1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements sparse conditional constant propagation and merging:
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
18 //===----------------------------------------------------------------------===//
20 #define DEBUG_TYPE "sccp"
21 #include "llvm/Transforms/Scalar.h"
22 #include "llvm/Transforms/IPO.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Target/TargetData.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/InstVisitor.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/PointerIntPair.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/STLExtras.h"
47 STATISTIC(NumInstRemoved
, "Number of instructions removed");
48 STATISTIC(NumDeadBlocks
, "Number of basic blocks unreachable");
50 STATISTIC(IPNumInstRemoved
, "Number of instructions removed by IPSCCP");
51 STATISTIC(IPNumArgsElimed
,"Number of arguments constant propagated by IPSCCP");
52 STATISTIC(IPNumGlobalConst
, "Number of globals found to be constant by IPSCCP");
55 /// LatticeVal class - This class represents the different lattice values that
56 /// an LLVM value may occupy. It is a simple class with value semantics.
60 /// undefined - This LLVM Value has no known value yet.
63 /// constant - This LLVM Value has a specific constant value.
66 /// forcedconstant - This LLVM Value was thought to be undef until
67 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
68 /// with another (different) constant, it goes to overdefined, instead of
72 /// overdefined - This instruction is not known to be constant, and we know
77 /// Val: This stores the current lattice value along with the Constant* for
78 /// the constant if this is a 'constant' or 'forcedconstant' value.
79 PointerIntPair
<Constant
*, 2, LatticeValueTy
> Val
;
81 LatticeValueTy
getLatticeValue() const {
86 LatticeVal() : Val(0, undefined
) {}
88 bool isUndefined() const { return getLatticeValue() == undefined
; }
89 bool isConstant() const {
90 return getLatticeValue() == constant
|| getLatticeValue() == forcedconstant
;
92 bool isOverdefined() const { return getLatticeValue() == overdefined
; }
94 Constant
*getConstant() const {
95 assert(isConstant() && "Cannot get the constant of a non-constant!");
96 return Val
.getPointer();
99 /// markOverdefined - Return true if this is a change in status.
100 bool markOverdefined() {
104 Val
.setInt(overdefined
);
108 /// markConstant - Return true if this is a change in status.
109 bool markConstant(Constant
*V
) {
110 if (getLatticeValue() == constant
) { // Constant but not forcedconstant.
111 assert(getConstant() == V
&& "Marking constant with different value");
116 Val
.setInt(constant
);
117 assert(V
&& "Marking constant with NULL");
120 assert(getLatticeValue() == forcedconstant
&&
121 "Cannot move from overdefined to constant!");
122 // Stay at forcedconstant if the constant is the same.
123 if (V
== getConstant()) return false;
125 // Otherwise, we go to overdefined. Assumptions made based on the
126 // forced value are possibly wrong. Assuming this is another constant
127 // could expose a contradiction.
128 Val
.setInt(overdefined
);
133 /// getConstantInt - If this is a constant with a ConstantInt value, return it
134 /// otherwise return null.
135 ConstantInt
*getConstantInt() const {
137 return dyn_cast
<ConstantInt
>(getConstant());
141 void markForcedConstant(Constant
*V
) {
142 assert(isUndefined() && "Can't force a defined value!");
143 Val
.setInt(forcedconstant
);
147 } // end anonymous namespace.
152 //===----------------------------------------------------------------------===//
154 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
155 /// Constant Propagation.
157 class SCCPSolver
: public InstVisitor
<SCCPSolver
> {
158 const TargetData
*TD
;
159 SmallPtrSet
<BasicBlock
*, 8> BBExecutable
;// The BBs that are executable.
160 DenseMap
<Value
*, LatticeVal
> ValueState
; // The state each value is in.
162 /// StructValueState - This maintains ValueState for values that have
163 /// StructType, for example for formal arguments, calls, insertelement, etc.
165 DenseMap
<std::pair
<Value
*, unsigned>, LatticeVal
> StructValueState
;
167 /// GlobalValue - If we are tracking any values for the contents of a global
168 /// variable, we keep a mapping from the constant accessor to the element of
169 /// the global, to the currently known value. If the value becomes
170 /// overdefined, it's entry is simply removed from this map.
171 DenseMap
<GlobalVariable
*, LatticeVal
> TrackedGlobals
;
173 /// TrackedRetVals - If we are tracking arguments into and the return
174 /// value out of a function, it will have an entry in this map, indicating
175 /// what the known return value for the function is.
176 DenseMap
<Function
*, LatticeVal
> TrackedRetVals
;
178 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
179 /// that return multiple values.
180 DenseMap
<std::pair
<Function
*, unsigned>, LatticeVal
> TrackedMultipleRetVals
;
182 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
183 /// represented here for efficient lookup.
184 SmallPtrSet
<Function
*, 16> MRVFunctionsTracked
;
186 /// TrackingIncomingArguments - This is the set of functions for whose
187 /// arguments we make optimistic assumptions about and try to prove as
189 SmallPtrSet
<Function
*, 16> TrackingIncomingArguments
;
191 /// The reason for two worklists is that overdefined is the lowest state
192 /// on the lattice, and moving things to overdefined as fast as possible
193 /// makes SCCP converge much faster.
195 /// By having a separate worklist, we accomplish this because everything
196 /// possibly overdefined will become overdefined at the soonest possible
198 SmallVector
<Value
*, 64> OverdefinedInstWorkList
;
199 SmallVector
<Value
*, 64> InstWorkList
;
202 SmallVector
<BasicBlock
*, 64> BBWorkList
; // The BasicBlock work list
204 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
205 /// overdefined, despite the fact that the PHI node is overdefined.
206 std::multimap
<PHINode
*, Instruction
*> UsersOfOverdefinedPHIs
;
208 /// KnownFeasibleEdges - Entries in this set are edges which have already had
209 /// PHI nodes retriggered.
210 typedef std::pair
<BasicBlock
*, BasicBlock
*> Edge
;
211 DenseSet
<Edge
> KnownFeasibleEdges
;
213 SCCPSolver(const TargetData
*td
) : TD(td
) {}
215 /// MarkBlockExecutable - This method can be used by clients to mark all of
216 /// the blocks that are known to be intrinsically live in the processed unit.
218 /// This returns true if the block was not considered live before.
219 bool MarkBlockExecutable(BasicBlock
*BB
) {
220 if (!BBExecutable
.insert(BB
)) return false;
221 DEBUG(dbgs() << "Marking Block Executable: " << BB
->getName() << "\n");
222 BBWorkList
.push_back(BB
); // Add the block to the work list!
226 /// TrackValueOfGlobalVariable - Clients can use this method to
227 /// inform the SCCPSolver that it should track loads and stores to the
228 /// specified global variable if it can. This is only legal to call if
229 /// performing Interprocedural SCCP.
230 void TrackValueOfGlobalVariable(GlobalVariable
*GV
) {
231 // We only track the contents of scalar globals.
232 if (GV
->getType()->getElementType()->isSingleValueType()) {
233 LatticeVal
&IV
= TrackedGlobals
[GV
];
234 if (!isa
<UndefValue
>(GV
->getInitializer()))
235 IV
.markConstant(GV
->getInitializer());
239 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
240 /// and out of the specified function (which cannot have its address taken),
241 /// this method must be called.
242 void AddTrackedFunction(Function
*F
) {
243 // Add an entry, F -> undef.
244 if (const StructType
*STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
245 MRVFunctionsTracked
.insert(F
);
246 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
247 TrackedMultipleRetVals
.insert(std::make_pair(std::make_pair(F
, i
),
250 TrackedRetVals
.insert(std::make_pair(F
, LatticeVal()));
253 void AddArgumentTrackedFunction(Function
*F
) {
254 TrackingIncomingArguments
.insert(F
);
257 /// Solve - Solve for constants and executable blocks.
261 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
262 /// that branches on undef values cannot reach any of their successors.
263 /// However, this is not a safe assumption. After we solve dataflow, this
264 /// method should be use to handle this. If this returns true, the solver
266 bool ResolvedUndefsIn(Function
&F
);
268 bool isBlockExecutable(BasicBlock
*BB
) const {
269 return BBExecutable
.count(BB
);
272 LatticeVal
getLatticeValueFor(Value
*V
) const {
273 DenseMap
<Value
*, LatticeVal
>::const_iterator I
= ValueState
.find(V
);
274 assert(I
!= ValueState
.end() && "V is not in valuemap!");
278 /*LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const {
279 DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I =
280 StructValueState.find(std::make_pair(V, i));
281 assert(I != StructValueState.end() && "V is not in valuemap!");
285 /// getTrackedRetVals - Get the inferred return value map.
287 const DenseMap
<Function
*, LatticeVal
> &getTrackedRetVals() {
288 return TrackedRetVals
;
291 /// getTrackedGlobals - Get and return the set of inferred initializers for
292 /// global variables.
293 const DenseMap
<GlobalVariable
*, LatticeVal
> &getTrackedGlobals() {
294 return TrackedGlobals
;
297 void markOverdefined(Value
*V
) {
298 assert(!V
->getType()->isStructTy() && "Should use other method");
299 markOverdefined(ValueState
[V
], V
);
302 /// markAnythingOverdefined - Mark the specified value overdefined. This
303 /// works with both scalars and structs.
304 void markAnythingOverdefined(Value
*V
) {
305 if (const StructType
*STy
= dyn_cast
<StructType
>(V
->getType()))
306 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
307 markOverdefined(getStructValueState(V
, i
), V
);
313 // markConstant - Make a value be marked as "constant". If the value
314 // is not already a constant, add it to the instruction work list so that
315 // the users of the instruction are updated later.
317 void markConstant(LatticeVal
&IV
, Value
*V
, Constant
*C
) {
318 if (!IV
.markConstant(C
)) return;
319 DEBUG(dbgs() << "markConstant: " << *C
<< ": " << *V
<< '\n');
320 if (IV
.isOverdefined())
321 OverdefinedInstWorkList
.push_back(V
);
323 InstWorkList
.push_back(V
);
326 void markConstant(Value
*V
, Constant
*C
) {
327 assert(!V
->getType()->isStructTy() && "Should use other method");
328 markConstant(ValueState
[V
], V
, C
);
331 void markForcedConstant(Value
*V
, Constant
*C
) {
332 assert(!V
->getType()->isStructTy() && "Should use other method");
333 LatticeVal
&IV
= ValueState
[V
];
334 IV
.markForcedConstant(C
);
335 DEBUG(dbgs() << "markForcedConstant: " << *C
<< ": " << *V
<< '\n');
336 if (IV
.isOverdefined())
337 OverdefinedInstWorkList
.push_back(V
);
339 InstWorkList
.push_back(V
);
343 // markOverdefined - Make a value be marked as "overdefined". If the
344 // value is not already overdefined, add it to the overdefined instruction
345 // work list so that the users of the instruction are updated later.
346 void markOverdefined(LatticeVal
&IV
, Value
*V
) {
347 if (!IV
.markOverdefined()) return;
349 DEBUG(dbgs() << "markOverdefined: ";
350 if (Function
*F
= dyn_cast
<Function
>(V
))
351 dbgs() << "Function '" << F
->getName() << "'\n";
353 dbgs() << *V
<< '\n');
354 // Only instructions go on the work list
355 OverdefinedInstWorkList
.push_back(V
);
358 void mergeInValue(LatticeVal
&IV
, Value
*V
, LatticeVal MergeWithV
) {
359 if (IV
.isOverdefined() || MergeWithV
.isUndefined())
361 if (MergeWithV
.isOverdefined())
362 markOverdefined(IV
, V
);
363 else if (IV
.isUndefined())
364 markConstant(IV
, V
, MergeWithV
.getConstant());
365 else if (IV
.getConstant() != MergeWithV
.getConstant())
366 markOverdefined(IV
, V
);
369 void mergeInValue(Value
*V
, LatticeVal MergeWithV
) {
370 assert(!V
->getType()->isStructTy() && "Should use other method");
371 mergeInValue(ValueState
[V
], V
, MergeWithV
);
375 /// getValueState - Return the LatticeVal object that corresponds to the
376 /// value. This function handles the case when the value hasn't been seen yet
377 /// by properly seeding constants etc.
378 LatticeVal
&getValueState(Value
*V
) {
379 assert(!V
->getType()->isStructTy() && "Should use getStructValueState");
381 std::pair
<DenseMap
<Value
*, LatticeVal
>::iterator
, bool> I
=
382 ValueState
.insert(std::make_pair(V
, LatticeVal()));
383 LatticeVal
&LV
= I
.first
->second
;
386 return LV
; // Common case, already in the map.
388 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
389 // Undef values remain undefined.
390 if (!isa
<UndefValue
>(V
))
391 LV
.markConstant(C
); // Constants are constant
394 // All others are underdefined by default.
398 /// getStructValueState - Return the LatticeVal object that corresponds to the
399 /// value/field pair. This function handles the case when the value hasn't
400 /// been seen yet by properly seeding constants etc.
401 LatticeVal
&getStructValueState(Value
*V
, unsigned i
) {
402 assert(V
->getType()->isStructTy() && "Should use getValueState");
403 assert(i
< cast
<StructType
>(V
->getType())->getNumElements() &&
404 "Invalid element #");
406 std::pair
<DenseMap
<std::pair
<Value
*, unsigned>, LatticeVal
>::iterator
,
407 bool> I
= StructValueState
.insert(
408 std::make_pair(std::make_pair(V
, i
), LatticeVal()));
409 LatticeVal
&LV
= I
.first
->second
;
412 return LV
; // Common case, already in the map.
414 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
415 if (isa
<UndefValue
>(C
))
416 ; // Undef values remain undefined.
417 else if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(C
))
418 LV
.markConstant(CS
->getOperand(i
)); // Constants are constant.
419 else if (isa
<ConstantAggregateZero
>(C
)) {
420 const Type
*FieldTy
= cast
<StructType
>(V
->getType())->getElementType(i
);
421 LV
.markConstant(Constant::getNullValue(FieldTy
));
423 LV
.markOverdefined(); // Unknown sort of constant.
426 // All others are underdefined by default.
431 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
432 /// work list if it is not already executable.
433 void markEdgeExecutable(BasicBlock
*Source
, BasicBlock
*Dest
) {
434 if (!KnownFeasibleEdges
.insert(Edge(Source
, Dest
)).second
)
435 return; // This edge is already known to be executable!
437 if (!MarkBlockExecutable(Dest
)) {
438 // If the destination is already executable, we just made an *edge*
439 // feasible that wasn't before. Revisit the PHI nodes in the block
440 // because they have potentially new operands.
441 DEBUG(dbgs() << "Marking Edge Executable: " << Source
->getName()
442 << " -> " << Dest
->getName() << "\n");
445 for (BasicBlock::iterator I
= Dest
->begin();
446 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
451 // getFeasibleSuccessors - Return a vector of booleans to indicate which
452 // successors are reachable from a given terminator instruction.
454 void getFeasibleSuccessors(TerminatorInst
&TI
, SmallVector
<bool, 16> &Succs
);
456 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
457 // block to the 'To' basic block is currently feasible.
459 bool isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
);
461 // OperandChangedState - This method is invoked on all of the users of an
462 // instruction that was just changed state somehow. Based on this
463 // information, we need to update the specified user of this instruction.
465 void OperandChangedState(Instruction
*I
) {
466 if (BBExecutable
.count(I
->getParent())) // Inst is executable?
470 /// RemoveFromOverdefinedPHIs - If I has any entries in the
471 /// UsersOfOverdefinedPHIs map for PN, remove them now.
472 void RemoveFromOverdefinedPHIs(Instruction
*I
, PHINode
*PN
) {
473 if (UsersOfOverdefinedPHIs
.empty()) return;
474 std::multimap
<PHINode
*, Instruction
*>::iterator It
, E
;
475 tie(It
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN
);
478 UsersOfOverdefinedPHIs
.erase(It
++);
484 /// InsertInOverdefinedPHIs - Insert an entry in the UsersOfOverdefinedPHIS
485 /// map for I and PN, but if one is there already, do not create another.
486 /// (Duplicate entries do not break anything directly, but can lead to
487 /// exponential growth of the table in rare cases.)
488 void InsertInOverdefinedPHIs(Instruction
*I
, PHINode
*PN
) {
489 std::multimap
<PHINode
*, Instruction
*>::iterator J
, E
;
490 tie(J
, E
) = UsersOfOverdefinedPHIs
.equal_range(PN
);
494 UsersOfOverdefinedPHIs
.insert(std::make_pair(PN
, I
));
498 friend class InstVisitor
<SCCPSolver
>;
500 // visit implementations - Something changed in this instruction. Either an
501 // operand made a transition, or the instruction is newly executable. Change
502 // the value type of I to reflect these changes if appropriate.
503 void visitPHINode(PHINode
&I
);
506 void visitReturnInst(ReturnInst
&I
);
507 void visitTerminatorInst(TerminatorInst
&TI
);
509 void visitCastInst(CastInst
&I
);
510 void visitSelectInst(SelectInst
&I
);
511 void visitBinaryOperator(Instruction
&I
);
512 void visitCmpInst(CmpInst
&I
);
513 void visitExtractElementInst(ExtractElementInst
&I
);
514 void visitInsertElementInst(InsertElementInst
&I
);
515 void visitShuffleVectorInst(ShuffleVectorInst
&I
);
516 void visitExtractValueInst(ExtractValueInst
&EVI
);
517 void visitInsertValueInst(InsertValueInst
&IVI
);
519 // Instructions that cannot be folded away.
520 void visitStoreInst (StoreInst
&I
);
521 void visitLoadInst (LoadInst
&I
);
522 void visitGetElementPtrInst(GetElementPtrInst
&I
);
523 void visitCallInst (CallInst
&I
) {
526 void visitInvokeInst (InvokeInst
&II
) {
528 visitTerminatorInst(II
);
530 void visitCallSite (CallSite CS
);
531 void visitUnwindInst (TerminatorInst
&I
) { /*returns void*/ }
532 void visitUnreachableInst(TerminatorInst
&I
) { /*returns void*/ }
533 void visitAllocaInst (Instruction
&I
) { markOverdefined(&I
); }
534 void visitVAArgInst (Instruction
&I
) { markAnythingOverdefined(&I
); }
536 void visitInstruction(Instruction
&I
) {
537 // If a new instruction is added to LLVM that we don't handle.
538 dbgs() << "SCCP: Don't know how to handle: " << I
;
539 markAnythingOverdefined(&I
); // Just in case
543 } // end anonymous namespace
546 // getFeasibleSuccessors - Return a vector of booleans to indicate which
547 // successors are reachable from a given terminator instruction.
549 void SCCPSolver::getFeasibleSuccessors(TerminatorInst
&TI
,
550 SmallVector
<bool, 16> &Succs
) {
551 Succs
.resize(TI
.getNumSuccessors());
552 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
)) {
553 if (BI
->isUnconditional()) {
558 LatticeVal BCValue
= getValueState(BI
->getCondition());
559 ConstantInt
*CI
= BCValue
.getConstantInt();
561 // Overdefined condition variables, and branches on unfoldable constant
562 // conditions, mean the branch could go either way.
563 if (!BCValue
.isUndefined())
564 Succs
[0] = Succs
[1] = true;
568 // Constant condition variables mean the branch can only go a single way.
569 Succs
[CI
->isZero()] = true;
573 if (isa
<InvokeInst
>(TI
)) {
574 // Invoke instructions successors are always executable.
575 Succs
[0] = Succs
[1] = true;
579 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(&TI
)) {
580 LatticeVal SCValue
= getValueState(SI
->getCondition());
581 ConstantInt
*CI
= SCValue
.getConstantInt();
583 if (CI
== 0) { // Overdefined or undefined condition?
584 // All destinations are executable!
585 if (!SCValue
.isUndefined())
586 Succs
.assign(TI
.getNumSuccessors(), true);
590 Succs
[SI
->findCaseValue(CI
)] = true;
594 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
595 if (isa
<IndirectBrInst
>(&TI
)) {
596 // Just mark all destinations executable!
597 Succs
.assign(TI
.getNumSuccessors(), true);
602 dbgs() << "Unknown terminator instruction: " << TI
<< '\n';
604 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
608 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
609 // block to the 'To' basic block is currently feasible.
611 bool SCCPSolver::isEdgeFeasible(BasicBlock
*From
, BasicBlock
*To
) {
612 assert(BBExecutable
.count(To
) && "Dest should always be alive!");
614 // Make sure the source basic block is executable!!
615 if (!BBExecutable
.count(From
)) return false;
617 // Check to make sure this edge itself is actually feasible now.
618 TerminatorInst
*TI
= From
->getTerminator();
619 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
620 if (BI
->isUnconditional())
623 LatticeVal BCValue
= getValueState(BI
->getCondition());
625 // Overdefined condition variables mean the branch could go either way,
626 // undef conditions mean that neither edge is feasible yet.
627 ConstantInt
*CI
= BCValue
.getConstantInt();
629 return !BCValue
.isUndefined();
631 // Constant condition variables mean the branch can only go a single way.
632 return BI
->getSuccessor(CI
->isZero()) == To
;
635 // Invoke instructions successors are always executable.
636 if (isa
<InvokeInst
>(TI
))
639 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
640 LatticeVal SCValue
= getValueState(SI
->getCondition());
641 ConstantInt
*CI
= SCValue
.getConstantInt();
644 return !SCValue
.isUndefined();
646 // Make sure to skip the "default value" which isn't a value
647 for (unsigned i
= 1, E
= SI
->getNumSuccessors(); i
!= E
; ++i
)
648 if (SI
->getSuccessorValue(i
) == CI
) // Found the taken branch.
649 return SI
->getSuccessor(i
) == To
;
651 // If the constant value is not equal to any of the branches, we must
652 // execute default branch.
653 return SI
->getDefaultDest() == To
;
656 // Just mark all destinations executable!
657 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
658 if (isa
<IndirectBrInst
>(&TI
))
662 dbgs() << "Unknown terminator instruction: " << *TI
<< '\n';
667 // visit Implementations - Something changed in this instruction, either an
668 // operand made a transition, or the instruction is newly executable. Change
669 // the value type of I to reflect these changes if appropriate. This method
670 // makes sure to do the following actions:
672 // 1. If a phi node merges two constants in, and has conflicting value coming
673 // from different branches, or if the PHI node merges in an overdefined
674 // value, then the PHI node becomes overdefined.
675 // 2. If a phi node merges only constants in, and they all agree on value, the
676 // PHI node becomes a constant value equal to that.
677 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
678 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
679 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
680 // 6. If a conditional branch has a value that is constant, make the selected
681 // destination executable
682 // 7. If a conditional branch has a value that is overdefined, make all
683 // successors executable.
685 void SCCPSolver::visitPHINode(PHINode
&PN
) {
686 // If this PN returns a struct, just mark the result overdefined.
687 // TODO: We could do a lot better than this if code actually uses this.
688 if (PN
.getType()->isStructTy())
689 return markAnythingOverdefined(&PN
);
691 if (getValueState(&PN
).isOverdefined()) {
692 // There may be instructions using this PHI node that are not overdefined
693 // themselves. If so, make sure that they know that the PHI node operand
695 std::multimap
<PHINode
*, Instruction
*>::iterator I
, E
;
696 tie(I
, E
) = UsersOfOverdefinedPHIs
.equal_range(&PN
);
700 SmallVector
<Instruction
*, 16> Users
;
702 Users
.push_back(I
->second
);
703 while (!Users
.empty())
704 visit(Users
.pop_back_val());
705 return; // Quick exit
708 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
709 // and slow us down a lot. Just mark them overdefined.
710 if (PN
.getNumIncomingValues() > 64)
711 return markOverdefined(&PN
);
713 // Look at all of the executable operands of the PHI node. If any of them
714 // are overdefined, the PHI becomes overdefined as well. If they are all
715 // constant, and they agree with each other, the PHI becomes the identical
716 // constant. If they are constant and don't agree, the PHI is overdefined.
717 // If there are no executable operands, the PHI remains undefined.
719 Constant
*OperandVal
= 0;
720 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
721 LatticeVal IV
= getValueState(PN
.getIncomingValue(i
));
722 if (IV
.isUndefined()) continue; // Doesn't influence PHI node.
724 if (!isEdgeFeasible(PN
.getIncomingBlock(i
), PN
.getParent()))
727 if (IV
.isOverdefined()) // PHI node becomes overdefined!
728 return markOverdefined(&PN
);
730 if (OperandVal
== 0) { // Grab the first value.
731 OperandVal
= IV
.getConstant();
735 // There is already a reachable operand. If we conflict with it,
736 // then the PHI node becomes overdefined. If we agree with it, we
739 // Check to see if there are two different constants merging, if so, the PHI
740 // node is overdefined.
741 if (IV
.getConstant() != OperandVal
)
742 return markOverdefined(&PN
);
745 // If we exited the loop, this means that the PHI node only has constant
746 // arguments that agree with each other(and OperandVal is the constant) or
747 // OperandVal is null because there are no defined incoming arguments. If
748 // this is the case, the PHI remains undefined.
751 markConstant(&PN
, OperandVal
); // Acquire operand value
757 void SCCPSolver::visitReturnInst(ReturnInst
&I
) {
758 if (I
.getNumOperands() == 0) return; // ret void
760 Function
*F
= I
.getParent()->getParent();
761 Value
*ResultOp
= I
.getOperand(0);
763 // If we are tracking the return value of this function, merge it in.
764 if (!TrackedRetVals
.empty() && !ResultOp
->getType()->isStructTy()) {
765 DenseMap
<Function
*, LatticeVal
>::iterator TFRVI
=
766 TrackedRetVals
.find(F
);
767 if (TFRVI
!= TrackedRetVals
.end()) {
768 mergeInValue(TFRVI
->second
, F
, getValueState(ResultOp
));
773 // Handle functions that return multiple values.
774 if (!TrackedMultipleRetVals
.empty()) {
775 if (const StructType
*STy
= dyn_cast
<StructType
>(ResultOp
->getType()))
776 if (MRVFunctionsTracked
.count(F
))
777 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
778 mergeInValue(TrackedMultipleRetVals
[std::make_pair(F
, i
)], F
,
779 getStructValueState(ResultOp
, i
));
784 void SCCPSolver::visitTerminatorInst(TerminatorInst
&TI
) {
785 SmallVector
<bool, 16> SuccFeasible
;
786 getFeasibleSuccessors(TI
, SuccFeasible
);
788 BasicBlock
*BB
= TI
.getParent();
790 // Mark all feasible successors executable.
791 for (unsigned i
= 0, e
= SuccFeasible
.size(); i
!= e
; ++i
)
793 markEdgeExecutable(BB
, TI
.getSuccessor(i
));
796 void SCCPSolver::visitCastInst(CastInst
&I
) {
797 LatticeVal OpSt
= getValueState(I
.getOperand(0));
798 if (OpSt
.isOverdefined()) // Inherit overdefinedness of operand
800 else if (OpSt
.isConstant()) // Propagate constant value
801 markConstant(&I
, ConstantExpr::getCast(I
.getOpcode(),
802 OpSt
.getConstant(), I
.getType()));
806 void SCCPSolver::visitExtractValueInst(ExtractValueInst
&EVI
) {
807 // If this returns a struct, mark all elements over defined, we don't track
808 // structs in structs.
809 if (EVI
.getType()->isStructTy())
810 return markAnythingOverdefined(&EVI
);
812 // If this is extracting from more than one level of struct, we don't know.
813 if (EVI
.getNumIndices() != 1)
814 return markOverdefined(&EVI
);
816 Value
*AggVal
= EVI
.getAggregateOperand();
817 if (AggVal
->getType()->isStructTy()) {
818 unsigned i
= *EVI
.idx_begin();
819 LatticeVal EltVal
= getStructValueState(AggVal
, i
);
820 mergeInValue(getValueState(&EVI
), &EVI
, EltVal
);
822 // Otherwise, must be extracting from an array.
823 return markOverdefined(&EVI
);
827 void SCCPSolver::visitInsertValueInst(InsertValueInst
&IVI
) {
828 const StructType
*STy
= dyn_cast
<StructType
>(IVI
.getType());
830 return markOverdefined(&IVI
);
832 // If this has more than one index, we can't handle it, drive all results to
834 if (IVI
.getNumIndices() != 1)
835 return markAnythingOverdefined(&IVI
);
837 Value
*Aggr
= IVI
.getAggregateOperand();
838 unsigned Idx
= *IVI
.idx_begin();
840 // Compute the result based on what we're inserting.
841 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
842 // This passes through all values that aren't the inserted element.
844 LatticeVal EltVal
= getStructValueState(Aggr
, i
);
845 mergeInValue(getStructValueState(&IVI
, i
), &IVI
, EltVal
);
849 Value
*Val
= IVI
.getInsertedValueOperand();
850 if (Val
->getType()->isStructTy())
851 // We don't track structs in structs.
852 markOverdefined(getStructValueState(&IVI
, i
), &IVI
);
854 LatticeVal InVal
= getValueState(Val
);
855 mergeInValue(getStructValueState(&IVI
, i
), &IVI
, InVal
);
860 void SCCPSolver::visitSelectInst(SelectInst
&I
) {
861 // If this select returns a struct, just mark the result overdefined.
862 // TODO: We could do a lot better than this if code actually uses this.
863 if (I
.getType()->isStructTy())
864 return markAnythingOverdefined(&I
);
866 LatticeVal CondValue
= getValueState(I
.getCondition());
867 if (CondValue
.isUndefined())
870 if (ConstantInt
*CondCB
= CondValue
.getConstantInt()) {
871 Value
*OpVal
= CondCB
->isZero() ? I
.getFalseValue() : I
.getTrueValue();
872 mergeInValue(&I
, getValueState(OpVal
));
876 // Otherwise, the condition is overdefined or a constant we can't evaluate.
877 // See if we can produce something better than overdefined based on the T/F
879 LatticeVal TVal
= getValueState(I
.getTrueValue());
880 LatticeVal FVal
= getValueState(I
.getFalseValue());
882 // select ?, C, C -> C.
883 if (TVal
.isConstant() && FVal
.isConstant() &&
884 TVal
.getConstant() == FVal
.getConstant())
885 return markConstant(&I
, FVal
.getConstant());
887 if (TVal
.isUndefined()) // select ?, undef, X -> X.
888 return mergeInValue(&I
, FVal
);
889 if (FVal
.isUndefined()) // select ?, X, undef -> X.
890 return mergeInValue(&I
, TVal
);
894 // Handle Binary Operators.
895 void SCCPSolver::visitBinaryOperator(Instruction
&I
) {
896 LatticeVal V1State
= getValueState(I
.getOperand(0));
897 LatticeVal V2State
= getValueState(I
.getOperand(1));
899 LatticeVal
&IV
= ValueState
[&I
];
900 if (IV
.isOverdefined()) return;
902 if (V1State
.isConstant() && V2State
.isConstant())
903 return markConstant(IV
, &I
,
904 ConstantExpr::get(I
.getOpcode(), V1State
.getConstant(),
905 V2State
.getConstant()));
907 // If something is undef, wait for it to resolve.
908 if (!V1State
.isOverdefined() && !V2State
.isOverdefined())
911 // Otherwise, one of our operands is overdefined. Try to produce something
912 // better than overdefined with some tricks.
914 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
915 // operand is overdefined.
916 if (I
.getOpcode() == Instruction::And
|| I
.getOpcode() == Instruction::Or
) {
917 LatticeVal
*NonOverdefVal
= 0;
918 if (!V1State
.isOverdefined())
919 NonOverdefVal
= &V1State
;
920 else if (!V2State
.isOverdefined())
921 NonOverdefVal
= &V2State
;
924 if (NonOverdefVal
->isUndefined()) {
925 // Could annihilate value.
926 if (I
.getOpcode() == Instruction::And
)
927 markConstant(IV
, &I
, Constant::getNullValue(I
.getType()));
928 else if (const VectorType
*PT
= dyn_cast
<VectorType
>(I
.getType()))
929 markConstant(IV
, &I
, Constant::getAllOnesValue(PT
));
932 Constant::getAllOnesValue(I
.getType()));
936 if (I
.getOpcode() == Instruction::And
) {
938 if (NonOverdefVal
->getConstant()->isNullValue())
939 return markConstant(IV
, &I
, NonOverdefVal
->getConstant());
941 if (ConstantInt
*CI
= NonOverdefVal
->getConstantInt())
942 if (CI
->isAllOnesValue()) // X or -1 = -1
943 return markConstant(IV
, &I
, NonOverdefVal
->getConstant());
949 // If both operands are PHI nodes, it is possible that this instruction has
950 // a constant value, despite the fact that the PHI node doesn't. Check for
951 // this condition now.
952 if (PHINode
*PN1
= dyn_cast
<PHINode
>(I
.getOperand(0)))
953 if (PHINode
*PN2
= dyn_cast
<PHINode
>(I
.getOperand(1)))
954 if (PN1
->getParent() == PN2
->getParent()) {
955 // Since the two PHI nodes are in the same basic block, they must have
956 // entries for the same predecessors. Walk the predecessor list, and
957 // if all of the incoming values are constants, and the result of
958 // evaluating this expression with all incoming value pairs is the
959 // same, then this expression is a constant even though the PHI node
960 // is not a constant!
962 for (unsigned i
= 0, e
= PN1
->getNumIncomingValues(); i
!= e
; ++i
) {
963 LatticeVal In1
= getValueState(PN1
->getIncomingValue(i
));
964 BasicBlock
*InBlock
= PN1
->getIncomingBlock(i
);
965 LatticeVal In2
=getValueState(PN2
->getIncomingValueForBlock(InBlock
));
967 if (In1
.isOverdefined() || In2
.isOverdefined()) {
968 Result
.markOverdefined();
969 break; // Cannot fold this operation over the PHI nodes!
972 if (In1
.isConstant() && In2
.isConstant()) {
973 Constant
*V
= ConstantExpr::get(I
.getOpcode(), In1
.getConstant(),
975 if (Result
.isUndefined())
976 Result
.markConstant(V
);
977 else if (Result
.isConstant() && Result
.getConstant() != V
) {
978 Result
.markOverdefined();
984 // If we found a constant value here, then we know the instruction is
985 // constant despite the fact that the PHI nodes are overdefined.
986 if (Result
.isConstant()) {
987 markConstant(IV
, &I
, Result
.getConstant());
988 // Remember that this instruction is virtually using the PHI node
990 InsertInOverdefinedPHIs(&I
, PN1
);
991 InsertInOverdefinedPHIs(&I
, PN2
);
995 if (Result
.isUndefined())
998 // Okay, this really is overdefined now. Since we might have
999 // speculatively thought that this was not overdefined before, and
1000 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1001 // make sure to clean out any entries that we put there, for
1003 RemoveFromOverdefinedPHIs(&I
, PN1
);
1004 RemoveFromOverdefinedPHIs(&I
, PN2
);
1007 markOverdefined(&I
);
1010 // Handle ICmpInst instruction.
1011 void SCCPSolver::visitCmpInst(CmpInst
&I
) {
1012 LatticeVal V1State
= getValueState(I
.getOperand(0));
1013 LatticeVal V2State
= getValueState(I
.getOperand(1));
1015 LatticeVal
&IV
= ValueState
[&I
];
1016 if (IV
.isOverdefined()) return;
1018 if (V1State
.isConstant() && V2State
.isConstant())
1019 return markConstant(IV
, &I
, ConstantExpr::getCompare(I
.getPredicate(),
1020 V1State
.getConstant(),
1021 V2State
.getConstant()));
1023 // If operands are still undefined, wait for it to resolve.
1024 if (!V1State
.isOverdefined() && !V2State
.isOverdefined())
1027 // If something is overdefined, use some tricks to avoid ending up and over
1028 // defined if we can.
1030 // If both operands are PHI nodes, it is possible that this instruction has
1031 // a constant value, despite the fact that the PHI node doesn't. Check for
1032 // this condition now.
1033 if (PHINode
*PN1
= dyn_cast
<PHINode
>(I
.getOperand(0)))
1034 if (PHINode
*PN2
= dyn_cast
<PHINode
>(I
.getOperand(1)))
1035 if (PN1
->getParent() == PN2
->getParent()) {
1036 // Since the two PHI nodes are in the same basic block, they must have
1037 // entries for the same predecessors. Walk the predecessor list, and
1038 // if all of the incoming values are constants, and the result of
1039 // evaluating this expression with all incoming value pairs is the
1040 // same, then this expression is a constant even though the PHI node
1041 // is not a constant!
1043 for (unsigned i
= 0, e
= PN1
->getNumIncomingValues(); i
!= e
; ++i
) {
1044 LatticeVal In1
= getValueState(PN1
->getIncomingValue(i
));
1045 BasicBlock
*InBlock
= PN1
->getIncomingBlock(i
);
1046 LatticeVal In2
=getValueState(PN2
->getIncomingValueForBlock(InBlock
));
1048 if (In1
.isOverdefined() || In2
.isOverdefined()) {
1049 Result
.markOverdefined();
1050 break; // Cannot fold this operation over the PHI nodes!
1053 if (In1
.isConstant() && In2
.isConstant()) {
1054 Constant
*V
= ConstantExpr::getCompare(I
.getPredicate(),
1057 if (Result
.isUndefined())
1058 Result
.markConstant(V
);
1059 else if (Result
.isConstant() && Result
.getConstant() != V
) {
1060 Result
.markOverdefined();
1066 // If we found a constant value here, then we know the instruction is
1067 // constant despite the fact that the PHI nodes are overdefined.
1068 if (Result
.isConstant()) {
1069 markConstant(&I
, Result
.getConstant());
1070 // Remember that this instruction is virtually using the PHI node
1072 InsertInOverdefinedPHIs(&I
, PN1
);
1073 InsertInOverdefinedPHIs(&I
, PN2
);
1077 if (Result
.isUndefined())
1080 // Okay, this really is overdefined now. Since we might have
1081 // speculatively thought that this was not overdefined before, and
1082 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
1083 // make sure to clean out any entries that we put there, for
1085 RemoveFromOverdefinedPHIs(&I
, PN1
);
1086 RemoveFromOverdefinedPHIs(&I
, PN2
);
1089 markOverdefined(&I
);
1092 void SCCPSolver::visitExtractElementInst(ExtractElementInst
&I
) {
1093 // TODO : SCCP does not handle vectors properly.
1094 return markOverdefined(&I
);
1097 LatticeVal
&ValState
= getValueState(I
.getOperand(0));
1098 LatticeVal
&IdxState
= getValueState(I
.getOperand(1));
1100 if (ValState
.isOverdefined() || IdxState
.isOverdefined())
1101 markOverdefined(&I
);
1102 else if(ValState
.isConstant() && IdxState
.isConstant())
1103 markConstant(&I
, ConstantExpr::getExtractElement(ValState
.getConstant(),
1104 IdxState
.getConstant()));
1108 void SCCPSolver::visitInsertElementInst(InsertElementInst
&I
) {
1109 // TODO : SCCP does not handle vectors properly.
1110 return markOverdefined(&I
);
1112 LatticeVal
&ValState
= getValueState(I
.getOperand(0));
1113 LatticeVal
&EltState
= getValueState(I
.getOperand(1));
1114 LatticeVal
&IdxState
= getValueState(I
.getOperand(2));
1116 if (ValState
.isOverdefined() || EltState
.isOverdefined() ||
1117 IdxState
.isOverdefined())
1118 markOverdefined(&I
);
1119 else if(ValState
.isConstant() && EltState
.isConstant() &&
1120 IdxState
.isConstant())
1121 markConstant(&I
, ConstantExpr::getInsertElement(ValState
.getConstant(),
1122 EltState
.getConstant(),
1123 IdxState
.getConstant()));
1124 else if (ValState
.isUndefined() && EltState
.isConstant() &&
1125 IdxState
.isConstant())
1126 markConstant(&I
,ConstantExpr::getInsertElement(UndefValue::get(I
.getType()),
1127 EltState
.getConstant(),
1128 IdxState
.getConstant()));
1132 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst
&I
) {
1133 // TODO : SCCP does not handle vectors properly.
1134 return markOverdefined(&I
);
1136 LatticeVal
&V1State
= getValueState(I
.getOperand(0));
1137 LatticeVal
&V2State
= getValueState(I
.getOperand(1));
1138 LatticeVal
&MaskState
= getValueState(I
.getOperand(2));
1140 if (MaskState
.isUndefined() ||
1141 (V1State
.isUndefined() && V2State
.isUndefined()))
1142 return; // Undefined output if mask or both inputs undefined.
1144 if (V1State
.isOverdefined() || V2State
.isOverdefined() ||
1145 MaskState
.isOverdefined()) {
1146 markOverdefined(&I
);
1148 // A mix of constant/undef inputs.
1149 Constant
*V1
= V1State
.isConstant() ?
1150 V1State
.getConstant() : UndefValue::get(I
.getType());
1151 Constant
*V2
= V2State
.isConstant() ?
1152 V2State
.getConstant() : UndefValue::get(I
.getType());
1153 Constant
*Mask
= MaskState
.isConstant() ?
1154 MaskState
.getConstant() : UndefValue::get(I
.getOperand(2)->getType());
1155 markConstant(&I
, ConstantExpr::getShuffleVector(V1
, V2
, Mask
));
1160 // Handle getelementptr instructions. If all operands are constants then we
1161 // can turn this into a getelementptr ConstantExpr.
1163 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst
&I
) {
1164 if (ValueState
[&I
].isOverdefined()) return;
1166 SmallVector
<Constant
*, 8> Operands
;
1167 Operands
.reserve(I
.getNumOperands());
1169 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
1170 LatticeVal State
= getValueState(I
.getOperand(i
));
1171 if (State
.isUndefined())
1172 return; // Operands are not resolved yet.
1174 if (State
.isOverdefined())
1175 return markOverdefined(&I
);
1177 assert(State
.isConstant() && "Unknown state!");
1178 Operands
.push_back(State
.getConstant());
1181 Constant
*Ptr
= Operands
[0];
1182 markConstant(&I
, ConstantExpr::getGetElementPtr(Ptr
, &Operands
[0]+1,
1183 Operands
.size()-1));
1186 void SCCPSolver::visitStoreInst(StoreInst
&SI
) {
1187 // If this store is of a struct, ignore it.
1188 if (SI
.getOperand(0)->getType()->isStructTy())
1191 if (TrackedGlobals
.empty() || !isa
<GlobalVariable
>(SI
.getOperand(1)))
1194 GlobalVariable
*GV
= cast
<GlobalVariable
>(SI
.getOperand(1));
1195 DenseMap
<GlobalVariable
*, LatticeVal
>::iterator I
= TrackedGlobals
.find(GV
);
1196 if (I
== TrackedGlobals
.end() || I
->second
.isOverdefined()) return;
1198 // Get the value we are storing into the global, then merge it.
1199 mergeInValue(I
->second
, GV
, getValueState(SI
.getOperand(0)));
1200 if (I
->second
.isOverdefined())
1201 TrackedGlobals
.erase(I
); // No need to keep tracking this!
1205 // Handle load instructions. If the operand is a constant pointer to a constant
1206 // global, we can replace the load with the loaded constant value!
1207 void SCCPSolver::visitLoadInst(LoadInst
&I
) {
1208 // If this load is of a struct, just mark the result overdefined.
1209 if (I
.getType()->isStructTy())
1210 return markAnythingOverdefined(&I
);
1212 LatticeVal PtrVal
= getValueState(I
.getOperand(0));
1213 if (PtrVal
.isUndefined()) return; // The pointer is not resolved yet!
1215 LatticeVal
&IV
= ValueState
[&I
];
1216 if (IV
.isOverdefined()) return;
1218 if (!PtrVal
.isConstant() || I
.isVolatile())
1219 return markOverdefined(IV
, &I
);
1221 Constant
*Ptr
= PtrVal
.getConstant();
1223 // load null -> null
1224 if (isa
<ConstantPointerNull
>(Ptr
) && I
.getPointerAddressSpace() == 0)
1225 return markConstant(IV
, &I
, Constant::getNullValue(I
.getType()));
1227 // Transform load (constant global) into the value loaded.
1228 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Ptr
)) {
1229 if (!TrackedGlobals
.empty()) {
1230 // If we are tracking this global, merge in the known value for it.
1231 DenseMap
<GlobalVariable
*, LatticeVal
>::iterator It
=
1232 TrackedGlobals
.find(GV
);
1233 if (It
!= TrackedGlobals
.end()) {
1234 mergeInValue(IV
, &I
, It
->second
);
1240 // Transform load from a constant into a constant if possible.
1241 if (Constant
*C
= ConstantFoldLoadFromConstPtr(Ptr
, TD
))
1242 return markConstant(IV
, &I
, C
);
1244 // Otherwise we cannot say for certain what value this load will produce.
1246 markOverdefined(IV
, &I
);
1249 void SCCPSolver::visitCallSite(CallSite CS
) {
1250 Function
*F
= CS
.getCalledFunction();
1251 Instruction
*I
= CS
.getInstruction();
1253 // The common case is that we aren't tracking the callee, either because we
1254 // are not doing interprocedural analysis or the callee is indirect, or is
1255 // external. Handle these cases first.
1256 if (F
== 0 || F
->isDeclaration()) {
1258 // Void return and not tracking callee, just bail.
1259 if (I
->getType()->isVoidTy()) return;
1261 // Otherwise, if we have a single return value case, and if the function is
1262 // a declaration, maybe we can constant fold it.
1263 if (F
&& F
->isDeclaration() && !I
->getType()->isStructTy() &&
1264 canConstantFoldCallTo(F
)) {
1266 SmallVector
<Constant
*, 8> Operands
;
1267 for (CallSite::arg_iterator AI
= CS
.arg_begin(), E
= CS
.arg_end();
1269 LatticeVal State
= getValueState(*AI
);
1271 if (State
.isUndefined())
1272 return; // Operands are not resolved yet.
1273 if (State
.isOverdefined())
1274 return markOverdefined(I
);
1275 assert(State
.isConstant() && "Unknown state!");
1276 Operands
.push_back(State
.getConstant());
1279 // If we can constant fold this, mark the result of the call as a
1281 if (Constant
*C
= ConstantFoldCall(F
, Operands
.data(), Operands
.size()))
1282 return markConstant(I
, C
);
1285 // Otherwise, we don't know anything about this call, mark it overdefined.
1286 return markAnythingOverdefined(I
);
1289 // If this is a local function that doesn't have its address taken, mark its
1290 // entry block executable and merge in the actual arguments to the call into
1291 // the formal arguments of the function.
1292 if (!TrackingIncomingArguments
.empty() && TrackingIncomingArguments
.count(F
)){
1293 MarkBlockExecutable(F
->begin());
1295 // Propagate information from this call site into the callee.
1296 CallSite::arg_iterator CAI
= CS
.arg_begin();
1297 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1298 AI
!= E
; ++AI
, ++CAI
) {
1299 // If this argument is byval, and if the function is not readonly, there
1300 // will be an implicit copy formed of the input aggregate.
1301 if (AI
->hasByValAttr() && !F
->onlyReadsMemory()) {
1302 markOverdefined(AI
);
1306 if (const StructType
*STy
= dyn_cast
<StructType
>(AI
->getType())) {
1307 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1308 LatticeVal CallArg
= getStructValueState(*CAI
, i
);
1309 mergeInValue(getStructValueState(AI
, i
), AI
, CallArg
);
1312 mergeInValue(AI
, getValueState(*CAI
));
1317 // If this is a single/zero retval case, see if we're tracking the function.
1318 if (const StructType
*STy
= dyn_cast
<StructType
>(F
->getReturnType())) {
1319 if (!MRVFunctionsTracked
.count(F
))
1320 goto CallOverdefined
; // Not tracking this callee.
1322 // If we are tracking this callee, propagate the result of the function
1323 // into this call site.
1324 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1325 mergeInValue(getStructValueState(I
, i
), I
,
1326 TrackedMultipleRetVals
[std::make_pair(F
, i
)]);
1328 DenseMap
<Function
*, LatticeVal
>::iterator TFRVI
= TrackedRetVals
.find(F
);
1329 if (TFRVI
== TrackedRetVals
.end())
1330 goto CallOverdefined
; // Not tracking this callee.
1332 // If so, propagate the return value of the callee into this call result.
1333 mergeInValue(I
, TFRVI
->second
);
1337 void SCCPSolver::Solve() {
1338 // Process the work lists until they are empty!
1339 while (!BBWorkList
.empty() || !InstWorkList
.empty() ||
1340 !OverdefinedInstWorkList
.empty()) {
1341 // Process the overdefined instruction's work list first, which drives other
1342 // things to overdefined more quickly.
1343 while (!OverdefinedInstWorkList
.empty()) {
1344 Value
*I
= OverdefinedInstWorkList
.pop_back_val();
1346 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I
<< '\n');
1348 // "I" got into the work list because it either made the transition from
1349 // bottom to constant
1351 // Anything on this worklist that is overdefined need not be visited
1352 // since all of its users will have already been marked as overdefined
1353 // Update all of the users of this instruction's value.
1355 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1357 if (Instruction
*I
= dyn_cast
<Instruction
>(*UI
))
1358 OperandChangedState(I
);
1361 // Process the instruction work list.
1362 while (!InstWorkList
.empty()) {
1363 Value
*I
= InstWorkList
.pop_back_val();
1365 DEBUG(dbgs() << "\nPopped off I-WL: " << *I
<< '\n');
1367 // "I" got into the work list because it made the transition from undef to
1370 // Anything on this worklist that is overdefined need not be visited
1371 // since all of its users will have already been marked as overdefined.
1372 // Update all of the users of this instruction's value.
1374 if (I
->getType()->isStructTy() || !getValueState(I
).isOverdefined())
1375 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
1377 if (Instruction
*I
= dyn_cast
<Instruction
>(*UI
))
1378 OperandChangedState(I
);
1381 // Process the basic block work list.
1382 while (!BBWorkList
.empty()) {
1383 BasicBlock
*BB
= BBWorkList
.back();
1384 BBWorkList
.pop_back();
1386 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB
<< '\n');
1388 // Notify all instructions in this basic block that they are newly
1395 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1396 /// that branches on undef values cannot reach any of their successors.
1397 /// However, this is not a safe assumption. After we solve dataflow, this
1398 /// method should be use to handle this. If this returns true, the solver
1399 /// should be rerun.
1401 /// This method handles this by finding an unresolved branch and marking it one
1402 /// of the edges from the block as being feasible, even though the condition
1403 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1404 /// CFG and only slightly pessimizes the analysis results (by marking one,
1405 /// potentially infeasible, edge feasible). This cannot usefully modify the
1406 /// constraints on the condition of the branch, as that would impact other users
1409 /// This scan also checks for values that use undefs, whose results are actually
1410 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1411 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1412 /// even if X isn't defined.
1413 bool SCCPSolver::ResolvedUndefsIn(Function
&F
) {
1414 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
1415 if (!BBExecutable
.count(BB
))
1418 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
1419 // Look for instructions which produce undef values.
1420 if (I
->getType()->isVoidTy()) continue;
1422 if (const StructType
*STy
= dyn_cast
<StructType
>(I
->getType())) {
1423 // Only a few things that can be structs matter for undef. Just send
1424 // all their results to overdefined. We could be more precise than this
1425 // but it isn't worth bothering.
1426 if (isa
<CallInst
>(I
) || isa
<SelectInst
>(I
)) {
1427 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
1428 LatticeVal
&LV
= getStructValueState(I
, i
);
1429 if (LV
.isUndefined())
1430 markOverdefined(LV
, I
);
1436 LatticeVal
&LV
= getValueState(I
);
1437 if (!LV
.isUndefined()) continue;
1439 // No instructions using structs need disambiguation.
1440 if (I
->getOperand(0)->getType()->isStructTy())
1443 // Get the lattice values of the first two operands for use below.
1444 LatticeVal Op0LV
= getValueState(I
->getOperand(0));
1446 if (I
->getNumOperands() == 2) {
1447 // No instructions using structs need disambiguation.
1448 if (I
->getOperand(1)->getType()->isStructTy())
1451 // If this is a two-operand instruction, and if both operands are
1452 // undefs, the result stays undef.
1453 Op1LV
= getValueState(I
->getOperand(1));
1454 if (Op0LV
.isUndefined() && Op1LV
.isUndefined())
1458 // If this is an instructions whose result is defined even if the input is
1459 // not fully defined, propagate the information.
1460 const Type
*ITy
= I
->getType();
1461 switch (I
->getOpcode()) {
1462 default: break; // Leave the instruction as an undef.
1463 case Instruction::ZExt
:
1464 // After a zero extend, we know the top part is zero. SExt doesn't have
1465 // to be handled here, because we don't know whether the top part is 1's
1467 case Instruction::SIToFP
: // some FP values are not possible, just use 0.
1468 case Instruction::UIToFP
: // some FP values are not possible, just use 0.
1469 markForcedConstant(I
, Constant::getNullValue(ITy
));
1471 case Instruction::Mul
:
1472 case Instruction::And
:
1473 // undef * X -> 0. X could be zero.
1474 // undef & X -> 0. X could be zero.
1475 markForcedConstant(I
, Constant::getNullValue(ITy
));
1478 case Instruction::Or
:
1479 // undef | X -> -1. X could be -1.
1480 markForcedConstant(I
, Constant::getAllOnesValue(ITy
));
1483 case Instruction::SDiv
:
1484 case Instruction::UDiv
:
1485 case Instruction::SRem
:
1486 case Instruction::URem
:
1487 // X / undef -> undef. No change.
1488 // X % undef -> undef. No change.
1489 if (Op1LV
.isUndefined()) break;
1491 // undef / X -> 0. X could be maxint.
1492 // undef % X -> 0. X could be 1.
1493 markForcedConstant(I
, Constant::getNullValue(ITy
));
1496 case Instruction::AShr
:
1497 // undef >>s X -> undef. No change.
1498 if (Op0LV
.isUndefined()) break;
1500 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1501 if (Op0LV
.isConstant())
1502 markForcedConstant(I
, Op0LV
.getConstant());
1506 case Instruction::LShr
:
1507 case Instruction::Shl
:
1508 // undef >> X -> undef. No change.
1509 // undef << X -> undef. No change.
1510 if (Op0LV
.isUndefined()) break;
1512 // X >> undef -> 0. X could be 0.
1513 // X << undef -> 0. X could be 0.
1514 markForcedConstant(I
, Constant::getNullValue(ITy
));
1516 case Instruction::Select
:
1517 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1518 if (Op0LV
.isUndefined()) {
1519 if (!Op1LV
.isConstant()) // Pick the constant one if there is any.
1520 Op1LV
= getValueState(I
->getOperand(2));
1521 } else if (Op1LV
.isUndefined()) {
1522 // c ? undef : undef -> undef. No change.
1523 Op1LV
= getValueState(I
->getOperand(2));
1524 if (Op1LV
.isUndefined())
1526 // Otherwise, c ? undef : x -> x.
1528 // Leave Op1LV as Operand(1)'s LatticeValue.
1531 if (Op1LV
.isConstant())
1532 markForcedConstant(I
, Op1LV
.getConstant());
1536 case Instruction::Call
:
1537 // If a call has an undef result, it is because it is constant foldable
1538 // but one of the inputs was undef. Just force the result to
1545 // Check to see if we have a branch or switch on an undefined value. If so
1546 // we force the branch to go one way or the other to make the successor
1547 // values live. It doesn't really matter which way we force it.
1548 TerminatorInst
*TI
= BB
->getTerminator();
1549 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
1550 if (!BI
->isConditional()) continue;
1551 if (!getValueState(BI
->getCondition()).isUndefined())
1554 // If the input to SCCP is actually branch on undef, fix the undef to
1556 if (isa
<UndefValue
>(BI
->getCondition())) {
1557 BI
->setCondition(ConstantInt::getFalse(BI
->getContext()));
1558 markEdgeExecutable(BB
, TI
->getSuccessor(1));
1562 // Otherwise, it is a branch on a symbolic value which is currently
1563 // considered to be undef. Handle this by forcing the input value to the
1565 markForcedConstant(BI
->getCondition(),
1566 ConstantInt::getFalse(TI
->getContext()));
1570 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
1571 if (SI
->getNumSuccessors() < 2) // no cases
1573 if (!getValueState(SI
->getCondition()).isUndefined())
1576 // If the input to SCCP is actually switch on undef, fix the undef to
1577 // the first constant.
1578 if (isa
<UndefValue
>(SI
->getCondition())) {
1579 SI
->setCondition(SI
->getCaseValue(1));
1580 markEdgeExecutable(BB
, TI
->getSuccessor(1));
1584 markForcedConstant(SI
->getCondition(), SI
->getCaseValue(1));
1594 //===--------------------------------------------------------------------===//
1596 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1597 /// Sparse Conditional Constant Propagator.
1599 struct SCCP
: public FunctionPass
{
1600 static char ID
; // Pass identification, replacement for typeid
1601 SCCP() : FunctionPass(ID
) {
1602 initializeSCCPPass(*PassRegistry::getPassRegistry());
1605 // runOnFunction - Run the Sparse Conditional Constant Propagation
1606 // algorithm, and return true if the function was modified.
1608 bool runOnFunction(Function
&F
);
1610 } // end anonymous namespace
1613 INITIALIZE_PASS(SCCP
, "sccp",
1614 "Sparse Conditional Constant Propagation", false, false)
1616 // createSCCPPass - This is the public interface to this file.
1617 FunctionPass
*llvm::createSCCPPass() {
1621 static void DeleteInstructionInBlock(BasicBlock
*BB
) {
1622 DEBUG(dbgs() << " BasicBlock Dead:" << *BB
);
1625 // Delete the instructions backwards, as it has a reduced likelihood of
1626 // having to update as many def-use and use-def chains.
1627 while (!isa
<TerminatorInst
>(BB
->begin())) {
1628 Instruction
*I
= --BasicBlock::iterator(BB
->getTerminator());
1630 if (!I
->use_empty())
1631 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
1632 BB
->getInstList().erase(I
);
1637 // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1638 // and return true if the function was modified.
1640 bool SCCP::runOnFunction(Function
&F
) {
1641 DEBUG(dbgs() << "SCCP on function '" << F
.getName() << "'\n");
1642 SCCPSolver
Solver(getAnalysisIfAvailable
<TargetData
>());
1644 // Mark the first block of the function as being executable.
1645 Solver
.MarkBlockExecutable(F
.begin());
1647 // Mark all arguments to the function as being overdefined.
1648 for (Function::arg_iterator AI
= F
.arg_begin(), E
= F
.arg_end(); AI
!= E
;++AI
)
1649 Solver
.markAnythingOverdefined(AI
);
1651 // Solve for constants.
1652 bool ResolvedUndefs
= true;
1653 while (ResolvedUndefs
) {
1655 DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1656 ResolvedUndefs
= Solver
.ResolvedUndefsIn(F
);
1659 bool MadeChanges
= false;
1661 // If we decided that there are basic blocks that are dead in this function,
1662 // delete their contents now. Note that we cannot actually delete the blocks,
1663 // as we cannot modify the CFG of the function.
1665 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
1666 if (!Solver
.isBlockExecutable(BB
)) {
1667 DeleteInstructionInBlock(BB
);
1672 // Iterate over all of the instructions in a function, replacing them with
1673 // constants if we have found them to be of constant values.
1675 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
1676 Instruction
*Inst
= BI
++;
1677 if (Inst
->getType()->isVoidTy() || isa
<TerminatorInst
>(Inst
))
1680 // TODO: Reconstruct structs from their elements.
1681 if (Inst
->getType()->isStructTy())
1684 LatticeVal IV
= Solver
.getLatticeValueFor(Inst
);
1685 if (IV
.isOverdefined())
1688 Constant
*Const
= IV
.isConstant()
1689 ? IV
.getConstant() : UndefValue::get(Inst
->getType());
1690 DEBUG(dbgs() << " Constant: " << *Const
<< " = " << *Inst
);
1692 // Replaces all of the uses of a variable with uses of the constant.
1693 Inst
->replaceAllUsesWith(Const
);
1695 // Delete the instruction.
1696 Inst
->eraseFromParent();
1698 // Hey, we just changed something!
1708 //===--------------------------------------------------------------------===//
1710 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1711 /// Constant Propagation.
1713 struct IPSCCP
: public ModulePass
{
1715 IPSCCP() : ModulePass(ID
) {
1716 initializeIPSCCPPass(*PassRegistry::getPassRegistry());
1718 bool runOnModule(Module
&M
);
1720 } // end anonymous namespace
1722 char IPSCCP::ID
= 0;
1723 INITIALIZE_PASS(IPSCCP
, "ipsccp",
1724 "Interprocedural Sparse Conditional Constant Propagation",
1727 // createIPSCCPPass - This is the public interface to this file.
1728 ModulePass
*llvm::createIPSCCPPass() {
1729 return new IPSCCP();
1733 static bool AddressIsTaken(const GlobalValue
*GV
) {
1734 // Delete any dead constantexpr klingons.
1735 GV
->removeDeadConstantUsers();
1737 for (Value::const_use_iterator UI
= GV
->use_begin(), E
= GV
->use_end();
1739 const User
*U
= *UI
;
1740 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
1741 if (SI
->getOperand(0) == GV
|| SI
->isVolatile())
1742 return true; // Storing addr of GV.
1743 } else if (isa
<InvokeInst
>(U
) || isa
<CallInst
>(U
)) {
1744 // Make sure we are calling the function, not passing the address.
1745 ImmutableCallSite
CS(cast
<Instruction
>(U
));
1746 if (!CS
.isCallee(UI
))
1748 } else if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
1749 if (LI
->isVolatile())
1751 } else if (isa
<BlockAddress
>(U
)) {
1752 // blockaddress doesn't take the address of the function, it takes addr
1761 bool IPSCCP::runOnModule(Module
&M
) {
1762 SCCPSolver
Solver(getAnalysisIfAvailable
<TargetData
>());
1764 // AddressTakenFunctions - This set keeps track of the address-taken functions
1765 // that are in the input. As IPSCCP runs through and simplifies code,
1766 // functions that were address taken can end up losing their
1767 // address-taken-ness. Because of this, we keep track of their addresses from
1768 // the first pass so we can use them for the later simplification pass.
1769 SmallPtrSet
<Function
*, 32> AddressTakenFunctions
;
1771 // Loop over all functions, marking arguments to those with their addresses
1772 // taken or that are external as overdefined.
1774 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
) {
1775 if (F
->isDeclaration())
1778 // If this is a strong or ODR definition of this function, then we can
1779 // propagate information about its result into callsites of it.
1780 if (!F
->mayBeOverridden())
1781 Solver
.AddTrackedFunction(F
);
1783 // If this function only has direct calls that we can see, we can track its
1784 // arguments and return value aggressively, and can assume it is not called
1785 // unless we see evidence to the contrary.
1786 if (F
->hasLocalLinkage()) {
1787 if (AddressIsTaken(F
))
1788 AddressTakenFunctions
.insert(F
);
1790 Solver
.AddArgumentTrackedFunction(F
);
1795 // Assume the function is called.
1796 Solver
.MarkBlockExecutable(F
->begin());
1798 // Assume nothing about the incoming arguments.
1799 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1801 Solver
.markAnythingOverdefined(AI
);
1804 // Loop over global variables. We inform the solver about any internal global
1805 // variables that do not have their 'addresses taken'. If they don't have
1806 // their addresses taken, we can propagate constants through them.
1807 for (Module::global_iterator G
= M
.global_begin(), E
= M
.global_end();
1809 if (!G
->isConstant() && G
->hasLocalLinkage() && !AddressIsTaken(G
))
1810 Solver
.TrackValueOfGlobalVariable(G
);
1812 // Solve for constants.
1813 bool ResolvedUndefs
= true;
1814 while (ResolvedUndefs
) {
1817 DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1818 ResolvedUndefs
= false;
1819 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
)
1820 ResolvedUndefs
|= Solver
.ResolvedUndefsIn(*F
);
1823 bool MadeChanges
= false;
1825 // Iterate over all of the instructions in the module, replacing them with
1826 // constants if we have found them to be of constant values.
1828 SmallVector
<BasicBlock
*, 512> BlocksToErase
;
1830 for (Module::iterator F
= M
.begin(), E
= M
.end(); F
!= E
; ++F
) {
1831 if (Solver
.isBlockExecutable(F
->begin())) {
1832 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
1834 if (AI
->use_empty() || AI
->getType()->isStructTy()) continue;
1836 // TODO: Could use getStructLatticeValueFor to find out if the entire
1837 // result is a constant and replace it entirely if so.
1839 LatticeVal IV
= Solver
.getLatticeValueFor(AI
);
1840 if (IV
.isOverdefined()) continue;
1842 Constant
*CST
= IV
.isConstant() ?
1843 IV
.getConstant() : UndefValue::get(AI
->getType());
1844 DEBUG(dbgs() << "*** Arg " << *AI
<< " = " << *CST
<<"\n");
1846 // Replaces all of the uses of a variable with uses of the
1848 AI
->replaceAllUsesWith(CST
);
1853 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
) {
1854 if (!Solver
.isBlockExecutable(BB
)) {
1855 DeleteInstructionInBlock(BB
);
1858 TerminatorInst
*TI
= BB
->getTerminator();
1859 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
1860 BasicBlock
*Succ
= TI
->getSuccessor(i
);
1861 if (!Succ
->empty() && isa
<PHINode
>(Succ
->begin()))
1862 TI
->getSuccessor(i
)->removePredecessor(BB
);
1864 if (!TI
->use_empty())
1865 TI
->replaceAllUsesWith(UndefValue::get(TI
->getType()));
1866 TI
->eraseFromParent();
1868 if (&*BB
!= &F
->front())
1869 BlocksToErase
.push_back(BB
);
1871 new UnreachableInst(M
.getContext(), BB
);
1875 for (BasicBlock::iterator BI
= BB
->begin(), E
= BB
->end(); BI
!= E
; ) {
1876 Instruction
*Inst
= BI
++;
1877 if (Inst
->getType()->isVoidTy() || Inst
->getType()->isStructTy())
1880 // TODO: Could use getStructLatticeValueFor to find out if the entire
1881 // result is a constant and replace it entirely if so.
1883 LatticeVal IV
= Solver
.getLatticeValueFor(Inst
);
1884 if (IV
.isOverdefined())
1887 Constant
*Const
= IV
.isConstant()
1888 ? IV
.getConstant() : UndefValue::get(Inst
->getType());
1889 DEBUG(dbgs() << " Constant: " << *Const
<< " = " << *Inst
);
1891 // Replaces all of the uses of a variable with uses of the
1893 Inst
->replaceAllUsesWith(Const
);
1895 // Delete the instruction.
1896 if (!isa
<CallInst
>(Inst
) && !isa
<TerminatorInst
>(Inst
))
1897 Inst
->eraseFromParent();
1899 // Hey, we just changed something!
1905 // Now that all instructions in the function are constant folded, erase dead
1906 // blocks, because we can now use ConstantFoldTerminator to get rid of
1908 for (unsigned i
= 0, e
= BlocksToErase
.size(); i
!= e
; ++i
) {
1909 // If there are any PHI nodes in this successor, drop entries for BB now.
1910 BasicBlock
*DeadBB
= BlocksToErase
[i
];
1911 for (Value::use_iterator UI
= DeadBB
->use_begin(), UE
= DeadBB
->use_end();
1913 // Grab the user and then increment the iterator early, as the user
1914 // will be deleted. Step past all adjacent uses from the same user.
1915 Instruction
*I
= dyn_cast
<Instruction
>(*UI
);
1916 do { ++UI
; } while (UI
!= UE
&& *UI
== I
);
1918 // Ignore blockaddress users; BasicBlock's dtor will handle them.
1921 bool Folded
= ConstantFoldTerminator(I
->getParent());
1923 // The constant folder may not have been able to fold the terminator
1924 // if this is a branch or switch on undef. Fold it manually as a
1925 // branch to the first successor.
1927 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(I
)) {
1928 assert(BI
->isConditional() && isa
<UndefValue
>(BI
->getCondition()) &&
1929 "Branch should be foldable!");
1930 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(I
)) {
1931 assert(isa
<UndefValue
>(SI
->getCondition()) && "Switch should fold");
1933 llvm_unreachable("Didn't fold away reference to block!");
1937 // Make this an uncond branch to the first successor.
1938 TerminatorInst
*TI
= I
->getParent()->getTerminator();
1939 BranchInst::Create(TI
->getSuccessor(0), TI
);
1941 // Remove entries in successor phi nodes to remove edges.
1942 for (unsigned i
= 1, e
= TI
->getNumSuccessors(); i
!= e
; ++i
)
1943 TI
->getSuccessor(i
)->removePredecessor(TI
->getParent());
1945 // Remove the old terminator.
1946 TI
->eraseFromParent();
1950 // Finally, delete the basic block.
1951 F
->getBasicBlockList().erase(DeadBB
);
1953 BlocksToErase
.clear();
1956 // If we inferred constant or undef return values for a function, we replaced
1957 // all call uses with the inferred value. This means we don't need to bother
1958 // actually returning anything from the function. Replace all return
1959 // instructions with return undef.
1961 // Do this in two stages: first identify the functions we should process, then
1962 // actually zap their returns. This is important because we can only do this
1963 // if the address of the function isn't taken. In cases where a return is the
1964 // last use of a function, the order of processing functions would affect
1965 // whether other functions are optimizable.
1966 SmallVector
<ReturnInst
*, 8> ReturnsToZap
;
1968 // TODO: Process multiple value ret instructions also.
1969 const DenseMap
<Function
*, LatticeVal
> &RV
= Solver
.getTrackedRetVals();
1970 for (DenseMap
<Function
*, LatticeVal
>::const_iterator I
= RV
.begin(),
1971 E
= RV
.end(); I
!= E
; ++I
) {
1972 Function
*F
= I
->first
;
1973 if (I
->second
.isOverdefined() || F
->getReturnType()->isVoidTy())
1976 // We can only do this if we know that nothing else can call the function.
1977 if (!F
->hasLocalLinkage() || AddressTakenFunctions
.count(F
))
1980 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
1981 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator()))
1982 if (!isa
<UndefValue
>(RI
->getOperand(0)))
1983 ReturnsToZap
.push_back(RI
);
1986 // Zap all returns which we've identified as zap to change.
1987 for (unsigned i
= 0, e
= ReturnsToZap
.size(); i
!= e
; ++i
) {
1988 Function
*F
= ReturnsToZap
[i
]->getParent()->getParent();
1989 ReturnsToZap
[i
]->setOperand(0, UndefValue::get(F
->getReturnType()));
1992 // If we inferred constant or undef values for globals variables, we can delete
1993 // the global and any stores that remain to it.
1994 const DenseMap
<GlobalVariable
*, LatticeVal
> &TG
= Solver
.getTrackedGlobals();
1995 for (DenseMap
<GlobalVariable
*, LatticeVal
>::const_iterator I
= TG
.begin(),
1996 E
= TG
.end(); I
!= E
; ++I
) {
1997 GlobalVariable
*GV
= I
->first
;
1998 assert(!I
->second
.isOverdefined() &&
1999 "Overdefined values should have been taken out of the map!");
2000 DEBUG(dbgs() << "Found that GV '" << GV
->getName() << "' is constant!\n");
2001 while (!GV
->use_empty()) {
2002 StoreInst
*SI
= cast
<StoreInst
>(GV
->use_back());
2003 SI
->eraseFromParent();
2005 M
.getGlobalList().erase(GV
);