1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Target/TargetAsmBackend.h"
12 #include "X86FixupKinds.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAssembler.h"
15 #include "llvm/MC/MCELFObjectWriter.h"
16 #include "llvm/MC/MCExpr.h"
17 #include "llvm/MC/MCFixupKindInfo.h"
18 #include "llvm/MC/MCMachObjectWriter.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSectionCOFF.h"
21 #include "llvm/MC/MCSectionELF.h"
22 #include "llvm/MC/MCSectionMachO.h"
23 #include "llvm/Object/MachOFormat.h"
24 #include "llvm/Support/ELF.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetRegistry.h"
28 #include "llvm/Target/TargetAsmBackend.h"
31 static unsigned getFixupKindLog2Size(unsigned Kind
) {
33 default: assert(0 && "invalid fixup kind!");
35 case FK_Data_1
: return 0;
37 case FK_Data_2
: return 1;
39 case X86::reloc_riprel_4byte
:
40 case X86::reloc_riprel_4byte_movq_load
:
41 case X86::reloc_signed_4byte
:
42 case X86::reloc_global_offset_table
:
43 case FK_Data_4
: return 2;
45 case FK_Data_8
: return 3;
51 class X86ELFObjectWriter
: public MCELFObjectTargetWriter
{
53 X86ELFObjectWriter(bool is64Bit
, Triple::OSType OSType
, uint16_t EMachine
,
54 bool HasRelocationAddend
)
55 : MCELFObjectTargetWriter(is64Bit
, OSType
, EMachine
, HasRelocationAddend
) {}
58 class X86AsmBackend
: public TargetAsmBackend
{
60 X86AsmBackend(const Target
&T
)
61 : TargetAsmBackend() {}
63 unsigned getNumFixupKinds() const {
64 return X86::NumTargetFixupKinds
;
67 const MCFixupKindInfo
&getFixupKindInfo(MCFixupKind Kind
) const {
68 const static MCFixupKindInfo Infos
[X86::NumTargetFixupKinds
] = {
69 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel
},
70 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel
},
71 { "reloc_signed_4byte", 0, 4 * 8, 0},
72 { "reloc_global_offset_table", 0, 4 * 8, 0}
75 if (Kind
< FirstTargetFixupKind
)
76 return TargetAsmBackend::getFixupKindInfo(Kind
);
78 assert(unsigned(Kind
- FirstTargetFixupKind
) < getNumFixupKinds() &&
80 return Infos
[Kind
- FirstTargetFixupKind
];
83 void ApplyFixup(const MCFixup
&Fixup
, char *Data
, unsigned DataSize
,
84 uint64_t Value
) const {
85 unsigned Size
= 1 << getFixupKindLog2Size(Fixup
.getKind());
87 assert(Fixup
.getOffset() + Size
<= DataSize
&&
88 "Invalid fixup offset!");
89 for (unsigned i
= 0; i
!= Size
; ++i
)
90 Data
[Fixup
.getOffset() + i
] = uint8_t(Value
>> (i
* 8));
93 bool MayNeedRelaxation(const MCInst
&Inst
) const;
95 void RelaxInstruction(const MCInst
&Inst
, MCInst
&Res
) const;
97 bool WriteNopData(uint64_t Count
, MCObjectWriter
*OW
) const;
99 } // end anonymous namespace
101 static unsigned getRelaxedOpcodeBranch(unsigned Op
) {
106 case X86::JAE_1
: return X86::JAE_4
;
107 case X86::JA_1
: return X86::JA_4
;
108 case X86::JBE_1
: return X86::JBE_4
;
109 case X86::JB_1
: return X86::JB_4
;
110 case X86::JE_1
: return X86::JE_4
;
111 case X86::JGE_1
: return X86::JGE_4
;
112 case X86::JG_1
: return X86::JG_4
;
113 case X86::JLE_1
: return X86::JLE_4
;
114 case X86::JL_1
: return X86::JL_4
;
115 case X86::JMP_1
: return X86::JMP_4
;
116 case X86::JNE_1
: return X86::JNE_4
;
117 case X86::JNO_1
: return X86::JNO_4
;
118 case X86::JNP_1
: return X86::JNP_4
;
119 case X86::JNS_1
: return X86::JNS_4
;
120 case X86::JO_1
: return X86::JO_4
;
121 case X86::JP_1
: return X86::JP_4
;
122 case X86::JS_1
: return X86::JS_4
;
126 static unsigned getRelaxedOpcodeArith(unsigned Op
) {
132 case X86::IMUL16rri8
: return X86::IMUL16rri
;
133 case X86::IMUL16rmi8
: return X86::IMUL16rmi
;
134 case X86::IMUL32rri8
: return X86::IMUL32rri
;
135 case X86::IMUL32rmi8
: return X86::IMUL32rmi
;
136 case X86::IMUL64rri8
: return X86::IMUL64rri32
;
137 case X86::IMUL64rmi8
: return X86::IMUL64rmi32
;
140 case X86::AND16ri8
: return X86::AND16ri
;
141 case X86::AND16mi8
: return X86::AND16mi
;
142 case X86::AND32ri8
: return X86::AND32ri
;
143 case X86::AND32mi8
: return X86::AND32mi
;
144 case X86::AND64ri8
: return X86::AND64ri32
;
145 case X86::AND64mi8
: return X86::AND64mi32
;
148 case X86::OR16ri8
: return X86::OR16ri
;
149 case X86::OR16mi8
: return X86::OR16mi
;
150 case X86::OR32ri8
: return X86::OR32ri
;
151 case X86::OR32mi8
: return X86::OR32mi
;
152 case X86::OR64ri8
: return X86::OR64ri32
;
153 case X86::OR64mi8
: return X86::OR64mi32
;
156 case X86::XOR16ri8
: return X86::XOR16ri
;
157 case X86::XOR16mi8
: return X86::XOR16mi
;
158 case X86::XOR32ri8
: return X86::XOR32ri
;
159 case X86::XOR32mi8
: return X86::XOR32mi
;
160 case X86::XOR64ri8
: return X86::XOR64ri32
;
161 case X86::XOR64mi8
: return X86::XOR64mi32
;
164 case X86::ADD16ri8
: return X86::ADD16ri
;
165 case X86::ADD16mi8
: return X86::ADD16mi
;
166 case X86::ADD32ri8
: return X86::ADD32ri
;
167 case X86::ADD32mi8
: return X86::ADD32mi
;
168 case X86::ADD64ri8
: return X86::ADD64ri32
;
169 case X86::ADD64mi8
: return X86::ADD64mi32
;
172 case X86::SUB16ri8
: return X86::SUB16ri
;
173 case X86::SUB16mi8
: return X86::SUB16mi
;
174 case X86::SUB32ri8
: return X86::SUB32ri
;
175 case X86::SUB32mi8
: return X86::SUB32mi
;
176 case X86::SUB64ri8
: return X86::SUB64ri32
;
177 case X86::SUB64mi8
: return X86::SUB64mi32
;
180 case X86::CMP16ri8
: return X86::CMP16ri
;
181 case X86::CMP16mi8
: return X86::CMP16mi
;
182 case X86::CMP32ri8
: return X86::CMP32ri
;
183 case X86::CMP32mi8
: return X86::CMP32mi
;
184 case X86::CMP64ri8
: return X86::CMP64ri32
;
185 case X86::CMP64mi8
: return X86::CMP64mi32
;
188 case X86::PUSHi8
: return X86::PUSHi32
;
192 static unsigned getRelaxedOpcode(unsigned Op
) {
193 unsigned R
= getRelaxedOpcodeArith(Op
);
196 return getRelaxedOpcodeBranch(Op
);
199 bool X86AsmBackend::MayNeedRelaxation(const MCInst
&Inst
) const {
200 // Branches can always be relaxed.
201 if (getRelaxedOpcodeBranch(Inst
.getOpcode()) != Inst
.getOpcode())
204 // Check if this instruction is ever relaxable.
205 if (getRelaxedOpcodeArith(Inst
.getOpcode()) == Inst
.getOpcode())
209 // Check if it has an expression and is not RIP relative.
212 for (unsigned i
= 0; i
< Inst
.getNumOperands(); ++i
) {
213 const MCOperand
&Op
= Inst
.getOperand(i
);
217 if (Op
.isReg() && Op
.getReg() == X86::RIP
)
221 // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
222 // how we do relaxations?
223 return hasExp
&& !hasRIP
;
226 // FIXME: Can tblgen help at all here to verify there aren't other instructions
228 void X86AsmBackend::RelaxInstruction(const MCInst
&Inst
, MCInst
&Res
) const {
229 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
230 unsigned RelaxedOp
= getRelaxedOpcode(Inst
.getOpcode());
232 if (RelaxedOp
== Inst
.getOpcode()) {
233 SmallString
<256> Tmp
;
234 raw_svector_ostream
OS(Tmp
);
235 Inst
.dump_pretty(OS
);
237 report_fatal_error("unexpected instruction to relax: " + OS
.str());
241 Res
.setOpcode(RelaxedOp
);
244 /// WriteNopData - Write optimal nops to the output file for the \arg Count
245 /// bytes. This returns the number of bytes written. It may return 0 if
246 /// the \arg Count is more than the maximum optimal nops.
247 bool X86AsmBackend::WriteNopData(uint64_t Count
, MCObjectWriter
*OW
) const {
248 static const uint8_t Nops
[10][10] = {
256 {0x0f, 0x1f, 0x40, 0x00},
257 // nopl 0(%[re]ax,%[re]ax,1)
258 {0x0f, 0x1f, 0x44, 0x00, 0x00},
259 // nopw 0(%[re]ax,%[re]ax,1)
260 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
262 {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
263 // nopl 0L(%[re]ax,%[re]ax,1)
264 {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
265 // nopw 0L(%[re]ax,%[re]ax,1)
266 {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
267 // nopw %cs:0L(%[re]ax,%[re]ax,1)
268 {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
271 // Write an optimal sequence for the first 15 bytes.
272 const uint64_t OptimalCount
= (Count
< 16) ? Count
: 15;
273 const uint64_t Prefixes
= OptimalCount
<= 10 ? 0 : OptimalCount
- 10;
274 for (uint64_t i
= 0, e
= Prefixes
; i
!= e
; i
++)
276 const uint64_t Rest
= OptimalCount
- Prefixes
;
277 for (uint64_t i
= 0, e
= Rest
; i
!= e
; i
++)
278 OW
->Write8(Nops
[Rest
- 1][i
]);
280 // Finish with single byte nops.
281 for (uint64_t i
= OptimalCount
, e
= Count
; i
!= e
; ++i
)
290 class ELFX86AsmBackend
: public X86AsmBackend
{
292 Triple::OSType OSType
;
293 ELFX86AsmBackend(const Target
&T
, Triple::OSType _OSType
)
294 : X86AsmBackend(T
), OSType(_OSType
) {
295 HasReliableSymbolDifference
= true;
298 virtual bool doesSectionRequireSymbols(const MCSection
&Section
) const {
299 const MCSectionELF
&ES
= static_cast<const MCSectionELF
&>(Section
);
300 return ES
.getFlags() & ELF::SHF_MERGE
;
304 class ELFX86_32AsmBackend
: public ELFX86AsmBackend
{
306 ELFX86_32AsmBackend(const Target
&T
, Triple::OSType OSType
)
307 : ELFX86AsmBackend(T
, OSType
) {}
309 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
310 return createELFObjectWriter(createELFObjectTargetWriter(),
311 OS
, /*IsLittleEndian*/ true);
314 MCELFObjectTargetWriter
*createELFObjectTargetWriter() const {
315 return new X86ELFObjectWriter(false, OSType
, ELF::EM_386
, false);
319 class ELFX86_64AsmBackend
: public ELFX86AsmBackend
{
321 ELFX86_64AsmBackend(const Target
&T
, Triple::OSType OSType
)
322 : ELFX86AsmBackend(T
, OSType
) {}
324 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
325 return createELFObjectWriter(createELFObjectTargetWriter(),
326 OS
, /*IsLittleEndian*/ true);
329 MCELFObjectTargetWriter
*createELFObjectTargetWriter() const {
330 return new X86ELFObjectWriter(true, OSType
, ELF::EM_X86_64
, true);
334 class WindowsX86AsmBackend
: public X86AsmBackend
{
338 WindowsX86AsmBackend(const Target
&T
, bool is64Bit
)
343 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
344 return createWinCOFFObjectWriter(OS
, Is64Bit
);
348 class DarwinX86AsmBackend
: public X86AsmBackend
{
350 DarwinX86AsmBackend(const Target
&T
)
351 : X86AsmBackend(T
) { }
354 class DarwinX86_32AsmBackend
: public DarwinX86AsmBackend
{
356 DarwinX86_32AsmBackend(const Target
&T
)
357 : DarwinX86AsmBackend(T
) {}
359 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
360 return createX86MachObjectWriter(OS
, /*Is64Bit=*/false,
361 object::mach::CTM_i386
,
362 object::mach::CSX86_ALL
);
366 class DarwinX86_64AsmBackend
: public DarwinX86AsmBackend
{
368 DarwinX86_64AsmBackend(const Target
&T
)
369 : DarwinX86AsmBackend(T
) {
370 HasReliableSymbolDifference
= true;
373 MCObjectWriter
*createObjectWriter(raw_ostream
&OS
) const {
374 return createX86MachObjectWriter(OS
, /*Is64Bit=*/true,
375 object::mach::CTM_x86_64
,
376 object::mach::CSX86_ALL
);
379 virtual bool doesSectionRequireSymbols(const MCSection
&Section
) const {
380 // Temporary labels in the string literals sections require symbols. The
381 // issue is that the x86_64 relocation format does not allow symbol +
382 // offset, and so the linker does not have enough information to resolve the
383 // access to the appropriate atom unless an external relocation is used. For
384 // non-cstring sections, we expect the compiler to use a non-temporary label
385 // for anything that could have an addend pointing outside the symbol.
387 // See <rdar://problem/4765733>.
388 const MCSectionMachO
&SMO
= static_cast<const MCSectionMachO
&>(Section
);
389 return SMO
.getType() == MCSectionMachO::S_CSTRING_LITERALS
;
392 virtual bool isSectionAtomizable(const MCSection
&Section
) const {
393 const MCSectionMachO
&SMO
= static_cast<const MCSectionMachO
&>(Section
);
394 // Fixed sized data sections are uniqued, they cannot be diced into atoms.
395 switch (SMO
.getType()) {
399 case MCSectionMachO::S_4BYTE_LITERALS
:
400 case MCSectionMachO::S_8BYTE_LITERALS
:
401 case MCSectionMachO::S_16BYTE_LITERALS
:
402 case MCSectionMachO::S_LITERAL_POINTERS
:
403 case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS
:
404 case MCSectionMachO::S_LAZY_SYMBOL_POINTERS
:
405 case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS
:
406 case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS
:
407 case MCSectionMachO::S_INTERPOSING
:
413 } // end anonymous namespace
415 TargetAsmBackend
*llvm::createX86_32AsmBackend(const Target
&T
,
416 const std::string
&TT
) {
417 switch (Triple(TT
).getOS()) {
419 return new DarwinX86_32AsmBackend(T
);
420 case Triple::MinGW32
:
423 if (Triple(TT
).getEnvironment() == Triple::MachO
)
424 return new DarwinX86_32AsmBackend(T
);
426 return new WindowsX86AsmBackend(T
, false);
428 return new ELFX86_32AsmBackend(T
, Triple(TT
).getOS());
432 TargetAsmBackend
*llvm::createX86_64AsmBackend(const Target
&T
,
433 const std::string
&TT
) {
434 switch (Triple(TT
).getOS()) {
436 return new DarwinX86_64AsmBackend(T
);
437 case Triple::MinGW32
:
440 if (Triple(TT
).getEnvironment() == Triple::MachO
)
441 return new DarwinX86_64AsmBackend(T
);
443 return new WindowsX86AsmBackend(T
, true);
445 return new ELFX86_64AsmBackend(T
, Triple(TT
).getOS());