Use %ull here.
[llvm/stm8.git] / lib / MC / MachObjectWriter.cpp
blob105506a113d693fba5710f0fe4fbc363155189cd
1 //===- lib/MC/MachObjectWriter.cpp - Mach-O File Writer -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/MC/MCMachObjectWriter.h"
11 #include "llvm/ADT/OwningPtr.h"
12 #include "llvm/ADT/StringMap.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAssembler.h"
15 #include "llvm/MC/MCAsmLayout.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCObjectWriter.h"
18 #include "llvm/MC/MCSectionMachO.h"
19 #include "llvm/MC/MCSymbol.h"
20 #include "llvm/MC/MCMachOSymbolFlags.h"
21 #include "llvm/MC/MCValue.h"
22 #include "llvm/Object/MachOFormat.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Target/TargetAsmBackend.h"
26 // FIXME: Gross.
27 #include "../Target/ARM/ARMFixupKinds.h"
28 #include "../Target/X86/X86FixupKinds.h"
30 #include <vector>
31 using namespace llvm;
32 using namespace llvm::object;
34 // FIXME: this has been copied from (or to) X86AsmBackend.cpp
35 static unsigned getFixupKindLog2Size(unsigned Kind) {
36 switch (Kind) {
37 default:
38 llvm_unreachable("invalid fixup kind!");
39 case FK_PCRel_1:
40 case FK_Data_1: return 0;
41 case FK_PCRel_2:
42 case FK_Data_2: return 1;
43 case FK_PCRel_4:
44 // FIXME: Remove these!!!
45 case X86::reloc_riprel_4byte:
46 case X86::reloc_riprel_4byte_movq_load:
47 case X86::reloc_signed_4byte:
48 case FK_Data_4: return 2;
49 case FK_Data_8: return 3;
53 static bool doesSymbolRequireExternRelocation(MCSymbolData *SD) {
54 // Undefined symbols are always extern.
55 if (SD->Symbol->isUndefined())
56 return true;
58 // References to weak definitions require external relocation entries; the
59 // definition may not always be the one in the same object file.
60 if (SD->getFlags() & SF_WeakDefinition)
61 return true;
63 // Otherwise, we can use an internal relocation.
64 return false;
67 namespace {
69 class MachObjectWriter : public MCObjectWriter {
70 /// MachSymbolData - Helper struct for containing some precomputed information
71 /// on symbols.
72 struct MachSymbolData {
73 MCSymbolData *SymbolData;
74 uint64_t StringIndex;
75 uint8_t SectionIndex;
77 // Support lexicographic sorting.
78 bool operator<(const MachSymbolData &RHS) const {
79 return SymbolData->getSymbol().getName() <
80 RHS.SymbolData->getSymbol().getName();
84 /// The target specific Mach-O writer instance.
85 llvm::OwningPtr<MCMachObjectTargetWriter> TargetObjectWriter;
87 /// @name Relocation Data
88 /// @{
90 llvm::DenseMap<const MCSectionData*,
91 std::vector<macho::RelocationEntry> > Relocations;
92 llvm::DenseMap<const MCSectionData*, unsigned> IndirectSymBase;
94 /// @}
95 /// @name Symbol Table Data
96 /// @{
98 SmallString<256> StringTable;
99 std::vector<MachSymbolData> LocalSymbolData;
100 std::vector<MachSymbolData> ExternalSymbolData;
101 std::vector<MachSymbolData> UndefinedSymbolData;
103 /// @}
105 private:
106 /// @name Utility Methods
107 /// @{
109 bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) {
110 const MCFixupKindInfo &FKI = Asm.getBackend().getFixupKindInfo(
111 (MCFixupKind) Kind);
113 return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel;
116 /// @}
118 SectionAddrMap SectionAddress;
119 uint64_t getSectionAddress(const MCSectionData* SD) const {
120 return SectionAddress.lookup(SD);
122 uint64_t getSymbolAddress(const MCSymbolData* SD,
123 const MCAsmLayout &Layout) const {
124 return getSectionAddress(SD->getFragment()->getParent()) +
125 Layout.getSymbolOffset(SD);
127 uint64_t getFragmentAddress(const MCFragment *Fragment,
128 const MCAsmLayout &Layout) const {
129 return getSectionAddress(Fragment->getParent()) +
130 Layout.getFragmentOffset(Fragment);
133 uint64_t getPaddingSize(const MCSectionData *SD,
134 const MCAsmLayout &Layout) const {
135 uint64_t EndAddr = getSectionAddress(SD) + Layout.getSectionAddressSize(SD);
136 unsigned Next = SD->getLayoutOrder() + 1;
137 if (Next >= Layout.getSectionOrder().size())
138 return 0;
140 const MCSectionData &NextSD = *Layout.getSectionOrder()[Next];
141 if (NextSD.getSection().isVirtualSection())
142 return 0;
143 return OffsetToAlignment(EndAddr, NextSD.getAlignment());
146 public:
147 MachObjectWriter(MCMachObjectTargetWriter *MOTW, raw_ostream &_OS,
148 bool _IsLittleEndian)
149 : MCObjectWriter(_OS, _IsLittleEndian), TargetObjectWriter(MOTW) {
152 /// @name Target Writer Proxy Accessors
153 /// @{
155 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
156 bool isARM() const {
157 uint32_t CPUType = TargetObjectWriter->getCPUType() & ~mach::CTFM_ArchMask;
158 return CPUType == mach::CTM_ARM;
161 /// @}
163 void WriteHeader(unsigned NumLoadCommands, unsigned LoadCommandsSize,
164 bool SubsectionsViaSymbols) {
165 uint32_t Flags = 0;
167 if (SubsectionsViaSymbols)
168 Flags |= macho::HF_SubsectionsViaSymbols;
170 // struct mach_header (28 bytes) or
171 // struct mach_header_64 (32 bytes)
173 uint64_t Start = OS.tell();
174 (void) Start;
176 Write32(is64Bit() ? macho::HM_Object64 : macho::HM_Object32);
178 Write32(TargetObjectWriter->getCPUType());
179 Write32(TargetObjectWriter->getCPUSubtype());
181 Write32(macho::HFT_Object);
182 Write32(NumLoadCommands);
183 Write32(LoadCommandsSize);
184 Write32(Flags);
185 if (is64Bit())
186 Write32(0); // reserved
188 assert(OS.tell() - Start ==
189 (is64Bit() ? macho::Header64Size : macho::Header32Size));
192 /// WriteSegmentLoadCommand - Write a segment load command.
194 /// \arg NumSections - The number of sections in this segment.
195 /// \arg SectionDataSize - The total size of the sections.
196 void WriteSegmentLoadCommand(unsigned NumSections,
197 uint64_t VMSize,
198 uint64_t SectionDataStartOffset,
199 uint64_t SectionDataSize) {
200 // struct segment_command (56 bytes) or
201 // struct segment_command_64 (72 bytes)
203 uint64_t Start = OS.tell();
204 (void) Start;
206 unsigned SegmentLoadCommandSize =
207 is64Bit() ? macho::SegmentLoadCommand64Size:
208 macho::SegmentLoadCommand32Size;
209 Write32(is64Bit() ? macho::LCT_Segment64 : macho::LCT_Segment);
210 Write32(SegmentLoadCommandSize +
211 NumSections * (is64Bit() ? macho::Section64Size :
212 macho::Section32Size));
214 WriteBytes("", 16);
215 if (is64Bit()) {
216 Write64(0); // vmaddr
217 Write64(VMSize); // vmsize
218 Write64(SectionDataStartOffset); // file offset
219 Write64(SectionDataSize); // file size
220 } else {
221 Write32(0); // vmaddr
222 Write32(VMSize); // vmsize
223 Write32(SectionDataStartOffset); // file offset
224 Write32(SectionDataSize); // file size
226 Write32(0x7); // maxprot
227 Write32(0x7); // initprot
228 Write32(NumSections);
229 Write32(0); // flags
231 assert(OS.tell() - Start == SegmentLoadCommandSize);
234 void WriteSection(const MCAssembler &Asm, const MCAsmLayout &Layout,
235 const MCSectionData &SD, uint64_t FileOffset,
236 uint64_t RelocationsStart, unsigned NumRelocations) {
237 uint64_t SectionSize = Layout.getSectionAddressSize(&SD);
239 // The offset is unused for virtual sections.
240 if (SD.getSection().isVirtualSection()) {
241 assert(Layout.getSectionFileSize(&SD) == 0 && "Invalid file size!");
242 FileOffset = 0;
245 // struct section (68 bytes) or
246 // struct section_64 (80 bytes)
248 uint64_t Start = OS.tell();
249 (void) Start;
251 const MCSectionMachO &Section = cast<MCSectionMachO>(SD.getSection());
252 WriteBytes(Section.getSectionName(), 16);
253 WriteBytes(Section.getSegmentName(), 16);
254 if (is64Bit()) {
255 Write64(getSectionAddress(&SD)); // address
256 Write64(SectionSize); // size
257 } else {
258 Write32(getSectionAddress(&SD)); // address
259 Write32(SectionSize); // size
261 Write32(FileOffset);
263 unsigned Flags = Section.getTypeAndAttributes();
264 if (SD.hasInstructions())
265 Flags |= MCSectionMachO::S_ATTR_SOME_INSTRUCTIONS;
267 assert(isPowerOf2_32(SD.getAlignment()) && "Invalid alignment!");
268 Write32(Log2_32(SD.getAlignment()));
269 Write32(NumRelocations ? RelocationsStart : 0);
270 Write32(NumRelocations);
271 Write32(Flags);
272 Write32(IndirectSymBase.lookup(&SD)); // reserved1
273 Write32(Section.getStubSize()); // reserved2
274 if (is64Bit())
275 Write32(0); // reserved3
277 assert(OS.tell() - Start == (is64Bit() ? macho::Section64Size :
278 macho::Section32Size));
281 void WriteSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols,
282 uint32_t StringTableOffset,
283 uint32_t StringTableSize) {
284 // struct symtab_command (24 bytes)
286 uint64_t Start = OS.tell();
287 (void) Start;
289 Write32(macho::LCT_Symtab);
290 Write32(macho::SymtabLoadCommandSize);
291 Write32(SymbolOffset);
292 Write32(NumSymbols);
293 Write32(StringTableOffset);
294 Write32(StringTableSize);
296 assert(OS.tell() - Start == macho::SymtabLoadCommandSize);
299 void WriteDysymtabLoadCommand(uint32_t FirstLocalSymbol,
300 uint32_t NumLocalSymbols,
301 uint32_t FirstExternalSymbol,
302 uint32_t NumExternalSymbols,
303 uint32_t FirstUndefinedSymbol,
304 uint32_t NumUndefinedSymbols,
305 uint32_t IndirectSymbolOffset,
306 uint32_t NumIndirectSymbols) {
307 // struct dysymtab_command (80 bytes)
309 uint64_t Start = OS.tell();
310 (void) Start;
312 Write32(macho::LCT_Dysymtab);
313 Write32(macho::DysymtabLoadCommandSize);
314 Write32(FirstLocalSymbol);
315 Write32(NumLocalSymbols);
316 Write32(FirstExternalSymbol);
317 Write32(NumExternalSymbols);
318 Write32(FirstUndefinedSymbol);
319 Write32(NumUndefinedSymbols);
320 Write32(0); // tocoff
321 Write32(0); // ntoc
322 Write32(0); // modtaboff
323 Write32(0); // nmodtab
324 Write32(0); // extrefsymoff
325 Write32(0); // nextrefsyms
326 Write32(IndirectSymbolOffset);
327 Write32(NumIndirectSymbols);
328 Write32(0); // extreloff
329 Write32(0); // nextrel
330 Write32(0); // locreloff
331 Write32(0); // nlocrel
333 assert(OS.tell() - Start == macho::DysymtabLoadCommandSize);
336 void WriteNlist(MachSymbolData &MSD, const MCAsmLayout &Layout) {
337 MCSymbolData &Data = *MSD.SymbolData;
338 const MCSymbol &Symbol = Data.getSymbol();
339 uint8_t Type = 0;
340 uint16_t Flags = Data.getFlags();
341 uint32_t Address = 0;
343 // Set the N_TYPE bits. See <mach-o/nlist.h>.
345 // FIXME: Are the prebound or indirect fields possible here?
346 if (Symbol.isUndefined())
347 Type = macho::STT_Undefined;
348 else if (Symbol.isAbsolute())
349 Type = macho::STT_Absolute;
350 else
351 Type = macho::STT_Section;
353 // FIXME: Set STAB bits.
355 if (Data.isPrivateExtern())
356 Type |= macho::STF_PrivateExtern;
358 // Set external bit.
359 if (Data.isExternal() || Symbol.isUndefined())
360 Type |= macho::STF_External;
362 // Compute the symbol address.
363 if (Symbol.isDefined()) {
364 if (Symbol.isAbsolute()) {
365 Address = cast<MCConstantExpr>(Symbol.getVariableValue())->getValue();
366 } else {
367 Address = getSymbolAddress(&Data, Layout);
369 } else if (Data.isCommon()) {
370 // Common symbols are encoded with the size in the address
371 // field, and their alignment in the flags.
372 Address = Data.getCommonSize();
374 // Common alignment is packed into the 'desc' bits.
375 if (unsigned Align = Data.getCommonAlignment()) {
376 unsigned Log2Size = Log2_32(Align);
377 assert((1U << Log2Size) == Align && "Invalid 'common' alignment!");
378 if (Log2Size > 15)
379 report_fatal_error("invalid 'common' alignment '" +
380 Twine(Align) + "'");
381 // FIXME: Keep this mask with the SymbolFlags enumeration.
382 Flags = (Flags & 0xF0FF) | (Log2Size << 8);
386 // struct nlist (12 bytes)
388 Write32(MSD.StringIndex);
389 Write8(Type);
390 Write8(MSD.SectionIndex);
392 // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc'
393 // value.
394 Write16(Flags);
395 if (is64Bit())
396 Write64(Address);
397 else
398 Write32(Address);
401 // FIXME: We really need to improve the relocation validation. Basically, we
402 // want to implement a separate computation which evaluates the relocation
403 // entry as the linker would, and verifies that the resultant fixup value is
404 // exactly what the encoder wanted. This will catch several classes of
405 // problems:
407 // - Relocation entry bugs, the two algorithms are unlikely to have the same
408 // exact bug.
410 // - Relaxation issues, where we forget to relax something.
412 // - Input errors, where something cannot be correctly encoded. 'as' allows
413 // these through in many cases.
415 static bool isFixupKindRIPRel(unsigned Kind) {
416 return Kind == X86::reloc_riprel_4byte ||
417 Kind == X86::reloc_riprel_4byte_movq_load;
419 void RecordX86_64Relocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
420 const MCFragment *Fragment,
421 const MCFixup &Fixup, MCValue Target,
422 uint64_t &FixedValue) {
423 unsigned IsPCRel = isFixupKindPCRel(Asm, Fixup.getKind());
424 unsigned IsRIPRel = isFixupKindRIPRel(Fixup.getKind());
425 unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
427 // See <reloc.h>.
428 uint32_t FixupOffset =
429 Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
430 uint32_t FixupAddress =
431 getFragmentAddress(Fragment, Layout) + Fixup.getOffset();
432 int64_t Value = 0;
433 unsigned Index = 0;
434 unsigned IsExtern = 0;
435 unsigned Type = 0;
437 Value = Target.getConstant();
439 if (IsPCRel) {
440 // Compensate for the relocation offset, Darwin x86_64 relocations only
441 // have the addend and appear to have attempted to define it to be the
442 // actual expression addend without the PCrel bias. However, instructions
443 // with data following the relocation are not accomodated for (see comment
444 // below regarding SIGNED{1,2,4}), so it isn't exactly that either.
445 Value += 1LL << Log2Size;
448 if (Target.isAbsolute()) { // constant
449 // SymbolNum of 0 indicates the absolute section.
450 Type = macho::RIT_X86_64_Unsigned;
451 Index = 0;
453 // FIXME: I believe this is broken, I don't think the linker can
454 // understand it. I think it would require a local relocation, but I'm not
455 // sure if that would work either. The official way to get an absolute
456 // PCrel relocation is to use an absolute symbol (which we don't support
457 // yet).
458 if (IsPCRel) {
459 IsExtern = 1;
460 Type = macho::RIT_X86_64_Branch;
462 } else if (Target.getSymB()) { // A - B + constant
463 const MCSymbol *A = &Target.getSymA()->getSymbol();
464 MCSymbolData &A_SD = Asm.getSymbolData(*A);
465 const MCSymbolData *A_Base = Asm.getAtom(&A_SD);
467 const MCSymbol *B = &Target.getSymB()->getSymbol();
468 MCSymbolData &B_SD = Asm.getSymbolData(*B);
469 const MCSymbolData *B_Base = Asm.getAtom(&B_SD);
471 // Neither symbol can be modified.
472 if (Target.getSymA()->getKind() != MCSymbolRefExpr::VK_None ||
473 Target.getSymB()->getKind() != MCSymbolRefExpr::VK_None)
474 report_fatal_error("unsupported relocation of modified symbol");
476 // We don't support PCrel relocations of differences. Darwin 'as' doesn't
477 // implement most of these correctly.
478 if (IsPCRel)
479 report_fatal_error("unsupported pc-relative relocation of difference");
481 // The support for the situation where one or both of the symbols would
482 // require a local relocation is handled just like if the symbols were
483 // external. This is certainly used in the case of debug sections where
484 // the section has only temporary symbols and thus the symbols don't have
485 // base symbols. This is encoded using the section ordinal and
486 // non-extern relocation entries.
488 // Darwin 'as' doesn't emit correct relocations for this (it ends up with
489 // a single SIGNED relocation); reject it for now. Except the case where
490 // both symbols don't have a base, equal but both NULL.
491 if (A_Base == B_Base && A_Base)
492 report_fatal_error("unsupported relocation with identical base");
494 Value += getSymbolAddress(&A_SD, Layout) -
495 (A_Base == NULL ? 0 : getSymbolAddress(A_Base, Layout));
496 Value -= getSymbolAddress(&B_SD, Layout) -
497 (B_Base == NULL ? 0 : getSymbolAddress(B_Base, Layout));
499 if (A_Base) {
500 Index = A_Base->getIndex();
501 IsExtern = 1;
503 else {
504 Index = A_SD.getFragment()->getParent()->getOrdinal() + 1;
505 IsExtern = 0;
507 Type = macho::RIT_X86_64_Unsigned;
509 macho::RelocationEntry MRE;
510 MRE.Word0 = FixupOffset;
511 MRE.Word1 = ((Index << 0) |
512 (IsPCRel << 24) |
513 (Log2Size << 25) |
514 (IsExtern << 27) |
515 (Type << 28));
516 Relocations[Fragment->getParent()].push_back(MRE);
518 if (B_Base) {
519 Index = B_Base->getIndex();
520 IsExtern = 1;
522 else {
523 Index = B_SD.getFragment()->getParent()->getOrdinal() + 1;
524 IsExtern = 0;
526 Type = macho::RIT_X86_64_Subtractor;
527 } else {
528 const MCSymbol *Symbol = &Target.getSymA()->getSymbol();
529 MCSymbolData &SD = Asm.getSymbolData(*Symbol);
530 const MCSymbolData *Base = Asm.getAtom(&SD);
532 // Relocations inside debug sections always use local relocations when
533 // possible. This seems to be done because the debugger doesn't fully
534 // understand x86_64 relocation entries, and expects to find values that
535 // have already been fixed up.
536 if (Symbol->isInSection()) {
537 const MCSectionMachO &Section = static_cast<const MCSectionMachO&>(
538 Fragment->getParent()->getSection());
539 if (Section.hasAttribute(MCSectionMachO::S_ATTR_DEBUG))
540 Base = 0;
543 // x86_64 almost always uses external relocations, except when there is no
544 // symbol to use as a base address (a local symbol with no preceeding
545 // non-local symbol).
546 if (Base) {
547 Index = Base->getIndex();
548 IsExtern = 1;
550 // Add the local offset, if needed.
551 if (Base != &SD)
552 Value += Layout.getSymbolOffset(&SD) - Layout.getSymbolOffset(Base);
553 } else if (Symbol->isInSection()) {
554 // The index is the section ordinal (1-based).
555 Index = SD.getFragment()->getParent()->getOrdinal() + 1;
556 IsExtern = 0;
557 Value += getSymbolAddress(&SD, Layout);
559 if (IsPCRel)
560 Value -= FixupAddress + (1 << Log2Size);
561 } else if (Symbol->isVariable()) {
562 const MCExpr *Value = Symbol->getVariableValue();
563 int64_t Res;
564 bool isAbs = Value->EvaluateAsAbsolute(Res, Layout, SectionAddress);
565 if (isAbs) {
566 FixedValue = Res;
567 return;
568 } else {
569 report_fatal_error("unsupported relocation of variable '" +
570 Symbol->getName() + "'");
572 } else {
573 report_fatal_error("unsupported relocation of undefined symbol '" +
574 Symbol->getName() + "'");
577 MCSymbolRefExpr::VariantKind Modifier = Target.getSymA()->getKind();
578 if (IsPCRel) {
579 if (IsRIPRel) {
580 if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
581 // x86_64 distinguishes movq foo@GOTPCREL so that the linker can
582 // rewrite the movq to an leaq at link time if the symbol ends up in
583 // the same linkage unit.
584 if (unsigned(Fixup.getKind()) == X86::reloc_riprel_4byte_movq_load)
585 Type = macho::RIT_X86_64_GOTLoad;
586 else
587 Type = macho::RIT_X86_64_GOT;
588 } else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
589 Type = macho::RIT_X86_64_TLV;
590 } else if (Modifier != MCSymbolRefExpr::VK_None) {
591 report_fatal_error("unsupported symbol modifier in relocation");
592 } else {
593 Type = macho::RIT_X86_64_Signed;
595 // The Darwin x86_64 relocation format has a problem where it cannot
596 // encode an address (L<foo> + <constant>) which is outside the atom
597 // containing L<foo>. Generally, this shouldn't occur but it does
598 // happen when we have a RIPrel instruction with data following the
599 // relocation entry (e.g., movb $012, L0(%rip)). Even with the PCrel
600 // adjustment Darwin x86_64 uses, the offset is still negative and
601 // the linker has no way to recognize this.
603 // To work around this, Darwin uses several special relocation types
604 // to indicate the offsets. However, the specification or
605 // implementation of these seems to also be incomplete; they should
606 // adjust the addend as well based on the actual encoded instruction
607 // (the additional bias), but instead appear to just look at the
608 // final offset.
609 switch (-(Target.getConstant() + (1LL << Log2Size))) {
610 case 1: Type = macho::RIT_X86_64_Signed1; break;
611 case 2: Type = macho::RIT_X86_64_Signed2; break;
612 case 4: Type = macho::RIT_X86_64_Signed4; break;
615 } else {
616 if (Modifier != MCSymbolRefExpr::VK_None)
617 report_fatal_error("unsupported symbol modifier in branch "
618 "relocation");
620 Type = macho::RIT_X86_64_Branch;
622 } else {
623 if (Modifier == MCSymbolRefExpr::VK_GOT) {
624 Type = macho::RIT_X86_64_GOT;
625 } else if (Modifier == MCSymbolRefExpr::VK_GOTPCREL) {
626 // GOTPCREL is allowed as a modifier on non-PCrel instructions, in
627 // which case all we do is set the PCrel bit in the relocation entry;
628 // this is used with exception handling, for example. The source is
629 // required to include any necessary offset directly.
630 Type = macho::RIT_X86_64_GOT;
631 IsPCRel = 1;
632 } else if (Modifier == MCSymbolRefExpr::VK_TLVP) {
633 report_fatal_error("TLVP symbol modifier should have been rip-rel");
634 } else if (Modifier != MCSymbolRefExpr::VK_None)
635 report_fatal_error("unsupported symbol modifier in relocation");
636 else
637 Type = macho::RIT_X86_64_Unsigned;
641 // x86_64 always writes custom values into the fixups.
642 FixedValue = Value;
644 // struct relocation_info (8 bytes)
645 macho::RelocationEntry MRE;
646 MRE.Word0 = FixupOffset;
647 MRE.Word1 = ((Index << 0) |
648 (IsPCRel << 24) |
649 (Log2Size << 25) |
650 (IsExtern << 27) |
651 (Type << 28));
652 Relocations[Fragment->getParent()].push_back(MRE);
655 void RecordScatteredRelocation(const MCAssembler &Asm,
656 const MCAsmLayout &Layout,
657 const MCFragment *Fragment,
658 const MCFixup &Fixup, MCValue Target,
659 unsigned Log2Size,
660 uint64_t &FixedValue) {
661 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
662 unsigned IsPCRel = isFixupKindPCRel(Asm, Fixup.getKind());
663 unsigned Type = macho::RIT_Vanilla;
665 // See <reloc.h>.
666 const MCSymbol *A = &Target.getSymA()->getSymbol();
667 MCSymbolData *A_SD = &Asm.getSymbolData(*A);
669 if (!A_SD->getFragment())
670 report_fatal_error("symbol '" + A->getName() +
671 "' can not be undefined in a subtraction expression");
673 uint32_t Value = getSymbolAddress(A_SD, Layout);
674 uint64_t SecAddr = getSectionAddress(A_SD->getFragment()->getParent());
675 FixedValue += SecAddr;
676 uint32_t Value2 = 0;
678 if (const MCSymbolRefExpr *B = Target.getSymB()) {
679 MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
681 if (!B_SD->getFragment())
682 report_fatal_error("symbol '" + B->getSymbol().getName() +
683 "' can not be undefined in a subtraction expression");
685 // Select the appropriate difference relocation type.
687 // Note that there is no longer any semantic difference between these two
688 // relocation types from the linkers point of view, this is done solely
689 // for pedantic compatibility with 'as'.
690 Type = A_SD->isExternal() ? (unsigned)macho::RIT_Difference :
691 (unsigned)macho::RIT_Generic_LocalDifference;
692 Value2 = getSymbolAddress(B_SD, Layout);
693 FixedValue -= getSectionAddress(B_SD->getFragment()->getParent());
696 // Relocations are written out in reverse order, so the PAIR comes first.
697 if (Type == macho::RIT_Difference ||
698 Type == macho::RIT_Generic_LocalDifference) {
699 macho::RelocationEntry MRE;
700 MRE.Word0 = ((0 << 0) |
701 (macho::RIT_Pair << 24) |
702 (Log2Size << 28) |
703 (IsPCRel << 30) |
704 macho::RF_Scattered);
705 MRE.Word1 = Value2;
706 Relocations[Fragment->getParent()].push_back(MRE);
709 macho::RelocationEntry MRE;
710 MRE.Word0 = ((FixupOffset << 0) |
711 (Type << 24) |
712 (Log2Size << 28) |
713 (IsPCRel << 30) |
714 macho::RF_Scattered);
715 MRE.Word1 = Value;
716 Relocations[Fragment->getParent()].push_back(MRE);
719 void RecordARMScatteredRelocation(const MCAssembler &Asm,
720 const MCAsmLayout &Layout,
721 const MCFragment *Fragment,
722 const MCFixup &Fixup, MCValue Target,
723 unsigned Log2Size,
724 uint64_t &FixedValue) {
725 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
726 unsigned IsPCRel = isFixupKindPCRel(Asm, Fixup.getKind());
727 unsigned Type = macho::RIT_Vanilla;
729 // See <reloc.h>.
730 const MCSymbol *A = &Target.getSymA()->getSymbol();
731 MCSymbolData *A_SD = &Asm.getSymbolData(*A);
733 if (!A_SD->getFragment())
734 report_fatal_error("symbol '" + A->getName() +
735 "' can not be undefined in a subtraction expression");
737 uint32_t Value = getSymbolAddress(A_SD, Layout);
738 uint64_t SecAddr = getSectionAddress(A_SD->getFragment()->getParent());
739 FixedValue += SecAddr;
740 uint32_t Value2 = 0;
742 if (const MCSymbolRefExpr *B = Target.getSymB()) {
743 MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
745 if (!B_SD->getFragment())
746 report_fatal_error("symbol '" + B->getSymbol().getName() +
747 "' can not be undefined in a subtraction expression");
749 // Select the appropriate difference relocation type.
750 Type = macho::RIT_Difference;
751 Value2 = getSymbolAddress(B_SD, Layout);
752 FixedValue -= getSectionAddress(B_SD->getFragment()->getParent());
755 // Relocations are written out in reverse order, so the PAIR comes first.
756 if (Type == macho::RIT_Difference ||
757 Type == macho::RIT_Generic_LocalDifference) {
758 macho::RelocationEntry MRE;
759 MRE.Word0 = ((0 << 0) |
760 (macho::RIT_Pair << 24) |
761 (Log2Size << 28) |
762 (IsPCRel << 30) |
763 macho::RF_Scattered);
764 MRE.Word1 = Value2;
765 Relocations[Fragment->getParent()].push_back(MRE);
768 macho::RelocationEntry MRE;
769 MRE.Word0 = ((FixupOffset << 0) |
770 (Type << 24) |
771 (Log2Size << 28) |
772 (IsPCRel << 30) |
773 macho::RF_Scattered);
774 MRE.Word1 = Value;
775 Relocations[Fragment->getParent()].push_back(MRE);
778 void RecordARMMovwMovtRelocation(const MCAssembler &Asm,
779 const MCAsmLayout &Layout,
780 const MCFragment *Fragment,
781 const MCFixup &Fixup, MCValue Target,
782 uint64_t &FixedValue) {
783 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
784 unsigned IsPCRel = isFixupKindPCRel(Asm, Fixup.getKind());
785 unsigned Type = macho::RIT_ARM_Half;
787 // See <reloc.h>.
788 const MCSymbol *A = &Target.getSymA()->getSymbol();
789 MCSymbolData *A_SD = &Asm.getSymbolData(*A);
791 if (!A_SD->getFragment())
792 report_fatal_error("symbol '" + A->getName() +
793 "' can not be undefined in a subtraction expression");
795 uint32_t Value = getSymbolAddress(A_SD, Layout);
796 uint32_t Value2 = 0;
797 uint64_t SecAddr = getSectionAddress(A_SD->getFragment()->getParent());
798 FixedValue += SecAddr;
800 if (const MCSymbolRefExpr *B = Target.getSymB()) {
801 MCSymbolData *B_SD = &Asm.getSymbolData(B->getSymbol());
803 if (!B_SD->getFragment())
804 report_fatal_error("symbol '" + B->getSymbol().getName() +
805 "' can not be undefined in a subtraction expression");
807 // Select the appropriate difference relocation type.
808 Type = macho::RIT_ARM_HalfDifference;
809 Value2 = getSymbolAddress(B_SD, Layout);
810 FixedValue -= getSectionAddress(B_SD->getFragment()->getParent());
813 // Relocations are written out in reverse order, so the PAIR comes first.
814 // ARM_RELOC_HALF and ARM_RELOC_HALF_SECTDIFF abuse the r_length field:
816 // For these two r_type relocations they always have a pair following them
817 // and the r_length bits are used differently. The encoding of the
818 // r_length is as follows:
819 // low bit of r_length:
820 // 0 - :lower16: for movw instructions
821 // 1 - :upper16: for movt instructions
822 // high bit of r_length:
823 // 0 - arm instructions
824 // 1 - thumb instructions
825 // the other half of the relocated expression is in the following pair
826 // relocation entry in the the low 16 bits of r_address field.
827 unsigned ThumbBit = 0;
828 unsigned MovtBit = 0;
829 switch ((unsigned)Fixup.getKind()) {
830 default: break;
831 case ARM::fixup_arm_movt_hi16:
832 case ARM::fixup_arm_movt_hi16_pcrel:
833 MovtBit = 1;
834 break;
835 case ARM::fixup_t2_movt_hi16:
836 case ARM::fixup_t2_movt_hi16_pcrel:
837 MovtBit = 1;
838 // Fallthrough
839 case ARM::fixup_t2_movw_lo16:
840 case ARM::fixup_t2_movw_lo16_pcrel:
841 ThumbBit = 1;
842 break;
846 if (Type == macho::RIT_ARM_HalfDifference) {
847 uint32_t OtherHalf = MovtBit
848 ? (FixedValue & 0xffff) : ((FixedValue & 0xffff0000) >> 16);
850 macho::RelocationEntry MRE;
851 MRE.Word0 = ((OtherHalf << 0) |
852 (macho::RIT_Pair << 24) |
853 (MovtBit << 28) |
854 (ThumbBit << 29) |
855 (IsPCRel << 30) |
856 macho::RF_Scattered);
857 MRE.Word1 = Value2;
858 Relocations[Fragment->getParent()].push_back(MRE);
861 macho::RelocationEntry MRE;
862 MRE.Word0 = ((FixupOffset << 0) |
863 (Type << 24) |
864 (MovtBit << 28) |
865 (ThumbBit << 29) |
866 (IsPCRel << 30) |
867 macho::RF_Scattered);
868 MRE.Word1 = Value;
869 Relocations[Fragment->getParent()].push_back(MRE);
872 void RecordTLVPRelocation(const MCAssembler &Asm,
873 const MCAsmLayout &Layout,
874 const MCFragment *Fragment,
875 const MCFixup &Fixup, MCValue Target,
876 uint64_t &FixedValue) {
877 assert(Target.getSymA()->getKind() == MCSymbolRefExpr::VK_TLVP &&
878 !is64Bit() &&
879 "Should only be called with a 32-bit TLVP relocation!");
881 unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
882 uint32_t Value = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
883 unsigned IsPCRel = 0;
885 // Get the symbol data.
886 MCSymbolData *SD_A = &Asm.getSymbolData(Target.getSymA()->getSymbol());
887 unsigned Index = SD_A->getIndex();
889 // We're only going to have a second symbol in pic mode and it'll be a
890 // subtraction from the picbase. For 32-bit pic the addend is the difference
891 // between the picbase and the next address. For 32-bit static the addend
892 // is zero.
893 if (Target.getSymB()) {
894 // If this is a subtraction then we're pcrel.
895 uint32_t FixupAddress =
896 getFragmentAddress(Fragment, Layout) + Fixup.getOffset();
897 MCSymbolData *SD_B = &Asm.getSymbolData(Target.getSymB()->getSymbol());
898 IsPCRel = 1;
899 FixedValue = (FixupAddress - getSymbolAddress(SD_B, Layout) +
900 Target.getConstant());
901 FixedValue += 1ULL << Log2Size;
902 } else {
903 FixedValue = 0;
906 // struct relocation_info (8 bytes)
907 macho::RelocationEntry MRE;
908 MRE.Word0 = Value;
909 MRE.Word1 = ((Index << 0) |
910 (IsPCRel << 24) |
911 (Log2Size << 25) |
912 (1 << 27) | // Extern
913 (macho::RIT_Generic_TLV << 28)); // Type
914 Relocations[Fragment->getParent()].push_back(MRE);
917 static bool getARMFixupKindMachOInfo(unsigned Kind, unsigned &RelocType,
918 unsigned &Log2Size) {
919 RelocType = unsigned(macho::RIT_Vanilla);
920 Log2Size = ~0U;
922 switch (Kind) {
923 default:
924 return false;
926 case FK_Data_1:
927 Log2Size = llvm::Log2_32(1);
928 return true;
929 case FK_Data_2:
930 Log2Size = llvm::Log2_32(2);
931 return true;
932 case FK_Data_4:
933 Log2Size = llvm::Log2_32(4);
934 return true;
935 case FK_Data_8:
936 Log2Size = llvm::Log2_32(8);
937 return true;
939 // Handle 24-bit branch kinds.
940 case ARM::fixup_arm_ldst_pcrel_12:
941 case ARM::fixup_arm_pcrel_10:
942 case ARM::fixup_arm_adr_pcrel_12:
943 case ARM::fixup_arm_condbranch:
944 case ARM::fixup_arm_uncondbranch:
945 RelocType = unsigned(macho::RIT_ARM_Branch24Bit);
946 // Report as 'long', even though that is not quite accurate.
947 Log2Size = llvm::Log2_32(4);
948 return true;
950 // Handle Thumb branches.
951 case ARM::fixup_arm_thumb_br:
952 RelocType = unsigned(macho::RIT_ARM_ThumbBranch22Bit);
953 Log2Size = llvm::Log2_32(2);
954 return true;
956 case ARM::fixup_arm_thumb_bl:
957 case ARM::fixup_arm_thumb_blx:
958 RelocType = unsigned(macho::RIT_ARM_ThumbBranch22Bit);
959 Log2Size = llvm::Log2_32(4);
960 return true;
962 case ARM::fixup_arm_movt_hi16:
963 case ARM::fixup_arm_movt_hi16_pcrel:
964 case ARM::fixup_t2_movt_hi16:
965 case ARM::fixup_t2_movt_hi16_pcrel:
966 RelocType = unsigned(macho::RIT_ARM_HalfDifference);
967 // Report as 'long', even though that is not quite accurate.
968 Log2Size = llvm::Log2_32(4);
969 return true;
971 case ARM::fixup_arm_movw_lo16:
972 case ARM::fixup_arm_movw_lo16_pcrel:
973 case ARM::fixup_t2_movw_lo16:
974 case ARM::fixup_t2_movw_lo16_pcrel:
975 RelocType = unsigned(macho::RIT_ARM_Half);
976 // Report as 'long', even though that is not quite accurate.
977 Log2Size = llvm::Log2_32(4);
978 return true;
981 void RecordARMRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
982 const MCFragment *Fragment, const MCFixup &Fixup,
983 MCValue Target, uint64_t &FixedValue) {
984 unsigned IsPCRel = isFixupKindPCRel(Asm, Fixup.getKind());
985 unsigned Log2Size;
986 unsigned RelocType = macho::RIT_Vanilla;
987 if (!getARMFixupKindMachOInfo(Fixup.getKind(), RelocType, Log2Size)) {
988 report_fatal_error("unknown ARM fixup kind!");
989 return;
992 // If this is a difference or a defined symbol plus an offset, then we need
993 // a scattered relocation entry. Differences always require scattered
994 // relocations.
995 if (Target.getSymB()) {
996 if (RelocType == macho::RIT_ARM_Half ||
997 RelocType == macho::RIT_ARM_HalfDifference)
998 return RecordARMMovwMovtRelocation(Asm, Layout, Fragment, Fixup,
999 Target, FixedValue);
1000 return RecordARMScatteredRelocation(Asm, Layout, Fragment, Fixup,
1001 Target, Log2Size, FixedValue);
1004 // Get the symbol data, if any.
1005 MCSymbolData *SD = 0;
1006 if (Target.getSymA())
1007 SD = &Asm.getSymbolData(Target.getSymA()->getSymbol());
1009 // FIXME: For other platforms, we need to use scattered relocations for
1010 // internal relocations with offsets. If this is an internal relocation
1011 // with an offset, it also needs a scattered relocation entry.
1013 // Is this right for ARM?
1014 uint32_t Offset = Target.getConstant();
1015 if (IsPCRel && RelocType == macho::RIT_Vanilla)
1016 Offset += 1 << Log2Size;
1017 if (Offset && SD && !doesSymbolRequireExternRelocation(SD))
1018 return RecordARMScatteredRelocation(Asm, Layout, Fragment, Fixup, Target,
1019 Log2Size, FixedValue);
1021 // See <reloc.h>.
1022 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
1023 unsigned Index = 0;
1024 unsigned IsExtern = 0;
1025 unsigned Type = 0;
1027 if (Target.isAbsolute()) { // constant
1028 // FIXME!
1029 report_fatal_error("FIXME: relocations to absolute targets "
1030 "not yet implemented");
1031 } else if (SD->getSymbol().isVariable()) {
1032 int64_t Res;
1033 if (SD->getSymbol().getVariableValue()->EvaluateAsAbsolute(
1034 Res, Layout, SectionAddress)) {
1035 FixedValue = Res;
1036 return;
1039 report_fatal_error("unsupported relocation of variable '" +
1040 SD->getSymbol().getName() + "'");
1041 } else {
1042 // Check whether we need an external or internal relocation.
1043 if (doesSymbolRequireExternRelocation(SD)) {
1044 IsExtern = 1;
1045 Index = SD->getIndex();
1046 // For external relocations, make sure to offset the fixup value to
1047 // compensate for the addend of the symbol address, if it was
1048 // undefined. This occurs with weak definitions, for example.
1049 if (!SD->Symbol->isUndefined())
1050 FixedValue -= Layout.getSymbolOffset(SD);
1051 } else {
1052 // The index is the section ordinal (1-based).
1053 Index = SD->getFragment()->getParent()->getOrdinal() + 1;
1054 FixedValue += getSectionAddress(SD->getFragment()->getParent());
1056 if (IsPCRel)
1057 FixedValue -= getSectionAddress(Fragment->getParent());
1059 // The type is determined by the fixup kind.
1060 Type = RelocType;
1063 // struct relocation_info (8 bytes)
1064 macho::RelocationEntry MRE;
1065 MRE.Word0 = FixupOffset;
1066 MRE.Word1 = ((Index << 0) |
1067 (IsPCRel << 24) |
1068 (Log2Size << 25) |
1069 (IsExtern << 27) |
1070 (Type << 28));
1071 Relocations[Fragment->getParent()].push_back(MRE);
1074 void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
1075 const MCFragment *Fragment, const MCFixup &Fixup,
1076 MCValue Target, uint64_t &FixedValue) {
1077 // FIXME: These needs to be factored into the target Mach-O writer.
1078 if (isARM()) {
1079 RecordARMRelocation(Asm, Layout, Fragment, Fixup, Target, FixedValue);
1080 return;
1082 if (is64Bit()) {
1083 RecordX86_64Relocation(Asm, Layout, Fragment, Fixup, Target, FixedValue);
1084 return;
1087 unsigned IsPCRel = isFixupKindPCRel(Asm, Fixup.getKind());
1088 unsigned Log2Size = getFixupKindLog2Size(Fixup.getKind());
1090 // If this is a 32-bit TLVP reloc it's handled a bit differently.
1091 if (Target.getSymA() &&
1092 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_TLVP) {
1093 RecordTLVPRelocation(Asm, Layout, Fragment, Fixup, Target, FixedValue);
1094 return;
1097 // If this is a difference or a defined symbol plus an offset, then we need
1098 // a scattered relocation entry.
1099 // Differences always require scattered relocations.
1100 if (Target.getSymB())
1101 return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup,
1102 Target, Log2Size, FixedValue);
1104 // Get the symbol data, if any.
1105 MCSymbolData *SD = 0;
1106 if (Target.getSymA())
1107 SD = &Asm.getSymbolData(Target.getSymA()->getSymbol());
1109 // If this is an internal relocation with an offset, it also needs a
1110 // scattered relocation entry.
1111 uint32_t Offset = Target.getConstant();
1112 if (IsPCRel)
1113 Offset += 1 << Log2Size;
1114 if (Offset && SD && !doesSymbolRequireExternRelocation(SD))
1115 return RecordScatteredRelocation(Asm, Layout, Fragment, Fixup,
1116 Target, Log2Size, FixedValue);
1118 // See <reloc.h>.
1119 uint32_t FixupOffset = Layout.getFragmentOffset(Fragment)+Fixup.getOffset();
1120 unsigned Index = 0;
1121 unsigned IsExtern = 0;
1122 unsigned Type = 0;
1124 if (Target.isAbsolute()) { // constant
1125 // SymbolNum of 0 indicates the absolute section.
1127 // FIXME: Currently, these are never generated (see code below). I cannot
1128 // find a case where they are actually emitted.
1129 Type = macho::RIT_Vanilla;
1130 } else if (SD->getSymbol().isVariable()) {
1131 int64_t Res;
1132 if (SD->getSymbol().getVariableValue()->EvaluateAsAbsolute(
1133 Res, Layout, SectionAddress)) {
1134 FixedValue = Res;
1135 return;
1138 report_fatal_error("unsupported relocation of variable '" +
1139 SD->getSymbol().getName() + "'");
1140 } else {
1141 // Check whether we need an external or internal relocation.
1142 if (doesSymbolRequireExternRelocation(SD)) {
1143 IsExtern = 1;
1144 Index = SD->getIndex();
1145 // For external relocations, make sure to offset the fixup value to
1146 // compensate for the addend of the symbol address, if it was
1147 // undefined. This occurs with weak definitions, for example.
1148 if (!SD->Symbol->isUndefined())
1149 FixedValue -= Layout.getSymbolOffset(SD);
1150 } else {
1151 // The index is the section ordinal (1-based).
1152 Index = SD->getFragment()->getParent()->getOrdinal() + 1;
1153 FixedValue += getSectionAddress(SD->getFragment()->getParent());
1155 if (IsPCRel)
1156 FixedValue -= getSectionAddress(Fragment->getParent());
1158 Type = macho::RIT_Vanilla;
1161 // struct relocation_info (8 bytes)
1162 macho::RelocationEntry MRE;
1163 MRE.Word0 = FixupOffset;
1164 MRE.Word1 = ((Index << 0) |
1165 (IsPCRel << 24) |
1166 (Log2Size << 25) |
1167 (IsExtern << 27) |
1168 (Type << 28));
1169 Relocations[Fragment->getParent()].push_back(MRE);
1172 void BindIndirectSymbols(MCAssembler &Asm) {
1173 // This is the point where 'as' creates actual symbols for indirect symbols
1174 // (in the following two passes). It would be easier for us to do this
1175 // sooner when we see the attribute, but that makes getting the order in the
1176 // symbol table much more complicated than it is worth.
1178 // FIXME: Revisit this when the dust settles.
1180 // Bind non lazy symbol pointers first.
1181 unsigned IndirectIndex = 0;
1182 for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
1183 ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) {
1184 const MCSectionMachO &Section =
1185 cast<MCSectionMachO>(it->SectionData->getSection());
1187 if (Section.getType() != MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS)
1188 continue;
1190 // Initialize the section indirect symbol base, if necessary.
1191 if (!IndirectSymBase.count(it->SectionData))
1192 IndirectSymBase[it->SectionData] = IndirectIndex;
1194 Asm.getOrCreateSymbolData(*it->Symbol);
1197 // Then lazy symbol pointers and symbol stubs.
1198 IndirectIndex = 0;
1199 for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(),
1200 ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) {
1201 const MCSectionMachO &Section =
1202 cast<MCSectionMachO>(it->SectionData->getSection());
1204 if (Section.getType() != MCSectionMachO::S_LAZY_SYMBOL_POINTERS &&
1205 Section.getType() != MCSectionMachO::S_SYMBOL_STUBS)
1206 continue;
1208 // Initialize the section indirect symbol base, if necessary.
1209 if (!IndirectSymBase.count(it->SectionData))
1210 IndirectSymBase[it->SectionData] = IndirectIndex;
1212 // Set the symbol type to undefined lazy, but only on construction.
1214 // FIXME: Do not hardcode.
1215 bool Created;
1216 MCSymbolData &Entry = Asm.getOrCreateSymbolData(*it->Symbol, &Created);
1217 if (Created)
1218 Entry.setFlags(Entry.getFlags() | 0x0001);
1222 /// ComputeSymbolTable - Compute the symbol table data
1224 /// \param StringTable [out] - The string table data.
1225 /// \param StringIndexMap [out] - Map from symbol names to offsets in the
1226 /// string table.
1227 void ComputeSymbolTable(MCAssembler &Asm, SmallString<256> &StringTable,
1228 std::vector<MachSymbolData> &LocalSymbolData,
1229 std::vector<MachSymbolData> &ExternalSymbolData,
1230 std::vector<MachSymbolData> &UndefinedSymbolData) {
1231 // Build section lookup table.
1232 DenseMap<const MCSection*, uint8_t> SectionIndexMap;
1233 unsigned Index = 1;
1234 for (MCAssembler::iterator it = Asm.begin(),
1235 ie = Asm.end(); it != ie; ++it, ++Index)
1236 SectionIndexMap[&it->getSection()] = Index;
1237 assert(Index <= 256 && "Too many sections!");
1239 // Index 0 is always the empty string.
1240 StringMap<uint64_t> StringIndexMap;
1241 StringTable += '\x00';
1243 // Build the symbol arrays and the string table, but only for non-local
1244 // symbols.
1246 // The particular order that we collect the symbols and create the string
1247 // table, then sort the symbols is chosen to match 'as'. Even though it
1248 // doesn't matter for correctness, this is important for letting us diff .o
1249 // files.
1250 for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
1251 ie = Asm.symbol_end(); it != ie; ++it) {
1252 const MCSymbol &Symbol = it->getSymbol();
1254 // Ignore non-linker visible symbols.
1255 if (!Asm.isSymbolLinkerVisible(it->getSymbol()))
1256 continue;
1258 if (!it->isExternal() && !Symbol.isUndefined())
1259 continue;
1261 uint64_t &Entry = StringIndexMap[Symbol.getName()];
1262 if (!Entry) {
1263 Entry = StringTable.size();
1264 StringTable += Symbol.getName();
1265 StringTable += '\x00';
1268 MachSymbolData MSD;
1269 MSD.SymbolData = it;
1270 MSD.StringIndex = Entry;
1272 if (Symbol.isUndefined()) {
1273 MSD.SectionIndex = 0;
1274 UndefinedSymbolData.push_back(MSD);
1275 } else if (Symbol.isAbsolute()) {
1276 MSD.SectionIndex = 0;
1277 ExternalSymbolData.push_back(MSD);
1278 } else {
1279 MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
1280 assert(MSD.SectionIndex && "Invalid section index!");
1281 ExternalSymbolData.push_back(MSD);
1285 // Now add the data for local symbols.
1286 for (MCAssembler::symbol_iterator it = Asm.symbol_begin(),
1287 ie = Asm.symbol_end(); it != ie; ++it) {
1288 const MCSymbol &Symbol = it->getSymbol();
1290 // Ignore non-linker visible symbols.
1291 if (!Asm.isSymbolLinkerVisible(it->getSymbol()))
1292 continue;
1294 if (it->isExternal() || Symbol.isUndefined())
1295 continue;
1297 uint64_t &Entry = StringIndexMap[Symbol.getName()];
1298 if (!Entry) {
1299 Entry = StringTable.size();
1300 StringTable += Symbol.getName();
1301 StringTable += '\x00';
1304 MachSymbolData MSD;
1305 MSD.SymbolData = it;
1306 MSD.StringIndex = Entry;
1308 if (Symbol.isAbsolute()) {
1309 MSD.SectionIndex = 0;
1310 LocalSymbolData.push_back(MSD);
1311 } else {
1312 MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection());
1313 assert(MSD.SectionIndex && "Invalid section index!");
1314 LocalSymbolData.push_back(MSD);
1318 // External and undefined symbols are required to be in lexicographic order.
1319 std::sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
1320 std::sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());
1322 // Set the symbol indices.
1323 Index = 0;
1324 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
1325 LocalSymbolData[i].SymbolData->setIndex(Index++);
1326 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
1327 ExternalSymbolData[i].SymbolData->setIndex(Index++);
1328 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
1329 UndefinedSymbolData[i].SymbolData->setIndex(Index++);
1331 // The string table is padded to a multiple of 4.
1332 while (StringTable.size() % 4)
1333 StringTable += '\x00';
1336 void computeSectionAddresses(const MCAssembler &Asm,
1337 const MCAsmLayout &Layout) {
1338 uint64_t StartAddress = 0;
1339 const SmallVectorImpl<MCSectionData*> &Order = Layout.getSectionOrder();
1340 for (int i = 0, n = Order.size(); i != n ; ++i) {
1341 const MCSectionData *SD = Order[i];
1342 StartAddress = RoundUpToAlignment(StartAddress, SD->getAlignment());
1343 SectionAddress[SD] = StartAddress;
1344 StartAddress += Layout.getSectionAddressSize(SD);
1345 // Explicitly pad the section to match the alignment requirements of the
1346 // following one. This is for 'gas' compatibility, it shouldn't
1347 /// strictly be necessary.
1348 StartAddress += getPaddingSize(SD, Layout);
1352 void ExecutePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) {
1353 computeSectionAddresses(Asm, Layout);
1355 // Create symbol data for any indirect symbols.
1356 BindIndirectSymbols(Asm);
1358 // Compute symbol table information and bind symbol indices.
1359 ComputeSymbolTable(Asm, StringTable, LocalSymbolData, ExternalSymbolData,
1360 UndefinedSymbolData);
1363 virtual bool IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
1364 const MCSymbolData &DataA,
1365 const MCFragment &FB,
1366 bool InSet,
1367 bool IsPCRel) const {
1368 if (InSet)
1369 return true;
1371 // The effective address is
1372 // addr(atom(A)) + offset(A)
1373 // - addr(atom(B)) - offset(B)
1374 // and the offsets are not relocatable, so the fixup is fully resolved when
1375 // addr(atom(A)) - addr(atom(B)) == 0.
1376 const MCSymbolData *A_Base = 0, *B_Base = 0;
1378 const MCSymbol &SA = DataA.getSymbol().AliasedSymbol();
1379 const MCSection &SecA = SA.getSection();
1380 const MCSection &SecB = FB.getParent()->getSection();
1382 if (IsPCRel) {
1383 // The simple (Darwin, except on x86_64) way of dealing with this was to
1384 // assume that any reference to a temporary symbol *must* be a temporary
1385 // symbol in the same atom, unless the sections differ. Therefore, any
1386 // PCrel relocation to a temporary symbol (in the same section) is fully
1387 // resolved. This also works in conjunction with absolutized .set, which
1388 // requires the compiler to use .set to absolutize the differences between
1389 // symbols which the compiler knows to be assembly time constants, so we
1390 // don't need to worry about considering symbol differences fully
1391 // resolved.
1393 if (!Asm.getBackend().hasReliableSymbolDifference()) {
1394 if (!SA.isTemporary() || !SA.isInSection() || &SecA != &SecB)
1395 return false;
1396 return true;
1398 } else {
1399 if (!TargetObjectWriter->useAggressiveSymbolFolding())
1400 return false;
1403 const MCFragment &FA = *Asm.getSymbolData(SA).getFragment();
1405 A_Base = FA.getAtom();
1406 if (!A_Base)
1407 return false;
1409 B_Base = FB.getAtom();
1410 if (!B_Base)
1411 return false;
1413 // If the atoms are the same, they are guaranteed to have the same address.
1414 if (A_Base == B_Base)
1415 return true;
1417 // Otherwise, we can't prove this is fully resolved.
1418 return false;
1421 void WriteObject(MCAssembler &Asm, const MCAsmLayout &Layout) {
1422 unsigned NumSections = Asm.size();
1424 // The section data starts after the header, the segment load command (and
1425 // section headers) and the symbol table.
1426 unsigned NumLoadCommands = 1;
1427 uint64_t LoadCommandsSize = is64Bit() ?
1428 macho::SegmentLoadCommand64Size + NumSections * macho::Section64Size :
1429 macho::SegmentLoadCommand32Size + NumSections * macho::Section32Size;
1431 // Add the symbol table load command sizes, if used.
1432 unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() +
1433 UndefinedSymbolData.size();
1434 if (NumSymbols) {
1435 NumLoadCommands += 2;
1436 LoadCommandsSize += (macho::SymtabLoadCommandSize +
1437 macho::DysymtabLoadCommandSize);
1440 // Compute the total size of the section data, as well as its file size and
1441 // vm size.
1442 uint64_t SectionDataStart = (is64Bit() ? macho::Header64Size :
1443 macho::Header32Size) + LoadCommandsSize;
1444 uint64_t SectionDataSize = 0;
1445 uint64_t SectionDataFileSize = 0;
1446 uint64_t VMSize = 0;
1447 for (MCAssembler::const_iterator it = Asm.begin(),
1448 ie = Asm.end(); it != ie; ++it) {
1449 const MCSectionData &SD = *it;
1450 uint64_t Address = getSectionAddress(&SD);
1451 uint64_t Size = Layout.getSectionAddressSize(&SD);
1452 uint64_t FileSize = Layout.getSectionFileSize(&SD);
1453 FileSize += getPaddingSize(&SD, Layout);
1455 VMSize = std::max(VMSize, Address + Size);
1457 if (SD.getSection().isVirtualSection())
1458 continue;
1460 SectionDataSize = std::max(SectionDataSize, Address + Size);
1461 SectionDataFileSize = std::max(SectionDataFileSize, Address + FileSize);
1464 // The section data is padded to 4 bytes.
1466 // FIXME: Is this machine dependent?
1467 unsigned SectionDataPadding = OffsetToAlignment(SectionDataFileSize, 4);
1468 SectionDataFileSize += SectionDataPadding;
1470 // Write the prolog, starting with the header and load command...
1471 WriteHeader(NumLoadCommands, LoadCommandsSize,
1472 Asm.getSubsectionsViaSymbols());
1473 WriteSegmentLoadCommand(NumSections, VMSize,
1474 SectionDataStart, SectionDataSize);
1476 // ... and then the section headers.
1477 uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize;
1478 for (MCAssembler::const_iterator it = Asm.begin(),
1479 ie = Asm.end(); it != ie; ++it) {
1480 std::vector<macho::RelocationEntry> &Relocs = Relocations[it];
1481 unsigned NumRelocs = Relocs.size();
1482 uint64_t SectionStart = SectionDataStart + getSectionAddress(it);
1483 WriteSection(Asm, Layout, *it, SectionStart, RelocTableEnd, NumRelocs);
1484 RelocTableEnd += NumRelocs * macho::RelocationInfoSize;
1487 // Write the symbol table load command, if used.
1488 if (NumSymbols) {
1489 unsigned FirstLocalSymbol = 0;
1490 unsigned NumLocalSymbols = LocalSymbolData.size();
1491 unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols;
1492 unsigned NumExternalSymbols = ExternalSymbolData.size();
1493 unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols;
1494 unsigned NumUndefinedSymbols = UndefinedSymbolData.size();
1495 unsigned NumIndirectSymbols = Asm.indirect_symbol_size();
1496 unsigned NumSymTabSymbols =
1497 NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols;
1498 uint64_t IndirectSymbolSize = NumIndirectSymbols * 4;
1499 uint64_t IndirectSymbolOffset = 0;
1501 // If used, the indirect symbols are written after the section data.
1502 if (NumIndirectSymbols)
1503 IndirectSymbolOffset = RelocTableEnd;
1505 // The symbol table is written after the indirect symbol data.
1506 uint64_t SymbolTableOffset = RelocTableEnd + IndirectSymbolSize;
1508 // The string table is written after symbol table.
1509 uint64_t StringTableOffset =
1510 SymbolTableOffset + NumSymTabSymbols * (is64Bit() ? macho::Nlist64Size :
1511 macho::Nlist32Size);
1512 WriteSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols,
1513 StringTableOffset, StringTable.size());
1515 WriteDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols,
1516 FirstExternalSymbol, NumExternalSymbols,
1517 FirstUndefinedSymbol, NumUndefinedSymbols,
1518 IndirectSymbolOffset, NumIndirectSymbols);
1521 // Write the actual section data.
1522 for (MCAssembler::const_iterator it = Asm.begin(),
1523 ie = Asm.end(); it != ie; ++it) {
1524 Asm.WriteSectionData(it, Layout);
1526 uint64_t Pad = getPaddingSize(it, Layout);
1527 for (unsigned int i = 0; i < Pad; ++i)
1528 Write8(0);
1531 // Write the extra padding.
1532 WriteZeros(SectionDataPadding);
1534 // Write the relocation entries.
1535 for (MCAssembler::const_iterator it = Asm.begin(),
1536 ie = Asm.end(); it != ie; ++it) {
1537 // Write the section relocation entries, in reverse order to match 'as'
1538 // (approximately, the exact algorithm is more complicated than this).
1539 std::vector<macho::RelocationEntry> &Relocs = Relocations[it];
1540 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1541 Write32(Relocs[e - i - 1].Word0);
1542 Write32(Relocs[e - i - 1].Word1);
1546 // Write the symbol table data, if used.
1547 if (NumSymbols) {
1548 // Write the indirect symbol entries.
1549 for (MCAssembler::const_indirect_symbol_iterator
1550 it = Asm.indirect_symbol_begin(),
1551 ie = Asm.indirect_symbol_end(); it != ie; ++it) {
1552 // Indirect symbols in the non lazy symbol pointer section have some
1553 // special handling.
1554 const MCSectionMachO &Section =
1555 static_cast<const MCSectionMachO&>(it->SectionData->getSection());
1556 if (Section.getType() == MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS) {
1557 // If this symbol is defined and internal, mark it as such.
1558 if (it->Symbol->isDefined() &&
1559 !Asm.getSymbolData(*it->Symbol).isExternal()) {
1560 uint32_t Flags = macho::ISF_Local;
1561 if (it->Symbol->isAbsolute())
1562 Flags |= macho::ISF_Absolute;
1563 Write32(Flags);
1564 continue;
1568 Write32(Asm.getSymbolData(*it->Symbol).getIndex());
1571 // FIXME: Check that offsets match computed ones.
1573 // Write the symbol table entries.
1574 for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
1575 WriteNlist(LocalSymbolData[i], Layout);
1576 for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
1577 WriteNlist(ExternalSymbolData[i], Layout);
1578 for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
1579 WriteNlist(UndefinedSymbolData[i], Layout);
1581 // Write the string table.
1582 OS << StringTable.str();
1589 MCObjectWriter *llvm::createMachObjectWriter(MCMachObjectTargetWriter *MOTW,
1590 raw_ostream &OS,
1591 bool IsLittleEndian) {
1592 return new MachObjectWriter(MOTW, OS, IsLittleEndian);