns a chain
2535 NodeTys
.push_back(MVT::Glue
); // Returns a flag for retval copy to use.
2537 unsigned CallOpc
= isSVR4ABI
? PPCISD::CALL_SVR4
: PPCISD::CALL_Darwin
;
2539 bool needIndirectCall
= true;
2540 if (SDNode
*Dest
= isBLACompatibleAddress(Callee
, DAG
)) {
2541 // If this is an absolute destination address, use the munged value.
2542 Callee
= SDValue(Dest
, 0);
2543 needIndirectCall
= false;
2546 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
2547 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2548 // Use indirect calls for ALL functions calls in JIT mode, since the
2549 // far-call stubs may be outside relocation limits for a BL instruction.
2550 if (!DAG
.getTarget().getSubtarget
<PPCSubtarget
>().isJITCodeModel()) {
2551 unsigned OpFlags
= 0;
2552 if (DAG
.getTarget().getRelocationModel() != Reloc::Static
&&
2553 (!PPCSubTarget
.getTargetTriple().isMacOSX() ||
2554 PPCSubTarget
.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2555 (G
->getGlobal()->isDeclaration() ||
2556 G
->getGlobal()->isWeakForLinker())) {
2557 // PC-relative references to external symbols should go through $stub,
2558 // unless we're building with the leopard linker or later, which
2559 // automatically synthesizes these stubs.
2560 OpFlags
= PPCII::MO_DARWIN_STUB
;
2563 // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2564 // every direct call is) turn it into a TargetGlobalAddress /
2565 // TargetExternalSymbol node so that legalize doesn't hack it.
2566 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), dl
,
2567 Callee
.getValueType(),
2569 needIndirectCall
= false;
2573 if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2574 unsigned char OpFlags
= 0;
2576 if (DAG
.getTarget().getRelocationModel() != Reloc::Static
&&
2577 (!PPCSubTarget
.getTargetTriple().isMacOSX() ||
2578 PPCSubTarget
.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2579 // PC-relative references to external symbols should go through $stub,
2580 // unless we're building with the leopard linker or later, which
2581 // automatically synthesizes these stubs.
2582 OpFlags
= PPCII::MO_DARWIN_STUB
;
2585 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), Callee
.getValueType(),
2587 needIndirectCall
= false;
2590 if (needIndirectCall
) {
2591 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
2592 // to do the call, we can't use PPCISD::CALL.
2593 SDValue MTCTROps
[] = {Chain
, Callee
, InFlag
};
2595 if (isSVR4ABI
&& isPPC64
) {
2596 // Function pointers in the 64-bit SVR4 ABI do not point to the function
2597 // entry point, but to the function descriptor (the function entry point
2598 // address is part of the function descriptor though).
2599 // The function descriptor is a three doubleword structure with the
2600 // following fields: function entry point, TOC base address and
2601 // environment pointer.
2602 // Thus for a call through a function pointer, the following actions need
2604 // 1. Save the TOC of the caller in the TOC save area of its stack
2605 // frame (this is done in LowerCall_Darwin()).
2606 // 2. Load the address of the function entry point from the function
2608 // 3. Load the TOC of the callee from the function descriptor into r2.
2609 // 4. Load the environment pointer from the function descriptor into
2611 // 5. Branch to the function entry point address.
2612 // 6. On return of the callee, the TOC of the caller needs to be
2613 // restored (this is done in FinishCall()).
2615 // All those operations are flagged together to ensure that no other
2616 // operations can be scheduled in between. E.g. without flagging the
2617 // operations together, a TOC access in the caller could be scheduled
2618 // between the load of the callee TOC and the branch to the callee, which
2619 // results in the TOC access going through the TOC of the callee instead
2620 // of going through the TOC of the caller, which leads to incorrect code.
2622 // Load the address of the function entry point from the function
2624 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::Other
, MVT::Glue
);
2625 SDValue LoadFuncPtr
= DAG
.getNode(PPCISD::LOAD
, dl
, VTs
, MTCTROps
,
2626 InFlag
.getNode() ? 3 : 2);
2627 Chain
= LoadFuncPtr
.getValue(1);
2628 InFlag
= LoadFuncPtr
.getValue(2);
2630 // Load environment pointer into r11.
2631 // Offset of the environment pointer within the function descriptor.
2632 SDValue PtrOff
= DAG
.getIntPtrConstant(16);
2634 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Callee
, PtrOff
);
2635 SDValue LoadEnvPtr
= DAG
.getNode(PPCISD::LOAD
, dl
, VTs
, Chain
, AddPtr
,
2637 Chain
= LoadEnvPtr
.getValue(1);
2638 InFlag
= LoadEnvPtr
.getValue(2);
2640 SDValue EnvVal
= DAG
.getCopyToReg(Chain
, dl
, PPC::X11
, LoadEnvPtr
,
2642 Chain
= EnvVal
.getValue(0);
2643 InFlag
= EnvVal
.getValue(1);
2645 // Load TOC of the callee into r2. We are using a target-specific load
2646 // with r2 hard coded, because the result of a target-independent load
2647 // would never go directly into r2, since r2 is a reserved register (which
2648 // prevents the register allocator from allocating it), resulting in an
2649 // additional register being allocated and an unnecessary move instruction
2651 VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2652 SDValue LoadTOCPtr
= DAG
.getNode(PPCISD::LOAD_TOC
, dl
, VTs
, Chain
,
2654 Chain
= LoadTOCPtr
.getValue(0);
2655 InFlag
= LoadTOCPtr
.getValue(1);
2657 MTCTROps
[0] = Chain
;
2658 MTCTROps
[1] = LoadFuncPtr
;
2659 MTCTROps
[2] = InFlag
;
2662 Chain
= DAG
.getNode(PPCISD::MTCTR
, dl
, NodeTys
, MTCTROps
,
2663 2 + (InFlag
.getNode() != 0));
2664 InFlag
= Chain
.getValue(1);
2667 NodeTys
.push_back(MVT::Other
);
2668 NodeTys
.push_back(MVT::Glue
);
2669 Ops
.push_back(Chain
);
2670 CallOpc
= isSVR4ABI
? PPCISD::BCTRL_SVR4
: PPCISD::BCTRL_Darwin
;
2672 // Add CTR register as callee so a bctr can be emitted later.
2674 Ops
.push_back(DAG
.getRegister(isPPC64
? PPC::CTR8
: PPC::CTR
, PtrVT
));
2677 // If this is a direct call, pass the chain and the callee.
2678 if (Callee
.getNode()) {
2679 Ops
.push_back(Chain
);
2680 Ops
.push_back(Callee
);
2682 // If this is a tail call add stack pointer delta.
2684 Ops
.push_back(DAG
.getConstant(SPDiff
, MVT::i32
));
2686 // Add argument registers to the end of the list so that they are known live
2688 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2689 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2690 RegsToPass
[i
].second
.getValueType()));
2696 PPCTargetLowering::LowerCallResult(SDValue Chain
, SDValue InFlag
,
2697 CallingConv::ID CallConv
, bool isVarArg
,
2698 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2699 DebugLoc dl
, SelectionDAG
&DAG
,
2700 SmallVectorImpl
<SDValue
> &InVals
) const {
2702 SmallVector
<CCValAssign
, 16> RVLocs
;
2703 CCState
CCRetInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(),
2704 getTargetMachine(), RVLocs
, *DAG
.getContext());
2705 CCRetInfo
.AnalyzeCallResult(Ins
, RetCC_PPC
);
2707 // Copy all of the result registers out of their specified physreg.
2708 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
2709 CCValAssign
&VA
= RVLocs
[i
];
2710 EVT VT
= VA
.getValVT();
2711 assert(VA
.isRegLoc() && "Can only return in registers!");
2712 Chain
= DAG
.getCopyFromReg(Chain
, dl
,
2713 VA
.getLocReg(), VT
, InFlag
).getValue(1);
2714 InVals
.push_back(Chain
.getValue(0));
2715 InFlag
= Chain
.getValue(2);
2722 PPCTargetLowering::FinishCall(CallingConv::ID CallConv
, DebugLoc dl
,
2723 bool isTailCall
, bool isVarArg
,
2725 SmallVector
<std::pair
<unsigned, SDValue
>, 8>
2727 SDValue InFlag
, SDValue Chain
,
2729 int SPDiff
, unsigned NumBytes
,
2730 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2731 SmallVectorImpl
<SDValue
> &InVals
) const {
2732 std::vector
<EVT
> NodeTys
;
2733 SmallVector
<SDValue
, 8> Ops
;
2734 unsigned CallOpc
= PrepareCall(DAG
, Callee
, InFlag
, Chain
, dl
, SPDiff
,
2735 isTailCall
, RegsToPass
, Ops
, NodeTys
,
2738 // When performing tail call optimization the callee pops its arguments off
2739 // the stack. Account for this here so these bytes can be pushed back on in
2740 // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2741 int BytesCalleePops
=
2742 (CallConv
==CallingConv::Fast
&& GuaranteedTailCallOpt
) ? NumBytes
: 0;
2744 if (InFlag
.getNode())
2745 Ops
.push_back(InFlag
);
2749 // If this is the first return lowered for this function, add the regs
2750 // to the liveout set for the function.
2751 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
2752 SmallVector
<CCValAssign
, 16> RVLocs
;
2753 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(),
2754 getTargetMachine(), RVLocs
, *DAG
.getContext());
2755 CCInfo
.AnalyzeCallResult(Ins
, RetCC_PPC
);
2756 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
2757 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
2760 assert(((Callee
.getOpcode() == ISD::Register
&&
2761 cast
<RegisterSDNode
>(Callee
)->getReg() == PPC::CTR
) ||
2762 Callee
.getOpcode() == ISD::TargetExternalSymbol
||
2763 Callee
.getOpcode() == ISD::TargetGlobalAddress
||
2764 isa
<ConstantSDNode
>(Callee
)) &&
2765 "Expecting an global address, external symbol, absolute value or register");
2767 return DAG
.getNode(PPCISD::TC_RETURN
, dl
, MVT::Other
, &Ops
[0], Ops
.size());
2770 Chain
= DAG
.getNode(CallOpc
, dl
, NodeTys
, &Ops
[0], Ops
.size());
2771 InFlag
= Chain
.getValue(1);
2773 // Add a NOP immediately after the branch instruction when using the 64-bit
2774 // SVR4 ABI. At link time, if caller and callee are in a different module and
2775 // thus have a different TOC, the call will be replaced with a call to a stub
2776 // function which saves the current TOC, loads the TOC of the callee and
2777 // branches to the callee. The NOP will be replaced with a load instruction
2778 // which restores the TOC of the caller from the TOC save slot of the current
2779 // stack frame. If caller and callee belong to the same module (and have the
2780 // same TOC), the NOP will remain unchanged.
2781 if (!isTailCall
&& PPCSubTarget
.isSVR4ABI()&& PPCSubTarget
.isPPC64()) {
2782 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2783 if (CallOpc
== PPCISD::BCTRL_SVR4
) {
2784 // This is a call through a function pointer.
2785 // Restore the caller TOC from the save area into R2.
2786 // See PrepareCall() for more information about calls through function
2787 // pointers in the 64-bit SVR4 ABI.
2788 // We are using a target-specific load with r2 hard coded, because the
2789 // result of a target-independent load would never go directly into r2,
2790 // since r2 is a reserved register (which prevents the register allocator
2791 // from allocating it), resulting in an additional register being
2792 // allocated and an unnecessary move instruction being generated.
2793 Chain
= DAG
.getNode(PPCISD::TOC_RESTORE
, dl
, VTs
, Chain
, InFlag
);
2794 InFlag
= Chain
.getValue(1);
2796 // Otherwise insert NOP.
2797 InFlag
= DAG
.getNode(PPCISD::NOP
, dl
, MVT::Glue
, InFlag
);
2801 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, true),
2802 DAG
.getIntPtrConstant(BytesCalleePops
, true),
2805 InFlag
= Chain
.getValue(1);
2807 return LowerCallResult(Chain
, InFlag
, CallConv
, isVarArg
,
2808 Ins
, dl
, DAG
, InVals
);
2812 PPCTargetLowering::LowerCall(SDValue Chain
, SDValue Callee
,
2813 CallingConv::ID CallConv
, bool isVarArg
,
2815 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2816 const SmallVectorImpl
<SDValue
> &OutVals
,
2817 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2818 DebugLoc dl
, SelectionDAG
&DAG
,
2819 SmallVectorImpl
<SDValue
> &InVals
) const {
2821 isTailCall
= IsEligibleForTailCallOptimization(Callee
, CallConv
, isVarArg
,
2824 if (PPCSubTarget
.isSVR4ABI() && !PPCSubTarget
.isPPC64())
2825 return LowerCall_SVR4(Chain
, Callee
, CallConv
, isVarArg
,
2826 isTailCall
, Outs
, OutVals
, Ins
,
2829 return LowerCall_Darwin(Chain
, Callee
, CallConv
, isVarArg
,
2830 isTailCall
, Outs
, OutVals
, Ins
,
2835 PPCTargetLowering::LowerCall_SVR4(SDValue Chain
, SDValue Callee
,
2836 CallingConv::ID CallConv
, bool isVarArg
,
2838 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
2839 const SmallVectorImpl
<SDValue
> &OutVals
,
2840 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
2841 DebugLoc dl
, SelectionDAG
&DAG
,
2842 SmallVectorImpl
<SDValue
> &InVals
) const {
2843 // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2844 // of the 32-bit SVR4 ABI stack frame layout.
2846 assert((CallConv
== CallingConv::C
||
2847 CallConv
== CallingConv::Fast
) && "Unknown calling convention!");
2849 unsigned PtrByteSize
= 4;
2851 MachineFunction
&MF
= DAG
.getMachineFunction();
2853 // Mark this function as potentially containing a function that contains a
2854 // tail call. As a consequence the frame pointer will be used for dynamicalloc
2855 // and restoring the callers stack pointer in this functions epilog. This is
2856 // done because by tail calling the called function might overwrite the value
2857 // in this function's (MF) stack pointer stack slot 0(SP).
2858 if (GuaranteedTailCallOpt
&& CallConv
==CallingConv::Fast
)
2859 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
2861 // Count how many bytes are to be pushed on the stack, including the linkage
2862 // area, parameter list area and the part of the local variable space which
2863 // contains copies of aggregates which are passed by value.
2865 // Assign locations to all of the outgoing arguments.
2866 SmallVector
<CCValAssign
, 16> ArgLocs
;
2867 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(),
2868 getTargetMachine(), ArgLocs
, *DAG
.getContext());
2870 // Reserve space for the linkage area on the stack.
2871 CCInfo
.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize
);
2874 // Handle fixed and variable vector arguments differently.
2875 // Fixed vector arguments go into registers as long as registers are
2876 // available. Variable vector arguments always go into memory.
2877 unsigned NumArgs
= Outs
.size();
2879 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
2880 MVT ArgVT
= Outs
[i
].VT
;
2881 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
2884 if (Outs
[i
].IsFixed
) {
2885 Result
= CC_PPC_SVR4(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
,
2888 Result
= CC_PPC_SVR4_VarArg(i
, ArgVT
, ArgVT
, CCValAssign::Full
,
2894 errs() << "Call operand #" << i
<< " has unhandled type "
2895 << EVT(ArgVT
).getEVTString() << "\n";
2897 llvm_unreachable(0);
2901 // All arguments are treated the same.
2902 CCInfo
.AnalyzeCallOperands(Outs
, CC_PPC_SVR4
);
2905 // Assign locations to all of the outgoing aggregate by value arguments.
2906 SmallVector
<CCValAssign
, 16> ByValArgLocs
;
2907 CCState
CCByValInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(),
2908 getTargetMachine(), ByValArgLocs
, *DAG
.getContext());
2910 // Reserve stack space for the allocations in CCInfo.
2911 CCByValInfo
.AllocateStack(CCInfo
.getNextStackOffset(), PtrByteSize
);
2913 CCByValInfo
.AnalyzeCallOperands(Outs
, CC_PPC_SVR4_ByVal
);
2915 // Size of the linkage area, parameter list area and the part of the local
2916 // space variable where copies of aggregates which are passed by value are
2918 unsigned NumBytes
= CCByValInfo
.getNextStackOffset();
2920 // Calculate by how many bytes the stack has to be adjusted in case of tail
2921 // call optimization.
2922 int SPDiff
= CalculateTailCallSPDiff(DAG
, isTailCall
, NumBytes
);
2924 // Adjust the stack pointer for the new arguments...
2925 // These operations are automatically eliminated by the prolog/epilog pass
2926 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
2927 SDValue CallSeqStart
= Chain
;
2929 // Load the return address and frame pointer so it can be moved somewhere else
2932 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, false,
2935 // Set up a copy of the stack pointer for use loading and storing any
2936 // arguments that may not fit in the registers available for argument
2938 SDValue StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
2940 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
2941 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
2942 SmallVector
<SDValue
, 8> MemOpChains
;
2944 // Walk the register/memloc assignments, inserting copies/loads.
2945 for (unsigned i
= 0, j
= 0, e
= ArgLocs
.size();
2948 CCValAssign
&VA
= ArgLocs
[i
];
2949 SDValue Arg
= OutVals
[i
];
2950 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
2952 if (Flags
.isByVal()) {
2953 // Argument is an aggregate which is passed by value, thus we need to
2954 // create a copy of it in the local variable space of the current stack
2955 // frame (which is the stack frame of the caller) and pass the address of
2956 // this copy to the callee.
2957 assert((j
< ByValArgLocs
.size()) && "Index out of bounds!");
2958 CCValAssign
&ByValVA
= ByValArgLocs
[j
++];
2959 assert((VA
.getValNo() == ByValVA
.getValNo()) && "ValNo mismatch!");
2961 // Memory reserved in the local variable space of the callers stack frame.
2962 unsigned LocMemOffset
= ByValVA
.getLocMemOffset();
2964 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
2965 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
2967 // Create a copy of the argument in the local area of the current
2969 SDValue MemcpyCall
=
2970 CreateCopyOfByValArgument(Arg
, PtrOff
,
2971 CallSeqStart
.getNode()->getOperand(0),
2974 // This must go outside the CALLSEQ_START..END.
2975 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
,
2976 CallSeqStart
.getNode()->getOperand(1));
2977 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
2978 NewCallSeqStart
.getNode());
2979 Chain
= CallSeqStart
= NewCallSeqStart
;
2981 // Pass the address of the aggregate copy on the stack either in a
2982 // physical register or in the parameter list area of the current stack
2983 // frame to the callee.
2987 if (VA
.isRegLoc()) {
2988 // Put argument in a physical register.
2989 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2991 // Put argument in the parameter list area of the current stack frame.
2992 assert(VA
.isMemLoc());
2993 unsigned LocMemOffset
= VA
.getLocMemOffset();
2996 SDValue PtrOff
= DAG
.getIntPtrConstant(LocMemOffset
);
2997 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(), StackPtr
, PtrOff
);
2999 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
3000 MachinePointerInfo(),
3003 // Calculate and remember argument location.
3004 CalculateTailCallArgDest(DAG
, MF
, false, Arg
, SPDiff
, LocMemOffset
,
3010 if (!MemOpChains
.empty())
3011 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3012 &MemOpChains
[0], MemOpChains
.size());
3014 // Set CR6 to true if this is a vararg call.
3016 SDValue
SetCR(DAG
.getMachineNode(PPC::CRSET
, dl
, MVT::i32
), 0);
3017 RegsToPass
.push_back(std::make_pair(unsigned(PPC::CR1EQ
), SetCR
));
3020 // Build a sequence of copy-to-reg nodes chained together with token chain
3021 // and flag operands which copy the outgoing args into the appropriate regs.
3023 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
3024 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
3025 RegsToPass
[i
].second
, InFlag
);
3026 InFlag
= Chain
.getValue(1);
3030 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, false, SPDiff
, NumBytes
, LROp
, FPOp
,
3031 false, TailCallArguments
);
3033 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, DAG
,
3034 RegsToPass
, InFlag
, Chain
, Callee
, SPDiff
, NumBytes
,
3039 PPCTargetLowering::LowerCall_Darwin(SDValue Chain
, SDValue Callee
,
3040 CallingConv::ID CallConv
, bool isVarArg
,
3042 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3043 const SmallVectorImpl
<SDValue
> &OutVals
,
3044 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
3045 DebugLoc dl
, SelectionDAG
&DAG
,
3046 SmallVectorImpl
<SDValue
> &InVals
) const {
3048 unsigned NumOps
= Outs
.size();
3050 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3051 bool isPPC64
= PtrVT
== MVT::i64
;
3052 unsigned PtrByteSize
= isPPC64
? 8 : 4;
3054 MachineFunction
&MF
= DAG
.getMachineFunction();
3056 // Mark this function as potentially containing a function that contains a
3057 // tail call. As a consequence the frame pointer will be used for dynamicalloc
3058 // and restoring the callers stack pointer in this functions epilog. This is
3059 // done because by tail calling the called function might overwrite the value
3060 // in this function's (MF) stack pointer stack slot 0(SP).
3061 if (GuaranteedTailCallOpt
&& CallConv
==CallingConv::Fast
)
3062 MF
.getInfo
<PPCFunctionInfo
>()->setHasFastCall();
3064 unsigned nAltivecParamsAtEnd
= 0;
3066 // Count how many bytes are to be pushed on the stack, including the linkage
3067 // area, and parameter passing area. We start with 24/48 bytes, which is
3068 // prereserved space for [SP][CR][LR][3 x unused].
3070 CalculateParameterAndLinkageAreaSize(DAG
, isPPC64
, isVarArg
, CallConv
,
3072 nAltivecParamsAtEnd
);
3074 // Calculate by how many bytes the stack has to be adjusted in case of tail
3075 // call optimization.
3076 int SPDiff
= CalculateTailCallSPDiff(DAG
, isTailCall
, NumBytes
);
3078 // To protect arguments on the stack from being clobbered in a tail call,
3079 // force all the loads to happen before doing any other lowering.
3081 Chain
= DAG
.getStackArgumentTokenFactor(Chain
);
3083 // Adjust the stack pointer for the new arguments...
3084 // These operations are automatically eliminated by the prolog/epilog pass
3085 Chain
= DAG
.getCALLSEQ_START(Chain
, DAG
.getIntPtrConstant(NumBytes
, true));
3086 SDValue CallSeqStart
= Chain
;
3088 // Load the return address and frame pointer so it can be move somewhere else
3091 Chain
= EmitTailCallLoadFPAndRetAddr(DAG
, SPDiff
, Chain
, LROp
, FPOp
, true,
3094 // Set up a copy of the stack pointer for use loading and storing any
3095 // arguments that may not fit in the registers available for argument
3099 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
3101 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
3103 // Figure out which arguments are going to go in registers, and which in
3104 // memory. Also, if this is a vararg function, floating point operations
3105 // must be stored to our stack, and loaded into integer regs as well, if
3106 // any integer regs are available for argument passing.
3107 unsigned ArgOffset
= PPCFrameLowering::getLinkageSize(isPPC64
, true);
3108 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
3110 static const unsigned GPR_32
[] = { // 32-bit registers.
3111 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
3112 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
3114 static const unsigned GPR_64
[] = { // 64-bit registers.
3115 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
3116 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
3118 static const unsigned *FPR
= GetFPR();
3120 static const unsigned VR
[] = {
3121 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
3122 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
3124 const unsigned NumGPRs
= array_lengthof(GPR_32
);
3125 const unsigned NumFPRs
= 13;
3126 const unsigned NumVRs
= array_lengthof(VR
);
3128 const unsigned *GPR
= isPPC64
? GPR_64
: GPR_32
;
3130 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
3131 SmallVector
<TailCallArgumentInfo
, 8> TailCallArguments
;
3133 SmallVector
<SDValue
, 8> MemOpChains
;
3134 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3135 SDValue Arg
= OutVals
[i
];
3136 ISD::ArgFlagsTy Flags
= Outs
[i
].Flags
;
3138 // PtrOff will be used to store the current argument to the stack if a
3139 // register cannot be found for it.
3142 PtrOff
= DAG
.getConstant(ArgOffset
, StackPtr
.getValueType());
3144 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
3146 // On PPC64, promote integers to 64-bit values.
3147 if (isPPC64
&& Arg
.getValueType() == MVT::i32
) {
3148 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3149 unsigned ExtOp
= Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
3150 Arg
= DAG
.getNode(ExtOp
, dl
, MVT::i64
, Arg
);
3153 // FIXME memcpy is used way more than necessary. Correctness first.
3154 if (Flags
.isByVal()) {
3155 unsigned Size
= Flags
.getByValSize();
3156 if (Size
==1 || Size
==2) {
3157 // Very small objects are passed right-justified.
3158 // Everything else is passed left-justified.
3159 EVT VT
= (Size
==1) ? MVT::i8
: MVT::i16
;
3160 if (GPR_idx
!= NumGPRs
) {
3161 SDValue Load
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, PtrVT
, Chain
, Arg
,
3162 MachinePointerInfo(), VT
,
3164 MemOpChains
.push_back(Load
.getValue(1));
3165 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3167 ArgOffset
+= PtrByteSize
;
3169 SDValue Const
= DAG
.getConstant(4 - Size
, PtrOff
.getValueType());
3170 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, Const
);
3171 SDValue MemcpyCall
= CreateCopyOfByValArgument(Arg
, AddPtr
,
3172 CallSeqStart
.getNode()->getOperand(0),
3174 // This must go outside the CALLSEQ_START..END.
3175 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
,
3176 CallSeqStart
.getNode()->getOperand(1));
3177 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(),
3178 NewCallSeqStart
.getNode());
3179 Chain
= CallSeqStart
= NewCallSeqStart
;
3180 ArgOffset
+= PtrByteSize
;
3184 // Copy entire object into memory. There are cases where gcc-generated
3185 // code assumes it is there, even if it could be put entirely into
3186 // registers. (This is not what the doc says.)
3187 SDValue MemcpyCall
= CreateCopyOfByValArgument(Arg
, PtrOff
,
3188 CallSeqStart
.getNode()->getOperand(0),
3190 // This must go outside the CALLSEQ_START..END.
3191 SDValue NewCallSeqStart
= DAG
.getCALLSEQ_START(MemcpyCall
,
3192 CallSeqStart
.getNode()->getOperand(1));
3193 DAG
.ReplaceAllUsesWith(CallSeqStart
.getNode(), NewCallSeqStart
.getNode());
3194 Chain
= CallSeqStart
= NewCallSeqStart
;
3195 // And copy the pieces of it that fit into registers.
3196 for (unsigned j
=0; j
<Size
; j
+=PtrByteSize
) {
3197 SDValue Const
= DAG
.getConstant(j
, PtrOff
.getValueType());
3198 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Arg
, Const
);
3199 if (GPR_idx
!= NumGPRs
) {
3200 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
,
3201 MachinePointerInfo(),
3203 MemOpChains
.push_back(Load
.getValue(1));
3204 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3205 ArgOffset
+= PtrByteSize
;
3207 ArgOffset
+= ((Size
- j
+ PtrByteSize
-1)/PtrByteSize
)*PtrByteSize
;
3214 switch (Arg
.getValueType().getSimpleVT().SimpleTy
) {
3215 default: llvm_unreachable("Unexpected ValueType for argument!");
3218 if (GPR_idx
!= NumGPRs
) {
3219 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Arg
));
3221 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3222 isPPC64
, isTailCall
, false, MemOpChains
,
3223 TailCallArguments
, dl
);
3225 ArgOffset
+= PtrByteSize
;
3229 if (FPR_idx
!= NumFPRs
) {
3230 RegsToPass
.push_back(std::make_pair(FPR
[FPR_idx
++], Arg
));
3233 SDValue Store
= DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
3234 MachinePointerInfo(), false, false, 0);
3235 MemOpChains
.push_back(Store
);
3237 // Float varargs are always shadowed in available integer registers
3238 if (GPR_idx
!= NumGPRs
) {
3239 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, PtrOff
,
3240 MachinePointerInfo(), false, false, 0);
3241 MemOpChains
.push_back(Load
.getValue(1));
3242 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3244 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&& !isPPC64
){
3245 SDValue ConstFour
= DAG
.getConstant(4, PtrOff
.getValueType());
3246 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
, ConstFour
);
3247 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, PtrOff
,
3248 MachinePointerInfo(),
3250 MemOpChains
.push_back(Load
.getValue(1));
3251 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3254 // If we have any FPRs remaining, we may also have GPRs remaining.
3255 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3257 if (GPR_idx
!= NumGPRs
)
3259 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&&
3260 !isPPC64
) // PPC64 has 64-bit GPR's obviously :)
3264 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3265 isPPC64
, isTailCall
, false, MemOpChains
,
3266 TailCallArguments
, dl
);
3271 ArgOffset
+= Arg
.getValueType() == MVT::f32
? 4 : 8;
3278 // These go aligned on the stack, or in the corresponding R registers
3279 // when within range. The Darwin PPC ABI doc claims they also go in
3280 // V registers; in fact gcc does this only for arguments that are
3281 // prototyped, not for those that match the ... We do it for all
3282 // arguments, seems to work.
3283 while (ArgOffset
% 16 !=0) {
3284 ArgOffset
+= PtrByteSize
;
3285 if (GPR_idx
!= NumGPRs
)
3288 // We could elide this store in the case where the object fits
3289 // entirely in R registers. Maybe later.
3290 PtrOff
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
,
3291 DAG
.getConstant(ArgOffset
, PtrVT
));
3292 SDValue Store
= DAG
.getStore(Chain
, dl
, Arg
, PtrOff
,
3293 MachinePointerInfo(), false, false, 0);
3294 MemOpChains
.push_back(Store
);
3295 if (VR_idx
!= NumVRs
) {
3296 SDValue Load
= DAG
.getLoad(MVT::v4f32
, dl
, Store
, PtrOff
,
3297 MachinePointerInfo(),
3299 MemOpChains
.push_back(Load
.getValue(1));
3300 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Load
));
3303 for (unsigned i
=0; i
<16; i
+=PtrByteSize
) {
3304 if (GPR_idx
== NumGPRs
)
3306 SDValue Ix
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, PtrOff
,
3307 DAG
.getConstant(i
, PtrVT
));
3308 SDValue Load
= DAG
.getLoad(PtrVT
, dl
, Store
, Ix
, MachinePointerInfo(),
3310 MemOpChains
.push_back(Load
.getValue(1));
3311 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Load
));
3316 // Non-varargs Altivec params generally go in registers, but have
3317 // stack space allocated at the end.
3318 if (VR_idx
!= NumVRs
) {
3319 // Doesn't have GPR space allocated.
3320 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Arg
));
3321 } else if (nAltivecParamsAtEnd
==0) {
3322 // We are emitting Altivec params in order.
3323 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3324 isPPC64
, isTailCall
, true, MemOpChains
,
3325 TailCallArguments
, dl
);
3331 // If all Altivec parameters fit in registers, as they usually do,
3332 // they get stack space following the non-Altivec parameters. We
3333 // don't track this here because nobody below needs it.
3334 // If there are more Altivec parameters than fit in registers emit
3336 if (!isVarArg
&& nAltivecParamsAtEnd
> NumVRs
) {
3338 // Offset is aligned; skip 1st 12 params which go in V registers.
3339 ArgOffset
= ((ArgOffset
+15)/16)*16;
3341 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
3342 SDValue Arg
= OutVals
[i
];
3343 EVT ArgType
= Outs
[i
].VT
;
3344 if (ArgType
==MVT::v4f32
|| ArgType
==MVT::v4i32
||
3345 ArgType
==MVT::v8i16
|| ArgType
==MVT::v16i8
) {
3348 // We are emitting Altivec params in order.
3349 LowerMemOpCallTo(DAG
, MF
, Chain
, Arg
, PtrOff
, SPDiff
, ArgOffset
,
3350 isPPC64
, isTailCall
, true, MemOpChains
,
3351 TailCallArguments
, dl
);
3358 if (!MemOpChains
.empty())
3359 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3360 &MemOpChains
[0], MemOpChains
.size());
3362 // Check if this is an indirect call (MTCTR/BCTRL).
3363 // See PrepareCall() for more information about calls through function
3364 // pointers in the 64-bit SVR4 ABI.
3365 if (!isTailCall
&& isPPC64
&& PPCSubTarget
.isSVR4ABI() &&
3366 !dyn_cast
<GlobalAddressSDNode
>(Callee
) &&
3367 !dyn_cast
<ExternalSymbolSDNode
>(Callee
) &&
3368 !isBLACompatibleAddress(Callee
, DAG
)) {
3369 // Load r2 into a virtual register and store it to the TOC save area.
3370 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, PPC::X2
, MVT::i64
);
3371 // TOC save area offset.
3372 SDValue PtrOff
= DAG
.getIntPtrConstant(40);
3373 SDValue AddPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackPtr
, PtrOff
);
3374 Chain
= DAG
.getStore(Val
.getValue(1), dl
, Val
, AddPtr
, MachinePointerInfo(),
3378 // On Darwin, R12 must contain the address of an indirect callee. This does
3379 // not mean the MTCTR instruction must use R12; it's easier to model this as
3380 // an extra parameter, so do that.
3382 !dyn_cast
<GlobalAddressSDNode
>(Callee
) &&
3383 !dyn_cast
<ExternalSymbolSDNode
>(Callee
) &&
3384 !isBLACompatibleAddress(Callee
, DAG
))
3385 RegsToPass
.push_back(std::make_pair((unsigned)(isPPC64
? PPC::X12
:
3386 PPC::R12
), Callee
));
3388 // Build a sequence of copy-to-reg nodes chained together with token chain
3389 // and flag operands which copy the outgoing args into the appropriate regs.
3391 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
3392 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
3393 RegsToPass
[i
].second
, InFlag
);
3394 InFlag
= Chain
.getValue(1);
3398 PrepareTailCall(DAG
, InFlag
, Chain
, dl
, isPPC64
, SPDiff
, NumBytes
, LROp
,
3399 FPOp
, true, TailCallArguments
);
3401 return FinishCall(CallConv
, dl
, isTailCall
, isVarArg
, DAG
,
3402 RegsToPass
, InFlag
, Chain
, Callee
, SPDiff
, NumBytes
,
3407 PPCTargetLowering::LowerReturn(SDValue Chain
,
3408 CallingConv::ID CallConv
, bool isVarArg
,
3409 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3410 const SmallVectorImpl
<SDValue
> &OutVals
,
3411 DebugLoc dl
, SelectionDAG
&DAG
) const {
3413 SmallVector
<CCValAssign
, 16> RVLocs
;
3414 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(),
3415 getTargetMachine(), RVLocs
, *DAG
.getContext());
3416 CCInfo
.AnalyzeReturn(Outs
, RetCC_PPC
);
3418 // If this is the first return lowered for this function, add the regs to the
3419 // liveout set for the function.
3420 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
3421 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
3422 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
3427 // Copy the result values into the output registers.
3428 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3429 CCValAssign
&VA
= RVLocs
[i
];
3430 assert(VA
.isRegLoc() && "Can only return in registers!");
3431 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
3433 Flag
= Chain
.getValue(1);
3437 return DAG
.getNode(PPCISD::RET_FLAG
, dl
, MVT::Other
, Chain
, Flag
);
3439 return DAG
.getNode(PPCISD::RET_FLAG
, dl
, MVT::Other
, Chain
);
3442 SDValue
PPCTargetLowering::LowerSTACKRESTORE(SDValue Op
, SelectionDAG
&DAG
,
3443 const PPCSubtarget
&Subtarget
) const {
3444 // When we pop the dynamic allocation we need to restore the SP link.
3445 DebugLoc dl
= Op
.getDebugLoc();
3447 // Get the corect type for pointers.
3448 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3450 // Construct the stack pointer operand.
3451 bool isPPC64
= Subtarget
.isPPC64();
3452 unsigned SP
= isPPC64
? PPC::X1
: PPC::R1
;
3453 SDValue StackPtr
= DAG
.getRegister(SP
, PtrVT
);
3455 // Get the operands for the STACKRESTORE.
3456 SDValue Chain
= Op
.getOperand(0);
3457 SDValue SaveSP
= Op
.getOperand(1);
3459 // Load the old link SP.
3460 SDValue LoadLinkSP
= DAG
.getLoad(PtrVT
, dl
, Chain
, StackPtr
,
3461 MachinePointerInfo(),
3464 // Restore the stack pointer.
3465 Chain
= DAG
.getCopyToReg(LoadLinkSP
.getValue(1), dl
, SP
, SaveSP
);
3467 // Store the old link SP.
3468 return DAG
.getStore(Chain
, dl
, LoadLinkSP
, StackPtr
, MachinePointerInfo(),
3475 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG
& DAG
) const {
3476 MachineFunction
&MF
= DAG
.getMachineFunction();
3477 bool isPPC64
= PPCSubTarget
.isPPC64();
3478 bool isDarwinABI
= PPCSubTarget
.isDarwinABI();
3479 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3481 // Get current frame pointer save index. The users of this index will be
3482 // primarily DYNALLOC instructions.
3483 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
3484 int RASI
= FI
->getReturnAddrSaveIndex();
3486 // If the frame pointer save index hasn't been defined yet.
3488 // Find out what the fix offset of the frame pointer save area.
3489 int LROffset
= PPCFrameLowering::getReturnSaveOffset(isPPC64
, isDarwinABI
);
3490 // Allocate the frame index for frame pointer save area.
3491 RASI
= MF
.getFrameInfo()->CreateFixedObject(isPPC64
? 8 : 4, LROffset
, true);
3493 FI
->setReturnAddrSaveIndex(RASI
);
3495 return DAG
.getFrameIndex(RASI
, PtrVT
);
3499 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG
& DAG
) const {
3500 MachineFunction
&MF
= DAG
.getMachineFunction();
3501 bool isPPC64
= PPCSubTarget
.isPPC64();
3502 bool isDarwinABI
= PPCSubTarget
.isDarwinABI();
3503 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3505 // Get current frame pointer save index. The users of this index will be
3506 // primarily DYNALLOC instructions.
3507 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
3508 int FPSI
= FI
->getFramePointerSaveIndex();
3510 // If the frame pointer save index hasn't been defined yet.
3512 // Find out what the fix offset of the frame pointer save area.
3513 int FPOffset
= PPCFrameLowering::getFramePointerSaveOffset(isPPC64
,
3516 // Allocate the frame index for frame pointer save area.
3517 FPSI
= MF
.getFrameInfo()->CreateFixedObject(isPPC64
? 8 : 4, FPOffset
, true);
3519 FI
->setFramePointerSaveIndex(FPSI
);
3521 return DAG
.getFrameIndex(FPSI
, PtrVT
);
3524 SDValue
PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
3526 const PPCSubtarget
&Subtarget
) const {
3528 SDValue Chain
= Op
.getOperand(0);
3529 SDValue Size
= Op
.getOperand(1);
3530 DebugLoc dl
= Op
.getDebugLoc();
3532 // Get the corect type for pointers.
3533 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3535 SDValue NegSize
= DAG
.getNode(ISD::SUB
, dl
, PtrVT
,
3536 DAG
.getConstant(0, PtrVT
), Size
);
3537 // Construct a node for the frame pointer save index.
3538 SDValue FPSIdx
= getFramePointerFrameIndex(DAG
);
3539 // Build a DYNALLOC node.
3540 SDValue Ops
[3] = { Chain
, NegSize
, FPSIdx
};
3541 SDVTList VTs
= DAG
.getVTList(PtrVT
, MVT::Other
);
3542 return DAG
.getNode(PPCISD::DYNALLOC
, dl
, VTs
, Ops
, 3);
3545 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3547 SDValue
PPCTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
3548 // Not FP? Not a fsel.
3549 if (!Op
.getOperand(0).getValueType().isFloatingPoint() ||
3550 !Op
.getOperand(2).getValueType().isFloatingPoint())
3553 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
3555 // Cannot handle SETEQ/SETNE.
3556 if (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) return Op
;
3558 EVT ResVT
= Op
.getValueType();
3559 EVT CmpVT
= Op
.getOperand(0).getValueType();
3560 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
3561 SDValue TV
= Op
.getOperand(2), FV
= Op
.getOperand(3);
3562 DebugLoc dl
= Op
.getDebugLoc();
3564 // If the RHS of the comparison is a 0.0, we don't need to do the
3565 // subtraction at all.
3566 if (isFloatingPointZero(RHS
))
3568 default: break; // SETUO etc aren't handled by fsel.
3571 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
3574 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3575 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
3576 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, LHS
, TV
, FV
);
3579 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
3582 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3583 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, LHS
);
3584 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
,
3585 DAG
.getNode(ISD::FNEG
, dl
, MVT::f64
, LHS
), TV
, FV
);
3590 default: break; // SETUO etc aren't handled by fsel.
3593 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
);
3594 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3595 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3596 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
3599 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, LHS
, RHS
);
3600 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3601 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3602 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
3605 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
);
3606 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3607 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3608 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, FV
, TV
);
3611 Cmp
= DAG
.getNode(ISD::FSUB
, dl
, CmpVT
, RHS
, LHS
);
3612 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
3613 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Cmp
);
3614 return DAG
.getNode(PPCISD::FSEL
, dl
, ResVT
, Cmp
, TV
, FV
);
3619 // FIXME: Split this code up when LegalizeDAGTypes lands.
3620 SDValue
PPCTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
,
3621 DebugLoc dl
) const {
3622 assert(Op
.getOperand(0).getValueType().isFloatingPoint());
3623 SDValue Src
= Op
.getOperand(0);
3624 if (Src
.getValueType() == MVT::f32
)
3625 Src
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Src
);
3628 switch (Op
.getValueType().getSimpleVT().SimpleTy
) {
3629 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3631 Tmp
= DAG
.getNode(Op
.getOpcode()==ISD::FP_TO_SINT
? PPCISD::FCTIWZ
:
3636 Tmp
= DAG
.getNode(PPCISD::FCTIDZ
, dl
, MVT::f64
, Src
);
3640 // Convert the FP value to an int value through memory.
3641 SDValue FIPtr
= DAG
.CreateStackTemporary(MVT::f64
);
3643 // Emit a store to the stack slot.
3644 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), dl
, Tmp
, FIPtr
,
3645 MachinePointerInfo(), false, false, 0);
3647 // Result is a load from the stack slot. If loading 4 bytes, make sure to
3649 if (Op
.getValueType() == MVT::i32
)
3650 FIPtr
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
,
3651 DAG
.getConstant(4, FIPtr
.getValueType()));
3652 return DAG
.getLoad(Op
.getValueType(), dl
, Chain
, FIPtr
, MachinePointerInfo(),
3656 SDValue
PPCTargetLowering::LowerSINT_TO_FP(SDValue Op
,
3657 SelectionDAG
&DAG
) const {
3658 DebugLoc dl
= Op
.getDebugLoc();
3659 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3660 if (Op
.getValueType() != MVT::f32
&& Op
.getValueType() != MVT::f64
)
3663 if (Op
.getOperand(0).getValueType() == MVT::i64
) {
3664 SDValue Bits
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op
.getOperand(0));
3665 SDValue FP
= DAG
.getNode(PPCISD::FCFID
, dl
, MVT::f64
, Bits
);
3666 if (Op
.getValueType() == MVT::f32
)
3667 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
,
3668 MVT::f32
, FP
, DAG
.getIntPtrConstant(0));
3672 assert(Op
.getOperand(0).getValueType() == MVT::i32
&&
3673 "Unhandled SINT_TO_FP type in custom expander!");
3674 // Since we only generate this in 64-bit mode, we can take advantage of
3675 // 64-bit registers. In particular, sign extend the input value into the
3676 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3677 // then lfd it and fcfid it.
3678 MachineFunction
&MF
= DAG
.getMachineFunction();
3679 MachineFrameInfo
*FrameInfo
= MF
.getFrameInfo();
3680 int FrameIdx
= FrameInfo
->CreateStackObject(8, 8, false);
3681 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3682 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
3684 SDValue Ext64
= DAG
.getNode(PPCISD::EXTSW_32
, dl
, MVT::i32
,
3687 // STD the extended value into the stack slot.
3688 MachineMemOperand
*MMO
=
3689 MF
.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx
),
3690 MachineMemOperand::MOStore
, 8, 8);
3691 SDValue Ops
[] = { DAG
.getEntryNode(), Ext64
, FIdx
};
3693 DAG
.getMemIntrinsicNode(PPCISD::STD_32
, dl
, DAG
.getVTList(MVT::Other
),
3694 Ops
, 4, MVT::i64
, MMO
);
3695 // Load the value as a double.
3696 SDValue Ld
= DAG
.getLoad(MVT::f64
, dl
, Store
, FIdx
, MachinePointerInfo(),
3699 // FCFID it and return it.
3700 SDValue FP
= DAG
.getNode(PPCISD::FCFID
, dl
, MVT::f64
, Ld
);
3701 if (Op
.getValueType() == MVT::f32
)
3702 FP
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, FP
, DAG
.getIntPtrConstant(0));
3706 SDValue
PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
3707 SelectionDAG
&DAG
) const {
3708 DebugLoc dl
= Op
.getDebugLoc();
3710 The rounding mode is in bits 30:31 of FPSR, and has the following
3717 FLT_ROUNDS, on the other hand, expects the following:
3724 To perform the conversion, we do:
3725 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3728 MachineFunction
&MF
= DAG
.getMachineFunction();
3729 EVT VT
= Op
.getValueType();
3730 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3731 std::vector
<EVT
> NodeTys
;
3732 SDValue MFFSreg
, InFlag
;
3734 // Save FP Control Word to register
3735 NodeTys
.push_back(MVT::f64
); // return register
3736 NodeTys
.push_back(MVT::Glue
); // unused in this context
3737 SDValue Chain
= DAG
.getNode(PPCISD::MFFS
, dl
, NodeTys
, &InFlag
, 0);
3739 // Save FP register to stack slot
3740 int SSFI
= MF
.getFrameInfo()->CreateStackObject(8, 8, false);
3741 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, PtrVT
);
3742 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, Chain
,
3743 StackSlot
, MachinePointerInfo(), false, false,0);
3745 // Load FP Control Word from low 32 bits of stack slot.
3746 SDValue Four
= DAG
.getConstant(4, PtrVT
);
3747 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, StackSlot
, Four
);
3748 SDValue CWD
= DAG
.getLoad(MVT::i32
, dl
, Store
, Addr
, MachinePointerInfo(),
3751 // Transform as necessary
3753 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
3754 CWD
, DAG
.getConstant(3, MVT::i32
));
3756 DAG
.getNode(ISD::SRL
, dl
, MVT::i32
,
3757 DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
3758 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
,
3759 CWD
, DAG
.getConstant(3, MVT::i32
)),
3760 DAG
.getConstant(3, MVT::i32
)),
3761 DAG
.getConstant(1, MVT::i32
));
3764 DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, CWD1
, CWD2
);
3766 return DAG
.getNode((VT
.getSizeInBits() < 16 ?
3767 ISD::TRUNCATE
: ISD::ZERO_EXTEND
), dl
, VT
, RetVal
);
3770 SDValue
PPCTargetLowering::LowerSHL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
3771 EVT VT
= Op
.getValueType();
3772 unsigned BitWidth
= VT
.getSizeInBits();
3773 DebugLoc dl
= Op
.getDebugLoc();
3774 assert(Op
.getNumOperands() == 3 &&
3775 VT
== Op
.getOperand(1).getValueType() &&
3778 // Expand into a bunch of logical ops. Note that these ops
3779 // depend on the PPC behavior for oversized shift amounts.
3780 SDValue Lo
= Op
.getOperand(0);
3781 SDValue Hi
= Op
.getOperand(1);
3782 SDValue Amt
= Op
.getOperand(2);
3783 EVT AmtVT
= Amt
.getValueType();
3785 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
3786 DAG
.getConstant(BitWidth
, AmtVT
), Amt
);
3787 SDValue Tmp2
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Amt
);
3788 SDValue Tmp3
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Tmp1
);
3789 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
3790 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
3791 DAG
.getConstant(-BitWidth
, AmtVT
));
3792 SDValue Tmp6
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Tmp5
);
3793 SDValue OutHi
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
3794 SDValue OutLo
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Lo
, Amt
);
3795 SDValue OutOps
[] = { OutLo
, OutHi
};
3796 return DAG
.getMergeValues(OutOps
, 2, dl
);
3799 SDValue
PPCTargetLowering::LowerSRL_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
3800 EVT VT
= Op
.getValueType();
3801 DebugLoc dl
= Op
.getDebugLoc();
3802 unsigned BitWidth
= VT
.getSizeInBits();
3803 assert(Op
.getNumOperands() == 3 &&
3804 VT
== Op
.getOperand(1).getValueType() &&
3807 // Expand into a bunch of logical ops. Note that these ops
3808 // depend on the PPC behavior for oversized shift amounts.
3809 SDValue Lo
= Op
.getOperand(0);
3810 SDValue Hi
= Op
.getOperand(1);
3811 SDValue Amt
= Op
.getOperand(2);
3812 EVT AmtVT
= Amt
.getValueType();
3814 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
3815 DAG
.getConstant(BitWidth
, AmtVT
), Amt
);
3816 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
3817 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
3818 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
3819 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
3820 DAG
.getConstant(-BitWidth
, AmtVT
));
3821 SDValue Tmp6
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Tmp5
);
3822 SDValue OutLo
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp6
);
3823 SDValue OutHi
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Hi
, Amt
);
3824 SDValue OutOps
[] = { OutLo
, OutHi
};
3825 return DAG
.getMergeValues(OutOps
, 2, dl
);
3828 SDValue
PPCTargetLowering::LowerSRA_PARTS(SDValue Op
, SelectionDAG
&DAG
) const {
3829 DebugLoc dl
= Op
.getDebugLoc();
3830 EVT VT
= Op
.getValueType();
3831 unsigned BitWidth
= VT
.getSizeInBits();
3832 assert(Op
.getNumOperands() == 3 &&
3833 VT
== Op
.getOperand(1).getValueType() &&
3836 // Expand into a bunch of logical ops, followed by a select_cc.
3837 SDValue Lo
= Op
.getOperand(0);
3838 SDValue Hi
= Op
.getOperand(1);
3839 SDValue Amt
= Op
.getOperand(2);
3840 EVT AmtVT
= Amt
.getValueType();
3842 SDValue Tmp1
= DAG
.getNode(ISD::SUB
, dl
, AmtVT
,
3843 DAG
.getConstant(BitWidth
, AmtVT
), Amt
);
3844 SDValue Tmp2
= DAG
.getNode(PPCISD::SRL
, dl
, VT
, Lo
, Amt
);
3845 SDValue Tmp3
= DAG
.getNode(PPCISD::SHL
, dl
, VT
, Hi
, Tmp1
);
3846 SDValue Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
3847 SDValue Tmp5
= DAG
.getNode(ISD::ADD
, dl
, AmtVT
, Amt
,
3848 DAG
.getConstant(-BitWidth
, AmtVT
));
3849 SDValue Tmp6
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Tmp5
);
3850 SDValue OutHi
= DAG
.getNode(PPCISD::SRA
, dl
, VT
, Hi
, Amt
);
3851 SDValue OutLo
= DAG
.getSelectCC(dl
, Tmp5
, DAG
.getConstant(0, AmtVT
),
3852 Tmp4
, Tmp6
, ISD::SETLE
);
3853 SDValue OutOps
[] = { OutLo
, OutHi
};
3854 return DAG
.getMergeValues(OutOps
, 2, dl
);
3857 //===----------------------------------------------------------------------===//
3858 // Vector related lowering.
3861 /// BuildSplatI - Build a canonical splati of Val with an element size of
3862 /// SplatSize. Cast the result to VT.
3863 static SDValue
BuildSplatI(int Val
, unsigned SplatSize
, EVT VT
,
3864 SelectionDAG
&DAG
, DebugLoc dl
) {
3865 assert(Val
>= -16 && Val
<= 15 && "vsplti is out of range!");
3867 static const EVT VTys
[] = { // canonical VT to use for each size.
3868 MVT::v16i8
, MVT::v8i16
, MVT::Other
, MVT::v4i32
3871 EVT ReqVT
= VT
!= MVT::Other
? VT
: VTys
[SplatSize
-1];
3873 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3877 EVT CanonicalVT
= VTys
[SplatSize
-1];
3879 // Build a canonical splat for this value.
3880 SDValue Elt
= DAG
.getConstant(Val
, MVT::i32
);
3881 SmallVector
<SDValue
, 8> Ops
;
3882 Ops
.assign(CanonicalVT
.getVectorNumElements(), Elt
);
3883 SDValue Res
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, CanonicalVT
,
3884 &Ops
[0], Ops
.size());
3885 return DAG
.getNode(ISD::BITCAST
, dl
, ReqVT
, Res
);
3888 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3889 /// specified intrinsic ID.
3890 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue LHS
, SDValue RHS
,
3891 SelectionDAG
&DAG
, DebugLoc dl
,
3892 EVT DestVT
= MVT::Other
) {
3893 if (DestVT
== MVT::Other
) DestVT
= LHS
.getValueType();
3894 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
3895 DAG
.getConstant(IID
, MVT::i32
), LHS
, RHS
);
3898 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3899 /// specified intrinsic ID.
3900 static SDValue
BuildIntrinsicOp(unsigned IID
, SDValue Op0
, SDValue Op1
,
3901 SDValue Op2
, SelectionDAG
&DAG
,
3902 DebugLoc dl
, EVT DestVT
= MVT::Other
) {
3903 if (DestVT
== MVT::Other
) DestVT
= Op0
.getValueType();
3904 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, DestVT
,
3905 DAG
.getConstant(IID
, MVT::i32
), Op0
, Op1
, Op2
);
3909 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3910 /// amount. The result has the specified value type.
3911 static SDValue
BuildVSLDOI(SDValue LHS
, SDValue RHS
, unsigned Amt
,
3912 EVT VT
, SelectionDAG
&DAG
, DebugLoc dl
) {
3913 // Force LHS/RHS to be the right type.
3914 LHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, LHS
);
3915 RHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, RHS
);
3918 for (unsigned i
= 0; i
!= 16; ++i
)
3920 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, LHS
, RHS
, Ops
);
3921 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, T
);
3924 // If this is a case we can't handle, return null and let the default
3925 // expansion code take care of it. If we CAN select this case, and if it
3926 // selects to a single instruction, return Op. Otherwise, if we can codegen
3927 // this case more efficiently than a constant pool load, lower it to the
3928 // sequence of ops that should be used.
3929 SDValue
PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op
,
3930 SelectionDAG
&DAG
) const {
3931 DebugLoc dl
= Op
.getDebugLoc();
3932 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
3933 assert(BVN
!= 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3935 // Check if this is a splat of a constant value.
3936 APInt APSplatBits
, APSplatUndef
;
3937 unsigned SplatBitSize
;
3939 if (! BVN
->isConstantSplat(APSplatBits
, APSplatUndef
, SplatBitSize
,
3940 HasAnyUndefs
, 0, true) || SplatBitSize
> 32)
3943 unsigned SplatBits
= APSplatBits
.getZExtValue();
3944 unsigned SplatUndef
= APSplatUndef
.getZExtValue();
3945 unsigned SplatSize
= SplatBitSize
/ 8;
3947 // First, handle single instruction cases.
3950 if (SplatBits
== 0) {
3951 // Canonicalize all zero vectors to be v4i32.
3952 if (Op
.getValueType() != MVT::v4i32
|| HasAnyUndefs
) {
3953 SDValue Z
= DAG
.getConstant(0, MVT::i32
);
3954 Z
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v4i32
, Z
, Z
, Z
, Z
);
3955 Op
= DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Z
);
3960 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3961 int32_t SextVal
= (int32_t(SplatBits
<< (32-SplatBitSize
)) >>
3963 if (SextVal
>= -16 && SextVal
<= 15)
3964 return BuildSplatI(SextVal
, SplatSize
, Op
.getValueType(), DAG
, dl
);
3967 // Two instruction sequences.
3969 // If this value is in the range [-32,30] and is even, use:
3970 // tmp = VSPLTI[bhw], result = add tmp, tmp
3971 if (SextVal
>= -32 && SextVal
<= 30 && (SextVal
& 1) == 0) {
3972 SDValue Res
= BuildSplatI(SextVal
>> 1, SplatSize
, MVT::Other
, DAG
, dl
);
3973 Res
= DAG
.getNode(ISD::ADD
, dl
, Res
.getValueType(), Res
, Res
);
3974 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
3977 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
3978 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
3980 if (SplatSize
== 4 && SplatBits
== (0x7FFFFFFF&~SplatUndef
)) {
3981 // Make -1 and vspltisw -1:
3982 SDValue OnesV
= BuildSplatI(-1, 4, MVT::v4i32
, DAG
, dl
);
3984 // Make the VSLW intrinsic, computing 0x8000_0000.
3985 SDValue Res
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, OnesV
,
3988 // xor by OnesV to invert it.
3989 Res
= DAG
.getNode(ISD::XOR
, dl
, MVT::v4i32
, Res
, OnesV
);
3990 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
3993 // Check to see if this is a wide variety of vsplti*, binop self cases.
3994 static const signed char SplatCsts
[] = {
3995 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3996 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3999 for (unsigned idx
= 0; idx
< array_lengthof(SplatCsts
); ++idx
) {
4000 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4001 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
4002 int i
= SplatCsts
[idx
];
4004 // Figure out what shift amount will be used by altivec if shifted by i in
4006 unsigned TypeShiftAmt
= i
& (SplatBitSize
-1);
4008 // vsplti + shl self.
4009 if (SextVal
== (i
<< (int)TypeShiftAmt
)) {
4010 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
4011 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
4012 Intrinsic::ppc_altivec_vslb
, Intrinsic::ppc_altivec_vslh
, 0,
4013 Intrinsic::ppc_altivec_vslw
4015 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
4016 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
4019 // vsplti + srl self.
4020 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
4021 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
4022 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
4023 Intrinsic::ppc_altivec_vsrb
, Intrinsic::ppc_altivec_vsrh
, 0,
4024 Intrinsic::ppc_altivec_vsrw
4026 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
4027 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
4030 // vsplti + sra self.
4031 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
4032 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
4033 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
4034 Intrinsic::ppc_altivec_vsrab
, Intrinsic::ppc_altivec_vsrah
, 0,
4035 Intrinsic::ppc_altivec_vsraw
4037 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
4038 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
4041 // vsplti + rol self.
4042 if (SextVal
== (int)(((unsigned)i
<< TypeShiftAmt
) |
4043 ((unsigned)i
>> (SplatBitSize
-TypeShiftAmt
)))) {
4044 SDValue Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
, dl
);
4045 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
4046 Intrinsic::ppc_altivec_vrlb
, Intrinsic::ppc_altivec_vrlh
, 0,
4047 Intrinsic::ppc_altivec_vrlw
4049 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
, dl
);
4050 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Res
);
4053 // t = vsplti c, result = vsldoi t, t, 1
4054 if (SextVal
== ((i
<< 8) | (i
< 0 ? 0xFF : 0))) {
4055 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
4056 return BuildVSLDOI(T
, T
, 1, Op
.getValueType(), DAG
, dl
);
4058 // t = vsplti c, result = vsldoi t, t, 2
4059 if (SextVal
== ((i
<< 16) | (i
< 0 ? 0xFFFF : 0))) {
4060 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
4061 return BuildVSLDOI(T
, T
, 2, Op
.getValueType(), DAG
, dl
);
4063 // t = vsplti c, result = vsldoi t, t, 3
4064 if (SextVal
== ((i
<< 24) | (i
< 0 ? 0xFFFFFF : 0))) {
4065 SDValue T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
, dl
);
4066 return BuildVSLDOI(T
, T
, 3, Op
.getValueType(), DAG
, dl
);
4070 // Three instruction sequences.
4072 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
4073 if (SextVal
>= 0 && SextVal
<= 31) {
4074 SDValue LHS
= BuildSplatI(SextVal
-16, SplatSize
, MVT::Other
, DAG
, dl
);
4075 SDValue RHS
= BuildSplatI(-16, SplatSize
, MVT::Other
, DAG
, dl
);
4076 LHS
= DAG
.getNode(ISD::SUB
, dl
, LHS
.getValueType(), LHS
, RHS
);
4077 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), LHS
);
4079 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
4080 if (SextVal
>= -31 && SextVal
<= 0) {
4081 SDValue LHS
= BuildSplatI(SextVal
+16, SplatSize
, MVT::Other
, DAG
, dl
);
4082 SDValue RHS
= BuildSplatI(-16, SplatSize
, MVT::Other
, DAG
, dl
);
4083 LHS
= DAG
.getNode(ISD::ADD
, dl
, LHS
.getValueType(), LHS
, RHS
);
4084 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), LHS
);
4090 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4091 /// the specified operations to build the shuffle.
4092 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
4093 SDValue RHS
, SelectionDAG
&DAG
,
4095 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
4096 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
4097 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
4100 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4112 if (OpNum
== OP_COPY
) {
4113 if (LHSID
== (1*9+2)*9+3) return LHS
;
4114 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4118 SDValue OpLHS
, OpRHS
;
4119 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
4120 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
4124 default: llvm_unreachable("Unknown i32 permute!");
4126 ShufIdxs
[ 0] = 0; ShufIdxs
[ 1] = 1; ShufIdxs
[ 2] = 2; ShufIdxs
[ 3] = 3;
4127 ShufIdxs
[ 4] = 16; ShufIdxs
[ 5] = 17; ShufIdxs
[ 6] = 18; ShufIdxs
[ 7] = 19;
4128 ShufIdxs
[ 8] = 4; ShufIdxs
[ 9] = 5; ShufIdxs
[10] = 6; ShufIdxs
[11] = 7;
4129 ShufIdxs
[12] = 20; ShufIdxs
[13] = 21; ShufIdxs
[14] = 22; ShufIdxs
[15] = 23;
4132 ShufIdxs
[ 0] = 8; ShufIdxs
[ 1] = 9; ShufIdxs
[ 2] = 10; ShufIdxs
[ 3] = 11;
4133 ShufIdxs
[ 4] = 24; ShufIdxs
[ 5] = 25; ShufIdxs
[ 6] = 26; ShufIdxs
[ 7] = 27;
4134 ShufIdxs
[ 8] = 12; ShufIdxs
[ 9] = 13; ShufIdxs
[10] = 14; ShufIdxs
[11] = 15;
4135 ShufIdxs
[12] = 28; ShufIdxs
[13] = 29; ShufIdxs
[14] = 30; ShufIdxs
[15] = 31;
4138 for (unsigned i
= 0; i
!= 16; ++i
)
4139 ShufIdxs
[i
] = (i
&3)+0;
4142 for (unsigned i
= 0; i
!= 16; ++i
)
4143 ShufIdxs
[i
] = (i
&3)+4;
4146 for (unsigned i
= 0; i
!= 16; ++i
)
4147 ShufIdxs
[i
] = (i
&3)+8;
4150 for (unsigned i
= 0; i
!= 16; ++i
)
4151 ShufIdxs
[i
] = (i
&3)+12;
4154 return BuildVSLDOI(OpLHS
, OpRHS
, 4, OpLHS
.getValueType(), DAG
, dl
);
4156 return BuildVSLDOI(OpLHS
, OpRHS
, 8, OpLHS
.getValueType(), DAG
, dl
);
4158 return BuildVSLDOI(OpLHS
, OpRHS
, 12, OpLHS
.getValueType(), DAG
, dl
);
4160 EVT VT
= OpLHS
.getValueType();
4161 OpLHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, OpLHS
);
4162 OpRHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, OpRHS
);
4163 SDValue T
= DAG
.getVectorShuffle(MVT::v16i8
, dl
, OpLHS
, OpRHS
, ShufIdxs
);
4164 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, T
);
4167 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
4168 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
4169 /// return the code it can be lowered into. Worst case, it can always be
4170 /// lowered into a vperm.
4171 SDValue
PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
,
4172 SelectionDAG
&DAG
) const {
4173 DebugLoc dl
= Op
.getDebugLoc();
4174 SDValue V1
= Op
.getOperand(0);
4175 SDValue V2
= Op
.getOperand(1);
4176 ShuffleVectorSDNode
*SVOp
= cast
<ShuffleVectorSDNode
>(Op
);
4177 EVT VT
= Op
.getValueType();
4179 // Cases that are handled by instructions that take permute immediates
4180 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4181 // selected by the instruction selector.
4182 if (V2
.getOpcode() == ISD::UNDEF
) {
4183 if (PPC::isSplatShuffleMask(SVOp
, 1) ||
4184 PPC::isSplatShuffleMask(SVOp
, 2) ||
4185 PPC::isSplatShuffleMask(SVOp
, 4) ||
4186 PPC::isVPKUWUMShuffleMask(SVOp
, true) ||
4187 PPC::isVPKUHUMShuffleMask(SVOp
, true) ||
4188 PPC::isVSLDOIShuffleMask(SVOp
, true) != -1 ||
4189 PPC::isVMRGLShuffleMask(SVOp
, 1, true) ||
4190 PPC::isVMRGLShuffleMask(SVOp
, 2, true) ||
4191 PPC::isVMRGLShuffleMask(SVOp
, 4, true) ||
4192 PPC::isVMRGHShuffleMask(SVOp
, 1, true) ||
4193 PPC::isVMRGHShuffleMask(SVOp
, 2, true) ||
4194 PPC::isVMRGHShuffleMask(SVOp
, 4, true)) {
4199 // Altivec has a variety of "shuffle immediates" that take two vector inputs
4200 // and produce a fixed permutation. If any of these match, do not lower to
4202 if (PPC::isVPKUWUMShuffleMask(SVOp
, false) ||
4203 PPC::isVPKUHUMShuffleMask(SVOp
, false) ||
4204 PPC::isVSLDOIShuffleMask(SVOp
, false) != -1 ||
4205 PPC::isVMRGLShuffleMask(SVOp
, 1, false) ||
4206 PPC::isVMRGLShuffleMask(SVOp
, 2, false) ||
4207 PPC::isVMRGLShuffleMask(SVOp
, 4, false) ||
4208 PPC::isVMRGHShuffleMask(SVOp
, 1, false) ||
4209 PPC::isVMRGHShuffleMask(SVOp
, 2, false) ||
4210 PPC::isVMRGHShuffleMask(SVOp
, 4, false))
4213 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
4214 // perfect shuffle table to emit an optimal matching sequence.
4215 SmallVector
<int, 16> PermMask
;
4216 SVOp
->getMask(PermMask
);
4218 unsigned PFIndexes
[4];
4219 bool isFourElementShuffle
= true;
4220 for (unsigned i
= 0; i
!= 4 && isFourElementShuffle
; ++i
) { // Element number
4221 unsigned EltNo
= 8; // Start out undef.
4222 for (unsigned j
= 0; j
!= 4; ++j
) { // Intra-element byte.
4223 if (PermMask
[i
*4+j
] < 0)
4224 continue; // Undef, ignore it.
4226 unsigned ByteSource
= PermMask
[i
*4+j
];
4227 if ((ByteSource
& 3) != j
) {
4228 isFourElementShuffle
= false;
4233 EltNo
= ByteSource
/4;
4234 } else if (EltNo
!= ByteSource
/4) {
4235 isFourElementShuffle
= false;
4239 PFIndexes
[i
] = EltNo
;
4242 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4243 // perfect shuffle vector to determine if it is cost effective to do this as
4244 // discrete instructions, or whether we should use a vperm.
4245 if (isFourElementShuffle
) {
4246 // Compute the index in the perfect shuffle table.
4247 unsigned PFTableIndex
=
4248 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
4250 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
4251 unsigned Cost
= (PFEntry
>> 30);
4253 // Determining when to avoid vperm is tricky. Many things affect the cost
4254 // of vperm, particularly how many times the perm mask needs to be computed.
4255 // For example, if the perm mask can be hoisted out of a loop or is already
4256 // used (perhaps because there are multiple permutes with the same shuffle
4257 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
4258 // the loop requires an extra register.
4260 // As a compromise, we only emit discrete instructions if the shuffle can be
4261 // generated in 3 or fewer operations. When we have loop information
4262 // available, if this block is within a loop, we should avoid using vperm
4263 // for 3-operation perms and use a constant pool load instead.
4265 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
4268 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4269 // vector that will get spilled to the constant pool.
4270 if (V2
.getOpcode() == ISD::UNDEF
) V2
= V1
;
4272 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4273 // that it is in input element units, not in bytes. Convert now.
4274 EVT EltVT
= V1
.getValueType().getVectorElementType();
4275 unsigned BytesPerElement
= EltVT
.getSizeInBits()/8;
4277 SmallVector
<SDValue
, 16> ResultMask
;
4278 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
) {
4279 unsigned SrcElt
= PermMask
[i
] < 0 ? 0 : PermMask
[i
];
4281 for (unsigned j
= 0; j
!= BytesPerElement
; ++j
)
4282 ResultMask
.push_back(DAG
.getConstant(SrcElt
*BytesPerElement
+j
,
4286 SDValue VPermMask
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v16i8
,
4287 &ResultMask
[0], ResultMask
.size());
4288 return DAG
.getNode(PPCISD::VPERM
, dl
, V1
.getValueType(), V1
, V2
, VPermMask
);
4291 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4292 /// altivec comparison. If it is, return true and fill in Opc/isDot with
4293 /// information about the intrinsic.
4294 static bool getAltivecCompareInfo(SDValue Intrin
, int &CompareOpc
,
4296 unsigned IntrinsicID
=
4297 cast
<ConstantSDNode
>(Intrin
.getOperand(0))->getZExtValue();
4300 switch (IntrinsicID
) {
4301 default: return false;
4302 // Comparison predicates.
4303 case Intrinsic::ppc_altivec_vcmpbfp_p
: CompareOpc
= 966; isDot
= 1; break;
4304 case Intrinsic::ppc_altivec_vcmpeqfp_p
: CompareOpc
= 198; isDot
= 1; break;
4305 case Intrinsic::ppc_altivec_vcmpequb_p
: CompareOpc
= 6; isDot
= 1; break;
4306 case Intrinsic::ppc_altivec_vcmpequh_p
: CompareOpc
= 70; isDot
= 1; break;
4307 case Intrinsic::ppc_altivec_vcmpequw_p
: CompareOpc
= 134; isDot
= 1; break;
4308 case Intrinsic::ppc_altivec_vcmpgefp_p
: CompareOpc
= 454; isDot
= 1; break;
4309 case Intrinsic::ppc_altivec_vcmpgtfp_p
: CompareOpc
= 710; isDot
= 1; break;
4310 case Intrinsic::ppc_altivec_vcmpgtsb_p
: CompareOpc
= 774; isDot
= 1; break;
4311 case Intrinsic::ppc_altivec_vcmpgtsh_p
: CompareOpc
= 838; isDot
= 1; break;
4312 case Intrinsic::ppc_altivec_vcmpgtsw_p
: CompareOpc
= 902; isDot
= 1; break;
4313 case Intrinsic::ppc_altivec_vcmpgtub_p
: CompareOpc
= 518; isDot
= 1; break;
4314 case Intrinsic::ppc_altivec_vcmpgtuh_p
: CompareOpc
= 582; isDot
= 1; break;
4315 case Intrinsic::ppc_altivec_vcmpgtuw_p
: CompareOpc
= 646; isDot
= 1; break;
4317 // Normal Comparisons.
4318 case Intrinsic::ppc_altivec_vcmpbfp
: CompareOpc
= 966; isDot
= 0; break;
4319 case Intrinsic::ppc_altivec_vcmpeqfp
: CompareOpc
= 198; isDot
= 0; break;
4320 case Intrinsic::ppc_altivec_vcmpequb
: CompareOpc
= 6; isDot
= 0; break;
4321 case Intrinsic::ppc_altivec_vcmpequh
: CompareOpc
= 70; isDot
= 0; break;
4322 case Intrinsic::ppc_altivec_vcmpequw
: CompareOpc
= 134; isDot
= 0; break;
4323 case Intrinsic::ppc_altivec_vcmpgefp
: CompareOpc
= 454; isDot
= 0; break;
4324 case Intrinsic::ppc_altivec_vcmpgtfp
: CompareOpc
= 710; isDot
= 0; break;
4325 case Intrinsic::ppc_altivec_vcmpgtsb
: CompareOpc
= 774; isDot
= 0; break;
4326 case Intrinsic::ppc_altivec_vcmpgtsh
: CompareOpc
= 838; isDot
= 0; break;
4327 case Intrinsic::ppc_altivec_vcmpgtsw
: CompareOpc
= 902; isDot
= 0; break;
4328 case Intrinsic::ppc_altivec_vcmpgtub
: CompareOpc
= 518; isDot
= 0; break;
4329 case Intrinsic::ppc_altivec_vcmpgtuh
: CompareOpc
= 582; isDot
= 0; break;
4330 case Intrinsic::ppc_altivec_vcmpgtuw
: CompareOpc
= 646; isDot
= 0; break;
4335 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4336 /// lower, do it, otherwise return null.
4337 SDValue
PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
,
4338 SelectionDAG
&DAG
) const {
4339 // If this is a lowered altivec predicate compare, CompareOpc is set to the
4340 // opcode number of the comparison.
4341 DebugLoc dl
= Op
.getDebugLoc();
4344 if (!getAltivecCompareInfo(Op
, CompareOpc
, isDot
))
4345 return SDValue(); // Don't custom lower most intrinsics.
4347 // If this is a non-dot comparison, make the VCMP node and we are done.
4349 SDValue Tmp
= DAG
.getNode(PPCISD::VCMP
, dl
, Op
.getOperand(2).getValueType(),
4350 Op
.getOperand(1), Op
.getOperand(2),
4351 DAG
.getConstant(CompareOpc
, MVT::i32
));
4352 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Tmp
);
4355 // Create the PPCISD altivec 'dot' comparison node.
4357 Op
.getOperand(2), // LHS
4358 Op
.getOperand(3), // RHS
4359 DAG
.getConstant(CompareOpc
, MVT::i32
)
4361 std::vector
<EVT
> VTs
;
4362 VTs
.push_back(Op
.getOperand(2).getValueType());
4363 VTs
.push_back(MVT::Glue
);
4364 SDValue CompNode
= DAG
.getNode(PPCISD::VCMPo
, dl
, VTs
, Ops
, 3);
4366 // Now that we have the comparison, emit a copy from the CR to a GPR.
4367 // This is flagged to the above dot comparison.
4368 SDValue Flags
= DAG
.getNode(PPCISD::MFCR
, dl
, MVT::i32
,
4369 DAG
.getRegister(PPC::CR6
, MVT::i32
),
4370 CompNode
.getValue(1));
4372 // Unpack the result based on how the target uses it.
4373 unsigned BitNo
; // Bit # of CR6.
4374 bool InvertBit
; // Invert result?
4375 switch (cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue()) {
4376 default: // Can't happen, don't crash on invalid number though.
4377 case 0: // Return the value of the EQ bit of CR6.
4378 BitNo
= 0; InvertBit
= false;
4380 case 1: // Return the inverted value of the EQ bit of CR6.
4381 BitNo
= 0; InvertBit
= true;
4383 case 2: // Return the value of the LT bit of CR6.
4384 BitNo
= 2; InvertBit
= false;
4386 case 3: // Return the inverted value of the LT bit of CR6.
4387 BitNo
= 2; InvertBit
= true;
4391 // Shift the bit into the low position.
4392 Flags
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Flags
,
4393 DAG
.getConstant(8-(3-BitNo
), MVT::i32
));
4395 Flags
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Flags
,
4396 DAG
.getConstant(1, MVT::i32
));
4398 // If we are supposed to, toggle the bit.
4400 Flags
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Flags
,
4401 DAG
.getConstant(1, MVT::i32
));
4405 SDValue
PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op
,
4406 SelectionDAG
&DAG
) const {
4407 DebugLoc dl
= Op
.getDebugLoc();
4408 // Create a stack slot that is 16-byte aligned.
4409 MachineFrameInfo
*FrameInfo
= DAG
.getMachineFunction().getFrameInfo();
4410 int FrameIdx
= FrameInfo
->CreateStackObject(16, 16, false);
4411 EVT PtrVT
= getPointerTy();
4412 SDValue FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
4414 // Store the input value into Value#0 of the stack slot.
4415 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
,
4416 Op
.getOperand(0), FIdx
, MachinePointerInfo(),
4419 return DAG
.getLoad(Op
.getValueType(), dl
, Store
, FIdx
, MachinePointerInfo(),
4423 SDValue
PPCTargetLowering::LowerMUL(SDValue Op
, SelectionDAG
&DAG
) const {
4424 DebugLoc dl
= Op
.getDebugLoc();
4425 if (Op
.getValueType() == MVT::v4i32
) {
4426 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
4428 SDValue Zero
= BuildSplatI( 0, 1, MVT::v4i32
, DAG
, dl
);
4429 SDValue Neg16
= BuildSplatI(-16, 4, MVT::v4i32
, DAG
, dl
);//+16 as shift amt.
4431 SDValue RHSSwap
= // = vrlw RHS, 16
4432 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw
, RHS
, Neg16
, DAG
, dl
);
4434 // Shrinkify inputs to v8i16.
4435 LHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, LHS
);
4436 RHS
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, RHS
);
4437 RHSSwap
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v8i16
, RHSSwap
);
4439 // Low parts multiplied together, generating 32-bit results (we ignore the
4441 SDValue LoProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh
,
4442 LHS
, RHS
, DAG
, dl
, MVT::v4i32
);
4444 SDValue HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm
,
4445 LHS
, RHSSwap
, Zero
, DAG
, dl
, MVT::v4i32
);
4446 // Shift the high parts up 16 bits.
4447 HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, HiProd
,
4449 return DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, LoProd
, HiProd
);
4450 } else if (Op
.getValueType() == MVT::v8i16
) {
4451 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
4453 SDValue Zero
= BuildSplatI(0, 1, MVT::v8i16
, DAG
, dl
);
4455 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm
,
4456 LHS
, RHS
, Zero
, DAG
, dl
);
4457 } else if (Op
.getValueType() == MVT::v16i8
) {
4458 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
4460 // Multiply the even 8-bit parts, producing 16-bit sums.
4461 SDValue EvenParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub
,
4462 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
4463 EvenParts
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, EvenParts
);
4465 // Multiply the odd 8-bit parts, producing 16-bit sums.
4466 SDValue OddParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub
,
4467 LHS
, RHS
, DAG
, dl
, MVT::v8i16
);
4468 OddParts
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v16i8
, OddParts
);
4470 // Merge the results together.
4472 for (unsigned i
= 0; i
!= 8; ++i
) {
4474 Ops
[i
*2+1] = 2*i
+1+16;
4476 return DAG
.getVectorShuffle(MVT::v16i8
, dl
, EvenParts
, OddParts
, Ops
);
4478 llvm_unreachable("Unknown mul to lower!");
4482 /// LowerOperation - Provide custom lowering hooks for some operations.
4484 SDValue
PPCTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
4485 switch (Op
.getOpcode()) {
4486 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4487 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
4488 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
4489 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
4490 case ISD::GlobalTLSAddress
: llvm_unreachable("TLS not implemented for PPC");
4491 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
4492 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
4493 case ISD::TRAMPOLINE
: return LowerTRAMPOLINE(Op
, DAG
);
4495 return LowerVASTART(Op
, DAG
, PPCSubTarget
);
4498 return LowerVAARG(Op
, DAG
, PPCSubTarget
);
4500 case ISD::STACKRESTORE
: return LowerSTACKRESTORE(Op
, DAG
, PPCSubTarget
);
4501 case ISD::DYNAMIC_STACKALLOC
:
4502 return LowerDYNAMIC_STACKALLOC(Op
, DAG
, PPCSubTarget
);
4504 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
4505 case ISD::FP_TO_UINT
:
4506 case ISD::FP_TO_SINT
: return LowerFP_TO_INT(Op
, DAG
,
4508 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
4509 case ISD::FLT_ROUNDS_
: return LowerFLT_ROUNDS_(Op
, DAG
);
4511 // Lower 64-bit shifts.
4512 case ISD::SHL_PARTS
: return LowerSHL_PARTS(Op
, DAG
);
4513 case ISD::SRL_PARTS
: return LowerSRL_PARTS(Op
, DAG
);
4514 case ISD::SRA_PARTS
: return LowerSRA_PARTS(Op
, DAG
);
4516 // Vector-related lowering.
4517 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
4518 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
4519 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
4520 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
4521 case ISD::MUL
: return LowerMUL(Op
, DAG
);
4523 // Frame & Return address.
4524 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
4525 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
4530 void PPCTargetLowering::ReplaceNodeResults(SDNode
*N
,
4531 SmallVectorImpl
<SDValue
>&Results
,
4532 SelectionDAG
&DAG
) const {
4533 const TargetMachine
&TM
= getTargetMachine();
4534 DebugLoc dl
= N
->getDebugLoc();
4535 switch (N
->getOpcode()) {
4537 assert(false && "Do not know how to custom type legalize this operation!");
4540 if (!TM
.getSubtarget
<PPCSubtarget
>().isSVR4ABI()
4541 || TM
.getSubtarget
<PPCSubtarget
>().isPPC64())
4544 EVT VT
= N
->getValueType(0);
4546 if (VT
== MVT::i64
) {
4547 SDValue NewNode
= LowerVAARG(SDValue(N
, 1), DAG
, PPCSubTarget
);
4549 Results
.push_back(NewNode
);
4550 Results
.push_back(NewNode
.getValue(1));
4554 case ISD::FP_ROUND_INREG
: {
4555 assert(N
->getValueType(0) == MVT::ppcf128
);
4556 assert(N
->getOperand(0).getValueType() == MVT::ppcf128
);
4557 SDValue Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
4558 MVT::f64
, N
->getOperand(0),
4559 DAG
.getIntPtrConstant(0));
4560 SDValue Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
,
4561 MVT::f64
, N
->getOperand(0),
4562 DAG
.getIntPtrConstant(1));
4564 // This sequence changes FPSCR to do round-to-zero, adds the two halves
4565 // of the long double, and puts FPSCR back the way it was. We do not
4566 // actually model FPSCR.
4567 std::vector
<EVT
> NodeTys
;
4568 SDValue Ops
[4], Result
, MFFSreg
, InFlag
, FPreg
;
4570 NodeTys
.push_back(MVT::f64
); // Return register
4571 NodeTys
.push_back(MVT::Glue
); // Returns a flag for later insns
4572 Result
= DAG
.getNode(PPCISD::MFFS
, dl
, NodeTys
, &InFlag
, 0);
4573 MFFSreg
= Result
.getValue(0);
4574 InFlag
= Result
.getValue(1);
4577 NodeTys
.push_back(MVT::Glue
); // Returns a flag
4578 Ops
[0] = DAG
.getConstant(31, MVT::i32
);
4580 Result
= DAG
.getNode(PPCISD::MTFSB1
, dl
, NodeTys
, Ops
, 2);
4581 InFlag
= Result
.getValue(0);
4584 NodeTys
.push_back(MVT::Glue
); // Returns a flag
4585 Ops
[0] = DAG
.getConstant(30, MVT::i32
);
4587 Result
= DAG
.getNode(PPCISD::MTFSB0
, dl
, NodeTys
, Ops
, 2);
4588 InFlag
= Result
.getValue(0);
4591 NodeTys
.push_back(MVT::f64
); // result of add
4592 NodeTys
.push_back(MVT::Glue
); // Returns a flag
4596 Result
= DAG
.getNode(PPCISD::FADDRTZ
, dl
, NodeTys
, Ops
, 3);
4597 FPreg
= Result
.getValue(0);
4598 InFlag
= Result
.getValue(1);
4601 NodeTys
.push_back(MVT::f64
);
4602 Ops
[0] = DAG
.getConstant(1, MVT::i32
);
4606 Result
= DAG
.getNode(PPCISD::MTFSF
, dl
, NodeTys
, Ops
, 4);
4607 FPreg
= Result
.getValue(0);
4609 // We know the low half is about to be thrown away, so just use something
4611 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::ppcf128
,
4615 case ISD::FP_TO_SINT
:
4616 Results
.push_back(LowerFP_TO_INT(SDValue(N
, 0), DAG
, dl
));
4622 //===----------------------------------------------------------------------===//
4623 // Other Lowering Code
4624 //===----------------------------------------------------------------------===//
4627 PPCTargetLowering::EmitAtomicBinary(MachineInstr
*MI
, MachineBasicBlock
*BB
,
4628 bool is64bit
, unsigned BinOpcode
) const {
4629 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4630 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
4632 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4633 MachineFunction
*F
= BB
->getParent();
4634 MachineFunction::iterator It
= BB
;
4637 unsigned dest
= MI
->getOperand(0).getReg();
4638 unsigned ptrA
= MI
->getOperand(1).getReg();
4639 unsigned ptrB
= MI
->getOperand(2).getReg();
4640 unsigned incr
= MI
->getOperand(3).getReg();
4641 DebugLoc dl
= MI
->getDebugLoc();
4643 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4644 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4645 F
->insert(It
, loopMBB
);
4646 F
->insert(It
, exitMBB
);
4647 exitMBB
->splice(exitMBB
->begin(), BB
,
4648 llvm::next(MachineBasicBlock::iterator(MI
)),
4650 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4652 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
4653 unsigned TmpReg
= (!BinOpcode
) ? incr
:
4654 RegInfo
.createVirtualRegister(
4655 is64bit
? (const TargetRegisterClass
*) &PPC::G8RCRegClass
:
4656 (const TargetRegisterClass
*) &PPC::GPRCRegClass
);
4660 // fallthrough --> loopMBB
4661 BB
->addSuccessor(loopMBB
);
4664 // l[wd]arx dest, ptr
4665 // add r0, dest, incr
4666 // st[wd]cx. r0, ptr
4668 // fallthrough --> exitMBB
4670 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::LDARX
: PPC::LWARX
), dest
)
4671 .addReg(ptrA
).addReg(ptrB
);
4673 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
).addReg(incr
).addReg(dest
);
4674 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
4675 .addReg(TmpReg
).addReg(ptrA
).addReg(ptrB
);
4676 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4677 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loopMBB
);
4678 BB
->addSuccessor(loopMBB
);
4679 BB
->addSuccessor(exitMBB
);
4688 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr
*MI
,
4689 MachineBasicBlock
*BB
,
4690 bool is8bit
, // operation
4691 unsigned BinOpcode
) const {
4692 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4693 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
4694 // In 64 bit mode we have to use 64 bits for addresses, even though the
4695 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
4696 // registers without caring whether they're 32 or 64, but here we're
4697 // doing actual arithmetic on the addresses.
4698 bool is64bit
= PPCSubTarget
.isPPC64();
4699 unsigned ZeroReg
= is64bit
? PPC::X0
: PPC::R0
;
4701 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4702 MachineFunction
*F
= BB
->getParent();
4703 MachineFunction::iterator It
= BB
;
4706 unsigned dest
= MI
->getOperand(0).getReg();
4707 unsigned ptrA
= MI
->getOperand(1).getReg();
4708 unsigned ptrB
= MI
->getOperand(2).getReg();
4709 unsigned incr
= MI
->getOperand(3).getReg();
4710 DebugLoc dl
= MI
->getDebugLoc();
4712 MachineBasicBlock
*loopMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4713 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4714 F
->insert(It
, loopMBB
);
4715 F
->insert(It
, exitMBB
);
4716 exitMBB
->splice(exitMBB
->begin(), BB
,
4717 llvm::next(MachineBasicBlock::iterator(MI
)),
4719 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4721 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
4722 const TargetRegisterClass
*RC
=
4723 is64bit
? (const TargetRegisterClass
*) &PPC::G8RCRegClass
:
4724 (const TargetRegisterClass
*) &PPC::GPRCRegClass
;
4725 unsigned PtrReg
= RegInfo
.createVirtualRegister(RC
);
4726 unsigned Shift1Reg
= RegInfo
.createVirtualRegister(RC
);
4727 unsigned ShiftReg
= RegInfo
.createVirtualRegister(RC
);
4728 unsigned Incr2Reg
= RegInfo
.createVirtualRegister(RC
);
4729 unsigned MaskReg
= RegInfo
.createVirtualRegister(RC
);
4730 unsigned Mask2Reg
= RegInfo
.createVirtualRegister(RC
);
4731 unsigned Mask3Reg
= RegInfo
.createVirtualRegister(RC
);
4732 unsigned Tmp2Reg
= RegInfo
.createVirtualRegister(RC
);
4733 unsigned Tmp3Reg
= RegInfo
.createVirtualRegister(RC
);
4734 unsigned Tmp4Reg
= RegInfo
.createVirtualRegister(RC
);
4735 unsigned TmpDestReg
= RegInfo
.createVirtualRegister(RC
);
4737 unsigned TmpReg
= (!BinOpcode
) ? Incr2Reg
: RegInfo
.createVirtualRegister(RC
);
4741 // fallthrough --> loopMBB
4742 BB
->addSuccessor(loopMBB
);
4744 // The 4-byte load must be aligned, while a char or short may be
4745 // anywhere in the word. Hence all this nasty bookkeeping code.
4746 // add ptr1, ptrA, ptrB [copy if ptrA==0]
4747 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4748 // xori shift, shift1, 24 [16]
4749 // rlwinm ptr, ptr1, 0, 0, 29
4750 // slw incr2, incr, shift
4751 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4752 // slw mask, mask2, shift
4754 // lwarx tmpDest, ptr
4755 // add tmp, tmpDest, incr2
4756 // andc tmp2, tmpDest, mask
4757 // and tmp3, tmp, mask
4758 // or tmp4, tmp3, tmp2
4761 // fallthrough --> exitMBB
4762 // srw dest, tmpDest, shift
4763 if (ptrA
!= ZeroReg
) {
4764 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
4765 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
4766 .addReg(ptrA
).addReg(ptrB
);
4770 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
).addReg(Ptr1Reg
)
4771 .addImm(3).addImm(27).addImm(is8bit
? 28 : 27);
4772 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::XORI8
: PPC::XORI
), ShiftReg
)
4773 .addReg(Shift1Reg
).addImm(is8bit
? 24 : 16);
4775 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
4776 .addReg(Ptr1Reg
).addImm(0).addImm(61);
4778 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
4779 .addReg(Ptr1Reg
).addImm(0).addImm(0).addImm(29);
4780 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), Incr2Reg
)
4781 .addReg(incr
).addReg(ShiftReg
);
4783 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
4785 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
4786 BuildMI(BB
, dl
, TII
->get(PPC::ORI
),Mask2Reg
).addReg(Mask3Reg
).addImm(65535);
4788 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
4789 .addReg(Mask2Reg
).addReg(ShiftReg
);
4792 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
4793 .addReg(ZeroReg
).addReg(PtrReg
);
4795 BuildMI(BB
, dl
, TII
->get(BinOpcode
), TmpReg
)
4796 .addReg(Incr2Reg
).addReg(TmpDestReg
);
4797 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ANDC8
: PPC::ANDC
), Tmp2Reg
)
4798 .addReg(TmpDestReg
).addReg(MaskReg
);
4799 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::AND8
: PPC::AND
), Tmp3Reg
)
4800 .addReg(TmpReg
).addReg(MaskReg
);
4801 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::OR8
: PPC::OR
), Tmp4Reg
)
4802 .addReg(Tmp3Reg
).addReg(Tmp2Reg
);
4803 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
4804 .addReg(Tmp4Reg
).addReg(ZeroReg
).addReg(PtrReg
);
4805 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4806 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loopMBB
);
4807 BB
->addSuccessor(loopMBB
);
4808 BB
->addSuccessor(exitMBB
);
4813 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(PPC::SRW
), dest
).addReg(TmpDestReg
)
4819 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr
*MI
,
4820 MachineBasicBlock
*BB
) const {
4821 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
4823 // To "insert" these instructions we actually have to insert their
4824 // control-flow patterns.
4825 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4826 MachineFunction::iterator It
= BB
;
4829 MachineFunction
*F
= BB
->getParent();
4831 if (MI
->getOpcode() == PPC::SELECT_CC_I4
||
4832 MI
->getOpcode() == PPC::SELECT_CC_I8
||
4833 MI
->getOpcode() == PPC::SELECT_CC_F4
||
4834 MI
->getOpcode() == PPC::SELECT_CC_F8
||
4835 MI
->getOpcode() == PPC::SELECT_CC_VRRC
) {
4837 // The incoming instruction knows the destination vreg to set, the
4838 // condition code register to branch on, the true/false values to
4839 // select between, and a branch opcode to use.
4844 // cmpTY ccX, r1, r2
4846 // fallthrough --> copy0MBB
4847 MachineBasicBlock
*thisMBB
= BB
;
4848 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4849 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4850 unsigned SelectPred
= MI
->getOperand(4).getImm();
4851 DebugLoc dl
= MI
->getDebugLoc();
4852 F
->insert(It
, copy0MBB
);
4853 F
->insert(It
, sinkMBB
);
4855 // Transfer the remainder of BB and its successor edges to sinkMBB.
4856 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4857 llvm::next(MachineBasicBlock::iterator(MI
)),
4859 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4861 // Next, add the true and fallthrough blocks as its successors.
4862 BB
->addSuccessor(copy0MBB
);
4863 BB
->addSuccessor(sinkMBB
);
4865 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4866 .addImm(SelectPred
).addReg(MI
->getOperand(1).getReg()).addMBB(sinkMBB
);
4869 // %FalseValue = ...
4870 // # fallthrough to sinkMBB
4873 // Update machine-CFG edges
4874 BB
->addSuccessor(sinkMBB
);
4877 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4880 BuildMI(*BB
, BB
->begin(), dl
,
4881 TII
->get(PPC::PHI
), MI
->getOperand(0).getReg())
4882 .addReg(MI
->getOperand(3).getReg()).addMBB(copy0MBB
)
4883 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
4885 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8
)
4886 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::ADD4
);
4887 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16
)
4888 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::ADD4
);
4889 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32
)
4890 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::ADD4
);
4891 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64
)
4892 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::ADD8
);
4894 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I8
)
4895 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::AND
);
4896 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I16
)
4897 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::AND
);
4898 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I32
)
4899 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::AND
);
4900 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_AND_I64
)
4901 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::AND8
);
4903 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I8
)
4904 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::OR
);
4905 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I16
)
4906 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::OR
);
4907 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I32
)
4908 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::OR
);
4909 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_OR_I64
)
4910 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::OR8
);
4912 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8
)
4913 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::XOR
);
4914 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16
)
4915 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::XOR
);
4916 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32
)
4917 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::XOR
);
4918 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64
)
4919 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::XOR8
);
4921 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8
)
4922 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::ANDC
);
4923 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16
)
4924 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::ANDC
);
4925 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32
)
4926 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::ANDC
);
4927 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64
)
4928 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::ANDC8
);
4930 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8
)
4931 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, PPC::SUBF
);
4932 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16
)
4933 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, PPC::SUBF
);
4934 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32
)
4935 BB
= EmitAtomicBinary(MI
, BB
, false, PPC::SUBF
);
4936 else if (MI
->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64
)
4937 BB
= EmitAtomicBinary(MI
, BB
, true, PPC::SUBF8
);
4939 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I8
)
4940 BB
= EmitPartwordAtomicBinary(MI
, BB
, true, 0);
4941 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I16
)
4942 BB
= EmitPartwordAtomicBinary(MI
, BB
, false, 0);
4943 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I32
)
4944 BB
= EmitAtomicBinary(MI
, BB
, false, 0);
4945 else if (MI
->getOpcode() == PPC::ATOMIC_SWAP_I64
)
4946 BB
= EmitAtomicBinary(MI
, BB
, true, 0);
4948 else if (MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32
||
4949 MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
) {
4950 bool is64bit
= MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64
;
4952 unsigned dest
= MI
->getOperand(0).getReg();
4953 unsigned ptrA
= MI
->getOperand(1).getReg();
4954 unsigned ptrB
= MI
->getOperand(2).getReg();
4955 unsigned oldval
= MI
->getOperand(3).getReg();
4956 unsigned newval
= MI
->getOperand(4).getReg();
4957 DebugLoc dl
= MI
->getDebugLoc();
4959 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4960 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4961 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4962 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4963 F
->insert(It
, loop1MBB
);
4964 F
->insert(It
, loop2MBB
);
4965 F
->insert(It
, midMBB
);
4966 F
->insert(It
, exitMBB
);
4967 exitMBB
->splice(exitMBB
->begin(), BB
,
4968 llvm::next(MachineBasicBlock::iterator(MI
)),
4970 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4974 // fallthrough --> loopMBB
4975 BB
->addSuccessor(loop1MBB
);
4978 // l[wd]arx dest, ptr
4979 // cmp[wd] dest, oldval
4982 // st[wd]cx. newval, ptr
4986 // st[wd]cx. dest, ptr
4989 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::LDARX
: PPC::LWARX
), dest
)
4990 .addReg(ptrA
).addReg(ptrB
);
4991 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::CMPD
: PPC::CMPW
), PPC::CR0
)
4992 .addReg(oldval
).addReg(dest
);
4993 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
4994 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(midMBB
);
4995 BB
->addSuccessor(loop2MBB
);
4996 BB
->addSuccessor(midMBB
);
4999 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
5000 .addReg(newval
).addReg(ptrA
).addReg(ptrB
);
5001 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
5002 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loop1MBB
);
5003 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
5004 BB
->addSuccessor(loop1MBB
);
5005 BB
->addSuccessor(exitMBB
);
5008 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::STDCX
: PPC::STWCX
))
5009 .addReg(dest
).addReg(ptrA
).addReg(ptrB
);
5010 BB
->addSuccessor(exitMBB
);
5015 } else if (MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
||
5016 MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16
) {
5017 // We must use 64-bit registers for addresses when targeting 64-bit,
5018 // since we're actually doing arithmetic on them. Other registers
5020 bool is64bit
= PPCSubTarget
.isPPC64();
5021 bool is8bit
= MI
->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8
;
5023 unsigned dest
= MI
->getOperand(0).getReg();
5024 unsigned ptrA
= MI
->getOperand(1).getReg();
5025 unsigned ptrB
= MI
->getOperand(2).getReg();
5026 unsigned oldval
= MI
->getOperand(3).getReg();
5027 unsigned newval
= MI
->getOperand(4).getReg();
5028 DebugLoc dl
= MI
->getDebugLoc();
5030 MachineBasicBlock
*loop1MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
5031 MachineBasicBlock
*loop2MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
5032 MachineBasicBlock
*midMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
5033 MachineBasicBlock
*exitMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
5034 F
->insert(It
, loop1MBB
);
5035 F
->insert(It
, loop2MBB
);
5036 F
->insert(It
, midMBB
);
5037 F
->insert(It
, exitMBB
);
5038 exitMBB
->splice(exitMBB
->begin(), BB
,
5039 llvm::next(MachineBasicBlock::iterator(MI
)),
5041 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
5043 MachineRegisterInfo
&RegInfo
= F
->getRegInfo();
5044 const TargetRegisterClass
*RC
=
5045 is64bit
? (const TargetRegisterClass
*) &PPC::G8RCRegClass
:
5046 (const TargetRegisterClass
*) &PPC::GPRCRegClass
;
5047 unsigned PtrReg
= RegInfo
.createVirtualRegister(RC
);
5048 unsigned Shift1Reg
= RegInfo
.createVirtualRegister(RC
);
5049 unsigned ShiftReg
= RegInfo
.createVirtualRegister(RC
);
5050 unsigned NewVal2Reg
= RegInfo
.createVirtualRegister(RC
);
5051 unsigned NewVal3Reg
= RegInfo
.createVirtualRegister(RC
);
5052 unsigned OldVal2Reg
= RegInfo
.createVirtualRegister(RC
);
5053 unsigned OldVal3Reg
= RegInfo
.createVirtualRegister(RC
);
5054 unsigned MaskReg
= RegInfo
.createVirtualRegister(RC
);
5055 unsigned Mask2Reg
= RegInfo
.createVirtualRegister(RC
);
5056 unsigned Mask3Reg
= RegInfo
.createVirtualRegister(RC
);
5057 unsigned Tmp2Reg
= RegInfo
.createVirtualRegister(RC
);
5058 unsigned Tmp4Reg
= RegInfo
.createVirtualRegister(RC
);
5059 unsigned TmpDestReg
= RegInfo
.createVirtualRegister(RC
);
5061 unsigned TmpReg
= RegInfo
.createVirtualRegister(RC
);
5062 unsigned ZeroReg
= is64bit
? PPC::X0
: PPC::R0
;
5065 // fallthrough --> loopMBB
5066 BB
->addSuccessor(loop1MBB
);
5068 // The 4-byte load must be aligned, while a char or short may be
5069 // anywhere in the word. Hence all this nasty bookkeeping code.
5070 // add ptr1, ptrA, ptrB [copy if ptrA==0]
5071 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5072 // xori shift, shift1, 24 [16]
5073 // rlwinm ptr, ptr1, 0, 0, 29
5074 // slw newval2, newval, shift
5075 // slw oldval2, oldval,shift
5076 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5077 // slw mask, mask2, shift
5078 // and newval3, newval2, mask
5079 // and oldval3, oldval2, mask
5081 // lwarx tmpDest, ptr
5082 // and tmp, tmpDest, mask
5083 // cmpw tmp, oldval3
5086 // andc tmp2, tmpDest, mask
5087 // or tmp4, tmp2, newval3
5092 // stwcx. tmpDest, ptr
5094 // srw dest, tmpDest, shift
5095 if (ptrA
!= ZeroReg
) {
5096 Ptr1Reg
= RegInfo
.createVirtualRegister(RC
);
5097 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::ADD8
: PPC::ADD4
), Ptr1Reg
)
5098 .addReg(ptrA
).addReg(ptrB
);
5102 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), Shift1Reg
).addReg(Ptr1Reg
)
5103 .addImm(3).addImm(27).addImm(is8bit
? 28 : 27);
5104 BuildMI(BB
, dl
, TII
->get(is64bit
? PPC::XORI8
: PPC::XORI
), ShiftReg
)
5105 .addReg(Shift1Reg
).addImm(is8bit
? 24 : 16);
5107 BuildMI(BB
, dl
, TII
->get(PPC::RLDICR
), PtrReg
)
5108 .addReg(Ptr1Reg
).addImm(0).addImm(61);
5110 BuildMI(BB
, dl
, TII
->get(PPC::RLWINM
), PtrReg
)
5111 .addReg(Ptr1Reg
).addImm(0).addImm(0).addImm(29);
5112 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), NewVal2Reg
)
5113 .addReg(newval
).addReg(ShiftReg
);
5114 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), OldVal2Reg
)
5115 .addReg(oldval
).addReg(ShiftReg
);
5117 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask2Reg
).addImm(255);
5119 BuildMI(BB
, dl
, TII
->get(PPC::LI
), Mask3Reg
).addImm(0);
5120 BuildMI(BB
, dl
, TII
->get(PPC::ORI
), Mask2Reg
)
5121 .addReg(Mask3Reg
).addImm(65535);
5123 BuildMI(BB
, dl
, TII
->get(PPC::SLW
), MaskReg
)
5124 .addReg(Mask2Reg
).addReg(ShiftReg
);
5125 BuildMI(BB
, dl
, TII
->get(PPC::AND
), NewVal3Reg
)
5126 .addReg(NewVal2Reg
).addReg(MaskReg
);
5127 BuildMI(BB
, dl
, TII
->get(PPC::AND
), OldVal3Reg
)
5128 .addReg(OldVal2Reg
).addReg(MaskReg
);
5131 BuildMI(BB
, dl
, TII
->get(PPC::LWARX
), TmpDestReg
)
5132 .addReg(ZeroReg
).addReg(PtrReg
);
5133 BuildMI(BB
, dl
, TII
->get(PPC::AND
),TmpReg
)
5134 .addReg(TmpDestReg
).addReg(MaskReg
);
5135 BuildMI(BB
, dl
, TII
->get(PPC::CMPW
), PPC::CR0
)
5136 .addReg(TmpReg
).addReg(OldVal3Reg
);
5137 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
5138 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(midMBB
);
5139 BB
->addSuccessor(loop2MBB
);
5140 BB
->addSuccessor(midMBB
);
5143 BuildMI(BB
, dl
, TII
->get(PPC::ANDC
),Tmp2Reg
)
5144 .addReg(TmpDestReg
).addReg(MaskReg
);
5145 BuildMI(BB
, dl
, TII
->get(PPC::OR
),Tmp4Reg
)
5146 .addReg(Tmp2Reg
).addReg(NewVal3Reg
);
5147 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
)).addReg(Tmp4Reg
)
5148 .addReg(ZeroReg
).addReg(PtrReg
);
5149 BuildMI(BB
, dl
, TII
->get(PPC::BCC
))
5150 .addImm(PPC::PRED_NE
).addReg(PPC::CR0
).addMBB(loop1MBB
);
5151 BuildMI(BB
, dl
, TII
->get(PPC::B
)).addMBB(exitMBB
);
5152 BB
->addSuccessor(loop1MBB
);
5153 BB
->addSuccessor(exitMBB
);
5156 BuildMI(BB
, dl
, TII
->get(PPC::STWCX
)).addReg(TmpDestReg
)
5157 .addReg(ZeroReg
).addReg(PtrReg
);
5158 BB
->addSuccessor(exitMBB
);
5163 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(PPC::SRW
),dest
).addReg(TmpReg
)
5166 llvm_unreachable("Unexpected instr type to insert");
5169 MI
->eraseFromParent(); // The pseudo instruction is gone now.
5173 //===----------------------------------------------------------------------===//
5174 // Target Optimization Hooks
5175 //===----------------------------------------------------------------------===//
5177 SDValue
PPCTargetLowering::PerformDAGCombine(SDNode
*N
,
5178 DAGCombinerInfo
&DCI
) const {
5179 const TargetMachine
&TM
= getTargetMachine();
5180 SelectionDAG
&DAG
= DCI
.DAG
;
5181 DebugLoc dl
= N
->getDebugLoc();
5182 switch (N
->getOpcode()) {
5185 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
5186 if (C
->isNullValue()) // 0 << V -> 0.
5187 return N
->getOperand(0);
5191 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
5192 if (C
->isNullValue()) // 0 >>u V -> 0.
5193 return N
->getOperand(0);
5197 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
5198 if (C
->isNullValue() || // 0 >>s V -> 0.
5199 C
->isAllOnesValue()) // -1 >>s V -> -1.
5200 return N
->getOperand(0);
5204 case ISD::SINT_TO_FP
:
5205 if (TM
.getSubtarget
<PPCSubtarget
>().has64BitSupport()) {
5206 if (N
->getOperand(0).getOpcode() == ISD::FP_TO_SINT
) {
5207 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5208 // We allow the src/dst to be either f32/f64, but the intermediate
5209 // type must be i64.
5210 if (N
->getOperand(0).getValueType() == MVT::i64
&&
5211 N
->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128
) {
5212 SDValue Val
= N
->getOperand(0).getOperand(0);
5213 if (Val
.getValueType() == MVT::f32
) {
5214 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Val
);
5215 DCI
.AddToWorklist(Val
.getNode());
5218 Val
= DAG
.getNode(PPCISD::FCTIDZ
, dl
, MVT::f64
, Val
);
5219 DCI
.AddToWorklist(Val
.getNode());
5220 Val
= DAG
.getNode(PPCISD::FCFID
, dl
, MVT::f64
, Val
);
5221 DCI
.AddToWorklist(Val
.getNode());
5222 if (N
->getValueType(0) == MVT::f32
) {
5223 Val
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, Val
,
5224 DAG
.getIntPtrConstant(0));
5225 DCI
.AddToWorklist(Val
.getNode());
5228 } else if (N
->getOperand(0).getValueType() == MVT::i32
) {
5229 // If the intermediate type is i32, we can avoid the load/store here
5236 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5237 if (TM
.getSubtarget
<PPCSubtarget
>().hasSTFIWX() &&
5238 !cast
<StoreSDNode
>(N
)->isTruncatingStore() &&
5239 N
->getOperand(1).getOpcode() == ISD::FP_TO_SINT
&&
5240 N
->getOperand(1).getValueType() == MVT::i32
&&
5241 N
->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128
) {
5242 SDValue Val
= N
->getOperand(1).getOperand(0);
5243 if (Val
.getValueType() == MVT::f32
) {
5244 Val
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f64
, Val
);
5245 DCI
.AddToWorklist(Val
.getNode());
5247 Val
= DAG
.getNode(PPCISD::FCTIWZ
, dl
, MVT::f64
, Val
);
5248 DCI
.AddToWorklist(Val
.getNode());
5250 Val
= DAG
.getNode(PPCISD::STFIWX
, dl
, MVT::Other
, N
->getOperand(0), Val
,
5251 N
->getOperand(2), N
->getOperand(3));
5252 DCI
.AddToWorklist(Val
.getNode());
5256 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5257 if (cast
<StoreSDNode
>(N
)->isUnindexed() &&
5258 N
->getOperand(1).getOpcode() == ISD::BSWAP
&&
5259 N
->getOperand(1).getNode()->hasOneUse() &&
5260 (N
->getOperand(1).getValueType() == MVT::i32
||
5261 N
->getOperand(1).getValueType() == MVT::i16
)) {
5262 SDValue BSwapOp
= N
->getOperand(1).getOperand(0);
5263 // Do an any-extend to 32-bits if this is a half-word input.
5264 if (BSwapOp
.getValueType() == MVT::i16
)
5265 BSwapOp
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, BSwapOp
);
5268 N
->getOperand(0), BSwapOp
, N
->getOperand(2),
5269 DAG
.getValueType(N
->getOperand(1).getValueType())
5272 DAG
.getMemIntrinsicNode(PPCISD::STBRX
, dl
, DAG
.getVTList(MVT::Other
),
5273 Ops
, array_lengthof(Ops
),
5274 cast
<StoreSDNode
>(N
)->getMemoryVT(),
5275 cast
<StoreSDNode
>(N
)->getMemOperand());
5279 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5280 if (ISD::isNON_EXTLoad(N
->getOperand(0).getNode()) &&
5281 N
->getOperand(0).hasOneUse() &&
5282 (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i16
)) {
5283 SDValue Load
= N
->getOperand(0);
5284 LoadSDNode
*LD
= cast
<LoadSDNode
>(Load
);
5285 // Create the byte-swapping load.
5287 LD
->getChain(), // Chain
5288 LD
->getBasePtr(), // Ptr
5289 DAG
.getValueType(N
->getValueType(0)) // VT
5292 DAG
.getMemIntrinsicNode(PPCISD::LBRX
, dl
,
5293 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
, 3,
5294 LD
->getMemoryVT(), LD
->getMemOperand());
5296 // If this is an i16 load, insert the truncate.
5297 SDValue ResVal
= BSLoad
;
5298 if (N
->getValueType(0) == MVT::i16
)
5299 ResVal
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i16
, BSLoad
);
5301 // First, combine the bswap away. This makes the value produced by the
5303 DCI
.CombineTo(N
, ResVal
);
5305 // Next, combine the load away, we give it a bogus result value but a real
5306 // chain result. The result value is dead because the bswap is dead.
5307 DCI
.CombineTo(Load
.getNode(), ResVal
, BSLoad
.getValue(1));
5309 // Return N so it doesn't get rechecked!
5310 return SDValue(N
, 0);
5314 case PPCISD::VCMP
: {
5315 // If a VCMPo node already exists with exactly the same operands as this
5316 // node, use its result instead of this node (VCMPo computes both a CR6 and
5317 // a normal output).
5319 if (!N
->getOperand(0).hasOneUse() &&
5320 !N
->getOperand(1).hasOneUse() &&
5321 !N
->getOperand(2).hasOneUse()) {
5323 // Scan all of the users of the LHS, looking for VCMPo's that match.
5324 SDNode
*VCMPoNode
= 0;
5326 SDNode
*LHSN
= N
->getOperand(0).getNode();
5327 for (SDNode::use_iterator UI
= LHSN
->use_begin(), E
= LHSN
->use_end();
5329 if (UI
->getOpcode() == PPCISD::VCMPo
&&
5330 UI
->getOperand(1) == N
->getOperand(1) &&
5331 UI
->getOperand(2) == N
->getOperand(2) &&
5332 UI
->getOperand(0) == N
->getOperand(0)) {
5337 // If there is no VCMPo node, or if the flag value has a single use, don't
5339 if (!VCMPoNode
|| VCMPoNode
->hasNUsesOfValue(0, 1))
5342 // Look at the (necessarily single) use of the flag value. If it has a
5343 // chain, this transformation is more complex. Note that multiple things
5344 // could use the value result, which we should ignore.
5345 SDNode
*FlagUser
= 0;
5346 for (SDNode::use_iterator UI
= VCMPoNode
->use_begin();
5347 FlagUser
== 0; ++UI
) {
5348 assert(UI
!= VCMPoNode
->use_end() && "Didn't find user!");
5350 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
5351 if (User
->getOperand(i
) == SDValue(VCMPoNode
, 1)) {
5358 // If the user is a MFCR instruction, we know this is safe. Otherwise we
5359 // give up for right now.
5360 if (FlagUser
->getOpcode() == PPCISD::MFCR
)
5361 return SDValue(VCMPoNode
, 0);
5366 // If this is a branch on an altivec predicate comparison, lower this so
5367 // that we don't have to do a MFCR: instead, branch directly on CR6. This
5368 // lowering is done pre-legalize, because the legalizer lowers the predicate
5369 // compare down to code that is difficult to reassemble.
5370 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
5371 SDValue LHS
= N
->getOperand(2), RHS
= N
->getOperand(3);
5375 if (LHS
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
5376 isa
<ConstantSDNode
>(RHS
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) &&
5377 getAltivecCompareInfo(LHS
, CompareOpc
, isDot
)) {
5378 assert(isDot
&& "Can't compare against a vector result!");
5380 // If this is a comparison against something other than 0/1, then we know
5381 // that the condition is never/always true.
5382 unsigned Val
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
5383 if (Val
!= 0 && Val
!= 1) {
5384 if (CC
== ISD::SETEQ
) // Cond never true, remove branch.
5385 return N
->getOperand(0);
5386 // Always !=, turn it into an unconditional branch.
5387 return DAG
.getNode(ISD::BR
, dl
, MVT::Other
,
5388 N
->getOperand(0), N
->getOperand(4));
5391 bool BranchOnWhenPredTrue
= (CC
== ISD::SETEQ
) ^ (Val
== 0);
5393 // Create the PPCISD altivec 'dot' comparison node.
5394 std::vector
<EVT
> VTs
;
5396 LHS
.getOperand(2), // LHS of compare
5397 LHS
.getOperand(3), // RHS of compare
5398 DAG
.getConstant(CompareOpc
, MVT::i32
)
5400 VTs
.push_back(LHS
.getOperand(2).getValueType());
5401 VTs
.push_back(MVT::Glue
);
5402 SDValue CompNode
= DAG
.getNode(PPCISD::VCMPo
, dl
, VTs
, Ops
, 3);
5404 // Unpack the result based on how the target uses it.
5405 PPC::Predicate CompOpc
;
5406 switch (cast
<ConstantSDNode
>(LHS
.getOperand(1))->getZExtValue()) {
5407 default: // Can't happen, don't crash on invalid number though.
5408 case 0: // Branch on the value of the EQ bit of CR6.
5409 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_EQ
: PPC::PRED_NE
;
5411 case 1: // Branch on the inverted value of the EQ bit of CR6.
5412 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_NE
: PPC::PRED_EQ
;
5414 case 2: // Branch on the value of the LT bit of CR6.
5415 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_LT
: PPC::PRED_GE
;
5417 case 3: // Branch on the inverted value of the LT bit of CR6.
5418 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_GE
: PPC::PRED_LT
;
5422 return DAG
.getNode(PPCISD::COND_BRANCH
, dl
, MVT::Other
, N
->getOperand(0),
5423 DAG
.getConstant(CompOpc
, MVT::i32
),
5424 DAG
.getRegister(PPC::CR6
, MVT::i32
),
5425 N
->getOperand(4), CompNode
.getValue(1));
5434 //===----------------------------------------------------------------------===//
5435 // Inline Assembly Support
5436 //===----------------------------------------------------------------------===//
5438 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op
,
5442 const SelectionDAG
&DAG
,
5443 unsigned Depth
) const {
5444 KnownZero
= KnownOne
= APInt(Mask
.getBitWidth(), 0);
5445 switch (Op
.getOpcode()) {
5447 case PPCISD::LBRX
: {
5448 // lhbrx is known to have the top bits cleared out.
5449 if (cast
<VTSDNode
>(Op
.getOperand(2))->getVT() == MVT::i16
)
5450 KnownZero
= 0xFFFF0000;
5453 case ISD::INTRINSIC_WO_CHAIN
: {
5454 switch (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue()) {
5456 case Intrinsic::ppc_altivec_vcmpbfp_p
:
5457 case Intrinsic::ppc_altivec_vcmpeqfp_p
:
5458 case Intrinsic::ppc_altivec_vcmpequb_p
:
5459 case Intrinsic::ppc_altivec_vcmpequh_p
:
5460 case Intrinsic::ppc_altivec_vcmpequw_p
:
5461 case Intrinsic::ppc_altivec_vcmpgefp_p
:
5462 case Intrinsic::ppc_altivec_vcmpgtfp_p
:
5463 case Intrinsic::ppc_altivec_vcmpgtsb_p
:
5464 case Intrinsic::ppc_altivec_vcmpgtsh_p
:
5465 case Intrinsic::ppc_altivec_vcmpgtsw_p
:
5466 case Intrinsic::ppc_altivec_vcmpgtub_p
:
5467 case Intrinsic::ppc_altivec_vcmpgtuh_p
:
5468 case Intrinsic::ppc_altivec_vcmpgtuw_p
:
5469 KnownZero
= ~1U; // All bits but the low one are known to be zero.
5477 /// getConstraintType - Given a constraint, return the type of
5478 /// constraint it is for this target.
5479 PPCTargetLowering::ConstraintType
5480 PPCTargetLowering::getConstraintType(const std::string
&Constraint
) const {
5481 if (Constraint
.size() == 1) {
5482 switch (Constraint
[0]) {
5489 return C_RegisterClass
;
5492 return TargetLowering::getConstraintType(Constraint
);
5495 /// Examine constraint type and operand type and determine a weight value.
5496 /// This object must already have been set up with the operand type
5497 /// and the current alternative constraint selected.
5498 TargetLowering::ConstraintWeight
5499 PPCTargetLowering::getSingleConstraintMatchWeight(
5500 AsmOperandInfo
&info
, const char *constraint
) const {
5501 ConstraintWeight weight
= CW_Invalid
;
5502 Value
*CallOperandVal
= info
.CallOperandVal
;
5503 // If we don't have a value, we can't do a match,
5504 // but allow it at the lowest weight.
5505 if (CallOperandVal
== NULL
)
5507 const Type
*type
= CallOperandVal
->getType();
5508 // Look at the constraint type.
5509 switch (*constraint
) {
5511 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
5514 if (type
->isIntegerTy())
5515 weight
= CW_Register
;
5518 if (type
->isFloatTy())
5519 weight
= CW_Register
;
5522 if (type
->isDoubleTy())
5523 weight
= CW_Register
;
5526 if (type
->isVectorTy())
5527 weight
= CW_Register
;
5530 weight
= CW_Register
;
5536 std::pair
<unsigned, const TargetRegisterClass
*>
5537 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
5539 if (Constraint
.size() == 1) {
5540 // GCC RS6000 Constraint Letters
5541 switch (Constraint
[0]) {
5544 if (VT
== MVT::i64
&& PPCSubTarget
.isPPC64())
5545 return std::make_pair(0U, PPC::G8RCRegisterClass
);
5546 return std::make_pair(0U, PPC::GPRCRegisterClass
);
5549 return std::make_pair(0U, PPC::F4RCRegisterClass
);
5550 else if (VT
== MVT::f64
)
5551 return std::make_pair(0U, PPC::F8RCRegisterClass
);
5554 return std::make_pair(0U, PPC::VRRCRegisterClass
);
5556 return std::make_pair(0U, PPC::CRRCRegisterClass
);
5560 return TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
5564 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5565 /// vector. If it is invalid, don't add anything to Ops.
5566 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
5567 std::string
&Constraint
,
5568 std::vector
<SDValue
>&Ops
,
5569 SelectionDAG
&DAG
) const {
5570 SDValue
Result(0,0);
5572 // Only support length 1 constraints.
5573 if (Constraint
.length() > 1) return;
5575 char Letter
= Constraint
[0];
5586 ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
);
5587 if (!CST
) return; // Must be an immediate to match.
5588 unsigned Value
= CST
->getZExtValue();
5590 default: llvm_unreachable("Unknown constraint letter!");
5591 case 'I': // "I" is a signed 16-bit constant.
5592 if ((short)Value
== (int)Value
)
5593 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5595 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
5596 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
5597 if ((short)Value
== 0)
5598 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5600 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
5601 if ((Value
>> 16) == 0)
5602 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5604 case 'M': // "M" is a constant that is greater than 31.
5606 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5608 case 'N': // "N" is a positive constant that is an exact power of two.
5609 if ((int)Value
> 0 && isPowerOf2_32(Value
))
5610 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5612 case 'O': // "O" is the constant zero.
5614 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5616 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
5617 if ((short)-Value
== (int)-Value
)
5618 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
5625 if (Result
.getNode()) {
5626 Ops
.push_back(Result
);
5630 // Handle standard constraint letters.
5631 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
5634 // isLegalAddressingMode - Return true if the addressing mode represented
5635 // by AM is legal for this target, for a load/store of the specified type.
5636 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
5637 const Type
*Ty
) const {
5638 // FIXME: PPC does not allow r+i addressing modes for vectors!
5640 // PPC allows a sign-extended 16-bit immediate field.
5641 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
5644 // No global is ever allowed as a base.
5648 // PPC only support r+r,
5650 case 0: // "r+i" or just "i", depending on HasBaseReg.
5653 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
5655 // Otherwise we have r+r or r+i.
5658 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
5660 // Allow 2*r as r+r.
5663 // No other scales are supported.
5670 /// isLegalAddressImmediate - Return true if the integer value can be used
5671 /// as the offset of the target addressing mode for load / store of the
5673 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V
,const Type
*Ty
) const{
5674 // PPC allows a sign-extended 16-bit immediate field.
5675 return (V
> -(1 << 16) && V
< (1 << 16)-1);
5678 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue
* GV
) const {
5682 SDValue
PPCTargetLowering::LowerRETURNADDR(SDValue Op
,
5683 SelectionDAG
&DAG
) const {
5684 MachineFunction
&MF
= DAG
.getMachineFunction();
5685 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
5686 MFI
->setReturnAddressIsTaken(true);
5688 DebugLoc dl
= Op
.getDebugLoc();
5689 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5691 // Make sure the function does not optimize away the store of the RA to
5693 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
5694 FuncInfo
->setLRStoreRequired();
5695 bool isPPC64
= PPCSubTarget
.isPPC64();
5696 bool isDarwinABI
= PPCSubTarget
.isDarwinABI();
5699 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5702 DAG
.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64
, isDarwinABI
),
5703 isPPC64
? MVT::i64
: MVT::i32
);
5704 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
5705 DAG
.getNode(ISD::ADD
, dl
, getPointerTy(),
5707 MachinePointerInfo(), false, false, 0);
5710 // Just load the return address off the stack.
5711 SDValue RetAddrFI
= getReturnAddrFrameIndex(DAG
);
5712 return DAG
.getLoad(getPointerTy(), dl
, DAG
.getEntryNode(),
5713 RetAddrFI
, MachinePointerInfo(), false, false, 0);
5716 SDValue
PPCTargetLowering::LowerFRAMEADDR(SDValue Op
,
5717 SelectionDAG
&DAG
) const {
5718 DebugLoc dl
= Op
.getDebugLoc();
5719 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5721 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
5722 bool isPPC64
= PtrVT
== MVT::i64
;
5724 MachineFunction
&MF
= DAG
.getMachineFunction();
5725 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
5726 MFI
->setFrameAddressIsTaken(true);
5727 bool is31
= (DisableFramePointerElim(MF
) || MFI
->hasVarSizedObjects()) &&
5728 MFI
->getStackSize() &&
5729 !MF
.getFunction()->hasFnAttr(Attribute::Naked
);
5730 unsigned FrameReg
= isPPC64
? (is31
? PPC::X31
: PPC::X1
) :
5731 (is31
? PPC::R31
: PPC::R1
);
5732 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
,
5735 FrameAddr
= DAG
.getLoad(Op
.getValueType(), dl
, DAG
.getEntryNode(),
5736 FrameAddr
, MachinePointerInfo(), false, false, 0);
5741 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
5742 // The PowerPC target isn't yet aware of offsets.
5746 /// getOptimalMemOpType - Returns the target specific optimal type for load
5747 /// and store operations as a result of memset, memcpy, and memmove
5748 /// lowering. If DstAlign is zero that means it's safe to destination
5749 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5750 /// means there isn't a need to check it against alignment requirement,
5751 /// probably because the source does not need to be loaded. If
5752 /// 'NonScalarIntSafe' is true, that means it's safe to return a
5753 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
5754 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5755 /// constant so it does not need to be loaded.
5756 /// It returns EVT::Other if the type should be determined using generic
5757 /// target-independent logic.
5758 EVT
PPCTargetLowering::getOptimalMemOpType(uint64_t Size
,
5759 unsigned DstAlign
, unsigned SrcAlign
,
5760 bool NonScalarIntSafe
,
5762 MachineFunction
&MF
) const {
5763 if (this->PPCSubTarget
.isPPC64()) {