Only read *predecessor once so as to fix a theoretical issue where it changes
[llvm/stm8.git] / docs / TableGenFundamentals.html
blobe8fca325130b559a377e052cea4e9d4f3e3a05bc
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>TableGen Fundamentals</title>
6 <link rel="stylesheet" href="llvm.css" type="text/css">
7 </head>
8 <body>
10 <h1>TableGen Fundamentals</h1>
12 <div>
13 <ul>
14 <li><a href="#introduction">Introduction</a>
15 <ol>
16 <li><a href="#concepts">Basic concepts</a></li>
17 <li><a href="#example">An example record</a></li>
18 <li><a href="#running">Running TableGen</a></li>
19 </ol></li>
20 <li><a href="#syntax">TableGen syntax</a>
21 <ol>
22 <li><a href="#primitives">TableGen primitives</a>
23 <ol>
24 <li><a href="#comments">TableGen comments</a></li>
25 <li><a href="#types">The TableGen type system</a></li>
26 <li><a href="#values">TableGen values and expressions</a></li>
27 </ol></li>
28 <li><a href="#classesdefs">Classes and definitions</a>
29 <ol>
30 <li><a href="#valuedef">Value definitions</a></li>
31 <li><a href="#recordlet">'let' expressions</a></li>
32 <li><a href="#templateargs">Class template arguments</a></li>
33 <li><a href="#multiclass">Multiclass definitions and instances</a></li>
34 </ol></li>
35 <li><a href="#filescope">File scope entities</a>
36 <ol>
37 <li><a href="#include">File inclusion</a></li>
38 <li><a href="#globallet">'let' expressions</a></li>
39 </ol></li>
40 </ol></li>
41 <li><a href="#backends">TableGen backends</a>
42 <ol>
43 <li><a href="#">todo</a></li>
44 </ol></li>
45 </ul>
46 </div>
48 <div class="doc_author">
49 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
50 </div>
52 <!-- *********************************************************************** -->
53 <h2><a name="introduction">Introduction</a></h2>
54 <!-- *********************************************************************** -->
56 <div>
58 <p>TableGen's purpose is to help a human develop and maintain records of
59 domain-specific information. Because there may be a large number of these
60 records, it is specifically designed to allow writing flexible descriptions and
61 for common features of these records to be factored out. This reduces the
62 amount of duplication in the description, reduces the chance of error, and
63 makes it easier to structure domain specific information.</p>
65 <p>The core part of TableGen <a href="#syntax">parses a file</a>, instantiates
66 the declarations, and hands the result off to a domain-specific "<a
67 href="#backends">TableGen backend</a>" for processing. The current major user
68 of TableGen is the <a href="CodeGenerator.html">LLVM code generator</a>.</p>
70 <p>Note that if you work on TableGen much, and use emacs or vim, that you can
71 find an emacs "TableGen mode" and a vim language file in the
72 <tt>llvm/utils/emacs</tt> and <tt>llvm/utils/vim</tt> directories of your LLVM
73 distribution, respectively.</p>
75 <!-- ======================================================================= -->
76 <h3><a name="concepts">Basic concepts</a></h3>
78 <div>
80 <p>TableGen files consist of two key parts: 'classes' and 'definitions', both
81 of which are considered 'records'.</p>
83 <p><b>TableGen records</b> have a unique name, a list of values, and a list of
84 superclasses. The list of values is the main data that TableGen builds for each
85 record; it is this that holds the domain specific information for the
86 application. The interpretation of this data is left to a specific <a
87 href="#backends">TableGen backend</a>, but the structure and format rules are
88 taken care of and are fixed by TableGen.</p>
90 <p><b>TableGen definitions</b> are the concrete form of 'records'. These
91 generally do not have any undefined values, and are marked with the
92 '<tt>def</tt>' keyword.</p>
94 <p><b>TableGen classes</b> are abstract records that are used to build and
95 describe other records. These 'classes' allow the end-user to build
96 abstractions for either the domain they are targeting (such as "Register",
97 "RegisterClass", and "Instruction" in the LLVM code generator) or for the
98 implementor to help factor out common properties of records (such as "FPInst",
99 which is used to represent floating point instructions in the X86 backend).
100 TableGen keeps track of all of the classes that are used to build up a
101 definition, so the backend can find all definitions of a particular class, such
102 as "Instruction".</p>
104 <p><b>TableGen multiclasses</b> are groups of abstract records that are
105 instantiated all at once. Each instantiation can result in multiple
106 TableGen definitions. If a multiclass inherits from another multiclass,
107 the definitions in the sub-multiclass become part of the current
108 multiclass, as if they were declared in the current multiclass.</p>
110 </div>
112 <!-- ======================================================================= -->
113 <h3><a name="example">An example record</a></h3>
115 <div>
117 <p>With no other arguments, TableGen parses the specified file and prints out
118 all of the classes, then all of the definitions. This is a good way to see what
119 the various definitions expand to fully. Running this on the <tt>X86.td</tt>
120 file prints this (at the time of this writing):</p>
122 <div class="doc_code">
123 <pre>
125 <b>def</b> ADD32rr { <i>// Instruction X86Inst I</i>
126 <b>string</b> Namespace = "X86";
127 <b>dag</b> OutOperandList = (outs GR32:$dst);
128 <b>dag</b> InOperandList = (ins GR32:$src1, GR32:$src2);
129 <b>string</b> AsmString = "add{l}\t{$src2, $dst|$dst, $src2}";
130 <b>list</b>&lt;dag&gt; Pattern = [(set GR32:$dst, (add GR32:$src1, GR32:$src2))];
131 <b>list</b>&lt;Register&gt; Uses = [];
132 <b>list</b>&lt;Register&gt; Defs = [EFLAGS];
133 <b>list</b>&lt;Predicate&gt; Predicates = [];
134 <b>int</b> CodeSize = 3;
135 <b>int</b> AddedComplexity = 0;
136 <b>bit</b> isReturn = 0;
137 <b>bit</b> isBranch = 0;
138 <b>bit</b> isIndirectBranch = 0;
139 <b>bit</b> isBarrier = 0;
140 <b>bit</b> isCall = 0;
141 <b>bit</b> canFoldAsLoad = 0;
142 <b>bit</b> mayLoad = 0;
143 <b>bit</b> mayStore = 0;
144 <b>bit</b> isImplicitDef = 0;
145 <b>bit</b> isConvertibleToThreeAddress = 1;
146 <b>bit</b> isCommutable = 1;
147 <b>bit</b> isTerminator = 0;
148 <b>bit</b> isReMaterializable = 0;
149 <b>bit</b> isPredicable = 0;
150 <b>bit</b> hasDelaySlot = 0;
151 <b>bit</b> usesCustomInserter = 0;
152 <b>bit</b> hasCtrlDep = 0;
153 <b>bit</b> isNotDuplicable = 0;
154 <b>bit</b> hasSideEffects = 0;
155 <b>bit</b> neverHasSideEffects = 0;
156 InstrItinClass Itinerary = NoItinerary;
157 <b>string</b> Constraints = "";
158 <b>string</b> DisableEncoding = "";
159 <b>bits</b>&lt;8&gt; Opcode = { 0, 0, 0, 0, 0, 0, 0, 1 };
160 Format Form = MRMDestReg;
161 <b>bits</b>&lt;6&gt; FormBits = { 0, 0, 0, 0, 1, 1 };
162 ImmType ImmT = NoImm;
163 <b>bits</b>&lt;3&gt; ImmTypeBits = { 0, 0, 0 };
164 <b>bit</b> hasOpSizePrefix = 0;
165 <b>bit</b> hasAdSizePrefix = 0;
166 <b>bits</b>&lt;4&gt; Prefix = { 0, 0, 0, 0 };
167 <b>bit</b> hasREX_WPrefix = 0;
168 FPFormat FPForm = ?;
169 <b>bits</b>&lt;3&gt; FPFormBits = { 0, 0, 0 };
172 </pre>
173 </div>
175 <p>This definition corresponds to a 32-bit register-register add instruction in
176 the X86. The string after the '<tt>def</tt>' string indicates the name of the
177 record&mdash;"<tt>ADD32rr</tt>" in this case&mdash;and the comment at the end of
178 the line indicates the superclasses of the definition. The body of the record
179 contains all of the data that TableGen assembled for the record, indicating that
180 the instruction is part of the "X86" namespace, the pattern indicating how the
181 the instruction should be emitted into the assembly file, that it is a
182 two-address instruction, has a particular encoding, etc. The contents and
183 semantics of the information in the record is specific to the needs of the X86
184 backend, and is only shown as an example.</p>
186 <p>As you can see, a lot of information is needed for every instruction
187 supported by the code generator, and specifying it all manually would be
188 unmaintainable, prone to bugs, and tiring to do in the first place. Because we
189 are using TableGen, all of the information was derived from the following
190 definition:</p>
192 <div class="doc_code">
193 <pre>
194 let Defs = [EFLAGS],
195 isCommutable = 1, <i>// X = ADD Y,Z --&gt; X = ADD Z,Y</i>
196 isConvertibleToThreeAddress = 1 <b>in</b> <i>// Can transform into LEA.</i>
197 def ADD32rr : I&lt;0x01, MRMDestReg, (outs GR32:$dst),
198 (ins GR32:$src1, GR32:$src2),
199 "add{l}\t{$src2, $dst|$dst, $src2}",
200 [(set GR32:$dst, (add GR32:$src1, GR32:$src2))]&gt;;
201 </pre>
202 </div>
204 <p>This definition makes use of the custom class <tt>I</tt> (extended from the
205 custom class <tt>X86Inst</tt>), which is defined in the X86-specific TableGen
206 file, to factor out the common features that instructions of its class share. A
207 key feature of TableGen is that it allows the end-user to define the
208 abstractions they prefer to use when describing their information.</p>
210 </div>
212 <!-- ======================================================================= -->
213 <h3><a name="running">Running TableGen</a></h3>
215 <div>
217 <p>TableGen runs just like any other LLVM tool. The first (optional) argument
218 specifies the file to read. If a filename is not specified, <tt>tblgen</tt>
219 reads from standard input.</p>
221 <p>To be useful, one of the <a href="#backends">TableGen backends</a> must be
222 used. These backends are selectable on the command line (type '<tt>tblgen
223 -help</tt>' for a list). For example, to get a list of all of the definitions
224 that subclass a particular type (which can be useful for building up an enum
225 list of these records), use the <tt>-print-enums</tt> option:</p>
227 <div class="doc_code">
228 <pre>
229 $ tblgen X86.td -print-enums -class=Register
230 AH, AL, AX, BH, BL, BP, BPL, BX, CH, CL, CX, DH, DI, DIL, DL, DX, EAX, EBP, EBX,
231 ECX, EDI, EDX, EFLAGS, EIP, ESI, ESP, FP0, FP1, FP2, FP3, FP4, FP5, FP6, IP,
232 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, R10, R10B, R10D, R10W, R11, R11B, R11D,
233 R11W, R12, R12B, R12D, R12W, R13, R13B, R13D, R13W, R14, R14B, R14D, R14W, R15,
234 R15B, R15D, R15W, R8, R8B, R8D, R8W, R9, R9B, R9D, R9W, RAX, RBP, RBX, RCX, RDI,
235 RDX, RIP, RSI, RSP, SI, SIL, SP, SPL, ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
236 XMM0, XMM1, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5,
237 XMM6, XMM7, XMM8, XMM9,
239 $ tblgen X86.td -print-enums -class=Instruction
240 ABS_F, ABS_Fp32, ABS_Fp64, ABS_Fp80, ADC32mi, ADC32mi8, ADC32mr, ADC32ri,
241 ADC32ri8, ADC32rm, ADC32rr, ADC64mi32, ADC64mi8, ADC64mr, ADC64ri32, ADC64ri8,
242 ADC64rm, ADC64rr, ADD16mi, ADD16mi8, ADD16mr, ADD16ri, ADD16ri8, ADD16rm,
243 ADD16rr, ADD32mi, ADD32mi8, ADD32mr, ADD32ri, ADD32ri8, ADD32rm, ADD32rr,
244 ADD64mi32, ADD64mi8, ADD64mr, ADD64ri32, ...
245 </pre>
246 </div>
248 <p>The default backend prints out all of the records, as described <a
249 href="#example">above</a>.</p>
251 <p>If you plan to use TableGen, you will most likely have to <a
252 href="#backends">write a backend</a> that extracts the information specific to
253 what you need and formats it in the appropriate way.</p>
255 </div>
257 </div>
259 <!-- *********************************************************************** -->
260 <h2><a name="syntax">TableGen syntax</a></h2>
261 <!-- *********************************************************************** -->
263 <div>
265 <p>TableGen doesn't care about the meaning of data (that is up to the backend to
266 define), but it does care about syntax, and it enforces a simple type system.
267 This section describes the syntax and the constructs allowed in a TableGen file.
268 </p>
270 <!-- ======================================================================= -->
271 <h3><a name="primitives">TableGen primitives</a></h3>
273 <div>
275 <!-- -------------------------------------------------------------------------->
276 <h4><a name="comments">TableGen comments</a></h4>
278 <div>
280 <p>TableGen supports BCPL style "<tt>//</tt>" comments, which run to the end of
281 the line, and it also supports <b>nestable</b> "<tt>/* */</tt>" comments.</p>
283 </div>
285 <!-- -------------------------------------------------------------------------->
286 <h4>
287 <a name="types">The TableGen type system</a>
288 </h4>
290 <div>
292 <p>TableGen files are strongly typed, in a simple (but complete) type-system.
293 These types are used to perform automatic conversions, check for errors, and to
294 help interface designers constrain the input that they allow. Every <a
295 href="#valuedef">value definition</a> is required to have an associated type.
296 </p>
298 <p>TableGen supports a mixture of very low-level types (such as <tt>bit</tt>)
299 and very high-level types (such as <tt>dag</tt>). This flexibility is what
300 allows it to describe a wide range of information conveniently and compactly.
301 The TableGen types are:</p>
303 <dl>
304 <dt><tt><b>bit</b></tt></dt>
305 <dd>A 'bit' is a boolean value that can hold either 0 or 1.</dd>
307 <dt><tt><b>int</b></tt></dt>
308 <dd>The 'int' type represents a simple 32-bit integer value, such as 5.</dd>
310 <dt><tt><b>string</b></tt></dt>
311 <dd>The 'string' type represents an ordered sequence of characters of
312 arbitrary length.</dd>
314 <dt><tt><b>bits</b>&lt;n&gt;</tt></dt>
315 <dd>A 'bits' type is an arbitrary, but fixed, size integer that is broken up
316 into individual bits. This type is useful because it can handle some bits
317 being defined while others are undefined.</dd>
319 <dt><tt><b>list</b>&lt;ty&gt;</tt></dt>
320 <dd>This type represents a list whose elements are some other type. The
321 contained type is arbitrary: it can even be another list type.</dd>
323 <dt>Class type</dt>
324 <dd>Specifying a class name in a type context means that the defined value
325 must be a subclass of the specified class. This is useful in conjunction with
326 the <b><tt>list</tt></b> type, for example, to constrain the elements of the
327 list to a common base class (e.g., a <tt><b>list</b>&lt;Register&gt;</tt> can
328 only contain definitions derived from the "<tt>Register</tt>" class).</dd>
330 <dt><tt><b>dag</b></tt></dt>
331 <dd>This type represents a nestable directed graph of elements.</dd>
333 <dt><tt><b>code</b></tt></dt>
334 <dd>This represents a big hunk of text. This is lexically distinct from
335 string values because it doesn't require escapeing double quotes and other
336 common characters that occur in code.</dd>
337 </dl>
339 <p>To date, these types have been sufficient for describing things that
340 TableGen has been used for, but it is straight-forward to extend this list if
341 needed.</p>
343 </div>
345 <!-- -------------------------------------------------------------------------->
346 <h4>
347 <a name="values">TableGen values and expressions</a>
348 </h4>
350 <div>
352 <p>TableGen allows for a pretty reasonable number of different expression forms
353 when building up values. These forms allow the TableGen file to be written in a
354 natural syntax and flavor for the application. The current expression forms
355 supported include:</p>
357 <dl>
358 <dt><tt>?</tt></dt>
359 <dd>uninitialized field</dd>
360 <dt><tt>0b1001011</tt></dt>
361 <dd>binary integer value</dd>
362 <dt><tt>07654321</tt></dt>
363 <dd>octal integer value (indicated by a leading 0)</dd>
364 <dt><tt>7</tt></dt>
365 <dd>decimal integer value</dd>
366 <dt><tt>0x7F</tt></dt>
367 <dd>hexadecimal integer value</dd>
368 <dt><tt>"foo"</tt></dt>
369 <dd>string value</dd>
370 <dt><tt>[{ ... }]</tt></dt>
371 <dd>code fragment</dd>
372 <dt><tt>[ X, Y, Z ]&lt;type&gt;</tt></dt>
373 <dd>list value. &lt;type&gt; is the type of the list
374 element and is usually optional. In rare cases,
375 TableGen is unable to deduce the element type in
376 which case the user must specify it explicitly.</dd>
377 <dt><tt>{ a, b, c }</tt></dt>
378 <dd>initializer for a "bits&lt;3&gt;" value</dd>
379 <dt><tt>value</tt></dt>
380 <dd>value reference</dd>
381 <dt><tt>value{17}</tt></dt>
382 <dd>access to one bit of a value</dd>
383 <dt><tt>value{15-17}</tt></dt>
384 <dd>access to multiple bits of a value</dd>
385 <dt><tt>DEF</tt></dt>
386 <dd>reference to a record definition</dd>
387 <dt><tt>CLASS&lt;val list&gt;</tt></dt>
388 <dd>reference to a new anonymous definition of CLASS with the specified
389 template arguments.</dd>
390 <dt><tt>X.Y</tt></dt>
391 <dd>reference to the subfield of a value</dd>
392 <dt><tt>list[4-7,17,2-3]</tt></dt>
393 <dd>A slice of the 'list' list, including elements 4,5,6,7,17,2, and 3 from
394 it. Elements may be included multiple times.</dd>
395 <dt><tt>(DEF a, b)</tt></dt>
396 <dd>a dag value. The first element is required to be a record definition, the
397 remaining elements in the list may be arbitrary other values, including nested
398 `<tt>dag</tt>' values.</dd>
399 <dt><tt>!strconcat(a, b)</tt></dt>
400 <dd>A string value that is the result of concatenating the 'a' and 'b'
401 strings.</dd>
402 <dt><tt>!cast&lt;type&gt;(a)</tt></dt>
403 <dd>A symbol of type <em>type</em> obtained by looking up the string 'a' in
404 the symbol table. If the type of 'a' does not match <em>type</em>, TableGen
405 aborts with an error. !cast&lt;string&gt; is a special case in that the argument must
406 be an object defined by a 'def' construct.</dd>
407 <dt><tt>!subst(a, b, c)</tt></dt>
408 <dd>If 'a' and 'b' are of string type or are symbol references, substitute
409 'b' for 'a' in 'c.' This operation is analogous to $(subst) in GNU make.</dd>
410 <dt><tt>!foreach(a, b, c)</tt></dt>
411 <dd>For each member 'b' of dag or list 'a' apply operator 'c.' 'b' is a
412 dummy variable that should be declared as a member variable of an instantiated
413 class. This operation is analogous to $(foreach) in GNU make.</dd>
414 <dt><tt>!head(a)</tt></dt>
415 <dd>The first element of list 'a.'</dd>
416 <dt><tt>!tail(a)</tt></dt>
417 <dd>The 2nd-N elements of list 'a.'</dd>
418 <dt><tt>!empty(a)</tt></dt>
419 <dd>An integer {0,1} indicating whether list 'a' is empty.</dd>
420 <dt><tt>!if(a,b,c)</tt></dt>
421 <dd>'b' if the result of 'int' or 'bit' operator 'a' is nonzero,
422 'c' otherwise.</dd>
423 <dt><tt>!eq(a,b)</tt></dt>
424 <dd>'bit 1' if string a is equal to string b, 0 otherwise. This
425 only operates on string, int and bit objects. Use !cast&lt;string&gt; to
426 compare other types of objects.</dd>
427 </dl>
429 <p>Note that all of the values have rules specifying how they convert to values
430 for different types. These rules allow you to assign a value like "<tt>7</tt>"
431 to a "<tt>bits&lt;4&gt;</tt>" value, for example.</p>
433 </div>
435 </div>
437 <!-- ======================================================================= -->
438 <h3>
439 <a name="classesdefs">Classes and definitions</a>
440 </h3>
442 <div>
444 <p>As mentioned in the <a href="#concepts">intro</a>, classes and definitions
445 (collectively known as 'records') in TableGen are the main high-level unit of
446 information that TableGen collects. Records are defined with a <tt>def</tt> or
447 <tt>class</tt> keyword, the record name, and an optional list of "<a
448 href="#templateargs">template arguments</a>". If the record has superclasses,
449 they are specified as a comma separated list that starts with a colon character
450 ("<tt>:</tt>"). If <a href="#valuedef">value definitions</a> or <a
451 href="#recordlet">let expressions</a> are needed for the class, they are
452 enclosed in curly braces ("<tt>{}</tt>"); otherwise, the record ends with a
453 semicolon.</p>
455 <p>Here is a simple TableGen file:</p>
457 <div class="doc_code">
458 <pre>
459 <b>class</b> C { <b>bit</b> V = 1; }
460 <b>def</b> X : C;
461 <b>def</b> Y : C {
462 <b>string</b> Greeting = "hello";
464 </pre>
465 </div>
467 <p>This example defines two definitions, <tt>X</tt> and <tt>Y</tt>, both of
468 which derive from the <tt>C</tt> class. Because of this, they both get the
469 <tt>V</tt> bit value. The <tt>Y</tt> definition also gets the Greeting member
470 as well.</p>
472 <p>In general, classes are useful for collecting together the commonality
473 between a group of records and isolating it in a single place. Also, classes
474 permit the specification of default values for their subclasses, allowing the
475 subclasses to override them as they wish.</p>
477 <!---------------------------------------------------------------------------->
478 <h4>
479 <a name="valuedef">Value definitions</a>
480 </h4>
482 <div>
484 <p>Value definitions define named entries in records. A value must be defined
485 before it can be referred to as the operand for another value definition or
486 before the value is reset with a <a href="#recordlet">let expression</a>. A
487 value is defined by specifying a <a href="#types">TableGen type</a> and a name.
488 If an initial value is available, it may be specified after the type with an
489 equal sign. Value definitions require terminating semicolons.</p>
491 </div>
493 <!-- -------------------------------------------------------------------------->
494 <h4>
495 <a name="recordlet">'let' expressions</a>
496 </h4>
498 <div>
500 <p>A record-level let expression is used to change the value of a value
501 definition in a record. This is primarily useful when a superclass defines a
502 value that a derived class or definition wants to override. Let expressions
503 consist of the '<tt>let</tt>' keyword followed by a value name, an equal sign
504 ("<tt>=</tt>"), and a new value. For example, a new class could be added to the
505 example above, redefining the <tt>V</tt> field for all of its subclasses:</p>
507 <div class="doc_code">
508 <pre>
509 <b>class</b> D : C { let V = 0; }
510 <b>def</b> Z : D;
511 </pre>
512 </div>
514 <p>In this case, the <tt>Z</tt> definition will have a zero value for its "V"
515 value, despite the fact that it derives (indirectly) from the <tt>C</tt> class,
516 because the <tt>D</tt> class overrode its value.</p>
518 </div>
520 <!-- -------------------------------------------------------------------------->
521 <h4>
522 <a name="templateargs">Class template arguments</a>
523 </h4>
525 <div>
527 <p>TableGen permits the definition of parameterized classes as well as normal
528 concrete classes. Parameterized TableGen classes specify a list of variable
529 bindings (which may optionally have defaults) that are bound when used. Here is
530 a simple example:</p>
532 <div class="doc_code">
533 <pre>
534 <b>class</b> FPFormat&lt;<b>bits</b>&lt;3&gt; val&gt; {
535 <b>bits</b>&lt;3&gt; Value = val;
537 <b>def</b> NotFP : FPFormat&lt;0&gt;;
538 <b>def</b> ZeroArgFP : FPFormat&lt;1&gt;;
539 <b>def</b> OneArgFP : FPFormat&lt;2&gt;;
540 <b>def</b> OneArgFPRW : FPFormat&lt;3&gt;;
541 <b>def</b> TwoArgFP : FPFormat&lt;4&gt;;
542 <b>def</b> CompareFP : FPFormat&lt;5&gt;;
543 <b>def</b> CondMovFP : FPFormat&lt;6&gt;;
544 <b>def</b> SpecialFP : FPFormat&lt;7&gt;;
545 </pre>
546 </div>
548 <p>In this case, template arguments are used as a space efficient way to specify
549 a list of "enumeration values", each with a "<tt>Value</tt>" field set to the
550 specified integer.</p>
552 <p>The more esoteric forms of <a href="#values">TableGen expressions</a> are
553 useful in conjunction with template arguments. As an example:</p>
555 <div class="doc_code">
556 <pre>
557 <b>class</b> ModRefVal&lt;<b>bits</b>&lt;2&gt; val&gt; {
558 <b>bits</b>&lt;2&gt; Value = val;
561 <b>def</b> None : ModRefVal&lt;0&gt;;
562 <b>def</b> Mod : ModRefVal&lt;1&gt;;
563 <b>def</b> Ref : ModRefVal&lt;2&gt;;
564 <b>def</b> ModRef : ModRefVal&lt;3&gt;;
566 <b>class</b> Value&lt;ModRefVal MR&gt; {
567 <i>// Decode some information into a more convenient format, while providing
568 // a nice interface to the user of the "Value" class.</i>
569 <b>bit</b> isMod = MR.Value{0};
570 <b>bit</b> isRef = MR.Value{1};
572 <i>// other stuff...</i>
575 <i>// Example uses</i>
576 <b>def</b> bork : Value&lt;Mod&gt;;
577 <b>def</b> zork : Value&lt;Ref&gt;;
578 <b>def</b> hork : Value&lt;ModRef&gt;;
579 </pre>
580 </div>
582 <p>This is obviously a contrived example, but it shows how template arguments
583 can be used to decouple the interface provided to the user of the class from the
584 actual internal data representation expected by the class. In this case,
585 running <tt>tblgen</tt> on the example prints the following definitions:</p>
587 <div class="doc_code">
588 <pre>
589 <b>def</b> bork { <i>// Value</i>
590 <b>bit</b> isMod = 1;
591 <b>bit</b> isRef = 0;
593 <b>def</b> hork { <i>// Value</i>
594 <b>bit</b> isMod = 1;
595 <b>bit</b> isRef = 1;
597 <b>def</b> zork { <i>// Value</i>
598 <b>bit</b> isMod = 0;
599 <b>bit</b> isRef = 1;
601 </pre>
602 </div>
604 <p> This shows that TableGen was able to dig into the argument and extract a
605 piece of information that was requested by the designer of the "Value" class.
606 For more realistic examples, please see existing users of TableGen, such as the
607 X86 backend.</p>
609 </div>
611 <!-- -------------------------------------------------------------------------->
612 <h4>
613 <a name="multiclass">Multiclass definitions and instances</a>
614 </h4>
616 <div>
619 While classes with template arguments are a good way to factor commonality
620 between two instances of a definition, multiclasses allow a convenient notation
621 for defining multiple definitions at once (instances of implicitly constructed
622 classes). For example, consider an 3-address instruction set whose instructions
623 come in two forms: "<tt>reg = reg op reg</tt>" and "<tt>reg = reg op imm</tt>"
624 (e.g. SPARC). In this case, you'd like to specify in one place that this
625 commonality exists, then in a separate place indicate what all the ops are.
626 </p>
629 Here is an example TableGen fragment that shows this idea:
630 </p>
632 <div class="doc_code">
633 <pre>
634 <b>def</b> ops;
635 <b>def</b> GPR;
636 <b>def</b> Imm;
637 <b>class</b> inst&lt;<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist&gt;;
639 <b>multiclass</b> ri_inst&lt;<b>int</b> opc, <b>string</b> asmstr&gt; {
640 def _rr : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
641 (ops GPR:$dst, GPR:$src1, GPR:$src2)&gt;;
642 def _ri : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
643 (ops GPR:$dst, GPR:$src1, Imm:$src2)&gt;;
646 <i>// Instantiations of the ri_inst multiclass.</i>
647 <b>defm</b> ADD : ri_inst&lt;0b111, "add"&gt;;
648 <b>defm</b> SUB : ri_inst&lt;0b101, "sub"&gt;;
649 <b>defm</b> MUL : ri_inst&lt;0b100, "mul"&gt;;
651 </pre>
652 </div>
654 <p>The name of the resultant definitions has the multidef fragment names
655 appended to them, so this defines <tt>ADD_rr</tt>, <tt>ADD_ri</tt>,
656 <tt>SUB_rr</tt>, etc. A defm may inherit from multiple multiclasses,
657 instantiating definitions from each multiclass. Using a multiclass
658 this way is exactly equivalent to instantiating the classes multiple
659 times yourself, e.g. by writing:</p>
661 <div class="doc_code">
662 <pre>
663 <b>def</b> ops;
664 <b>def</b> GPR;
665 <b>def</b> Imm;
666 <b>class</b> inst&lt;<b>int</b> opc, <b>string</b> asmstr, <b>dag</b> operandlist&gt;;
668 <b>class</b> rrinst&lt;<b>int</b> opc, <b>string</b> asmstr&gt;
669 : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
670 (ops GPR:$dst, GPR:$src1, GPR:$src2)&gt;;
672 <b>class</b> riinst&lt;<b>int</b> opc, <b>string</b> asmstr&gt;
673 : inst&lt;opc, !strconcat(asmstr, " $dst, $src1, $src2"),
674 (ops GPR:$dst, GPR:$src1, Imm:$src2)&gt;;
676 <i>// Instantiations of the ri_inst multiclass.</i>
677 <b>def</b> ADD_rr : rrinst&lt;0b111, "add"&gt;;
678 <b>def</b> ADD_ri : riinst&lt;0b111, "add"&gt;;
679 <b>def</b> SUB_rr : rrinst&lt;0b101, "sub"&gt;;
680 <b>def</b> SUB_ri : riinst&lt;0b101, "sub"&gt;;
681 <b>def</b> MUL_rr : rrinst&lt;0b100, "mul"&gt;;
682 <b>def</b> MUL_ri : riinst&lt;0b100, "mul"&gt;;
684 </pre>
685 </div>
688 A defm can also be used inside a multiclass providing several levels of
689 multiclass instanciations.
690 </p>
692 <div class="doc_code">
693 <pre>
694 <b>class</b> Instruction&lt;bits&lt;4&gt; opc, string Name&gt; {
695 bits&lt;4&gt; opcode = opc;
696 string name = Name;
699 <b>multiclass</b> basic_r&lt;bits&lt;4&gt; opc&gt; {
700 <b>def</b> rr : Instruction&lt;opc, "rr"&gt;;
701 <b>def</b> rm : Instruction&lt;opc, "rm"&gt;;
704 <b>multiclass</b> basic_s&lt;bits&lt;4&gt; opc&gt; {
705 <b>defm</b> SS : basic_r&lt;opc&gt;;
706 <b>defm</b> SD : basic_r&lt;opc&gt;;
707 <b>def</b> X : Instruction&lt;opc, "x"&gt;;
710 <b>multiclass</b> basic_p&lt;bits&lt;4&gt; opc&gt; {
711 <b>defm</b> PS : basic_r&lt;opc&gt;;
712 <b>defm</b> PD : basic_r&lt;opc&gt;;
713 <b>def</b> Y : Instruction&lt;opc, "y"&gt;;
716 <b>defm</b> ADD : basic_s&lt;0xf&gt;, basic_p&lt;0xf&gt;;
719 <i>// Results</i>
720 <b>def</b> ADDPDrm { ...
721 <b>def</b> ADDPDrr { ...
722 <b>def</b> ADDPSrm { ...
723 <b>def</b> ADDPSrr { ...
724 <b>def</b> ADDSDrm { ...
725 <b>def</b> ADDSDrr { ...
726 <b>def</b> ADDY { ...
727 <b>def</b> ADDX { ...
728 </pre>
729 </div>
732 defm declarations can inherit from classes too, the
733 rule to follow is that the class list must start after the
734 last multiclass, and there must be at least one multiclass
735 before them.
736 </p>
738 <div class="doc_code">
739 <pre>
740 <b>class</b> XD { bits&lt;4&gt; Prefix = 11; }
741 <b>class</b> XS { bits&lt;4&gt; Prefix = 12; }
743 <b>class</b> I&lt;bits<4&gt; op> {
744 bits&lt;4&gt; opcode = op;
747 <b>multiclass</b> R {
748 <b>def</b> rr : I&lt;4&gt;;
749 <b>def</b> rm : I&lt;2&gt;;
752 <b>multiclass</b> Y {
753 <b>defm</b> SS : R, XD;
754 <b>defm</b> SD : R, XS;
757 <b>defm</b> Instr : Y;
759 <i>// Results</i>
760 <b>def</b> InstrSDrm {
761 bits&lt;4&gt; opcode = { 0, 0, 1, 0 };
762 bits&lt;4&gt; Prefix = { 1, 1, 0, 0 };
765 <b>def</b> InstrSSrr {
766 bits&lt;4&gt; opcode = { 0, 1, 0, 0 };
767 bits&lt;4&gt; Prefix = { 1, 0, 1, 1 };
769 </pre>
770 </div>
772 </div>
774 </div>
776 <!-- ======================================================================= -->
777 <h3>
778 <a name="filescope">File scope entities</a>
779 </h3>
781 <div>
783 <!-- -------------------------------------------------------------------------->
784 <h4>
785 <a name="include">File inclusion</a>
786 </h4>
788 <div>
789 <p>TableGen supports the '<tt>include</tt>' token, which textually substitutes
790 the specified file in place of the include directive. The filename should be
791 specified as a double quoted string immediately after the '<tt>include</tt>'
792 keyword. Example:</p>
794 <div class="doc_code">
795 <pre>
796 <b>include</b> "foo.td"
797 </pre>
798 </div>
800 </div>
802 <!-- -------------------------------------------------------------------------->
803 <h4>
804 <a name="globallet">'let' expressions</a>
805 </h4>
807 <div>
809 <p>"Let" expressions at file scope are similar to <a href="#recordlet">"let"
810 expressions within a record</a>, except they can specify a value binding for
811 multiple records at a time, and may be useful in certain other cases.
812 File-scope let expressions are really just another way that TableGen allows the
813 end-user to factor out commonality from the records.</p>
815 <p>File-scope "let" expressions take a comma-separated list of bindings to
816 apply, and one or more records to bind the values in. Here are some
817 examples:</p>
819 <div class="doc_code">
820 <pre>
821 <b>let</b> isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1 <b>in</b>
822 <b>def</b> RET : I&lt;0xC3, RawFrm, (outs), (ins), "ret", [(X86retflag 0)]&gt;;
824 <b>let</b> isCall = 1 <b>in</b>
825 <i>// All calls clobber the non-callee saved registers...</i>
826 <b>let</b> Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
827 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
828 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, EFLAGS] <b>in</b> {
829 <b>def</b> CALLpcrel32 : Ii32&lt;0xE8, RawFrm, (outs), (ins i32imm:$dst,variable_ops),
830 "call\t${dst:call}", []&gt;;
831 <b>def</b> CALL32r : I&lt;0xFF, MRM2r, (outs), (ins GR32:$dst, variable_ops),
832 "call\t{*}$dst", [(X86call GR32:$dst)]&gt;;
833 <b>def</b> CALL32m : I&lt;0xFF, MRM2m, (outs), (ins i32mem:$dst, variable_ops),
834 "call\t{*}$dst", []&gt;;
836 </pre>
837 </div>
839 <p>File-scope "let" expressions are often useful when a couple of definitions
840 need to be added to several records, and the records do not otherwise need to be
841 opened, as in the case with the <tt>CALL*</tt> instructions above.</p>
843 <p>It's also possible to use "let" expressions inside multiclasses, providing
844 more ways to factor out commonality from the records, specially if using
845 several levels of multiclass instanciations. This also avoids the need of using
846 "let" expressions within subsequent records inside a multiclass.</p>
848 <pre class="doc_code">
849 <b>multiclass </b>basic_r&lt;bits&lt;4&gt; opc&gt; {
850 <b>let </b>Predicates = [HasSSE2] in {
851 <b>def </b>rr : Instruction&lt;opc, "rr"&gt;;
852 <b>def </b>rm : Instruction&lt;opc, "rm"&gt;;
854 <b>let </b>Predicates = [HasSSE3] in
855 <b>def </b>rx : Instruction&lt;opc, "rx"&gt;;
858 <b>multiclass </b>basic_ss&lt;bits&lt;4&gt; opc&gt; {
859 <b>let </b>IsDouble = 0 in
860 <b>defm </b>SS : basic_r&lt;opc&gt;;
862 <b>let </b>IsDouble = 1 in
863 <b>defm </b>SD : basic_r&lt;opc&gt;;
866 <b>defm </b>ADD : basic_ss&lt;0xf&gt;;
867 </pre>
868 </div>
870 </div>
872 </div>
874 <!-- *********************************************************************** -->
875 <h2><a name="codegen">Code Generator backend info</a></h2>
876 <!-- *********************************************************************** -->
878 <div>
880 <p>Expressions used by code generator to describe instructions and isel
881 patterns:</p>
883 <dl>
884 <dt><tt>(implicit a)</tt></dt>
885 <dd>an implicitly defined physical register. This tells the dag instruction
886 selection emitter the input pattern's extra definitions matches implicit
887 physical register definitions.</dd>
888 </dl>
889 </div>
891 <!-- *********************************************************************** -->
892 <h2><a name="backends">TableGen backends</a></h2>
893 <!-- *********************************************************************** -->
895 <div>
897 <p>TODO: How they work, how to write one. This section should not contain
898 details about any particular backend, except maybe -print-enums as an example.
899 This should highlight the APIs in <tt>TableGen/Record.h</tt>.</p>
901 </div>
903 <!-- *********************************************************************** -->
905 <hr>
906 <address>
907 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
908 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
909 <a href="http://validator.w3.org/check/referer"><img
910 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
912 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
913 <a href="http://llvm.org/">LLVM Compiler Infrastructure</a><br>
914 Last modified: $Date$
915 </address>
917 </body>
918 </html>