Use %ull here.
[llvm/stm8.git] / lib / MC / MCAssembler.cpp
blob9992646042243be34d8cad2a86b5e50c46a46382
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "assembler"
11 #include "llvm/MC/MCAssembler.h"
12 #include "llvm/MC/MCAsmLayout.h"
13 #include "llvm/MC/MCCodeEmitter.h"
14 #include "llvm/MC/MCContext.h"
15 #include "llvm/MC/MCExpr.h"
16 #include "llvm/MC/MCObjectWriter.h"
17 #include "llvm/MC/MCSection.h"
18 #include "llvm/MC/MCSymbol.h"
19 #include "llvm/MC/MCValue.h"
20 #include "llvm/MC/MCDwarf.h"
21 #include "llvm/ADT/OwningPtr.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetRegistry.h"
29 #include "llvm/Target/TargetAsmBackend.h"
31 #include <vector>
32 using namespace llvm;
34 namespace {
35 namespace stats {
36 STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
37 STATISTIC(EvaluateFixup, "Number of evaluated fixups");
38 STATISTIC(FragmentLayouts, "Number of fragment layouts");
39 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
40 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
41 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
45 // FIXME FIXME FIXME: There are number of places in this file where we convert
46 // what is a 64-bit assembler value used for computation into a value in the
47 // object file, which may truncate it. We should detect that truncation where
48 // invalid and report errors back.
50 /* *** */
52 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
53 : Assembler(Asm), LastValidFragment()
55 // Compute the section layout order. Virtual sections must go last.
56 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
57 if (!it->getSection().isVirtualSection())
58 SectionOrder.push_back(&*it);
59 for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
60 if (it->getSection().isVirtualSection())
61 SectionOrder.push_back(&*it);
64 bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const {
65 const MCSectionData &SD = *F->getParent();
66 const MCFragment *LastValid = LastValidFragment.lookup(&SD);
67 if (!LastValid)
68 return false;
69 assert(LastValid->getParent() == F->getParent());
70 return F->getLayoutOrder() <= LastValid->getLayoutOrder();
73 void MCAsmLayout::Invalidate(MCFragment *F) {
74 // If this fragment wasn't already up-to-date, we don't need to do anything.
75 if (!isFragmentUpToDate(F))
76 return;
78 // Otherwise, reset the last valid fragment to this fragment.
79 const MCSectionData &SD = *F->getParent();
80 LastValidFragment[&SD] = F;
83 void MCAsmLayout::EnsureValid(const MCFragment *F) const {
84 MCSectionData &SD = *F->getParent();
86 MCFragment *Cur = LastValidFragment[&SD];
87 if (!Cur)
88 Cur = &*SD.begin();
89 else
90 Cur = Cur->getNextNode();
92 // Advance the layout position until the fragment is up-to-date.
93 while (!isFragmentUpToDate(F)) {
94 const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur);
95 Cur = Cur->getNextNode();
99 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
100 EnsureValid(F);
101 assert(F->Offset != ~UINT64_C(0) && "Address not set!");
102 return F->Offset;
105 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
106 assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
107 return getFragmentOffset(SD->getFragment()) + SD->getOffset();
110 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
111 // The size is the last fragment's end offset.
112 const MCFragment &F = SD->getFragmentList().back();
113 return getFragmentOffset(&F) + getAssembler().ComputeFragmentSize(*this, F);
116 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
117 // Virtual sections have no file size.
118 if (SD->getSection().isVirtualSection())
119 return 0;
121 // Otherwise, the file size is the same as the address space size.
122 return getSectionAddressSize(SD);
125 /* *** */
127 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
130 MCFragment::~MCFragment() {
133 MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
134 : Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0))
136 if (Parent)
137 Parent->getFragmentList().push_back(this);
140 /* *** */
142 MCSectionData::MCSectionData() : Section(0) {}
144 MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
145 : Section(&_Section),
146 Ordinal(~UINT32_C(0)),
147 Alignment(1),
148 HasInstructions(false)
150 if (A)
151 A->getSectionList().push_back(this);
154 /* *** */
156 MCSymbolData::MCSymbolData() : Symbol(0) {}
158 MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
159 uint64_t _Offset, MCAssembler *A)
160 : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
161 IsExternal(false), IsPrivateExtern(false),
162 CommonSize(0), SymbolSize(0), CommonAlign(0),
163 Flags(0), Index(0)
165 if (A)
166 A->getSymbolList().push_back(this);
169 /* *** */
171 MCAssembler::MCAssembler(MCContext &Context_, TargetAsmBackend &Backend_,
172 MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
173 raw_ostream &OS_)
174 : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
175 OS(OS_), RelaxAll(false), NoExecStack(false), SubsectionsViaSymbols(false)
179 MCAssembler::~MCAssembler() {
182 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
183 // Non-temporary labels should always be visible to the linker.
184 if (!Symbol.isTemporary())
185 return true;
187 // Absolute temporary labels are never visible.
188 if (!Symbol.isInSection())
189 return false;
191 // Otherwise, check if the section requires symbols even for temporary labels.
192 return getBackend().doesSectionRequireSymbols(Symbol.getSection());
195 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
196 // Linker visible symbols define atoms.
197 if (isSymbolLinkerVisible(SD->getSymbol()))
198 return SD;
200 // Absolute and undefined symbols have no defining atom.
201 if (!SD->getFragment())
202 return 0;
204 // Non-linker visible symbols in sections which can't be atomized have no
205 // defining atom.
206 if (!getBackend().isSectionAtomizable(
207 SD->getFragment()->getParent()->getSection()))
208 return 0;
210 // Otherwise, return the atom for the containing fragment.
211 return SD->getFragment()->getAtom();
214 bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout,
215 const MCFixup &Fixup, const MCFragment *DF,
216 MCValue &Target, uint64_t &Value) const {
217 ++stats::EvaluateFixup;
219 if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
220 report_fatal_error("expected relocatable expression");
222 bool IsPCRel = Backend.getFixupKindInfo(
223 Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
225 bool IsResolved;
226 if (IsPCRel) {
227 if (Target.getSymB()) {
228 IsResolved = false;
229 } else if (!Target.getSymA()) {
230 IsResolved = false;
231 } else {
232 const MCSymbolRefExpr *A = Target.getSymA();
233 const MCSymbol &SA = A->getSymbol();
234 if (A->getKind() != MCSymbolRefExpr::VK_None ||
235 SA.AliasedSymbol().isUndefined()) {
236 IsResolved = false;
237 } else {
238 const MCSymbolData &DataA = getSymbolData(SA);
239 IsResolved =
240 getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
241 *DF, false, true);
244 } else {
245 IsResolved = Target.isAbsolute();
248 Value = Target.getConstant();
250 bool IsThumb = false;
251 if (const MCSymbolRefExpr *A = Target.getSymA()) {
252 const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
253 if (Sym.isDefined())
254 Value += Layout.getSymbolOffset(&getSymbolData(Sym));
255 if (isThumbFunc(&Sym))
256 IsThumb = true;
258 if (const MCSymbolRefExpr *B = Target.getSymB()) {
259 const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
260 if (Sym.isDefined())
261 Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
265 bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
266 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
267 assert((ShouldAlignPC ? IsPCRel : true) &&
268 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
270 if (IsPCRel) {
271 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
273 // A number of ARM fixups in Thumb mode require that the effective PC
274 // address be determined as the 32-bit aligned version of the actual offset.
275 if (ShouldAlignPC) Offset &= ~0x3;
276 Value -= Offset;
279 // ARM fixups based from a thumb function address need to have the low
280 // bit set. The actual value is always at least 16-bit aligned, so the
281 // low bit is normally clear and available for use as an ISA flag for
282 // interworking.
283 if (IsThumb)
284 Value |= 1;
286 return IsResolved;
289 uint64_t MCAssembler::ComputeFragmentSize(const MCAsmLayout &Layout,
290 const MCFragment &F) const {
291 switch (F.getKind()) {
292 case MCFragment::FT_Data:
293 return cast<MCDataFragment>(F).getContents().size();
294 case MCFragment::FT_Fill:
295 return cast<MCFillFragment>(F).getSize();
296 case MCFragment::FT_Inst:
297 return cast<MCInstFragment>(F).getInstSize();
299 case MCFragment::FT_LEB:
300 return cast<MCLEBFragment>(F).getContents().size();
302 case MCFragment::FT_Align: {
303 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
304 unsigned Offset = Layout.getFragmentOffset(&AF);
305 unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
306 if (Size > AF.getMaxBytesToEmit())
307 return 0;
308 return Size;
311 case MCFragment::FT_Org: {
312 MCOrgFragment &OF = cast<MCOrgFragment>(F);
313 int64_t TargetLocation;
314 if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
315 report_fatal_error("expected assembly-time absolute expression");
317 // FIXME: We need a way to communicate this error.
318 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
319 int64_t Size = TargetLocation - FragmentOffset;
320 if (Size < 0 || Size >= 0x40000000)
321 report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
322 "' (at offset '" + Twine(FragmentOffset) + "')");
323 return Size;
326 case MCFragment::FT_Dwarf:
327 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
328 case MCFragment::FT_DwarfFrame:
329 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
332 assert(0 && "invalid fragment kind");
333 return 0;
336 void MCAsmLayout::LayoutFragment(MCFragment *F) {
337 MCFragment *Prev = F->getPrevNode();
339 // We should never try to recompute something which is up-to-date.
340 assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!");
341 // We should never try to compute the fragment layout if it's predecessor
342 // isn't up-to-date.
343 assert((!Prev || isFragmentUpToDate(Prev)) &&
344 "Attempt to compute fragment before it's predecessor!");
346 ++stats::FragmentLayouts;
348 // Compute fragment offset and size.
349 uint64_t Offset = 0;
350 if (Prev)
351 Offset += Prev->Offset + getAssembler().ComputeFragmentSize(*this, *Prev);
353 F->Offset = Offset;
354 LastValidFragment[F->getParent()] = F;
357 /// WriteFragmentData - Write the \arg F data to the output file.
358 static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
359 const MCFragment &F) {
360 MCObjectWriter *OW = &Asm.getWriter();
361 uint64_t Start = OW->getStream().tell();
362 (void) Start;
364 ++stats::EmittedFragments;
366 // FIXME: Embed in fragments instead?
367 uint64_t FragmentSize = Asm.ComputeFragmentSize(Layout, F);
368 switch (F.getKind()) {
369 case MCFragment::FT_Align: {
370 MCAlignFragment &AF = cast<MCAlignFragment>(F);
371 uint64_t Count = FragmentSize / AF.getValueSize();
373 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
375 // FIXME: This error shouldn't actually occur (the front end should emit
376 // multiple .align directives to enforce the semantics it wants), but is
377 // severe enough that we want to report it. How to handle this?
378 if (Count * AF.getValueSize() != FragmentSize)
379 report_fatal_error("undefined .align directive, value size '" +
380 Twine(AF.getValueSize()) +
381 "' is not a divisor of padding size '" +
382 Twine(FragmentSize) + "'");
384 // See if we are aligning with nops, and if so do that first to try to fill
385 // the Count bytes. Then if that did not fill any bytes or there are any
386 // bytes left to fill use the the Value and ValueSize to fill the rest.
387 // If we are aligning with nops, ask that target to emit the right data.
388 if (AF.hasEmitNops()) {
389 if (!Asm.getBackend().WriteNopData(Count, OW))
390 report_fatal_error("unable to write nop sequence of " +
391 Twine(Count) + " bytes");
392 break;
395 // Otherwise, write out in multiples of the value size.
396 for (uint64_t i = 0; i != Count; ++i) {
397 switch (AF.getValueSize()) {
398 default:
399 assert(0 && "Invalid size!");
400 case 1: OW->Write8 (uint8_t (AF.getValue())); break;
401 case 2: OW->Write16(uint16_t(AF.getValue())); break;
402 case 4: OW->Write32(uint32_t(AF.getValue())); break;
403 case 8: OW->Write64(uint64_t(AF.getValue())); break;
406 break;
409 case MCFragment::FT_Data: {
410 MCDataFragment &DF = cast<MCDataFragment>(F);
411 assert(FragmentSize == DF.getContents().size() && "Invalid size!");
412 OW->WriteBytes(DF.getContents().str());
413 break;
416 case MCFragment::FT_Fill: {
417 MCFillFragment &FF = cast<MCFillFragment>(F);
419 assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
421 for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
422 switch (FF.getValueSize()) {
423 default:
424 assert(0 && "Invalid size!");
425 case 1: OW->Write8 (uint8_t (FF.getValue())); break;
426 case 2: OW->Write16(uint16_t(FF.getValue())); break;
427 case 4: OW->Write32(uint32_t(FF.getValue())); break;
428 case 8: OW->Write64(uint64_t(FF.getValue())); break;
431 break;
434 case MCFragment::FT_Inst: {
435 MCInstFragment &IF = cast<MCInstFragment>(F);
436 OW->WriteBytes(StringRef(IF.getCode().begin(), IF.getCode().size()));
437 break;
440 case MCFragment::FT_LEB: {
441 MCLEBFragment &LF = cast<MCLEBFragment>(F);
442 OW->WriteBytes(LF.getContents().str());
443 break;
446 case MCFragment::FT_Org: {
447 MCOrgFragment &OF = cast<MCOrgFragment>(F);
449 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
450 OW->Write8(uint8_t(OF.getValue()));
452 break;
455 case MCFragment::FT_Dwarf: {
456 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
457 OW->WriteBytes(OF.getContents().str());
458 break;
460 case MCFragment::FT_DwarfFrame: {
461 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
462 OW->WriteBytes(CF.getContents().str());
463 break;
467 assert(OW->getStream().tell() - Start == FragmentSize);
470 void MCAssembler::WriteSectionData(const MCSectionData *SD,
471 const MCAsmLayout &Layout) const {
472 // Ignore virtual sections.
473 if (SD->getSection().isVirtualSection()) {
474 assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
476 // Check that contents are only things legal inside a virtual section.
477 for (MCSectionData::const_iterator it = SD->begin(),
478 ie = SD->end(); it != ie; ++it) {
479 switch (it->getKind()) {
480 default:
481 assert(0 && "Invalid fragment in virtual section!");
482 case MCFragment::FT_Data: {
483 // Check that we aren't trying to write a non-zero contents (or fixups)
484 // into a virtual section. This is to support clients which use standard
485 // directives to fill the contents of virtual sections.
486 MCDataFragment &DF = cast<MCDataFragment>(*it);
487 assert(DF.fixup_begin() == DF.fixup_end() &&
488 "Cannot have fixups in virtual section!");
489 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
490 assert(DF.getContents()[i] == 0 &&
491 "Invalid data value for virtual section!");
492 break;
494 case MCFragment::FT_Align:
495 // Check that we aren't trying to write a non-zero value into a virtual
496 // section.
497 assert((!cast<MCAlignFragment>(it)->getValueSize() ||
498 !cast<MCAlignFragment>(it)->getValue()) &&
499 "Invalid align in virtual section!");
500 break;
501 case MCFragment::FT_Fill:
502 assert(!cast<MCFillFragment>(it)->getValueSize() &&
503 "Invalid fill in virtual section!");
504 break;
508 return;
511 uint64_t Start = getWriter().getStream().tell();
512 (void) Start;
514 for (MCSectionData::const_iterator it = SD->begin(),
515 ie = SD->end(); it != ie; ++it)
516 WriteFragmentData(*this, Layout, *it);
518 assert(getWriter().getStream().tell() - Start ==
519 Layout.getSectionAddressSize(SD));
523 uint64_t MCAssembler::HandleFixup(const MCAsmLayout &Layout,
524 MCFragment &F,
525 const MCFixup &Fixup) {
526 // Evaluate the fixup.
527 MCValue Target;
528 uint64_t FixedValue;
529 if (!EvaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
530 // The fixup was unresolved, we need a relocation. Inform the object
531 // writer of the relocation, and give it an opportunity to adjust the
532 // fixup value if need be.
533 getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
535 return FixedValue;
538 void MCAssembler::Finish() {
539 DEBUG_WITH_TYPE("mc-dump", {
540 llvm::errs() << "assembler backend - pre-layout\n--\n";
541 dump(); });
543 // Create the layout object.
544 MCAsmLayout Layout(*this);
546 // Create dummy fragments and assign section ordinals.
547 unsigned SectionIndex = 0;
548 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
549 // Create dummy fragments to eliminate any empty sections, this simplifies
550 // layout.
551 if (it->getFragmentList().empty())
552 new MCDataFragment(it);
554 it->setOrdinal(SectionIndex++);
557 // Assign layout order indices to sections and fragments.
558 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
559 MCSectionData *SD = Layout.getSectionOrder()[i];
560 SD->setLayoutOrder(i);
562 unsigned FragmentIndex = 0;
563 for (MCSectionData::iterator it2 = SD->begin(),
564 ie2 = SD->end(); it2 != ie2; ++it2)
565 it2->setLayoutOrder(FragmentIndex++);
568 // Layout until everything fits.
569 while (LayoutOnce(Layout))
570 continue;
572 DEBUG_WITH_TYPE("mc-dump", {
573 llvm::errs() << "assembler backend - post-relaxation\n--\n";
574 dump(); });
576 // Finalize the layout, including fragment lowering.
577 FinishLayout(Layout);
579 DEBUG_WITH_TYPE("mc-dump", {
580 llvm::errs() << "assembler backend - final-layout\n--\n";
581 dump(); });
583 uint64_t StartOffset = OS.tell();
585 // Allow the object writer a chance to perform post-layout binding (for
586 // example, to set the index fields in the symbol data).
587 getWriter().ExecutePostLayoutBinding(*this, Layout);
589 // Evaluate and apply the fixups, generating relocation entries as necessary.
590 for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
591 for (MCSectionData::iterator it2 = it->begin(),
592 ie2 = it->end(); it2 != ie2; ++it2) {
593 MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
594 if (DF) {
595 for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
596 ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
597 MCFixup &Fixup = *it3;
598 uint64_t FixedValue = HandleFixup(Layout, *DF, Fixup);
599 getBackend().ApplyFixup(Fixup, DF->getContents().data(),
600 DF->getContents().size(), FixedValue);
603 MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
604 if (IF) {
605 for (MCInstFragment::fixup_iterator it3 = IF->fixup_begin(),
606 ie3 = IF->fixup_end(); it3 != ie3; ++it3) {
607 MCFixup &Fixup = *it3;
608 uint64_t FixedValue = HandleFixup(Layout, *IF, Fixup);
609 getBackend().ApplyFixup(Fixup, IF->getCode().data(),
610 IF->getCode().size(), FixedValue);
616 // Write the object file.
617 getWriter().WriteObject(*this, Layout);
619 stats::ObjectBytes += OS.tell() - StartOffset;
622 bool MCAssembler::FixupNeedsRelaxation(const MCFixup &Fixup,
623 const MCFragment *DF,
624 const MCAsmLayout &Layout) const {
625 if (getRelaxAll())
626 return true;
628 // If we cannot resolve the fixup value, it requires relaxation.
629 MCValue Target;
630 uint64_t Value;
631 if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
632 return true;
634 // Otherwise, relax if the value is too big for a (signed) i8.
636 // FIXME: This is target dependent!
637 return int64_t(Value) != int64_t(int8_t(Value));
640 bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF,
641 const MCAsmLayout &Layout) const {
642 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
643 // are intentionally pushing out inst fragments, or because we relaxed a
644 // previous instruction to one that doesn't need relaxation.
645 if (!getBackend().MayNeedRelaxation(IF->getInst()))
646 return false;
648 for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
649 ie = IF->fixup_end(); it != ie; ++it)
650 if (FixupNeedsRelaxation(*it, IF, Layout))
651 return true;
653 return false;
656 bool MCAssembler::RelaxInstruction(MCAsmLayout &Layout,
657 MCInstFragment &IF) {
658 if (!FragmentNeedsRelaxation(&IF, Layout))
659 return false;
661 ++stats::RelaxedInstructions;
663 // FIXME-PERF: We could immediately lower out instructions if we can tell
664 // they are fully resolved, to avoid retesting on later passes.
666 // Relax the fragment.
668 MCInst Relaxed;
669 getBackend().RelaxInstruction(IF.getInst(), Relaxed);
671 // Encode the new instruction.
673 // FIXME-PERF: If it matters, we could let the target do this. It can
674 // probably do so more efficiently in many cases.
675 SmallVector<MCFixup, 4> Fixups;
676 SmallString<256> Code;
677 raw_svector_ostream VecOS(Code);
678 getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
679 VecOS.flush();
681 // Update the instruction fragment.
682 IF.setInst(Relaxed);
683 IF.getCode() = Code;
684 IF.getFixups().clear();
685 // FIXME: Eliminate copy.
686 for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
687 IF.getFixups().push_back(Fixups[i]);
689 return true;
692 bool MCAssembler::RelaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
693 int64_t Value = 0;
694 uint64_t OldSize = LF.getContents().size();
695 LF.getValue().EvaluateAsAbsolute(Value, Layout);
696 SmallString<8> &Data = LF.getContents();
697 Data.clear();
698 raw_svector_ostream OSE(Data);
699 if (LF.isSigned())
700 MCObjectWriter::EncodeSLEB128(Value, OSE);
701 else
702 MCObjectWriter::EncodeULEB128(Value, OSE);
703 OSE.flush();
704 return OldSize != LF.getContents().size();
707 bool MCAssembler::RelaxDwarfLineAddr(MCAsmLayout &Layout,
708 MCDwarfLineAddrFragment &DF) {
709 int64_t AddrDelta = 0;
710 uint64_t OldSize = DF.getContents().size();
711 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
712 (void)IsAbs;
713 assert(IsAbs);
714 int64_t LineDelta;
715 LineDelta = DF.getLineDelta();
716 SmallString<8> &Data = DF.getContents();
717 Data.clear();
718 raw_svector_ostream OSE(Data);
719 MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE);
720 OSE.flush();
721 return OldSize != Data.size();
724 bool MCAssembler::RelaxDwarfCallFrameFragment(MCAsmLayout &Layout,
725 MCDwarfCallFrameFragment &DF) {
726 int64_t AddrDelta = 0;
727 uint64_t OldSize = DF.getContents().size();
728 bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
729 (void)IsAbs;
730 assert(IsAbs);
731 SmallString<8> &Data = DF.getContents();
732 Data.clear();
733 raw_svector_ostream OSE(Data);
734 MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE);
735 OSE.flush();
736 return OldSize != Data.size();
739 bool MCAssembler::LayoutSectionOnce(MCAsmLayout &Layout,
740 MCSectionData &SD) {
741 MCFragment *FirstInvalidFragment = NULL;
742 // Scan for fragments that need relaxation.
743 for (MCSectionData::iterator it2 = SD.begin(),
744 ie2 = SD.end(); it2 != ie2; ++it2) {
745 // Check if this is an fragment that needs relaxation.
746 bool relaxedFrag = false;
747 switch(it2->getKind()) {
748 default:
749 break;
750 case MCFragment::FT_Inst:
751 relaxedFrag = RelaxInstruction(Layout, *cast<MCInstFragment>(it2));
752 break;
753 case MCFragment::FT_Dwarf:
754 relaxedFrag = RelaxDwarfLineAddr(Layout,
755 *cast<MCDwarfLineAddrFragment>(it2));
756 break;
757 case MCFragment::FT_DwarfFrame:
758 relaxedFrag =
759 RelaxDwarfCallFrameFragment(Layout,
760 *cast<MCDwarfCallFrameFragment>(it2));
761 break;
762 case MCFragment::FT_LEB:
763 relaxedFrag = RelaxLEB(Layout, *cast<MCLEBFragment>(it2));
764 break;
766 // Update the layout, and remember that we relaxed.
767 if (relaxedFrag && !FirstInvalidFragment)
768 FirstInvalidFragment = it2;
770 if (FirstInvalidFragment) {
771 Layout.Invalidate(FirstInvalidFragment);
772 return true;
774 return false;
777 bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
778 ++stats::RelaxationSteps;
780 bool WasRelaxed = false;
781 for (iterator it = begin(), ie = end(); it != ie; ++it) {
782 MCSectionData &SD = *it;
783 while(LayoutSectionOnce(Layout, SD))
784 WasRelaxed = true;
787 return WasRelaxed;
790 void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
791 // The layout is done. Mark every fragment as valid.
792 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
793 Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
797 // Debugging methods
799 namespace llvm {
801 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
802 OS << "<MCFixup" << " Offset:" << AF.getOffset()
803 << " Value:" << *AF.getValue()
804 << " Kind:" << AF.getKind() << ">";
805 return OS;
810 void MCFragment::dump() {
811 raw_ostream &OS = llvm::errs();
813 OS << "<";
814 switch (getKind()) {
815 case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
816 case MCFragment::FT_Data: OS << "MCDataFragment"; break;
817 case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
818 case MCFragment::FT_Inst: OS << "MCInstFragment"; break;
819 case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
820 case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
821 case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
822 case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
825 OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
826 << " Offset:" << Offset << ">";
828 switch (getKind()) {
829 case MCFragment::FT_Align: {
830 const MCAlignFragment *AF = cast<MCAlignFragment>(this);
831 if (AF->hasEmitNops())
832 OS << " (emit nops)";
833 OS << "\n ";
834 OS << " Alignment:" << AF->getAlignment()
835 << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
836 << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
837 break;
839 case MCFragment::FT_Data: {
840 const MCDataFragment *DF = cast<MCDataFragment>(this);
841 OS << "\n ";
842 OS << " Contents:[";
843 const SmallVectorImpl<char> &Contents = DF->getContents();
844 for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
845 if (i) OS << ",";
846 OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
848 OS << "] (" << Contents.size() << " bytes)";
850 if (!DF->getFixups().empty()) {
851 OS << ",\n ";
852 OS << " Fixups:[";
853 for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
854 ie = DF->fixup_end(); it != ie; ++it) {
855 if (it != DF->fixup_begin()) OS << ",\n ";
856 OS << *it;
858 OS << "]";
860 break;
862 case MCFragment::FT_Fill: {
863 const MCFillFragment *FF = cast<MCFillFragment>(this);
864 OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
865 << " Size:" << FF->getSize();
866 break;
868 case MCFragment::FT_Inst: {
869 const MCInstFragment *IF = cast<MCInstFragment>(this);
870 OS << "\n ";
871 OS << " Inst:";
872 IF->getInst().dump_pretty(OS);
873 break;
875 case MCFragment::FT_Org: {
876 const MCOrgFragment *OF = cast<MCOrgFragment>(this);
877 OS << "\n ";
878 OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
879 break;
881 case MCFragment::FT_Dwarf: {
882 const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
883 OS << "\n ";
884 OS << " AddrDelta:" << OF->getAddrDelta()
885 << " LineDelta:" << OF->getLineDelta();
886 break;
888 case MCFragment::FT_DwarfFrame: {
889 const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
890 OS << "\n ";
891 OS << " AddrDelta:" << CF->getAddrDelta();
892 break;
894 case MCFragment::FT_LEB: {
895 const MCLEBFragment *LF = cast<MCLEBFragment>(this);
896 OS << "\n ";
897 OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
898 break;
901 OS << ">";
904 void MCSectionData::dump() {
905 raw_ostream &OS = llvm::errs();
907 OS << "<MCSectionData";
908 OS << " Alignment:" << getAlignment() << " Fragments:[\n ";
909 for (iterator it = begin(), ie = end(); it != ie; ++it) {
910 if (it != begin()) OS << ",\n ";
911 it->dump();
913 OS << "]>";
916 void MCSymbolData::dump() {
917 raw_ostream &OS = llvm::errs();
919 OS << "<MCSymbolData Symbol:" << getSymbol()
920 << " Fragment:" << getFragment() << " Offset:" << getOffset()
921 << " Flags:" << getFlags() << " Index:" << getIndex();
922 if (isCommon())
923 OS << " (common, size:" << getCommonSize()
924 << " align: " << getCommonAlignment() << ")";
925 if (isExternal())
926 OS << " (external)";
927 if (isPrivateExtern())
928 OS << " (private extern)";
929 OS << ">";
932 void MCAssembler::dump() {
933 raw_ostream &OS = llvm::errs();
935 OS << "<MCAssembler\n";
936 OS << " Sections:[\n ";
937 for (iterator it = begin(), ie = end(); it != ie; ++it) {
938 if (it != begin()) OS << ",\n ";
939 it->dump();
941 OS << "],\n";
942 OS << " Symbols:[";
944 for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
945 if (it != symbol_begin()) OS << ",\n ";
946 it->dump();
948 OS << "]>\n";