Only read *predecessor once so as to fix a theoretical issue where it changes
[llvm/stm8.git] / docs / BitCodeFormat.html
blobd2088487aa7650784592472696cf3dac21588ec9
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
6 <title>LLVM Bitcode File Format</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8 </head>
9 <body>
10 <h1> LLVM Bitcode File Format</h1>
11 <ol>
12 <li><a href="#abstract">Abstract</a></li>
13 <li><a href="#overview">Overview</a></li>
14 <li><a href="#bitstream">Bitstream Format</a>
15 <ol>
16 <li><a href="#magic">Magic Numbers</a></li>
17 <li><a href="#primitives">Primitives</a></li>
18 <li><a href="#abbrevid">Abbreviation IDs</a></li>
19 <li><a href="#blocks">Blocks</a></li>
20 <li><a href="#datarecord">Data Records</a></li>
21 <li><a href="#abbreviations">Abbreviations</a></li>
22 <li><a href="#stdblocks">Standard Blocks</a></li>
23 </ol>
24 </li>
25 <li><a href="#wrapper">Bitcode Wrapper Format</a>
26 </li>
27 <li><a href="#llvmir">LLVM IR Encoding</a>
28 <ol>
29 <li><a href="#basics">Basics</a></li>
30 <li><a href="#MODULE_BLOCK">MODULE_BLOCK Contents</a></li>
31 <li><a href="#PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents</a></li>
32 <li><a href="#TYPE_BLOCK">TYPE_BLOCK Contents</a></li>
33 <li><a href="#CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents</a></li>
34 <li><a href="#FUNCTION_BLOCK">FUNCTION_BLOCK Contents</a></li>
35 <li><a href="#TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents</a></li>
36 <li><a href="#VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents</a></li>
37 <li><a href="#METADATA_BLOCK">METADATA_BLOCK Contents</a></li>
38 <li><a href="#METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents</a></li>
39 </ol>
40 </li>
41 </ol>
42 <div class="doc_author">
43 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
44 <a href="http://www.reverberate.org">Joshua Haberman</a>,
45 and <a href="mailto:housel@acm.org">Peter S. Housel</a>.
46 </p>
47 </div>
49 <!-- *********************************************************************** -->
50 <h2><a name="abstract">Abstract</a></h2>
51 <!-- *********************************************************************** -->
53 <div>
55 <p>This document describes the LLVM bitstream file format and the encoding of
56 the LLVM IR into it.</p>
58 </div>
60 <!-- *********************************************************************** -->
61 <h2><a name="overview">Overview</a></h2>
62 <!-- *********************************************************************** -->
64 <div>
66 <p>
67 What is commonly known as the LLVM bitcode file format (also, sometimes
68 anachronistically known as bytecode) is actually two things: a <a
69 href="#bitstream">bitstream container format</a>
70 and an <a href="#llvmir">encoding of LLVM IR</a> into the container format.</p>
72 <p>
73 The bitstream format is an abstract encoding of structured data, very
74 similar to XML in some ways. Like XML, bitstream files contain tags, and nested
75 structures, and you can parse the file without having to understand the tags.
76 Unlike XML, the bitstream format is a binary encoding, and unlike XML it
77 provides a mechanism for the file to self-describe "abbreviations", which are
78 effectively size optimizations for the content.</p>
80 <p>LLVM IR files may be optionally embedded into a <a
81 href="#wrapper">wrapper</a> structure that makes it easy to embed extra data
82 along with LLVM IR files.</p>
84 <p>This document first describes the LLVM bitstream format, describes the
85 wrapper format, then describes the record structure used by LLVM IR files.
86 </p>
88 </div>
90 <!-- *********************************************************************** -->
91 <h2><a name="bitstream">Bitstream Format</a></h2>
92 <!-- *********************************************************************** -->
94 <div>
96 <p>
97 The bitstream format is literally a stream of bits, with a very simple
98 structure. This structure consists of the following concepts:
99 </p>
101 <ul>
102 <li>A "<a href="#magic">magic number</a>" that identifies the contents of
103 the stream.</li>
104 <li>Encoding <a href="#primitives">primitives</a> like variable bit-rate
105 integers.</li>
106 <li><a href="#blocks">Blocks</a>, which define nested content.</li>
107 <li><a href="#datarecord">Data Records</a>, which describe entities within the
108 file.</li>
109 <li>Abbreviations, which specify compression optimizations for the file.</li>
110 </ul>
112 <p>Note that the <a
113 href="CommandGuide/html/llvm-bcanalyzer.html">llvm-bcanalyzer</a> tool can be
114 used to dump and inspect arbitrary bitstreams, which is very useful for
115 understanding the encoding.</p>
117 <!-- ======================================================================= -->
118 <h3>
119 <a name="magic">Magic Numbers</a>
120 </h3>
122 <div>
124 <p>The first two bytes of a bitcode file are 'BC' (0x42, 0x43).
125 The second two bytes are an application-specific magic number. Generic
126 bitcode tools can look at only the first two bytes to verify the file is
127 bitcode, while application-specific programs will want to look at all four.</p>
129 </div>
131 <!-- ======================================================================= -->
132 <h3>
133 <a name="primitives">Primitives</a>
134 </h3>
136 <div>
139 A bitstream literally consists of a stream of bits, which are read in order
140 starting with the least significant bit of each byte. The stream is made up of a
141 number of primitive values that encode a stream of unsigned integer values.
142 These integers are encoded in two ways: either as <a href="#fixedwidth">Fixed
143 Width Integers</a> or as <a href="#variablewidth">Variable Width
144 Integers</a>.
145 </p>
147 <!-- _______________________________________________________________________ -->
148 <h4>
149 <a name="fixedwidth">Fixed Width Integers</a>
150 </h4>
152 <div>
154 <p>Fixed-width integer values have their low bits emitted directly to the file.
155 For example, a 3-bit integer value encodes 1 as 001. Fixed width integers
156 are used when there are a well-known number of options for a field. For
157 example, boolean values are usually encoded with a 1-bit wide integer.
158 </p>
160 </div>
162 <!-- _______________________________________________________________________ -->
163 <h4>
164 <a name="variablewidth">Variable Width Integers</a>
165 </h4>
167 <div>
169 <p>Variable-width integer (VBR) values encode values of arbitrary size,
170 optimizing for the case where the values are small. Given a 4-bit VBR field,
171 any 3-bit value (0 through 7) is encoded directly, with the high bit set to
172 zero. Values larger than N-1 bits emit their bits in a series of N-1 bit
173 chunks, where all but the last set the high bit.</p>
175 <p>For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a
176 vbr4 value. The first set of four bits indicates the value 3 (011) with a
177 continuation piece (indicated by a high bit of 1). The next word indicates a
178 value of 24 (011 << 3) with no continuation. The sum (3+24) yields the value
180 </p>
182 </div>
184 <!-- _______________________________________________________________________ -->
185 <h4><a name="char6">6-bit characters</a></h4>
187 <div>
189 <p>6-bit characters encode common characters into a fixed 6-bit field. They
190 represent the following characters with the following 6-bit values:</p>
192 <div class="doc_code">
193 <pre>
194 'a' .. 'z' &mdash; 0 .. 25
195 'A' .. 'Z' &mdash; 26 .. 51
196 '0' .. '9' &mdash; 52 .. 61
197 '.' &mdash; 62
198 '_' &mdash; 63
199 </pre>
200 </div>
202 <p>This encoding is only suitable for encoding characters and strings that
203 consist only of the above characters. It is completely incapable of encoding
204 characters not in the set.</p>
206 </div>
208 <!-- _______________________________________________________________________ -->
209 <h4><a name="wordalign">Word Alignment</a></h4>
211 <div>
213 <p>Occasionally, it is useful to emit zero bits until the bitstream is a
214 multiple of 32 bits. This ensures that the bit position in the stream can be
215 represented as a multiple of 32-bit words.</p>
217 </div>
219 </div>
221 <!-- ======================================================================= -->
222 <h3>
223 <a name="abbrevid">Abbreviation IDs</a>
224 </h3>
226 <div>
229 A bitstream is a sequential series of <a href="#blocks">Blocks</a> and
230 <a href="#datarecord">Data Records</a>. Both of these start with an
231 abbreviation ID encoded as a fixed-bitwidth field. The width is specified by
232 the current block, as described below. The value of the abbreviation ID
233 specifies either a builtin ID (which have special meanings, defined below) or
234 one of the abbreviation IDs defined for the current block by the stream itself.
235 </p>
238 The set of builtin abbrev IDs is:
239 </p>
241 <ul>
242 <li><tt>0 - <a href="#END_BLOCK">END_BLOCK</a></tt> &mdash; This abbrev ID marks
243 the end of the current block.</li>
244 <li><tt>1 - <a href="#ENTER_SUBBLOCK">ENTER_SUBBLOCK</a></tt> &mdash; This
245 abbrev ID marks the beginning of a new block.</li>
246 <li><tt>2 - <a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt> &mdash; This defines
247 a new abbreviation.</li>
248 <li><tt>3 - <a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> &mdash; This ID
249 specifies the definition of an unabbreviated record.</li>
250 </ul>
252 <p>Abbreviation IDs 4 and above are defined by the stream itself, and specify
253 an <a href="#abbrev_records">abbreviated record encoding</a>.</p>
255 </div>
257 <!-- ======================================================================= -->
258 <h3>
259 <a name="blocks">Blocks</a>
260 </h3>
262 <div>
265 Blocks in a bitstream denote nested regions of the stream, and are identified by
266 a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
267 function bodies). Block IDs 0-7 are reserved for <a href="#stdblocks">standard blocks</a>
268 whose meaning is defined by Bitcode; block IDs 8 and greater are
269 application specific. Nested blocks capture the hierarchical structure of the data
270 encoded in it, and various properties are associated with blocks as the file is
271 parsed. Block definitions allow the reader to efficiently skip blocks
272 in constant time if the reader wants a summary of blocks, or if it wants to
273 efficiently skip data it does not understand. The LLVM IR reader uses this
274 mechanism to skip function bodies, lazily reading them on demand.
275 </p>
278 When reading and encoding the stream, several properties are maintained for the
279 block. In particular, each block maintains:
280 </p>
282 <ol>
283 <li>A current abbrev id width. This value starts at 2 at the beginning of
284 the stream, and is set every time a
285 block record is entered. The block entry specifies the abbrev id width for
286 the body of the block.</li>
288 <li>A set of abbreviations. Abbreviations may be defined within a block, in
289 which case they are only defined in that block (neither subblocks nor
290 enclosing blocks see the abbreviation). Abbreviations can also be defined
291 inside a <tt><a href="#BLOCKINFO">BLOCKINFO</a></tt> block, in which case
292 they are defined in all blocks that match the ID that the BLOCKINFO block is
293 describing.
294 </li>
295 </ol>
298 As sub blocks are entered, these properties are saved and the new sub-block has
299 its own set of abbreviations, and its own abbrev id width. When a sub-block is
300 popped, the saved values are restored.
301 </p>
303 <!-- _______________________________________________________________________ -->
304 <h4><a name="ENTER_SUBBLOCK">ENTER_SUBBLOCK Encoding</a></h4>
306 <div>
308 <p><tt>[ENTER_SUBBLOCK, blockid<sub>vbr8</sub>, newabbrevlen<sub>vbr4</sub>,
309 &lt;align32bits&gt;, blocklen<sub>32</sub>]</tt></p>
312 The <tt>ENTER_SUBBLOCK</tt> abbreviation ID specifies the start of a new block
313 record. The <tt>blockid</tt> value is encoded as an 8-bit VBR identifier, and
314 indicates the type of block being entered, which can be
315 a <a href="#stdblocks">standard block</a> or an application-specific block.
316 The <tt>newabbrevlen</tt> value is a 4-bit VBR, which specifies the abbrev id
317 width for the sub-block. The <tt>blocklen</tt> value is a 32-bit aligned value
318 that specifies the size of the subblock in 32-bit words. This value allows the
319 reader to skip over the entire block in one jump.
320 </p>
322 </div>
324 <!-- _______________________________________________________________________ -->
325 <h4><a name="END_BLOCK">END_BLOCK Encoding</a></h4>
327 <div>
329 <p><tt>[END_BLOCK, &lt;align32bits&gt;]</tt></p>
332 The <tt>END_BLOCK</tt> abbreviation ID specifies the end of the current block
333 record. Its end is aligned to 32-bits to ensure that the size of the block is
334 an even multiple of 32-bits.
335 </p>
337 </div>
339 </div>
341 <!-- ======================================================================= -->
342 <h3>
343 <a name="datarecord">Data Records</a>
344 </h3>
346 <div>
348 Data records consist of a record code and a number of (up to) 64-bit
349 integer values. The interpretation of the code and values is
350 application specific and may vary between different block types.
351 Records can be encoded either using an unabbrev record, or with an
352 abbreviation. In the LLVM IR format, for example, there is a record
353 which encodes the target triple of a module. The code is
354 <tt>MODULE_CODE_TRIPLE</tt>, and the values of the record are the
355 ASCII codes for the characters in the string.
356 </p>
358 <!-- _______________________________________________________________________ -->
359 <h4><a name="UNABBREV_RECORD">UNABBREV_RECORD Encoding</a></h4>
361 <div>
363 <p><tt>[UNABBREV_RECORD, code<sub>vbr6</sub>, numops<sub>vbr6</sub>,
364 op0<sub>vbr6</sub>, op1<sub>vbr6</sub>, ...]</tt></p>
367 An <tt>UNABBREV_RECORD</tt> provides a default fallback encoding, which is both
368 completely general and extremely inefficient. It can describe an arbitrary
369 record by emitting the code and operands as VBRs.
370 </p>
373 For example, emitting an LLVM IR target triple as an unabbreviated record
374 requires emitting the <tt>UNABBREV_RECORD</tt> abbrevid, a vbr6 for the
375 <tt>MODULE_CODE_TRIPLE</tt> code, a vbr6 for the length of the string, which is
376 equal to the number of operands, and a vbr6 for each character. Because there
377 are no letters with values less than 32, each letter would need to be emitted as
378 at least a two-part VBR, which means that each letter would require at least 12
379 bits. This is not an efficient encoding, but it is fully general.
380 </p>
382 </div>
384 <!-- _______________________________________________________________________ -->
385 <h4><a name="abbrev_records">Abbreviated Record Encoding</a></h4>
387 <div>
389 <p><tt>[&lt;abbrevid&gt;, fields...]</tt></p>
392 An abbreviated record is a abbreviation id followed by a set of fields that are
393 encoded according to the <a href="#abbreviations">abbreviation definition</a>.
394 This allows records to be encoded significantly more densely than records
395 encoded with the <tt><a href="#UNABBREV_RECORD">UNABBREV_RECORD</a></tt> type,
396 and allows the abbreviation types to be specified in the stream itself, which
397 allows the files to be completely self describing. The actual encoding of
398 abbreviations is defined below.
399 </p>
401 <p>The record code, which is the first field of an abbreviated record,
402 may be encoded in the abbreviation definition (as a literal
403 operand) or supplied in the abbreviated record (as a Fixed or VBR
404 operand value).</p>
406 </div>
408 </div>
410 <!-- ======================================================================= -->
411 <h3>
412 <a name="abbreviations">Abbreviations</a>
413 </h3>
415 <div>
417 Abbreviations are an important form of compression for bitstreams. The idea is
418 to specify a dense encoding for a class of records once, then use that encoding
419 to emit many records. It takes space to emit the encoding into the file, but
420 the space is recouped (hopefully plus some) when the records that use it are
421 emitted.
422 </p>
425 Abbreviations can be determined dynamically per client, per file. Because the
426 abbreviations are stored in the bitstream itself, different streams of the same
427 format can contain different sets of abbreviations according to the needs
428 of the specific stream.
429 As a concrete example, LLVM IR files usually emit an abbreviation
430 for binary operators. If a specific LLVM module contained no or few binary
431 operators, the abbreviation does not need to be emitted.
432 </p>
434 <!-- _______________________________________________________________________ -->
435 <h4><a name="DEFINE_ABBREV">DEFINE_ABBREV Encoding</a></h4>
437 <div>
439 <p><tt>[DEFINE_ABBREV, numabbrevops<sub>vbr5</sub>, abbrevop0, abbrevop1,
440 ...]</tt></p>
443 A <tt>DEFINE_ABBREV</tt> record adds an abbreviation to the list of currently
444 defined abbreviations in the scope of this block. This definition only exists
445 inside this immediate block &mdash; it is not visible in subblocks or enclosing
446 blocks. Abbreviations are implicitly assigned IDs sequentially starting from 4
447 (the first application-defined abbreviation ID). Any abbreviations defined in a
448 <tt>BLOCKINFO</tt> record for the particular block type
449 receive IDs first, in order, followed by any
450 abbreviations defined within the block itself. Abbreviated data records
451 reference this ID to indicate what abbreviation they are invoking.
452 </p>
455 An abbreviation definition consists of the <tt>DEFINE_ABBREV</tt> abbrevid
456 followed by a VBR that specifies the number of abbrev operands, then the abbrev
457 operands themselves. Abbreviation operands come in three forms. They all start
458 with a single bit that indicates whether the abbrev operand is a literal operand
459 (when the bit is 1) or an encoding operand (when the bit is 0).
460 </p>
462 <ol>
463 <li>Literal operands &mdash; <tt>[1<sub>1</sub>, litvalue<sub>vbr8</sub>]</tt>
464 &mdash; Literal operands specify that the value in the result is always a single
465 specific value. This specific value is emitted as a vbr8 after the bit
466 indicating that it is a literal operand.</li>
467 <li>Encoding info without data &mdash; <tt>[0<sub>1</sub>,
468 encoding<sub>3</sub>]</tt> &mdash; Operand encodings that do not have extra
469 data are just emitted as their code.
470 </li>
471 <li>Encoding info with data &mdash; <tt>[0<sub>1</sub>, encoding<sub>3</sub>,
472 value<sub>vbr5</sub>]</tt> &mdash; Operand encodings that do have extra data are
473 emitted as their code, followed by the extra data.
474 </li>
475 </ol>
477 <p>The possible operand encodings are:</p>
479 <ul>
480 <li>Fixed (code 1): The field should be emitted as
481 a <a href="#fixedwidth">fixed-width value</a>, whose width is specified by
482 the operand's extra data.</li>
483 <li>VBR (code 2): The field should be emitted as
484 a <a href="#variablewidth">variable-width value</a>, whose width is
485 specified by the operand's extra data.</li>
486 <li>Array (code 3): This field is an array of values. The array operand
487 has no extra data, but expects another operand to follow it, indicating
488 the element type of the array. When reading an array in an abbreviated
489 record, the first integer is a vbr6 that indicates the array length,
490 followed by the encoded elements of the array. An array may only occur as
491 the last operand of an abbreviation (except for the one final operand that
492 gives the array's type).</li>
493 <li>Char6 (code 4): This field should be emitted as
494 a <a href="#char6">char6-encoded value</a>. This operand type takes no
495 extra data. Char6 encoding is normally used as an array element type.
496 </li>
497 <li>Blob (code 5): This field is emitted as a vbr6, followed by padding to a
498 32-bit boundary (for alignment) and an array of 8-bit objects. The array of
499 bytes is further followed by tail padding to ensure that its total length is
500 a multiple of 4 bytes. This makes it very efficient for the reader to
501 decode the data without having to make a copy of it: it can use a pointer to
502 the data in the mapped in file and poke directly at it. A blob may only
503 occur as the last operand of an abbreviation.</li>
504 </ul>
507 For example, target triples in LLVM modules are encoded as a record of the
508 form <tt>[TRIPLE, 'a', 'b', 'c', 'd']</tt>. Consider if the bitstream emitted
509 the following abbrev entry:
510 </p>
512 <div class="doc_code">
513 <pre>
514 [0, Fixed, 4]
515 [0, Array]
516 [0, Char6]
517 </pre>
518 </div>
521 When emitting a record with this abbreviation, the above entry would be emitted
523 </p>
525 <div class="doc_code">
527 <tt>[4<sub>abbrevwidth</sub>, 2<sub>4</sub>, 4<sub>vbr6</sub>, 0<sub>6</sub>,
528 1<sub>6</sub>, 2<sub>6</sub>, 3<sub>6</sub>]</tt>
529 </p>
530 </div>
532 <p>These values are:</p>
534 <ol>
535 <li>The first value, 4, is the abbreviation ID for this abbreviation.</li>
536 <li>The second value, 2, is the record code for <tt>TRIPLE</tt> records within LLVM IR file <tt>MODULE_BLOCK</tt> blocks.</li>
537 <li>The third value, 4, is the length of the array.</li>
538 <li>The rest of the values are the char6 encoded values
539 for <tt>"abcd"</tt>.</li>
540 </ol>
543 With this abbreviation, the triple is emitted with only 37 bits (assuming a
544 abbrev id width of 3). Without the abbreviation, significantly more space would
545 be required to emit the target triple. Also, because the <tt>TRIPLE</tt> value
546 is not emitted as a literal in the abbreviation, the abbreviation can also be
547 used for any other string value.
548 </p>
550 </div>
552 </div>
554 <!-- ======================================================================= -->
555 <h3>
556 <a name="stdblocks">Standard Blocks</a>
557 </h3>
559 <div>
562 In addition to the basic block structure and record encodings, the bitstream
563 also defines specific built-in block types. These block types specify how the
564 stream is to be decoded or other metadata. In the future, new standard blocks
565 may be added. Block IDs 0-7 are reserved for standard blocks.
566 </p>
568 <!-- _______________________________________________________________________ -->
569 <h4><a name="BLOCKINFO">#0 - BLOCKINFO Block</a></h4>
571 <div>
574 The <tt>BLOCKINFO</tt> block allows the description of metadata for other
575 blocks. The currently specified records are:
576 </p>
578 <div class="doc_code">
579 <pre>
580 [SETBID (#1), blockid]
581 [DEFINE_ABBREV, ...]
582 [BLOCKNAME, ...name...]
583 [SETRECORDNAME, RecordID, ...name...]
584 </pre>
585 </div>
588 The <tt>SETBID</tt> record (code 1) indicates which block ID is being
589 described. <tt>SETBID</tt> records can occur multiple times throughout the
590 block to change which block ID is being described. There must be
591 a <tt>SETBID</tt> record prior to any other records.
592 </p>
595 Standard <tt>DEFINE_ABBREV</tt> records can occur inside <tt>BLOCKINFO</tt>
596 blocks, but unlike their occurrence in normal blocks, the abbreviation is
597 defined for blocks matching the block ID we are describing, <i>not</i> the
598 <tt>BLOCKINFO</tt> block itself. The abbreviations defined
599 in <tt>BLOCKINFO</tt> blocks receive abbreviation IDs as described
600 in <tt><a href="#DEFINE_ABBREV">DEFINE_ABBREV</a></tt>.
601 </p>
603 <p>The <tt>BLOCKNAME</tt> record (code 2) can optionally occur in this block. The elements of
604 the record are the bytes of the string name of the block. llvm-bcanalyzer can use
605 this to dump out bitcode files symbolically.</p>
607 <p>The <tt>SETRECORDNAME</tt> record (code 3) can also optionally occur in this block. The
608 first operand value is a record ID number, and the rest of the elements of the record are
609 the bytes for the string name of the record. llvm-bcanalyzer can use
610 this to dump out bitcode files symbolically.</p>
613 Note that although the data in <tt>BLOCKINFO</tt> blocks is described as
614 "metadata," the abbreviations they contain are essential for parsing records
615 from the corresponding blocks. It is not safe to skip them.
616 </p>
618 </div>
620 </div>
622 </div>
624 <!-- *********************************************************************** -->
625 <h2><a name="wrapper">Bitcode Wrapper Format</a></h2>
626 <!-- *********************************************************************** -->
628 <div>
631 Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
632 structure. This structure contains a simple header that indicates the offset
633 and size of the embedded BC file. This allows additional information to be
634 stored alongside the BC file. The structure of this file header is:
635 </p>
637 <div class="doc_code">
639 <tt>[Magic<sub>32</sub>, Version<sub>32</sub>, Offset<sub>32</sub>,
640 Size<sub>32</sub>, CPUType<sub>32</sub>]</tt>
641 </p>
642 </div>
645 Each of the fields are 32-bit fields stored in little endian form (as with
646 the rest of the bitcode file fields). The Magic number is always
647 <tt>0x0B17C0DE</tt> and the version is currently always <tt>0</tt>. The Offset
648 field is the offset in bytes to the start of the bitcode stream in the file, and
649 the Size field is the size in bytes of the stream. CPUType is a target-specific
650 value that can be used to encode the CPU of the target.
651 </p>
653 </div>
655 <!-- *********************************************************************** -->
656 <h2><a name="llvmir">LLVM IR Encoding</a></h2>
657 <!-- *********************************************************************** -->
659 <div>
662 LLVM IR is encoded into a bitstream by defining blocks and records. It uses
663 blocks for things like constant pools, functions, symbol tables, etc. It uses
664 records for things like instructions, global variable descriptors, type
665 descriptions, etc. This document does not describe the set of abbreviations
666 that the writer uses, as these are fully self-described in the file, and the
667 reader is not allowed to build in any knowledge of this.
668 </p>
670 <!-- ======================================================================= -->
671 <h3>
672 <a name="basics">Basics</a>
673 </h3>
675 <div>
677 <!-- _______________________________________________________________________ -->
678 <h4><a name="ir_magic">LLVM IR Magic Number</a></h4>
680 <div>
683 The magic number for LLVM IR files is:
684 </p>
686 <div class="doc_code">
688 <tt>[0x0<sub>4</sub>, 0xC<sub>4</sub>, 0xE<sub>4</sub>, 0xD<sub>4</sub>]</tt>
689 </p>
690 </div>
693 When combined with the bitcode magic number and viewed as bytes, this is
694 <tt>"BC&nbsp;0xC0DE"</tt>.
695 </p>
697 </div>
699 <!-- _______________________________________________________________________ -->
700 <h4><a name="ir_signed_vbr">Signed VBRs</a></h4>
702 <div>
705 <a href="#variablewidth">Variable Width Integer</a> encoding is an efficient way to
706 encode arbitrary sized unsigned values, but is an extremely inefficient for
707 encoding signed values, as signed values are otherwise treated as maximally large
708 unsigned values.
709 </p>
712 As such, signed VBR values of a specific width are emitted as follows:
713 </p>
715 <ul>
716 <li>Positive values are emitted as VBRs of the specified width, but with their
717 value shifted left by one.</li>
718 <li>Negative values are emitted as VBRs of the specified width, but the negated
719 value is shifted left by one, and the low bit is set.</li>
720 </ul>
723 With this encoding, small positive and small negative values can both
724 be emitted efficiently. Signed VBR encoding is used in
725 <tt>CST_CODE_INTEGER</tt> and <tt>CST_CODE_WIDE_INTEGER</tt> records
726 within <tt>CONSTANTS_BLOCK</tt> blocks.
727 </p>
729 </div>
732 <!-- _______________________________________________________________________ -->
733 <h4><a name="ir_blocks">LLVM IR Blocks</a></h4>
735 <div>
738 LLVM IR is defined with the following blocks:
739 </p>
741 <ul>
742 <li>8 &mdash; <a href="#MODULE_BLOCK"><tt>MODULE_BLOCK</tt></a> &mdash; This is the top-level block that
743 contains the entire module, and describes a variety of per-module
744 information.</li>
745 <li>9 &mdash; <a href="#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK</tt></a> &mdash; This enumerates the parameter
746 attributes.</li>
747 <li>10 &mdash; <a href="#TYPE_BLOCK"><tt>TYPE_BLOCK</tt></a> &mdash; This describes all of the types in
748 the module.</li>
749 <li>11 &mdash; <a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a> &mdash; This describes constants for a
750 module or function.</li>
751 <li>12 &mdash; <a href="#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK</tt></a> &mdash; This describes a function
752 body.</li>
753 <li>13 &mdash; <a href="#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK</tt></a> &mdash; This describes the type symbol
754 table.</li>
755 <li>14 &mdash; <a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a> &mdash; This describes a value symbol
756 table.</li>
757 <li>15 &mdash; <a href="#METADATA_BLOCK"><tt>METADATA_BLOCK</tt></a> &mdash; This describes metadata items.</li>
758 <li>16 &mdash; <a href="#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT</tt></a> &mdash; This contains records associating metadata with function instruction values.</li>
759 </ul>
761 </div>
763 </div>
765 <!-- ======================================================================= -->
766 <h3>
767 <a name="MODULE_BLOCK">MODULE_BLOCK Contents</a>
768 </h3>
770 <div>
772 <p>The <tt>MODULE_BLOCK</tt> block (id 8) is the top-level block for LLVM
773 bitcode files, and each bitcode file must contain exactly one. In
774 addition to records (described below) containing information
775 about the module, a <tt>MODULE_BLOCK</tt> block may contain the
776 following sub-blocks:
777 </p>
779 <ul>
780 <li><a href="#BLOCKINFO"><tt>BLOCKINFO</tt></a></li>
781 <li><a href="#PARAMATTR_BLOCK"><tt>PARAMATTR_BLOCK</tt></a></li>
782 <li><a href="#TYPE_BLOCK"><tt>TYPE_BLOCK</tt></a></li>
783 <li><a href="#TYPE_SYMTAB_BLOCK"><tt>TYPE_SYMTAB_BLOCK</tt></a></li>
784 <li><a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a></li>
785 <li><a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a></li>
786 <li><a href="#FUNCTION_BLOCK"><tt>FUNCTION_BLOCK</tt></a></li>
787 <li><a href="#METADATA_BLOCK"><tt>METADATA_BLOCK</tt></a></li>
788 </ul>
790 <!-- _______________________________________________________________________ -->
791 <h4><a name="MODULE_CODE_VERSION">MODULE_CODE_VERSION Record</a></h4>
793 <div>
795 <p><tt>[VERSION, version#]</tt></p>
797 <p>The <tt>VERSION</tt> record (code 1) contains a single value
798 indicating the format version. Only version 0 is supported at this
799 time.</p>
800 </div>
802 <!-- _______________________________________________________________________ -->
803 <h4><a name="MODULE_CODE_TRIPLE">MODULE_CODE_TRIPLE Record</a></h4>
805 <div>
806 <p><tt>[TRIPLE, ...string...]</tt></p>
808 <p>The <tt>TRIPLE</tt> record (code 2) contains a variable number of
809 values representing the bytes of the <tt>target triple</tt>
810 specification string.</p>
811 </div>
813 <!-- _______________________________________________________________________ -->
814 <h4><a name="MODULE_CODE_DATALAYOUT">MODULE_CODE_DATALAYOUT Record</a></h4>
816 <div>
817 <p><tt>[DATALAYOUT, ...string...]</tt></p>
819 <p>The <tt>DATALAYOUT</tt> record (code 3) contains a variable number of
820 values representing the bytes of the <tt>target datalayout</tt>
821 specification string.</p>
822 </div>
824 <!-- _______________________________________________________________________ -->
825 <h4><a name="MODULE_CODE_ASM">MODULE_CODE_ASM Record</a></h4>
827 <div>
828 <p><tt>[ASM, ...string...]</tt></p>
830 <p>The <tt>ASM</tt> record (code 4) contains a variable number of
831 values representing the bytes of <tt>module asm</tt> strings, with
832 individual assembly blocks separated by newline (ASCII 10) characters.</p>
833 </div>
835 <!-- _______________________________________________________________________ -->
836 <h4><a name="MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME Record</a></h4>
838 <div>
839 <p><tt>[SECTIONNAME, ...string...]</tt></p>
841 <p>The <tt>SECTIONNAME</tt> record (code 5) contains a variable number
842 of values representing the bytes of a single section name
843 string. There should be one <tt>SECTIONNAME</tt> record for each
844 section name referenced (e.g., in global variable or function
845 <tt>section</tt> attributes) within the module. These records can be
846 referenced by the 1-based index in the <i>section</i> fields of
847 <tt>GLOBALVAR</tt> or <tt>FUNCTION</tt> records.</p>
848 </div>
850 <!-- _______________________________________________________________________ -->
851 <h4><a name="MODULE_CODE_DEPLIB">MODULE_CODE_DEPLIB Record</a></h4>
853 <div>
854 <p><tt>[DEPLIB, ...string...]</tt></p>
856 <p>The <tt>DEPLIB</tt> record (code 6) contains a variable number of
857 values representing the bytes of a single dependent library name
858 string, one of the libraries mentioned in a <tt>deplibs</tt>
859 declaration. There should be one <tt>DEPLIB</tt> record for each
860 library name referenced.</p>
861 </div>
863 <!-- _______________________________________________________________________ -->
864 <h4><a name="MODULE_CODE_GLOBALVAR">MODULE_CODE_GLOBALVAR Record</a></h4>
866 <div>
867 <p><tt>[GLOBALVAR, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal]</tt></p>
869 <p>The <tt>GLOBALVAR</tt> record (code 7) marks the declaration or
870 definition of a global variable. The operand fields are:</p>
872 <ul>
873 <li><i>pointer type</i>: The type index of the pointer type used to point to
874 this global variable</li>
876 <li><i>isconst</i>: Non-zero if the variable is treated as constant within
877 the module, or zero if it is not</li>
879 <li><i>initid</i>: If non-zero, the value index of the initializer for this
880 variable, plus 1.</li>
882 <li><a name="linkage"><i>linkage</i></a>: An encoding of the linkage
883 type for this variable:
884 <ul>
885 <li><tt>external</tt>: code 0</li>
886 <li><tt>weak</tt>: code 1</li>
887 <li><tt>appending</tt>: code 2</li>
888 <li><tt>internal</tt>: code 3</li>
889 <li><tt>linkonce</tt>: code 4</li>
890 <li><tt>dllimport</tt>: code 5</li>
891 <li><tt>dllexport</tt>: code 6</li>
892 <li><tt>extern_weak</tt>: code 7</li>
893 <li><tt>common</tt>: code 8</li>
894 <li><tt>private</tt>: code 9</li>
895 <li><tt>weak_odr</tt>: code 10</li>
896 <li><tt>linkonce_odr</tt>: code 11</li>
897 <li><tt>available_externally</tt>: code 12</li>
898 <li><tt>linker_private</tt>: code 13</li>
899 </ul>
900 </li>
902 <li><i>alignment</i>: The logarithm base 2 of the variable's requested
903 alignment, plus 1</li>
905 <li><i>section</i>: If non-zero, the 1-based section index in the
906 table of <a href="#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME</a>
907 entries.</li>
909 <li><a name="visibility"><i>visibility</i></a>: If present, an
910 encoding of the visibility of this variable:
911 <ul>
912 <li><tt>default</tt>: code 0</li>
913 <li><tt>hidden</tt>: code 1</li>
914 <li><tt>protected</tt>: code 2</li>
915 </ul>
916 </li>
918 <li><i>threadlocal</i>: If present and non-zero, indicates that the variable
919 is <tt>thread_local</tt></li>
921 <li><i>unnamed_addr</i>: If present and non-zero, indicates that the variable
922 has <tt>unnamed_addr</tt></li>
924 </ul>
925 </div>
927 <!-- _______________________________________________________________________ -->
928 <h4><a name="MODULE_CODE_FUNCTION">MODULE_CODE_FUNCTION Record</a></h4>
930 <div>
932 <p><tt>[FUNCTION, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc]</tt></p>
934 <p>The <tt>FUNCTION</tt> record (code 8) marks the declaration or
935 definition of a function. The operand fields are:</p>
937 <ul>
938 <li><i>type</i>: The type index of the function type describing this function</li>
940 <li><i>callingconv</i>: The calling convention number:
941 <ul>
942 <li><tt>ccc</tt>: code 0</li>
943 <li><tt>fastcc</tt>: code 8</li>
944 <li><tt>coldcc</tt>: code 9</li>
945 <li><tt>x86_stdcallcc</tt>: code 64</li>
946 <li><tt>x86_fastcallcc</tt>: code 65</li>
947 <li><tt>arm_apcscc</tt>: code 66</li>
948 <li><tt>arm_aapcscc</tt>: code 67</li>
949 <li><tt>arm_aapcs_vfpcc</tt>: code 68</li>
950 </ul>
951 </li>
953 <li><i>isproto</i>: Non-zero if this entry represents a declaration
954 rather than a definition</li>
956 <li><i>linkage</i>: An encoding of the <a href="#linkage">linkage type</a>
957 for this function</li>
959 <li><i>paramattr</i>: If nonzero, the 1-based parameter attribute index
960 into the table of <a href="#PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY</a>
961 entries.</li>
963 <li><i>alignment</i>: The logarithm base 2 of the function's requested
964 alignment, plus 1</li>
966 <li><i>section</i>: If non-zero, the 1-based section index in the
967 table of <a href="#MODULE_CODE_SECTIONNAME">MODULE_CODE_SECTIONNAME</a>
968 entries.</li>
970 <li><i>visibility</i>: An encoding of the <a href="#visibility">visibility</a>
971 of this function</li>
973 <li><i>gc</i>: If present and nonzero, the 1-based garbage collector
974 index in the table of
975 <a href="#MODULE_CODE_GCNAME">MODULE_CODE_GCNAME</a> entries.</li>
977 <li><i>unnamed_addr</i>: If present and non-zero, indicates that the function
978 has <tt>unnamed_addr</tt></li>
980 </ul>
981 </div>
983 <!-- _______________________________________________________________________ -->
984 <h4><a name="MODULE_CODE_ALIAS">MODULE_CODE_ALIAS Record</a></h4>
986 <div>
988 <p><tt>[ALIAS, alias type, aliasee val#, linkage, visibility]</tt></p>
990 <p>The <tt>ALIAS</tt> record (code 9) marks the definition of an
991 alias. The operand fields are</p>
993 <ul>
994 <li><i>alias type</i>: The type index of the alias</li>
996 <li><i>aliasee val#</i>: The value index of the aliased value</li>
998 <li><i>linkage</i>: An encoding of the <a href="#linkage">linkage type</a>
999 for this alias</li>
1001 <li><i>visibility</i>: If present, an encoding of the
1002 <a href="#visibility">visibility</a> of the alias</li>
1004 </ul>
1005 </div>
1007 <!-- _______________________________________________________________________ -->
1008 <h4><a name="MODULE_CODE_PURGEVALS">MODULE_CODE_PURGEVALS Record</a></h4>
1010 <div>
1011 <p><tt>[PURGEVALS, numvals]</tt></p>
1013 <p>The <tt>PURGEVALS</tt> record (code 10) resets the module-level
1014 value list to the size given by the single operand value. Module-level
1015 value list items are added by <tt>GLOBALVAR</tt>, <tt>FUNCTION</tt>,
1016 and <tt>ALIAS</tt> records. After a <tt>PURGEVALS</tt> record is seen,
1017 new value indices will start from the given <i>numvals</i> value.</p>
1018 </div>
1020 <!-- _______________________________________________________________________ -->
1021 <h4><a name="MODULE_CODE_GCNAME">MODULE_CODE_GCNAME Record</a></h4>
1023 <div>
1024 <p><tt>[GCNAME, ...string...]</tt></p>
1026 <p>The <tt>GCNAME</tt> record (code 11) contains a variable number of
1027 values representing the bytes of a single garbage collector name
1028 string. There should be one <tt>GCNAME</tt> record for each garbage
1029 collector name referenced in function <tt>gc</tt> attributes within
1030 the module. These records can be referenced by 1-based index in the <i>gc</i>
1031 fields of <tt>FUNCTION</tt> records.</p>
1032 </div>
1034 </div>
1036 <!-- ======================================================================= -->
1037 <h3>
1038 <a name="PARAMATTR_BLOCK">PARAMATTR_BLOCK Contents</a>
1039 </h3>
1041 <div>
1043 <p>The <tt>PARAMATTR_BLOCK</tt> block (id 9) contains a table of
1044 entries describing the attributes of function parameters. These
1045 entries are referenced by 1-based index in the <i>paramattr</i> field
1046 of module block <a name="MODULE_CODE_FUNCTION"><tt>FUNCTION</tt></a>
1047 records, or within the <i>attr</i> field of function block <a
1048 href="#FUNC_CODE_INST_INVOKE"><tt>INST_INVOKE</tt></a> and <a
1049 href="#FUNC_CODE_INST_CALL"><tt>INST_CALL</tt></a> records.</p>
1051 <p>Entries within <tt>PARAMATTR_BLOCK</tt> are constructed to ensure
1052 that each is unique (i.e., no two indicies represent equivalent
1053 attribute lists). </p>
1055 <!-- _______________________________________________________________________ -->
1056 <h4><a name="PARAMATTR_CODE_ENTRY">PARAMATTR_CODE_ENTRY Record</a></h4>
1058 <div>
1060 <p><tt>[ENTRY, paramidx0, attr0, paramidx1, attr1...]</tt></p>
1062 <p>The <tt>ENTRY</tt> record (code 1) contains an even number of
1063 values describing a unique set of function parameter attributes. Each
1064 <i>paramidx</i> value indicates which set of attributes is
1065 represented, with 0 representing the return value attributes,
1066 0xFFFFFFFF representing function attributes, and other values
1067 representing 1-based function parameters. Each <i>attr</i> value is a
1068 bitmap with the following interpretation:
1069 </p>
1071 <ul>
1072 <li>bit 0: <tt>zeroext</tt></li>
1073 <li>bit 1: <tt>signext</tt></li>
1074 <li>bit 2: <tt>noreturn</tt></li>
1075 <li>bit 3: <tt>inreg</tt></li>
1076 <li>bit 4: <tt>sret</tt></li>
1077 <li>bit 5: <tt>nounwind</tt></li>
1078 <li>bit 6: <tt>noalias</tt></li>
1079 <li>bit 7: <tt>byval</tt></li>
1080 <li>bit 8: <tt>nest</tt></li>
1081 <li>bit 9: <tt>readnone</tt></li>
1082 <li>bit 10: <tt>readonly</tt></li>
1083 <li>bit 11: <tt>noinline</tt></li>
1084 <li>bit 12: <tt>alwaysinline</tt></li>
1085 <li>bit 13: <tt>optsize</tt></li>
1086 <li>bit 14: <tt>ssp</tt></li>
1087 <li>bit 15: <tt>sspreq</tt></li>
1088 <li>bits 16&ndash;31: <tt>align <var>n</var></tt></li>
1089 <li>bit 32: <tt>nocapture</tt></li>
1090 <li>bit 33: <tt>noredzone</tt></li>
1091 <li>bit 34: <tt>noimplicitfloat</tt></li>
1092 <li>bit 35: <tt>naked</tt></li>
1093 <li>bit 36: <tt>inlinehint</tt></li>
1094 <li>bits 37&ndash;39: <tt>alignstack <var>n</var></tt>, represented as
1095 the logarithm base 2 of the requested alignment, plus 1</li>
1096 </ul>
1097 </div>
1099 </div>
1101 <!-- ======================================================================= -->
1102 <h3>
1103 <a name="TYPE_BLOCK">TYPE_BLOCK Contents</a>
1104 </h3>
1106 <div>
1108 <p>The <tt>TYPE_BLOCK</tt> block (id 10) contains records which
1109 constitute a table of type operator entries used to represent types
1110 referenced within an LLVM module. Each record (with the exception of
1111 <a href="#TYPE_CODE_NUMENTRY"><tt>NUMENTRY</tt></a>) generates a
1112 single type table entry, which may be referenced by 0-based index from
1113 instructions, constants, metadata, type symbol table entries, or other
1114 type operator records.
1115 </p>
1117 <p>Entries within <tt>TYPE_BLOCK</tt> are constructed to ensure that
1118 each entry is unique (i.e., no two indicies represent structurally
1119 equivalent types). </p>
1121 <!-- _______________________________________________________________________ -->
1122 <h4><a name="TYPE_CODE_NUMENTRY">TYPE_CODE_NUMENTRY Record</a></h4>
1124 <div>
1126 <p><tt>[NUMENTRY, numentries]</tt></p>
1128 <p>The <tt>NUMENTRY</tt> record (code 1) contains a single value which
1129 indicates the total number of type code entries in the type table of
1130 the module. If present, <tt>NUMENTRY</tt> should be the first record
1131 in the block.
1132 </p>
1133 </div>
1135 <!-- _______________________________________________________________________ -->
1136 <h4><a name="TYPE_CODE_VOID">TYPE_CODE_VOID Record</a></h4>
1138 <div>
1140 <p><tt>[VOID]</tt></p>
1142 <p>The <tt>VOID</tt> record (code 2) adds a <tt>void</tt> type to the
1143 type table.
1144 </p>
1145 </div>
1147 <!-- _______________________________________________________________________ -->
1148 <h4><a name="TYPE_CODE_FLOAT">TYPE_CODE_FLOAT Record</a></h4>
1150 <div>
1152 <p><tt>[FLOAT]</tt></p>
1154 <p>The <tt>FLOAT</tt> record (code 3) adds a <tt>float</tt> (32-bit
1155 floating point) type to the type table.
1156 </p>
1157 </div>
1159 <!-- _______________________________________________________________________ -->
1160 <h4><a name="TYPE_CODE_DOUBLE">TYPE_CODE_DOUBLE Record</a></h4>
1162 <div>
1164 <p><tt>[DOUBLE]</tt></p>
1166 <p>The <tt>DOUBLE</tt> record (code 4) adds a <tt>double</tt> (64-bit
1167 floating point) type to the type table.
1168 </p>
1169 </div>
1171 <!-- _______________________________________________________________________ -->
1172 <h4><a name="TYPE_CODE_LABEL">TYPE_CODE_LABEL Record</a></h4>
1174 <div>
1176 <p><tt>[LABEL]</tt></p>
1178 <p>The <tt>LABEL</tt> record (code 5) adds a <tt>label</tt> type to
1179 the type table.
1180 </p>
1181 </div>
1183 <!-- _______________________________________________________________________ -->
1184 <h4><a name="TYPE_CODE_OPAQUE">TYPE_CODE_OPAQUE Record</a></h4>
1186 <div>
1188 <p><tt>[OPAQUE]</tt></p>
1190 <p>The <tt>OPAQUE</tt> record (code 6) adds an <tt>opaque</tt> type to
1191 the type table. Note that distinct <tt>opaque</tt> types are not
1192 unified.
1193 </p>
1194 </div>
1196 <!-- _______________________________________________________________________ -->
1197 <h4><a name="TYPE_CODE_INTEGER">TYPE_CODE_INTEGER Record</a></h4>
1199 <div>
1201 <p><tt>[INTEGER, width]</tt></p>
1203 <p>The <tt>INTEGER</tt> record (code 7) adds an integer type to the
1204 type table. The single <i>width</i> field indicates the width of the
1205 integer type.
1206 </p>
1207 </div>
1209 <!-- _______________________________________________________________________ -->
1210 <h4><a name="TYPE_CODE_POINTER">TYPE_CODE_POINTER Record</a></h4>
1212 <div>
1214 <p><tt>[POINTER, pointee type, address space]</tt></p>
1216 <p>The <tt>POINTER</tt> record (code 8) adds a pointer type to the
1217 type table. The operand fields are</p>
1219 <ul>
1220 <li><i>pointee type</i>: The type index of the pointed-to type</li>
1222 <li><i>address space</i>: If supplied, the target-specific numbered
1223 address space where the pointed-to object resides. Otherwise, the
1224 default address space is zero.
1225 </li>
1226 </ul>
1227 </div>
1229 <!-- _______________________________________________________________________ -->
1230 <h4><a name="TYPE_CODE_FUNCTION">TYPE_CODE_FUNCTION Record</a></h4>
1232 <div>
1234 <p><tt>[FUNCTION, vararg, ignored, retty, ...paramty... ]</tt></p>
1236 <p>The <tt>FUNCTION</tt> record (code 9) adds a function type to the
1237 type table. The operand fields are</p>
1239 <ul>
1240 <li><i>vararg</i>: Non-zero if the type represents a varargs function</li>
1242 <li><i>ignored</i>: This value field is present for backward
1243 compatibility only, and is ignored</li>
1245 <li><i>retty</i>: The type index of the function's return type</li>
1247 <li><i>paramty</i>: Zero or more type indices representing the
1248 parameter types of the function</li>
1249 </ul>
1251 </div>
1253 <!-- _______________________________________________________________________ -->
1254 <h4><a name="TYPE_CODE_STRUCT">TYPE_CODE_STRUCT Record</a></h4>
1256 <div>
1258 <p><tt>[STRUCT, ispacked, ...eltty...]</tt></p>
1260 <p>The <tt>STRUCT </tt> record (code 10) adds a struct type to the
1261 type table. The operand fields are</p>
1263 <ul>
1264 <li><i>ispacked</i>: Non-zero if the type represents a packed structure</li>
1266 <li><i>eltty</i>: Zero or more type indices representing the element
1267 types of the structure</li>
1268 </ul>
1269 </div>
1271 <!-- _______________________________________________________________________ -->
1272 <h4><a name="TYPE_CODE_ARRAY">TYPE_CODE_ARRAY Record</a></h4>
1274 <div>
1276 <p><tt>[ARRAY, numelts, eltty]</tt></p>
1278 <p>The <tt>ARRAY</tt> record (code 11) adds an array type to the type
1279 table. The operand fields are</p>
1281 <ul>
1282 <li><i>numelts</i>: The number of elements in arrays of this type</li>
1284 <li><i>eltty</i>: The type index of the array element type</li>
1285 </ul>
1286 </div>
1288 <!-- _______________________________________________________________________ -->
1289 <h4><a name="TYPE_CODE_VECTOR">TYPE_CODE_VECTOR Record</a></h4>
1291 <div>
1293 <p><tt>[VECTOR, numelts, eltty]</tt></p>
1295 <p>The <tt>VECTOR</tt> record (code 12) adds a vector type to the type
1296 table. The operand fields are</p>
1298 <ul>
1299 <li><i>numelts</i>: The number of elements in vectors of this type</li>
1301 <li><i>eltty</i>: The type index of the vector element type</li>
1302 </ul>
1303 </div>
1305 <!-- _______________________________________________________________________ -->
1306 <h4><a name="TYPE_CODE_X86_FP80">TYPE_CODE_X86_FP80 Record</a></h4>
1308 <div>
1310 <p><tt>[X86_FP80]</tt></p>
1312 <p>The <tt>X86_FP80</tt> record (code 13) adds an <tt>x86_fp80</tt> (80-bit
1313 floating point) type to the type table.
1314 </p>
1315 </div>
1317 <!-- _______________________________________________________________________ -->
1318 <h4><a name="TYPE_CODE_FP128">TYPE_CODE_FP128 Record</a></h4>
1320 <div>
1322 <p><tt>[FP128]</tt></p>
1324 <p>The <tt>FP128</tt> record (code 14) adds an <tt>fp128</tt> (128-bit
1325 floating point) type to the type table.
1326 </p>
1327 </div>
1329 <!-- _______________________________________________________________________ -->
1330 <h4><a name="TYPE_CODE_PPC_FP128">TYPE_CODE_PPC_FP128 Record</a></h4>
1332 <div>
1334 <p><tt>[PPC_FP128]</tt></p>
1336 <p>The <tt>PPC_FP128</tt> record (code 15) adds a <tt>ppc_fp128</tt>
1337 (128-bit floating point) type to the type table.
1338 </p>
1339 </div>
1341 <!-- _______________________________________________________________________ -->
1342 <h4><a name="TYPE_CODE_METADATA">TYPE_CODE_METADATA Record</a></h4>
1344 <div>
1346 <p><tt>[METADATA]</tt></p>
1348 <p>The <tt>METADATA</tt> record (code 16) adds a <tt>metadata</tt>
1349 type to the type table.
1350 </p>
1351 </div>
1353 </div>
1355 <!-- ======================================================================= -->
1356 <h3>
1357 <a name="CONSTANTS_BLOCK">CONSTANTS_BLOCK Contents</a>
1358 </h3>
1360 <div>
1362 <p>The <tt>CONSTANTS_BLOCK</tt> block (id 11) ...
1363 </p>
1365 </div>
1368 <!-- ======================================================================= -->
1369 <h3>
1370 <a name="FUNCTION_BLOCK">FUNCTION_BLOCK Contents</a>
1371 </h3>
1373 <div>
1375 <p>The <tt>FUNCTION_BLOCK</tt> block (id 12) ...
1376 </p>
1378 <p>In addition to the record types described below, a
1379 <tt>FUNCTION_BLOCK</tt> block may contain the following sub-blocks:
1380 </p>
1382 <ul>
1383 <li><a href="#CONSTANTS_BLOCK"><tt>CONSTANTS_BLOCK</tt></a></li>
1384 <li><a href="#VALUE_SYMTAB_BLOCK"><tt>VALUE_SYMTAB_BLOCK</tt></a></li>
1385 <li><a href="#METADATA_ATTACHMENT"><tt>METADATA_ATTACHMENT</tt></a></li>
1386 </ul>
1388 </div>
1391 <!-- ======================================================================= -->
1392 <h3>
1393 <a name="TYPE_SYMTAB_BLOCK">TYPE_SYMTAB_BLOCK Contents</a>
1394 </h3>
1396 <div>
1398 <p>The <tt>TYPE_SYMTAB_BLOCK</tt> block (id 13) contains entries which
1399 map between module-level named types and their corresponding type
1400 indices.
1401 </p>
1403 <!-- _______________________________________________________________________ -->
1404 <h4><a name="TST_CODE_ENTRY">TST_CODE_ENTRY Record</a></h4>
1406 <div>
1408 <p><tt>[ENTRY, typeid, ...string...]</tt></p>
1410 <p>The <tt>ENTRY</tt> record (code 1) contains a variable number of
1411 values, with the first giving the type index of the designated type,
1412 and the remaining values giving the character codes of the type
1413 name. Each entry corresponds to a single named type.
1414 </p>
1415 </div>
1417 </div>
1419 <!-- ======================================================================= -->
1420 <h3>
1421 <a name="VALUE_SYMTAB_BLOCK">VALUE_SYMTAB_BLOCK Contents</a>
1422 </h3>
1424 <div>
1426 <p>The <tt>VALUE_SYMTAB_BLOCK</tt> block (id 14) ...
1427 </p>
1429 </div>
1432 <!-- ======================================================================= -->
1433 <h3>
1434 <a name="METADATA_BLOCK">METADATA_BLOCK Contents</a>
1435 </h3>
1437 <div>
1439 <p>The <tt>METADATA_BLOCK</tt> block (id 15) ...
1440 </p>
1442 </div>
1445 <!-- ======================================================================= -->
1446 <h3>
1447 <a name="METADATA_ATTACHMENT">METADATA_ATTACHMENT Contents</a>
1448 </h3>
1450 <div>
1452 <p>The <tt>METADATA_ATTACHMENT</tt> block (id 16) ...
1453 </p>
1455 </div>
1457 </div>
1459 <!-- *********************************************************************** -->
1460 <hr>
1461 <address> <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
1462 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
1463 <a href="http://validator.w3.org/check/referer"><img
1464 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
1465 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
1466 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
1467 Last modified: $Date$
1468 </address>
1469 </body>
1470 </html>