- Make BranchProbability constructor public.
[llvm/stm8.git] / utils / TableGen / FastISelEmitter.cpp
blobf54e8df40f2d623c8dc0997af7dee7b694d1ffbd
1 //===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits code for use by the "fast" instruction
11 // selection algorithm. See the comments at the top of
12 // lib/CodeGen/SelectionDAG/FastISel.cpp for background.
14 // This file scans through the target's tablegen instruction-info files
15 // and extracts instructions with obvious-looking patterns, and it emits
16 // code to look up these instructions by type and operator.
18 //===----------------------------------------------------------------------===//
20 #include "FastISelEmitter.h"
21 #include "Error.h"
22 #include "Record.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/VectorExtras.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 using namespace llvm;
29 namespace {
31 /// InstructionMemo - This class holds additional information about an
32 /// instruction needed to emit code for it.
33 ///
34 struct InstructionMemo {
35 std::string Name;
36 const CodeGenRegisterClass *RC;
37 std::string SubRegNo;
38 std::vector<std::string>* PhysRegs;
41 /// ImmPredicateSet - This uniques predicates (represented as a string) and
42 /// gives them unique (small) integer ID's that start at 0.
43 class ImmPredicateSet {
44 DenseMap<TreePattern *, unsigned> ImmIDs;
45 std::vector<TreePredicateFn> PredsByName;
46 public:
48 unsigned getIDFor(TreePredicateFn Pred) {
49 unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
50 if (Entry == 0) {
51 PredsByName.push_back(Pred);
52 Entry = PredsByName.size();
54 return Entry-1;
57 const TreePredicateFn &getPredicate(unsigned i) {
58 assert(i < PredsByName.size());
59 return PredsByName[i];
62 typedef std::vector<TreePredicateFn>::const_iterator iterator;
63 iterator begin() const { return PredsByName.begin(); }
64 iterator end() const { return PredsByName.end(); }
68 /// OperandsSignature - This class holds a description of a list of operand
69 /// types. It has utility methods for emitting text based on the operands.
70 ///
71 struct OperandsSignature {
72 class OpKind {
73 enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
74 char Repr;
75 public:
77 OpKind() : Repr(OK_Invalid) {}
79 bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
80 bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
82 static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
83 static OpKind getFP() { OpKind K; K.Repr = OK_FP; return K; }
84 static OpKind getImm(unsigned V) {
85 assert((unsigned)OK_Imm+V < 128 &&
86 "Too many integer predicates for the 'Repr' char");
87 OpKind K; K.Repr = OK_Imm+V; return K;
90 bool isReg() const { return Repr == OK_Reg; }
91 bool isFP() const { return Repr == OK_FP; }
92 bool isImm() const { return Repr >= OK_Imm; }
94 unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
96 void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
97 bool StripImmCodes) const {
98 if (isReg())
99 OS << 'r';
100 else if (isFP())
101 OS << 'f';
102 else {
103 OS << 'i';
104 if (!StripImmCodes)
105 if (unsigned Code = getImmCode())
106 OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
112 SmallVector<OpKind, 3> Operands;
114 bool operator<(const OperandsSignature &O) const {
115 return Operands < O.Operands;
117 bool operator==(const OperandsSignature &O) const {
118 return Operands == O.Operands;
121 bool empty() const { return Operands.empty(); }
123 bool hasAnyImmediateCodes() const {
124 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
125 if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
126 return true;
127 return false;
130 /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
131 /// to zero.
132 OperandsSignature getWithoutImmCodes() const {
133 OperandsSignature Result;
134 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
135 if (!Operands[i].isImm())
136 Result.Operands.push_back(Operands[i]);
137 else
138 Result.Operands.push_back(OpKind::getImm(0));
139 return Result;
142 void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
143 bool EmittedAnything = false;
144 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
145 if (!Operands[i].isImm()) continue;
147 unsigned Code = Operands[i].getImmCode();
148 if (Code == 0) continue;
150 if (EmittedAnything)
151 OS << " &&\n ";
153 TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
155 // Emit the type check.
156 OS << "VT == "
157 << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0))
158 << " && ";
161 OS << PredFn.getFnName() << "(imm" << i <<')';
162 EmittedAnything = true;
166 /// initialize - Examine the given pattern and initialize the contents
167 /// of the Operands array accordingly. Return true if all the operands
168 /// are supported, false otherwise.
170 bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
171 MVT::SimpleValueType VT,
172 ImmPredicateSet &ImmediatePredicates) {
173 if (InstPatNode->isLeaf())
174 return false;
176 if (InstPatNode->getOperator()->getName() == "imm") {
177 Operands.push_back(OpKind::getImm(0));
178 return true;
181 if (InstPatNode->getOperator()->getName() == "fpimm") {
182 Operands.push_back(OpKind::getFP());
183 return true;
186 const CodeGenRegisterClass *DstRC = 0;
188 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
189 TreePatternNode *Op = InstPatNode->getChild(i);
191 // Handle imm operands specially.
192 if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
193 unsigned PredNo = 0;
194 if (!Op->getPredicateFns().empty()) {
195 TreePredicateFn PredFn = Op->getPredicateFns()[0];
196 // If there is more than one predicate weighing in on this operand
197 // then we don't handle it. This doesn't typically happen for
198 // immediates anyway.
199 if (Op->getPredicateFns().size() > 1 ||
200 !PredFn.isImmediatePattern())
201 return false;
202 // Ignore any instruction with 'FastIselShouldIgnore', these are
203 // not needed and just bloat the fast instruction selector. For
204 // example, X86 doesn't need to generate code to match ADD16ri8 since
205 // ADD16ri will do just fine.
206 Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
207 if (Rec->getValueAsBit("FastIselShouldIgnore"))
208 return false;
210 PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
213 // Handle unmatched immediate sizes here.
214 //if (Op->getType(0) != VT)
215 // return false;
217 Operands.push_back(OpKind::getImm(PredNo));
218 continue;
222 // For now, filter out any operand with a predicate.
223 // For now, filter out any operand with multiple values.
224 if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1)
225 return false;
227 if (!Op->isLeaf()) {
228 if (Op->getOperator()->getName() == "fpimm") {
229 Operands.push_back(OpKind::getFP());
230 continue;
232 // For now, ignore other non-leaf nodes.
233 return false;
236 assert(Op->hasTypeSet(0) && "Type infererence not done?");
238 // For now, all the operands must have the same type (if they aren't
239 // immediates). Note that this causes us to reject variable sized shifts
240 // on X86.
241 if (Op->getType(0) != VT)
242 return false;
244 DefInit *OpDI = dynamic_cast<DefInit*>(Op->getLeafValue());
245 if (!OpDI)
246 return false;
247 Record *OpLeafRec = OpDI->getDef();
249 // For now, the only other thing we accept is register operands.
250 const CodeGenRegisterClass *RC = 0;
251 if (OpLeafRec->isSubClassOf("RegisterOperand"))
252 OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
253 if (OpLeafRec->isSubClassOf("RegisterClass"))
254 RC = &Target.getRegisterClass(OpLeafRec);
255 else if (OpLeafRec->isSubClassOf("Register"))
256 RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
257 else
258 return false;
260 // For now, this needs to be a register class of some sort.
261 if (!RC)
262 return false;
264 // For now, all the operands must have the same register class or be
265 // a strict subclass of the destination.
266 if (DstRC) {
267 if (DstRC != RC && !DstRC->hasSubClass(RC))
268 return false;
269 } else
270 DstRC = RC;
271 Operands.push_back(OpKind::getReg());
273 return true;
276 void PrintParameters(raw_ostream &OS) const {
277 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
278 if (Operands[i].isReg()) {
279 OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
280 } else if (Operands[i].isImm()) {
281 OS << "uint64_t imm" << i;
282 } else if (Operands[i].isFP()) {
283 OS << "ConstantFP *f" << i;
284 } else {
285 llvm_unreachable("Unknown operand kind!");
287 if (i + 1 != e)
288 OS << ", ";
292 void PrintArguments(raw_ostream &OS,
293 const std::vector<std::string> &PR) const {
294 assert(PR.size() == Operands.size());
295 bool PrintedArg = false;
296 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
297 if (PR[i] != "")
298 // Implicit physical register operand.
299 continue;
301 if (PrintedArg)
302 OS << ", ";
303 if (Operands[i].isReg()) {
304 OS << "Op" << i << ", Op" << i << "IsKill";
305 PrintedArg = true;
306 } else if (Operands[i].isImm()) {
307 OS << "imm" << i;
308 PrintedArg = true;
309 } else if (Operands[i].isFP()) {
310 OS << "f" << i;
311 PrintedArg = true;
312 } else {
313 llvm_unreachable("Unknown operand kind!");
318 void PrintArguments(raw_ostream &OS) const {
319 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
320 if (Operands[i].isReg()) {
321 OS << "Op" << i << ", Op" << i << "IsKill";
322 } else if (Operands[i].isImm()) {
323 OS << "imm" << i;
324 } else if (Operands[i].isFP()) {
325 OS << "f" << i;
326 } else {
327 llvm_unreachable("Unknown operand kind!");
329 if (i + 1 != e)
330 OS << ", ";
335 void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
336 ImmPredicateSet &ImmPredicates,
337 bool StripImmCodes = false) const {
338 for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
339 if (PR[i] != "")
340 // Implicit physical register operand. e.g. Instruction::Mul expect to
341 // select to a binary op. On x86, mul may take a single operand with
342 // the other operand being implicit. We must emit something that looks
343 // like a binary instruction except for the very inner FastEmitInst_*
344 // call.
345 continue;
346 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
350 void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
351 bool StripImmCodes = false) const {
352 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
353 Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
357 class FastISelMap {
358 typedef std::map<std::string, InstructionMemo> PredMap;
359 typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
360 typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
361 typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
362 typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
363 OperandsOpcodeTypeRetPredMap;
365 OperandsOpcodeTypeRetPredMap SimplePatterns;
367 std::map<OperandsSignature, std::vector<OperandsSignature> >
368 SignaturesWithConstantForms;
370 std::string InstNS;
371 ImmPredicateSet ImmediatePredicates;
372 public:
373 explicit FastISelMap(std::string InstNS);
375 void collectPatterns(CodeGenDAGPatterns &CGP);
376 void printImmediatePredicates(raw_ostream &OS);
377 void printFunctionDefinitions(raw_ostream &OS);
382 static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
383 return CGP.getSDNodeInfo(Op).getEnumName();
386 static std::string getLegalCName(std::string OpName) {
387 std::string::size_type pos = OpName.find("::");
388 if (pos != std::string::npos)
389 OpName.replace(pos, 2, "_");
390 return OpName;
393 FastISelMap::FastISelMap(std::string instns)
394 : InstNS(instns) {
397 static std::string PhyRegForNode(TreePatternNode *Op,
398 const CodeGenTarget &Target) {
399 std::string PhysReg;
401 if (!Op->isLeaf())
402 return PhysReg;
404 DefInit *OpDI = dynamic_cast<DefInit*>(Op->getLeafValue());
405 Record *OpLeafRec = OpDI->getDef();
406 if (!OpLeafRec->isSubClassOf("Register"))
407 return PhysReg;
409 PhysReg += static_cast<StringInit*>(OpLeafRec->getValue( \
410 "Namespace")->getValue())->getValue();
411 PhysReg += "::";
412 PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
413 return PhysReg;
416 void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
417 const CodeGenTarget &Target = CGP.getTargetInfo();
419 // Determine the target's namespace name.
420 InstNS = Target.getInstNamespace() + "::";
421 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
423 // Scan through all the patterns and record the simple ones.
424 for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
425 E = CGP.ptm_end(); I != E; ++I) {
426 const PatternToMatch &Pattern = *I;
428 // For now, just look at Instructions, so that we don't have to worry
429 // about emitting multiple instructions for a pattern.
430 TreePatternNode *Dst = Pattern.getDstPattern();
431 if (Dst->isLeaf()) continue;
432 Record *Op = Dst->getOperator();
433 if (!Op->isSubClassOf("Instruction"))
434 continue;
435 CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
436 if (II.Operands.empty())
437 continue;
439 // For now, ignore multi-instruction patterns.
440 bool MultiInsts = false;
441 for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
442 TreePatternNode *ChildOp = Dst->getChild(i);
443 if (ChildOp->isLeaf())
444 continue;
445 if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
446 MultiInsts = true;
447 break;
450 if (MultiInsts)
451 continue;
453 // For now, ignore instructions where the first operand is not an
454 // output register.
455 const CodeGenRegisterClass *DstRC = 0;
456 std::string SubRegNo;
457 if (Op->getName() != "EXTRACT_SUBREG") {
458 Record *Op0Rec = II.Operands[0].Rec;
459 if (Op0Rec->isSubClassOf("RegisterOperand"))
460 Op0Rec = Op0Rec->getValueAsDef("RegClass");
461 if (!Op0Rec->isSubClassOf("RegisterClass"))
462 continue;
463 DstRC = &Target.getRegisterClass(Op0Rec);
464 if (!DstRC)
465 continue;
466 } else {
467 // If this isn't a leaf, then continue since the register classes are
468 // a bit too complicated for now.
469 if (!Dst->getChild(1)->isLeaf()) continue;
471 DefInit *SR = dynamic_cast<DefInit*>(Dst->getChild(1)->getLeafValue());
472 if (SR)
473 SubRegNo = getQualifiedName(SR->getDef());
474 else
475 SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
478 // Inspect the pattern.
479 TreePatternNode *InstPatNode = Pattern.getSrcPattern();
480 if (!InstPatNode) continue;
481 if (InstPatNode->isLeaf()) continue;
483 // Ignore multiple result nodes for now.
484 if (InstPatNode->getNumTypes() > 1) continue;
486 Record *InstPatOp = InstPatNode->getOperator();
487 std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
488 MVT::SimpleValueType RetVT = MVT::isVoid;
489 if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
490 MVT::SimpleValueType VT = RetVT;
491 if (InstPatNode->getNumChildren()) {
492 assert(InstPatNode->getChild(0)->getNumTypes() == 1);
493 VT = InstPatNode->getChild(0)->getType(0);
496 // For now, filter out any instructions with predicates.
497 if (!InstPatNode->getPredicateFns().empty())
498 continue;
500 // Check all the operands.
501 OperandsSignature Operands;
502 if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates))
503 continue;
505 std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
506 if (InstPatNode->getOperator()->getName() == "imm" ||
507 InstPatNode->getOperator()->getName() == "fpimmm")
508 PhysRegInputs->push_back("");
509 else {
510 // Compute the PhysRegs used by the given pattern, and check that
511 // the mapping from the src to dst patterns is simple.
512 bool FoundNonSimplePattern = false;
513 unsigned DstIndex = 0;
514 for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
515 std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
516 if (PhysReg.empty()) {
517 if (DstIndex >= Dst->getNumChildren() ||
518 Dst->getChild(DstIndex)->getName() !=
519 InstPatNode->getChild(i)->getName()) {
520 FoundNonSimplePattern = true;
521 break;
523 ++DstIndex;
526 PhysRegInputs->push_back(PhysReg);
529 if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
530 FoundNonSimplePattern = true;
532 if (FoundNonSimplePattern)
533 continue;
536 // Get the predicate that guards this pattern.
537 std::string PredicateCheck = Pattern.getPredicateCheck();
539 // Ok, we found a pattern that we can handle. Remember it.
540 InstructionMemo Memo = {
541 Pattern.getDstPattern()->getOperator()->getName(),
542 DstRC,
543 SubRegNo,
544 PhysRegInputs
547 if (SimplePatterns[Operands][OpcodeName][VT][RetVT].count(PredicateCheck))
548 throw TGError(Pattern.getSrcRecord()->getLoc(),
549 "Duplicate record in FastISel table!");
551 SimplePatterns[Operands][OpcodeName][VT][RetVT][PredicateCheck] = Memo;
553 // If any of the operands were immediates with predicates on them, strip
554 // them down to a signature that doesn't have predicates so that we can
555 // associate them with the stripped predicate version.
556 if (Operands.hasAnyImmediateCodes()) {
557 SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
558 .push_back(Operands);
563 void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
564 if (ImmediatePredicates.begin() == ImmediatePredicates.end())
565 return;
567 OS << "\n// FastEmit Immediate Predicate functions.\n";
568 for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
569 E = ImmediatePredicates.end(); I != E; ++I) {
570 OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
571 OS << I->getImmediatePredicateCode() << "\n}\n";
574 OS << "\n\n";
578 void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
579 // Now emit code for all the patterns that we collected.
580 for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
581 OE = SimplePatterns.end(); OI != OE; ++OI) {
582 const OperandsSignature &Operands = OI->first;
583 const OpcodeTypeRetPredMap &OTM = OI->second;
585 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
586 I != E; ++I) {
587 const std::string &Opcode = I->first;
588 const TypeRetPredMap &TM = I->second;
590 OS << "// FastEmit functions for " << Opcode << ".\n";
591 OS << "\n";
593 // Emit one function for each opcode,type pair.
594 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
595 TI != TE; ++TI) {
596 MVT::SimpleValueType VT = TI->first;
597 const RetPredMap &RM = TI->second;
598 if (RM.size() != 1) {
599 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
600 RI != RE; ++RI) {
601 MVT::SimpleValueType RetVT = RI->first;
602 const PredMap &PM = RI->second;
603 bool HasPred = false;
605 OS << "unsigned FastEmit_"
606 << getLegalCName(Opcode)
607 << "_" << getLegalCName(getName(VT))
608 << "_" << getLegalCName(getName(RetVT)) << "_";
609 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
610 OS << "(";
611 Operands.PrintParameters(OS);
612 OS << ") {\n";
614 // Emit code for each possible instruction. There may be
615 // multiple if there are subtarget concerns.
616 for (PredMap::const_iterator PI = PM.begin(), PE = PM.end();
617 PI != PE; ++PI) {
618 std::string PredicateCheck = PI->first;
619 const InstructionMemo &Memo = PI->second;
621 if (PredicateCheck.empty()) {
622 assert(!HasPred &&
623 "Multiple instructions match, at least one has "
624 "a predicate and at least one doesn't!");
625 } else {
626 OS << " if (" + PredicateCheck + ") {\n";
627 OS << " ";
628 HasPred = true;
631 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
632 if ((*Memo.PhysRegs)[i] != "")
633 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, "
634 << "TII.get(TargetOpcode::COPY), "
635 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
638 OS << " return FastEmitInst_";
639 if (Memo.SubRegNo.empty()) {
640 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
641 ImmediatePredicates, true);
642 OS << "(" << InstNS << Memo.Name << ", ";
643 OS << InstNS << Memo.RC->getName() << "RegisterClass";
644 if (!Operands.empty())
645 OS << ", ";
646 Operands.PrintArguments(OS, *Memo.PhysRegs);
647 OS << ");\n";
648 } else {
649 OS << "extractsubreg(" << getName(RetVT);
650 OS << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
653 if (HasPred)
654 OS << " }\n";
657 // Return 0 if none of the predicates were satisfied.
658 if (HasPred)
659 OS << " return 0;\n";
660 OS << "}\n";
661 OS << "\n";
664 // Emit one function for the type that demultiplexes on return type.
665 OS << "unsigned FastEmit_"
666 << getLegalCName(Opcode) << "_"
667 << getLegalCName(getName(VT)) << "_";
668 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
669 OS << "(MVT RetVT";
670 if (!Operands.empty())
671 OS << ", ";
672 Operands.PrintParameters(OS);
673 OS << ") {\nswitch (RetVT.SimpleTy) {\n";
674 for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
675 RI != RE; ++RI) {
676 MVT::SimpleValueType RetVT = RI->first;
677 OS << " case " << getName(RetVT) << ": return FastEmit_"
678 << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
679 << "_" << getLegalCName(getName(RetVT)) << "_";
680 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
681 OS << "(";
682 Operands.PrintArguments(OS);
683 OS << ");\n";
685 OS << " default: return 0;\n}\n}\n\n";
687 } else {
688 // Non-variadic return type.
689 OS << "unsigned FastEmit_"
690 << getLegalCName(Opcode) << "_"
691 << getLegalCName(getName(VT)) << "_";
692 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
693 OS << "(MVT RetVT";
694 if (!Operands.empty())
695 OS << ", ";
696 Operands.PrintParameters(OS);
697 OS << ") {\n";
699 OS << " if (RetVT.SimpleTy != " << getName(RM.begin()->first)
700 << ")\n return 0;\n";
702 const PredMap &PM = RM.begin()->second;
703 bool HasPred = false;
705 // Emit code for each possible instruction. There may be
706 // multiple if there are subtarget concerns.
707 for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE;
708 ++PI) {
709 std::string PredicateCheck = PI->first;
710 const InstructionMemo &Memo = PI->second;
712 if (PredicateCheck.empty()) {
713 assert(!HasPred &&
714 "Multiple instructions match, at least one has "
715 "a predicate and at least one doesn't!");
716 } else {
717 OS << " if (" + PredicateCheck + ") {\n";
718 OS << " ";
719 HasPred = true;
722 for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
723 if ((*Memo.PhysRegs)[i] != "")
724 OS << " BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, "
725 << "TII.get(TargetOpcode::COPY), "
726 << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
729 OS << " return FastEmitInst_";
731 if (Memo.SubRegNo.empty()) {
732 Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
733 ImmediatePredicates, true);
734 OS << "(" << InstNS << Memo.Name << ", ";
735 OS << InstNS << Memo.RC->getName() << "RegisterClass";
736 if (!Operands.empty())
737 OS << ", ";
738 Operands.PrintArguments(OS, *Memo.PhysRegs);
739 OS << ");\n";
740 } else {
741 OS << "extractsubreg(RetVT, Op0, Op0IsKill, ";
742 OS << Memo.SubRegNo;
743 OS << ");\n";
746 if (HasPred)
747 OS << " }\n";
750 // Return 0 if none of the predicates were satisfied.
751 if (HasPred)
752 OS << " return 0;\n";
753 OS << "}\n";
754 OS << "\n";
758 // Emit one function for the opcode that demultiplexes based on the type.
759 OS << "unsigned FastEmit_"
760 << getLegalCName(Opcode) << "_";
761 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
762 OS << "(MVT VT, MVT RetVT";
763 if (!Operands.empty())
764 OS << ", ";
765 Operands.PrintParameters(OS);
766 OS << ") {\n";
767 OS << " switch (VT.SimpleTy) {\n";
768 for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
769 TI != TE; ++TI) {
770 MVT::SimpleValueType VT = TI->first;
771 std::string TypeName = getName(VT);
772 OS << " case " << TypeName << ": return FastEmit_"
773 << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
774 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
775 OS << "(RetVT";
776 if (!Operands.empty())
777 OS << ", ";
778 Operands.PrintArguments(OS);
779 OS << ");\n";
781 OS << " default: return 0;\n";
782 OS << " }\n";
783 OS << "}\n";
784 OS << "\n";
787 OS << "// Top-level FastEmit function.\n";
788 OS << "\n";
790 // Emit one function for the operand signature that demultiplexes based
791 // on opcode and type.
792 OS << "unsigned FastEmit_";
793 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
794 OS << "(MVT VT, MVT RetVT, unsigned Opcode";
795 if (!Operands.empty())
796 OS << ", ";
797 Operands.PrintParameters(OS);
798 OS << ") {\n";
800 // If there are any forms of this signature available that operand on
801 // constrained forms of the immediate (e.g. 32-bit sext immediate in a
802 // 64-bit operand), check them first.
804 std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
805 = SignaturesWithConstantForms.find(Operands);
806 if (MI != SignaturesWithConstantForms.end()) {
807 // Unique any duplicates out of the list.
808 std::sort(MI->second.begin(), MI->second.end());
809 MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
810 MI->second.end());
812 // Check each in order it was seen. It would be nice to have a good
813 // relative ordering between them, but we're not going for optimality
814 // here.
815 for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
816 OS << " if (";
817 MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
818 OS << ")\n if (unsigned Reg = FastEmit_";
819 MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
820 OS << "(VT, RetVT, Opcode";
821 if (!MI->second[i].empty())
822 OS << ", ";
823 MI->second[i].PrintArguments(OS);
824 OS << "))\n return Reg;\n\n";
827 // Done with this, remove it.
828 SignaturesWithConstantForms.erase(MI);
831 OS << " switch (Opcode) {\n";
832 for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
833 I != E; ++I) {
834 const std::string &Opcode = I->first;
836 OS << " case " << Opcode << ": return FastEmit_"
837 << getLegalCName(Opcode) << "_";
838 Operands.PrintManglingSuffix(OS, ImmediatePredicates);
839 OS << "(VT, RetVT";
840 if (!Operands.empty())
841 OS << ", ";
842 Operands.PrintArguments(OS);
843 OS << ");\n";
845 OS << " default: return 0;\n";
846 OS << " }\n";
847 OS << "}\n";
848 OS << "\n";
851 // TODO: SignaturesWithConstantForms should be empty here.
854 void FastISelEmitter::run(raw_ostream &OS) {
855 const CodeGenTarget &Target = CGP.getTargetInfo();
857 // Determine the target's namespace name.
858 std::string InstNS = Target.getInstNamespace() + "::";
859 assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
861 EmitSourceFileHeader("\"Fast\" Instruction Selector for the " +
862 Target.getName() + " target", OS);
864 FastISelMap F(InstNS);
865 F.collectPatterns(CGP);
866 F.printImmediatePredicates(OS);
867 F.printFunctionDefinitions(OS);
870 FastISelEmitter::FastISelEmitter(RecordKeeper &R)
871 : Records(R), CGP(R) {