Use %ull here.
[llvm/stm8.git] / lib / Target / X86 / X86AsmBackend.cpp
bloba7581eb2222b52059d350b52b2477f71444f00bd
1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Target/TargetAsmBackend.h"
11 #include "X86.h"
12 #include "X86FixupKinds.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAssembler.h"
15 #include "llvm/MC/MCELFObjectWriter.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCFixupKindInfo.h"
18 #include "llvm/MC/MCMachObjectWriter.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSectionCOFF.h"
21 #include "llvm/MC/MCSectionELF.h"
22 #include "llvm/MC/MCSectionMachO.h"
23 #include "llvm/Object/MachOFormat.h"
24 #include "llvm/Support/ELF.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetRegistry.h"
28 #include "llvm/Target/TargetAsmBackend.h"
29 using namespace llvm;
31 static unsigned getFixupKindLog2Size(unsigned Kind) {
32 switch (Kind) {
33 default: assert(0 && "invalid fixup kind!");
34 case FK_PCRel_1:
35 case FK_Data_1: return 0;
36 case FK_PCRel_2:
37 case FK_Data_2: return 1;
38 case FK_PCRel_4:
39 case X86::reloc_riprel_4byte:
40 case X86::reloc_riprel_4byte_movq_load:
41 case X86::reloc_signed_4byte:
42 case X86::reloc_global_offset_table:
43 case FK_Data_4: return 2;
44 case FK_PCRel_8:
45 case FK_Data_8: return 3;
49 namespace {
51 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
52 public:
53 X86ELFObjectWriter(bool is64Bit, Triple::OSType OSType, uint16_t EMachine,
54 bool HasRelocationAddend)
55 : MCELFObjectTargetWriter(is64Bit, OSType, EMachine, HasRelocationAddend) {}
58 class X86AsmBackend : public TargetAsmBackend {
59 public:
60 X86AsmBackend(const Target &T)
61 : TargetAsmBackend() {}
63 unsigned getNumFixupKinds() const {
64 return X86::NumTargetFixupKinds;
67 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
68 const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
69 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
70 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
71 { "reloc_signed_4byte", 0, 4 * 8, 0},
72 { "reloc_global_offset_table", 0, 4 * 8, 0}
75 if (Kind < FirstTargetFixupKind)
76 return TargetAsmBackend::getFixupKindInfo(Kind);
78 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
79 "Invalid kind!");
80 return Infos[Kind - FirstTargetFixupKind];
83 void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
84 uint64_t Value) const {
85 unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
87 assert(Fixup.getOffset() + Size <= DataSize &&
88 "Invalid fixup offset!");
89 for (unsigned i = 0; i != Size; ++i)
90 Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
93 bool MayNeedRelaxation(const MCInst &Inst) const;
95 void RelaxInstruction(const MCInst &Inst, MCInst &Res) const;
97 bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const;
99 } // end anonymous namespace
101 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
102 switch (Op) {
103 default:
104 return Op;
106 case X86::JAE_1: return X86::JAE_4;
107 case X86::JA_1: return X86::JA_4;
108 case X86::JBE_1: return X86::JBE_4;
109 case X86::JB_1: return X86::JB_4;
110 case X86::JE_1: return X86::JE_4;
111 case X86::JGE_1: return X86::JGE_4;
112 case X86::JG_1: return X86::JG_4;
113 case X86::JLE_1: return X86::JLE_4;
114 case X86::JL_1: return X86::JL_4;
115 case X86::JMP_1: return X86::JMP_4;
116 case X86::JNE_1: return X86::JNE_4;
117 case X86::JNO_1: return X86::JNO_4;
118 case X86::JNP_1: return X86::JNP_4;
119 case X86::JNS_1: return X86::JNS_4;
120 case X86::JO_1: return X86::JO_4;
121 case X86::JP_1: return X86::JP_4;
122 case X86::JS_1: return X86::JS_4;
126 static unsigned getRelaxedOpcodeArith(unsigned Op) {
127 switch (Op) {
128 default:
129 return Op;
131 // IMUL
132 case X86::IMUL16rri8: return X86::IMUL16rri;
133 case X86::IMUL16rmi8: return X86::IMUL16rmi;
134 case X86::IMUL32rri8: return X86::IMUL32rri;
135 case X86::IMUL32rmi8: return X86::IMUL32rmi;
136 case X86::IMUL64rri8: return X86::IMUL64rri32;
137 case X86::IMUL64rmi8: return X86::IMUL64rmi32;
139 // AND
140 case X86::AND16ri8: return X86::AND16ri;
141 case X86::AND16mi8: return X86::AND16mi;
142 case X86::AND32ri8: return X86::AND32ri;
143 case X86::AND32mi8: return X86::AND32mi;
144 case X86::AND64ri8: return X86::AND64ri32;
145 case X86::AND64mi8: return X86::AND64mi32;
147 // OR
148 case X86::OR16ri8: return X86::OR16ri;
149 case X86::OR16mi8: return X86::OR16mi;
150 case X86::OR32ri8: return X86::OR32ri;
151 case X86::OR32mi8: return X86::OR32mi;
152 case X86::OR64ri8: return X86::OR64ri32;
153 case X86::OR64mi8: return X86::OR64mi32;
155 // XOR
156 case X86::XOR16ri8: return X86::XOR16ri;
157 case X86::XOR16mi8: return X86::XOR16mi;
158 case X86::XOR32ri8: return X86::XOR32ri;
159 case X86::XOR32mi8: return X86::XOR32mi;
160 case X86::XOR64ri8: return X86::XOR64ri32;
161 case X86::XOR64mi8: return X86::XOR64mi32;
163 // ADD
164 case X86::ADD16ri8: return X86::ADD16ri;
165 case X86::ADD16mi8: return X86::ADD16mi;
166 case X86::ADD32ri8: return X86::ADD32ri;
167 case X86::ADD32mi8: return X86::ADD32mi;
168 case X86::ADD64ri8: return X86::ADD64ri32;
169 case X86::ADD64mi8: return X86::ADD64mi32;
171 // SUB
172 case X86::SUB16ri8: return X86::SUB16ri;
173 case X86::SUB16mi8: return X86::SUB16mi;
174 case X86::SUB32ri8: return X86::SUB32ri;
175 case X86::SUB32mi8: return X86::SUB32mi;
176 case X86::SUB64ri8: return X86::SUB64ri32;
177 case X86::SUB64mi8: return X86::SUB64mi32;
179 // CMP
180 case X86::CMP16ri8: return X86::CMP16ri;
181 case X86::CMP16mi8: return X86::CMP16mi;
182 case X86::CMP32ri8: return X86::CMP32ri;
183 case X86::CMP32mi8: return X86::CMP32mi;
184 case X86::CMP64ri8: return X86::CMP64ri32;
185 case X86::CMP64mi8: return X86::CMP64mi32;
187 // PUSH
188 case X86::PUSHi8: return X86::PUSHi32;
192 static unsigned getRelaxedOpcode(unsigned Op) {
193 unsigned R = getRelaxedOpcodeArith(Op);
194 if (R != Op)
195 return R;
196 return getRelaxedOpcodeBranch(Op);
199 bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const {
200 // Branches can always be relaxed.
201 if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
202 return true;
204 // Check if this instruction is ever relaxable.
205 if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
206 return false;
209 // Check if it has an expression and is not RIP relative.
210 bool hasExp = false;
211 bool hasRIP = false;
212 for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
213 const MCOperand &Op = Inst.getOperand(i);
214 if (Op.isExpr())
215 hasExp = true;
217 if (Op.isReg() && Op.getReg() == X86::RIP)
218 hasRIP = true;
221 // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
222 // how we do relaxations?
223 return hasExp && !hasRIP;
226 // FIXME: Can tblgen help at all here to verify there aren't other instructions
227 // we can relax?
228 void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const {
229 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
230 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
232 if (RelaxedOp == Inst.getOpcode()) {
233 SmallString<256> Tmp;
234 raw_svector_ostream OS(Tmp);
235 Inst.dump_pretty(OS);
236 OS << "\n";
237 report_fatal_error("unexpected instruction to relax: " + OS.str());
240 Res = Inst;
241 Res.setOpcode(RelaxedOp);
244 /// WriteNopData - Write optimal nops to the output file for the \arg Count
245 /// bytes. This returns the number of bytes written. It may return 0 if
246 /// the \arg Count is more than the maximum optimal nops.
247 bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const {
248 static const uint8_t Nops[10][10] = {
249 // nop
250 {0x90},
251 // xchg %ax,%ax
252 {0x66, 0x90},
253 // nopl (%[re]ax)
254 {0x0f, 0x1f, 0x00},
255 // nopl 0(%[re]ax)
256 {0x0f, 0x1f, 0x40, 0x00},
257 // nopl 0(%[re]ax,%[re]ax,1)
258 {0x0f, 0x1f, 0x44, 0x00, 0x00},
259 // nopw 0(%[re]ax,%[re]ax,1)
260 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
261 // nopl 0L(%[re]ax)
262 {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
263 // nopl 0L(%[re]ax,%[re]ax,1)
264 {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
265 // nopw 0L(%[re]ax,%[re]ax,1)
266 {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
267 // nopw %cs:0L(%[re]ax,%[re]ax,1)
268 {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
271 // Write an optimal sequence for the first 15 bytes.
272 const uint64_t OptimalCount = (Count < 16) ? Count : 15;
273 const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
274 for (uint64_t i = 0, e = Prefixes; i != e; i++)
275 OW->Write8(0x66);
276 const uint64_t Rest = OptimalCount - Prefixes;
277 for (uint64_t i = 0, e = Rest; i != e; i++)
278 OW->Write8(Nops[Rest - 1][i]);
280 // Finish with single byte nops.
281 for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
282 OW->Write8(0x90);
284 return true;
287 /* *** */
289 namespace {
290 class ELFX86AsmBackend : public X86AsmBackend {
291 public:
292 Triple::OSType OSType;
293 ELFX86AsmBackend(const Target &T, Triple::OSType _OSType)
294 : X86AsmBackend(T), OSType(_OSType) {
295 HasReliableSymbolDifference = true;
298 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
299 const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
300 return ES.getFlags() & ELF::SHF_MERGE;
304 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
305 public:
306 ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType)
307 : ELFX86AsmBackend(T, OSType) {}
309 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
310 return createELFObjectWriter(createELFObjectTargetWriter(),
311 OS, /*IsLittleEndian*/ true);
314 MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
315 return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false);
319 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
320 public:
321 ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType)
322 : ELFX86AsmBackend(T, OSType) {}
324 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
325 return createELFObjectWriter(createELFObjectTargetWriter(),
326 OS, /*IsLittleEndian*/ true);
329 MCELFObjectTargetWriter *createELFObjectTargetWriter() const {
330 return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true);
334 class WindowsX86AsmBackend : public X86AsmBackend {
335 bool Is64Bit;
337 public:
338 WindowsX86AsmBackend(const Target &T, bool is64Bit)
339 : X86AsmBackend(T)
340 , Is64Bit(is64Bit) {
343 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
344 return createWinCOFFObjectWriter(OS, Is64Bit);
348 class DarwinX86AsmBackend : public X86AsmBackend {
349 public:
350 DarwinX86AsmBackend(const Target &T)
351 : X86AsmBackend(T) { }
354 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
355 public:
356 DarwinX86_32AsmBackend(const Target &T)
357 : DarwinX86AsmBackend(T) {}
359 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
360 return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
361 object::mach::CTM_i386,
362 object::mach::CSX86_ALL);
366 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
367 public:
368 DarwinX86_64AsmBackend(const Target &T)
369 : DarwinX86AsmBackend(T) {
370 HasReliableSymbolDifference = true;
373 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
374 return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
375 object::mach::CTM_x86_64,
376 object::mach::CSX86_ALL);
379 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
380 // Temporary labels in the string literals sections require symbols. The
381 // issue is that the x86_64 relocation format does not allow symbol +
382 // offset, and so the linker does not have enough information to resolve the
383 // access to the appropriate atom unless an external relocation is used. For
384 // non-cstring sections, we expect the compiler to use a non-temporary label
385 // for anything that could have an addend pointing outside the symbol.
387 // See <rdar://problem/4765733>.
388 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
389 return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
392 virtual bool isSectionAtomizable(const MCSection &Section) const {
393 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
394 // Fixed sized data sections are uniqued, they cannot be diced into atoms.
395 switch (SMO.getType()) {
396 default:
397 return true;
399 case MCSectionMachO::S_4BYTE_LITERALS:
400 case MCSectionMachO::S_8BYTE_LITERALS:
401 case MCSectionMachO::S_16BYTE_LITERALS:
402 case MCSectionMachO::S_LITERAL_POINTERS:
403 case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
404 case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
405 case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
406 case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
407 case MCSectionMachO::S_INTERPOSING:
408 return false;
413 } // end anonymous namespace
415 TargetAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
416 const std::string &TT) {
417 switch (Triple(TT).getOS()) {
418 case Triple::Darwin:
419 return new DarwinX86_32AsmBackend(T);
420 case Triple::MinGW32:
421 case Triple::Cygwin:
422 case Triple::Win32:
423 if (Triple(TT).getEnvironment() == Triple::MachO)
424 return new DarwinX86_32AsmBackend(T);
425 else
426 return new WindowsX86AsmBackend(T, false);
427 default:
428 return new ELFX86_32AsmBackend(T, Triple(TT).getOS());
432 TargetAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
433 const std::string &TT) {
434 switch (Triple(TT).getOS()) {
435 case Triple::Darwin:
436 return new DarwinX86_64AsmBackend(T);
437 case Triple::MinGW32:
438 case Triple::Cygwin:
439 case Triple::Win32:
440 if (Triple(TT).getEnvironment() == Triple::MachO)
441 return new DarwinX86_64AsmBackend(T);
442 else
443 return new WindowsX86AsmBackend(T, true);
444 default:
445 return new ELFX86_64AsmBackend(T, Triple(TT).getOS());