Only read *predecessor once so as to fix a theoretical issue where it changes
[llvm/stm8.git] / lib / Transforms / Scalar / LoopRotation.cpp
blobe7b1a031f848aedfacfd7fed124a3ea9272337f3
1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Loop Rotation Pass.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "loop-rotate"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/Function.h"
17 #include "llvm/IntrinsicInst.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #include "llvm/Transforms/Utils/SSAUpdater.h"
25 #include "llvm/Transforms/Utils/ValueMapper.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/ADT/Statistic.h"
28 using namespace llvm;
30 #define MAX_HEADER_SIZE 16
32 STATISTIC(NumRotated, "Number of loops rotated");
33 namespace {
35 class LoopRotate : public LoopPass {
36 public:
37 static char ID; // Pass ID, replacement for typeid
38 LoopRotate() : LoopPass(ID) {
39 initializeLoopRotatePass(*PassRegistry::getPassRegistry());
42 // LCSSA form makes instruction renaming easier.
43 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
44 AU.addPreserved<DominatorTree>();
45 AU.addRequired<LoopInfo>();
46 AU.addPreserved<LoopInfo>();
47 AU.addRequiredID(LoopSimplifyID);
48 AU.addPreservedID(LoopSimplifyID);
49 AU.addRequiredID(LCSSAID);
50 AU.addPreservedID(LCSSAID);
51 AU.addPreserved<ScalarEvolution>();
54 bool runOnLoop(Loop *L, LPPassManager &LPM);
55 bool rotateLoop(Loop *L);
57 private:
58 LoopInfo *LI;
62 char LoopRotate::ID = 0;
63 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
64 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
65 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
66 INITIALIZE_PASS_DEPENDENCY(LCSSA)
67 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
69 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
71 /// Rotate Loop L as many times as possible. Return true if
72 /// the loop is rotated at least once.
73 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
74 LI = &getAnalysis<LoopInfo>();
76 // One loop can be rotated multiple times.
77 bool MadeChange = false;
78 while (rotateLoop(L))
79 MadeChange = true;
81 return MadeChange;
84 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
85 /// old header into the preheader. If there were uses of the values produced by
86 /// these instruction that were outside of the loop, we have to insert PHI nodes
87 /// to merge the two values. Do this now.
88 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
89 BasicBlock *OrigPreheader,
90 ValueToValueMapTy &ValueMap) {
91 // Remove PHI node entries that are no longer live.
92 BasicBlock::iterator I, E = OrigHeader->end();
93 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
94 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
96 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
97 // as necessary.
98 SSAUpdater SSA;
99 for (I = OrigHeader->begin(); I != E; ++I) {
100 Value *OrigHeaderVal = I;
102 // If there are no uses of the value (e.g. because it returns void), there
103 // is nothing to rewrite.
104 if (OrigHeaderVal->use_empty())
105 continue;
107 Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
109 // The value now exits in two versions: the initial value in the preheader
110 // and the loop "next" value in the original header.
111 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
112 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
113 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
115 // Visit each use of the OrigHeader instruction.
116 for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
117 UE = OrigHeaderVal->use_end(); UI != UE; ) {
118 // Grab the use before incrementing the iterator.
119 Use &U = UI.getUse();
121 // Increment the iterator before removing the use from the list.
122 ++UI;
124 // SSAUpdater can't handle a non-PHI use in the same block as an
125 // earlier def. We can easily handle those cases manually.
126 Instruction *UserInst = cast<Instruction>(U.getUser());
127 if (!isa<PHINode>(UserInst)) {
128 BasicBlock *UserBB = UserInst->getParent();
130 // The original users in the OrigHeader are already using the
131 // original definitions.
132 if (UserBB == OrigHeader)
133 continue;
135 // Users in the OrigPreHeader need to use the value to which the
136 // original definitions are mapped.
137 if (UserBB == OrigPreheader) {
138 U = OrigPreHeaderVal;
139 continue;
143 // Anything else can be handled by SSAUpdater.
144 SSA.RewriteUse(U);
149 /// Rotate loop LP. Return true if the loop is rotated.
150 bool LoopRotate::rotateLoop(Loop *L) {
151 // If the loop has only one block then there is not much to rotate.
152 if (L->getBlocks().size() == 1)
153 return false;
155 BasicBlock *OrigHeader = L->getHeader();
157 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
158 if (BI == 0 || BI->isUnconditional())
159 return false;
161 // If the loop header is not one of the loop exiting blocks then
162 // either this loop is already rotated or it is not
163 // suitable for loop rotation transformations.
164 if (!L->isLoopExiting(OrigHeader))
165 return false;
167 // Updating PHInodes in loops with multiple exits adds complexity.
168 // Keep it simple, and restrict loop rotation to loops with one exit only.
169 // In future, lift this restriction and support for multiple exits if
170 // required.
171 SmallVector<BasicBlock*, 8> ExitBlocks;
172 L->getExitBlocks(ExitBlocks);
173 if (ExitBlocks.size() > 1)
174 return false;
176 // Check size of original header and reject loop if it is very big.
178 CodeMetrics Metrics;
179 Metrics.analyzeBasicBlock(OrigHeader);
180 if (Metrics.NumInsts > MAX_HEADER_SIZE)
181 return false;
184 // Now, this loop is suitable for rotation.
185 BasicBlock *OrigPreheader = L->getLoopPreheader();
186 BasicBlock *OrigLatch = L->getLoopLatch();
188 // If the loop could not be converted to canonical form, it must have an
189 // indirectbr in it, just give up.
190 if (OrigPreheader == 0 || OrigLatch == 0)
191 return false;
193 // Anything ScalarEvolution may know about this loop or the PHI nodes
194 // in its header will soon be invalidated.
195 if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
196 SE->forgetLoop(L);
198 // Find new Loop header. NewHeader is a Header's one and only successor
199 // that is inside loop. Header's other successor is outside the
200 // loop. Otherwise loop is not suitable for rotation.
201 BasicBlock *Exit = BI->getSuccessor(0);
202 BasicBlock *NewHeader = BI->getSuccessor(1);
203 if (L->contains(Exit))
204 std::swap(Exit, NewHeader);
205 assert(NewHeader && "Unable to determine new loop header");
206 assert(L->contains(NewHeader) && !L->contains(Exit) &&
207 "Unable to determine loop header and exit blocks");
209 // This code assumes that the new header has exactly one predecessor.
210 // Remove any single-entry PHI nodes in it.
211 assert(NewHeader->getSinglePredecessor() &&
212 "New header doesn't have one pred!");
213 FoldSingleEntryPHINodes(NewHeader);
215 // Begin by walking OrigHeader and populating ValueMap with an entry for
216 // each Instruction.
217 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
218 ValueToValueMapTy ValueMap;
220 // For PHI nodes, the value available in OldPreHeader is just the
221 // incoming value from OldPreHeader.
222 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
223 ValueMap[PN] = PN->getIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
225 // For the rest of the instructions, either hoist to the OrigPreheader if
226 // possible or create a clone in the OldPreHeader if not.
227 TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
228 while (I != E) {
229 Instruction *Inst = I++;
231 // If the instruction's operands are invariant and it doesn't read or write
232 // memory, then it is safe to hoist. Doing this doesn't change the order of
233 // execution in the preheader, but does prevent the instruction from
234 // executing in each iteration of the loop. This means it is safe to hoist
235 // something that might trap, but isn't safe to hoist something that reads
236 // memory (without proving that the loop doesn't write).
237 if (L->hasLoopInvariantOperands(Inst) &&
238 !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
239 !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) {
240 Inst->moveBefore(LoopEntryBranch);
241 continue;
244 // Otherwise, create a duplicate of the instruction.
245 Instruction *C = Inst->clone();
247 // Eagerly remap the operands of the instruction.
248 RemapInstruction(C, ValueMap,
249 RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
251 // With the operands remapped, see if the instruction constant folds or is
252 // otherwise simplifyable. This commonly occurs because the entry from PHI
253 // nodes allows icmps and other instructions to fold.
254 Value *V = SimplifyInstruction(C);
255 if (V && LI->replacementPreservesLCSSAForm(C, V)) {
256 // If so, then delete the temporary instruction and stick the folded value
257 // in the map.
258 delete C;
259 ValueMap[Inst] = V;
260 } else {
261 // Otherwise, stick the new instruction into the new block!
262 C->setName(Inst->getName());
263 C->insertBefore(LoopEntryBranch);
264 ValueMap[Inst] = C;
268 // Along with all the other instructions, we just cloned OrigHeader's
269 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
270 // successors by duplicating their incoming values for OrigHeader.
271 TerminatorInst *TI = OrigHeader->getTerminator();
272 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
273 for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
274 PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
275 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
277 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
278 // OrigPreHeader's old terminator (the original branch into the loop), and
279 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
280 LoopEntryBranch->eraseFromParent();
282 // If there were any uses of instructions in the duplicated block outside the
283 // loop, update them, inserting PHI nodes as required
284 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
286 // NewHeader is now the header of the loop.
287 L->moveToHeader(NewHeader);
288 assert(L->getHeader() == NewHeader && "Latch block is our new header");
291 // At this point, we've finished our major CFG changes. As part of cloning
292 // the loop into the preheader we've simplified instructions and the
293 // duplicated conditional branch may now be branching on a constant. If it is
294 // branching on a constant and if that constant means that we enter the loop,
295 // then we fold away the cond branch to an uncond branch. This simplifies the
296 // loop in cases important for nested loops, and it also means we don't have
297 // to split as many edges.
298 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
299 assert(PHBI->isConditional() && "Should be clone of BI condbr!");
300 if (!isa<ConstantInt>(PHBI->getCondition()) ||
301 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
302 != NewHeader) {
303 // The conditional branch can't be folded, handle the general case.
304 // Update DominatorTree to reflect the CFG change we just made. Then split
305 // edges as necessary to preserve LoopSimplify form.
306 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
307 // Since OrigPreheader now has the conditional branch to Exit block, it is
308 // the dominator of Exit.
309 DT->changeImmediateDominator(Exit, OrigPreheader);
310 DT->changeImmediateDominator(NewHeader, OrigPreheader);
312 // Update OrigHeader to be dominated by the new header block.
313 DT->changeImmediateDominator(OrigHeader, OrigLatch);
316 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
317 // thus is not a preheader anymore. Split the edge to form a real preheader.
318 BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
319 NewPH->setName(NewHeader->getName() + ".lr.ph");
321 // Preserve canonical loop form, which means that 'Exit' should have only one
322 // predecessor.
323 BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
324 ExitSplit->moveBefore(Exit);
325 } else {
326 // We can fold the conditional branch in the preheader, this makes things
327 // simpler. The first step is to remove the extra edge to the Exit block.
328 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
329 BranchInst::Create(NewHeader, PHBI);
330 PHBI->eraseFromParent();
332 // With our CFG finalized, update DomTree if it is available.
333 if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
334 // Update OrigHeader to be dominated by the new header block.
335 DT->changeImmediateDominator(NewHeader, OrigPreheader);
336 DT->changeImmediateDominator(OrigHeader, OrigLatch);
340 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
341 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
343 // Now that the CFG and DomTree are in a consistent state again, try to merge
344 // the OrigHeader block into OrigLatch. This will succeed if they are
345 // connected by an unconditional branch. This is just a cleanup so the
346 // emitted code isn't too gross in this common case.
347 MergeBlockIntoPredecessor(OrigHeader, this);
349 ++NumRotated;
350 return true;