Use %ull here.
[llvm/stm8.git] / lib / Target / X86 / X86ISelDAGToDAG.cpp
blob9b0ec6e123fea5fa5b2ea0da8434f43c233cf304
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Support/CFG.h"
25 #include "llvm/Type.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/SelectionDAGISel.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/Statistic.h"
40 using namespace llvm;
42 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
44 //===----------------------------------------------------------------------===//
45 // Pattern Matcher Implementation
46 //===----------------------------------------------------------------------===//
48 namespace {
49 /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
50 /// SDValue's instead of register numbers for the leaves of the matched
51 /// tree.
52 struct X86ISelAddressMode {
53 enum {
54 RegBase,
55 FrameIndexBase
56 } BaseType;
58 // This is really a union, discriminated by BaseType!
59 SDValue Base_Reg;
60 int Base_FrameIndex;
62 unsigned Scale;
63 SDValue IndexReg;
64 int32_t Disp;
65 SDValue Segment;
66 const GlobalValue *GV;
67 const Constant *CP;
68 const BlockAddress *BlockAddr;
69 const char *ES;
70 int JT;
71 unsigned Align; // CP alignment.
72 unsigned char SymbolFlags; // X86II::MO_*
74 X86ISelAddressMode()
75 : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
76 Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
77 SymbolFlags(X86II::MO_NO_FLAG) {
80 bool hasSymbolicDisplacement() const {
81 return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
84 bool hasBaseOrIndexReg() const {
85 return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
88 /// isRIPRelative - Return true if this addressing mode is already RIP
89 /// relative.
90 bool isRIPRelative() const {
91 if (BaseType != RegBase) return false;
92 if (RegisterSDNode *RegNode =
93 dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
94 return RegNode->getReg() == X86::RIP;
95 return false;
98 void setBaseReg(SDValue Reg) {
99 BaseType = RegBase;
100 Base_Reg = Reg;
103 void dump() {
104 dbgs() << "X86ISelAddressMode " << this << '\n';
105 dbgs() << "Base_Reg ";
106 if (Base_Reg.getNode() != 0)
107 Base_Reg.getNode()->dump();
108 else
109 dbgs() << "nul";
110 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
111 << " Scale" << Scale << '\n'
112 << "IndexReg ";
113 if (IndexReg.getNode() != 0)
114 IndexReg.getNode()->dump();
115 else
116 dbgs() << "nul";
117 dbgs() << " Disp " << Disp << '\n'
118 << "GV ";
119 if (GV)
120 GV->dump();
121 else
122 dbgs() << "nul";
123 dbgs() << " CP ";
124 if (CP)
125 CP->dump();
126 else
127 dbgs() << "nul";
128 dbgs() << '\n'
129 << "ES ";
130 if (ES)
131 dbgs() << ES;
132 else
133 dbgs() << "nul";
134 dbgs() << " JT" << JT << " Align" << Align << '\n';
139 namespace {
140 //===--------------------------------------------------------------------===//
141 /// ISel - X86 specific code to select X86 machine instructions for
142 /// SelectionDAG operations.
144 class X86DAGToDAGISel : public SelectionDAGISel {
145 /// X86Lowering - This object fully describes how to lower LLVM code to an
146 /// X86-specific SelectionDAG.
147 const X86TargetLowering &X86Lowering;
149 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
150 /// make the right decision when generating code for different targets.
151 const X86Subtarget *Subtarget;
153 /// OptForSize - If true, selector should try to optimize for code size
154 /// instead of performance.
155 bool OptForSize;
157 public:
158 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
159 : SelectionDAGISel(tm, OptLevel),
160 X86Lowering(*tm.getTargetLowering()),
161 Subtarget(&tm.getSubtarget<X86Subtarget>()),
162 OptForSize(false) {}
164 virtual const char *getPassName() const {
165 return "X86 DAG->DAG Instruction Selection";
168 virtual void EmitFunctionEntryCode();
170 virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
172 virtual void PreprocessISelDAG();
174 inline bool immSext8(SDNode *N) const {
175 return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
178 // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
179 // sign extended field.
180 inline bool i64immSExt32(SDNode *N) const {
181 uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
182 return (int64_t)v == (int32_t)v;
185 // Include the pieces autogenerated from the target description.
186 #include "X86GenDAGISel.inc"
188 private:
189 SDNode *Select(SDNode *N);
190 SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
191 SDNode *SelectAtomicLoadAdd(SDNode *Node, EVT NVT);
193 bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
194 bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
195 bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
196 bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
197 unsigned Depth);
198 bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
199 bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
200 SDValue &Scale, SDValue &Index, SDValue &Disp,
201 SDValue &Segment);
202 bool SelectLEAAddr(SDValue N, SDValue &Base,
203 SDValue &Scale, SDValue &Index, SDValue &Disp,
204 SDValue &Segment);
205 bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
206 SDValue &Scale, SDValue &Index, SDValue &Disp,
207 SDValue &Segment);
208 bool SelectScalarSSELoad(SDNode *Root, SDValue N,
209 SDValue &Base, SDValue &Scale,
210 SDValue &Index, SDValue &Disp,
211 SDValue &Segment,
212 SDValue &NodeWithChain);
214 bool TryFoldLoad(SDNode *P, SDValue N,
215 SDValue &Base, SDValue &Scale,
216 SDValue &Index, SDValue &Disp,
217 SDValue &Segment);
219 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
220 /// inline asm expressions.
221 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
222 char ConstraintCode,
223 std::vector<SDValue> &OutOps);
225 void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
227 inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
228 SDValue &Scale, SDValue &Index,
229 SDValue &Disp, SDValue &Segment) {
230 Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
231 CurDAG->getTargetFrameIndex(AM.Base_FrameIndex, TLI.getPointerTy()) :
232 AM.Base_Reg;
233 Scale = getI8Imm(AM.Scale);
234 Index = AM.IndexReg;
235 // These are 32-bit even in 64-bit mode since RIP relative offset
236 // is 32-bit.
237 if (AM.GV)
238 Disp = CurDAG->getTargetGlobalAddress(AM.GV, DebugLoc(),
239 MVT::i32, AM.Disp,
240 AM.SymbolFlags);
241 else if (AM.CP)
242 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
243 AM.Align, AM.Disp, AM.SymbolFlags);
244 else if (AM.ES)
245 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
246 else if (AM.JT != -1)
247 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
248 else if (AM.BlockAddr)
249 Disp = CurDAG->getBlockAddress(AM.BlockAddr, MVT::i32,
250 true, AM.SymbolFlags);
251 else
252 Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
254 if (AM.Segment.getNode())
255 Segment = AM.Segment;
256 else
257 Segment = CurDAG->getRegister(0, MVT::i32);
260 /// getI8Imm - Return a target constant with the specified value, of type
261 /// i8.
262 inline SDValue getI8Imm(unsigned Imm) {
263 return CurDAG->getTargetConstant(Imm, MVT::i8);
266 /// getI32Imm - Return a target constant with the specified value, of type
267 /// i32.
268 inline SDValue getI32Imm(unsigned Imm) {
269 return CurDAG->getTargetConstant(Imm, MVT::i32);
272 /// getGlobalBaseReg - Return an SDNode that returns the value of
273 /// the global base register. Output instructions required to
274 /// initialize the global base register, if necessary.
276 SDNode *getGlobalBaseReg();
278 /// getTargetMachine - Return a reference to the TargetMachine, casted
279 /// to the target-specific type.
280 const X86TargetMachine &getTargetMachine() {
281 return static_cast<const X86TargetMachine &>(TM);
284 /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
285 /// to the target-specific type.
286 const X86InstrInfo *getInstrInfo() {
287 return getTargetMachine().getInstrInfo();
293 bool
294 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
295 if (OptLevel == CodeGenOpt::None) return false;
297 if (!N.hasOneUse())
298 return false;
300 if (N.getOpcode() != ISD::LOAD)
301 return true;
303 // If N is a load, do additional profitability checks.
304 if (U == Root) {
305 switch (U->getOpcode()) {
306 default: break;
307 case X86ISD::ADD:
308 case X86ISD::SUB:
309 case X86ISD::AND:
310 case X86ISD::XOR:
311 case X86ISD::OR:
312 case ISD::ADD:
313 case ISD::ADDC:
314 case ISD::ADDE:
315 case ISD::AND:
316 case ISD::OR:
317 case ISD::XOR: {
318 SDValue Op1 = U->getOperand(1);
320 // If the other operand is a 8-bit immediate we should fold the immediate
321 // instead. This reduces code size.
322 // e.g.
323 // movl 4(%esp), %eax
324 // addl $4, %eax
325 // vs.
326 // movl $4, %eax
327 // addl 4(%esp), %eax
328 // The former is 2 bytes shorter. In case where the increment is 1, then
329 // the saving can be 4 bytes (by using incl %eax).
330 if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
331 if (Imm->getAPIntValue().isSignedIntN(8))
332 return false;
334 // If the other operand is a TLS address, we should fold it instead.
335 // This produces
336 // movl %gs:0, %eax
337 // leal i@NTPOFF(%eax), %eax
338 // instead of
339 // movl $i@NTPOFF, %eax
340 // addl %gs:0, %eax
341 // if the block also has an access to a second TLS address this will save
342 // a load.
343 // FIXME: This is probably also true for non TLS addresses.
344 if (Op1.getOpcode() == X86ISD::Wrapper) {
345 SDValue Val = Op1.getOperand(0);
346 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
347 return false;
353 return true;
356 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
357 /// load's chain operand and move load below the call's chain operand.
358 static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
359 SDValue Call, SDValue OrigChain) {
360 SmallVector<SDValue, 8> Ops;
361 SDValue Chain = OrigChain.getOperand(0);
362 if (Chain.getNode() == Load.getNode())
363 Ops.push_back(Load.getOperand(0));
364 else {
365 assert(Chain.getOpcode() == ISD::TokenFactor &&
366 "Unexpected chain operand");
367 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
368 if (Chain.getOperand(i).getNode() == Load.getNode())
369 Ops.push_back(Load.getOperand(0));
370 else
371 Ops.push_back(Chain.getOperand(i));
372 SDValue NewChain =
373 CurDAG->getNode(ISD::TokenFactor, Load.getDebugLoc(),
374 MVT::Other, &Ops[0], Ops.size());
375 Ops.clear();
376 Ops.push_back(NewChain);
378 for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
379 Ops.push_back(OrigChain.getOperand(i));
380 CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
381 CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
382 Load.getOperand(1), Load.getOperand(2));
383 Ops.clear();
384 Ops.push_back(SDValue(Load.getNode(), 1));
385 for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
386 Ops.push_back(Call.getOperand(i));
387 CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], Ops.size());
390 /// isCalleeLoad - Return true if call address is a load and it can be
391 /// moved below CALLSEQ_START and the chains leading up to the call.
392 /// Return the CALLSEQ_START by reference as a second output.
393 /// In the case of a tail call, there isn't a callseq node between the call
394 /// chain and the load.
395 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
396 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
397 return false;
398 LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
399 if (!LD ||
400 LD->isVolatile() ||
401 LD->getAddressingMode() != ISD::UNINDEXED ||
402 LD->getExtensionType() != ISD::NON_EXTLOAD)
403 return false;
405 // Now let's find the callseq_start.
406 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
407 if (!Chain.hasOneUse())
408 return false;
409 Chain = Chain.getOperand(0);
412 if (!Chain.getNumOperands())
413 return false;
414 if (Chain.getOperand(0).getNode() == Callee.getNode())
415 return true;
416 if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
417 Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
418 Callee.getValue(1).hasOneUse())
419 return true;
420 return false;
423 void X86DAGToDAGISel::PreprocessISelDAG() {
424 // OptForSize is used in pattern predicates that isel is matching.
425 OptForSize = MF->getFunction()->hasFnAttr(Attribute::OptimizeForSize);
427 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
428 E = CurDAG->allnodes_end(); I != E; ) {
429 SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
431 if (OptLevel != CodeGenOpt::None &&
432 (N->getOpcode() == X86ISD::CALL ||
433 N->getOpcode() == X86ISD::TC_RETURN)) {
434 /// Also try moving call address load from outside callseq_start to just
435 /// before the call to allow it to be folded.
437 /// [Load chain]
438 /// ^
439 /// |
440 /// [Load]
441 /// ^ ^
442 /// | |
443 /// / \--
444 /// / |
445 ///[CALLSEQ_START] |
446 /// ^ |
447 /// | |
448 /// [LOAD/C2Reg] |
449 /// | |
450 /// \ /
451 /// \ /
452 /// [CALL]
453 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
454 SDValue Chain = N->getOperand(0);
455 SDValue Load = N->getOperand(1);
456 if (!isCalleeLoad(Load, Chain, HasCallSeq))
457 continue;
458 MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
459 ++NumLoadMoved;
460 continue;
463 // Lower fpround and fpextend nodes that target the FP stack to be store and
464 // load to the stack. This is a gross hack. We would like to simply mark
465 // these as being illegal, but when we do that, legalize produces these when
466 // it expands calls, then expands these in the same legalize pass. We would
467 // like dag combine to be able to hack on these between the call expansion
468 // and the node legalization. As such this pass basically does "really
469 // late" legalization of these inline with the X86 isel pass.
470 // FIXME: This should only happen when not compiled with -O0.
471 if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
472 continue;
474 // If the source and destination are SSE registers, then this is a legal
475 // conversion that should not be lowered.
476 EVT SrcVT = N->getOperand(0).getValueType();
477 EVT DstVT = N->getValueType(0);
478 bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
479 bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
480 if (SrcIsSSE && DstIsSSE)
481 continue;
483 if (!SrcIsSSE && !DstIsSSE) {
484 // If this is an FPStack extension, it is a noop.
485 if (N->getOpcode() == ISD::FP_EXTEND)
486 continue;
487 // If this is a value-preserving FPStack truncation, it is a noop.
488 if (N->getConstantOperandVal(1))
489 continue;
492 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
493 // FPStack has extload and truncstore. SSE can fold direct loads into other
494 // operations. Based on this, decide what we want to do.
495 EVT MemVT;
496 if (N->getOpcode() == ISD::FP_ROUND)
497 MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
498 else
499 MemVT = SrcIsSSE ? SrcVT : DstVT;
501 SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
502 DebugLoc dl = N->getDebugLoc();
504 // FIXME: optimize the case where the src/dest is a load or store?
505 SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
506 N->getOperand(0),
507 MemTmp, MachinePointerInfo(), MemVT,
508 false, false, 0);
509 SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
510 MachinePointerInfo(),
511 MemVT, false, false, 0);
513 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
514 // extload we created. This will cause general havok on the dag because
515 // anything below the conversion could be folded into other existing nodes.
516 // To avoid invalidating 'I', back it up to the convert node.
517 --I;
518 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
520 // Now that we did that, the node is dead. Increment the iterator to the
521 // next node to process, then delete N.
522 ++I;
523 CurDAG->DeleteNode(N);
528 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
529 /// the main function.
530 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
531 MachineFrameInfo *MFI) {
532 const TargetInstrInfo *TII = TM.getInstrInfo();
533 if (Subtarget->isTargetCygMing()) {
534 unsigned CallOp =
535 Subtarget->is64Bit() ? X86::WINCALL64pcrel32 : X86::CALLpcrel32;
536 BuildMI(BB, DebugLoc(),
537 TII->get(CallOp)).addExternalSymbol("__main");
541 void X86DAGToDAGISel::EmitFunctionEntryCode() {
542 // If this is main, emit special code for main.
543 if (const Function *Fn = MF->getFunction())
544 if (Fn->hasExternalLinkage() && Fn->getName() == "main")
545 EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
549 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
550 SDValue Address = N->getOperand(1);
552 // load gs:0 -> GS segment register.
553 // load fs:0 -> FS segment register.
555 // This optimization is valid because the GNU TLS model defines that
556 // gs:0 (or fs:0 on X86-64) contains its own address.
557 // For more information see http://people.redhat.com/drepper/tls.pdf
558 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
559 if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
560 Subtarget->isTargetELF())
561 switch (N->getPointerInfo().getAddrSpace()) {
562 case 256:
563 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
564 return false;
565 case 257:
566 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
567 return false;
570 return true;
573 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
574 /// into an addressing mode. These wrap things that will resolve down into a
575 /// symbol reference. If no match is possible, this returns true, otherwise it
576 /// returns false.
577 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
578 // If the addressing mode already has a symbol as the displacement, we can
579 // never match another symbol.
580 if (AM.hasSymbolicDisplacement())
581 return true;
583 SDValue N0 = N.getOperand(0);
584 CodeModel::Model M = TM.getCodeModel();
586 // Handle X86-64 rip-relative addresses. We check this before checking direct
587 // folding because RIP is preferable to non-RIP accesses.
588 if (Subtarget->is64Bit() &&
589 // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
590 // they cannot be folded into immediate fields.
591 // FIXME: This can be improved for kernel and other models?
592 (M == CodeModel::Small || M == CodeModel::Kernel) &&
593 // Base and index reg must be 0 in order to use %rip as base and lowering
594 // must allow RIP.
595 !AM.hasBaseOrIndexReg() && N.getOpcode() == X86ISD::WrapperRIP) {
596 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
597 int64_t Offset = AM.Disp + G->getOffset();
598 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
599 AM.GV = G->getGlobal();
600 AM.Disp = Offset;
601 AM.SymbolFlags = G->getTargetFlags();
602 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
603 int64_t Offset = AM.Disp + CP->getOffset();
604 if (!X86::isOffsetSuitableForCodeModel(Offset, M)) return true;
605 AM.CP = CP->getConstVal();
606 AM.Align = CP->getAlignment();
607 AM.Disp = Offset;
608 AM.SymbolFlags = CP->getTargetFlags();
609 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
610 AM.ES = S->getSymbol();
611 AM.SymbolFlags = S->getTargetFlags();
612 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
613 AM.JT = J->getIndex();
614 AM.SymbolFlags = J->getTargetFlags();
615 } else {
616 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
617 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
620 if (N.getOpcode() == X86ISD::WrapperRIP)
621 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
622 return false;
625 // Handle the case when globals fit in our immediate field: This is true for
626 // X86-32 always and X86-64 when in -static -mcmodel=small mode. In 64-bit
627 // mode, this results in a non-RIP-relative computation.
628 if (!Subtarget->is64Bit() ||
629 ((M == CodeModel::Small || M == CodeModel::Kernel) &&
630 TM.getRelocationModel() == Reloc::Static)) {
631 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
632 AM.GV = G->getGlobal();
633 AM.Disp += G->getOffset();
634 AM.SymbolFlags = G->getTargetFlags();
635 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
636 AM.CP = CP->getConstVal();
637 AM.Align = CP->getAlignment();
638 AM.Disp += CP->getOffset();
639 AM.SymbolFlags = CP->getTargetFlags();
640 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
641 AM.ES = S->getSymbol();
642 AM.SymbolFlags = S->getTargetFlags();
643 } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
644 AM.JT = J->getIndex();
645 AM.SymbolFlags = J->getTargetFlags();
646 } else {
647 AM.BlockAddr = cast<BlockAddressSDNode>(N0)->getBlockAddress();
648 AM.SymbolFlags = cast<BlockAddressSDNode>(N0)->getTargetFlags();
650 return false;
653 return true;
656 /// MatchAddress - Add the specified node to the specified addressing mode,
657 /// returning true if it cannot be done. This just pattern matches for the
658 /// addressing mode.
659 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
660 if (MatchAddressRecursively(N, AM, 0))
661 return true;
663 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
664 // a smaller encoding and avoids a scaled-index.
665 if (AM.Scale == 2 &&
666 AM.BaseType == X86ISelAddressMode::RegBase &&
667 AM.Base_Reg.getNode() == 0) {
668 AM.Base_Reg = AM.IndexReg;
669 AM.Scale = 1;
672 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
673 // because it has a smaller encoding.
674 // TODO: Which other code models can use this?
675 if (TM.getCodeModel() == CodeModel::Small &&
676 Subtarget->is64Bit() &&
677 AM.Scale == 1 &&
678 AM.BaseType == X86ISelAddressMode::RegBase &&
679 AM.Base_Reg.getNode() == 0 &&
680 AM.IndexReg.getNode() == 0 &&
681 AM.SymbolFlags == X86II::MO_NO_FLAG &&
682 AM.hasSymbolicDisplacement())
683 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
685 return false;
688 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
689 unsigned Depth) {
690 bool is64Bit = Subtarget->is64Bit();
691 DebugLoc dl = N.getDebugLoc();
692 DEBUG({
693 dbgs() << "MatchAddress: ";
694 AM.dump();
696 // Limit recursion.
697 if (Depth > 5)
698 return MatchAddressBase(N, AM);
700 CodeModel::Model M = TM.getCodeModel();
702 // If this is already a %rip relative address, we can only merge immediates
703 // into it. Instead of handling this in every case, we handle it here.
704 // RIP relative addressing: %rip + 32-bit displacement!
705 if (AM.isRIPRelative()) {
706 // FIXME: JumpTable and ExternalSymbol address currently don't like
707 // displacements. It isn't very important, but this should be fixed for
708 // consistency.
709 if (!AM.ES && AM.JT != -1) return true;
711 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N)) {
712 int64_t Val = AM.Disp + Cst->getSExtValue();
713 if (X86::isOffsetSuitableForCodeModel(Val, M,
714 AM.hasSymbolicDisplacement())) {
715 AM.Disp = Val;
716 return false;
719 return true;
722 switch (N.getOpcode()) {
723 default: break;
724 case ISD::Constant: {
725 uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
726 if (!is64Bit ||
727 X86::isOffsetSuitableForCodeModel(AM.Disp + Val, M,
728 AM.hasSymbolicDisplacement())) {
729 AM.Disp += Val;
730 return false;
732 break;
735 case X86ISD::Wrapper:
736 case X86ISD::WrapperRIP:
737 if (!MatchWrapper(N, AM))
738 return false;
739 break;
741 case ISD::LOAD:
742 if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
743 return false;
744 break;
746 case ISD::FrameIndex:
747 if (AM.BaseType == X86ISelAddressMode::RegBase
748 && AM.Base_Reg.getNode() == 0) {
749 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
750 AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
751 return false;
753 break;
755 case ISD::SHL:
756 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
757 break;
759 if (ConstantSDNode
760 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
761 unsigned Val = CN->getZExtValue();
762 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
763 // that the base operand remains free for further matching. If
764 // the base doesn't end up getting used, a post-processing step
765 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
766 if (Val == 1 || Val == 2 || Val == 3) {
767 AM.Scale = 1 << Val;
768 SDValue ShVal = N.getNode()->getOperand(0);
770 // Okay, we know that we have a scale by now. However, if the scaled
771 // value is an add of something and a constant, we can fold the
772 // constant into the disp field here.
773 if (CurDAG->isBaseWithConstantOffset(ShVal)) {
774 AM.IndexReg = ShVal.getNode()->getOperand(0);
775 ConstantSDNode *AddVal =
776 cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
777 uint64_t Disp = AM.Disp + (AddVal->getSExtValue() << Val);
778 if (!is64Bit ||
779 X86::isOffsetSuitableForCodeModel(Disp, M,
780 AM.hasSymbolicDisplacement()))
781 AM.Disp = Disp;
782 else
783 AM.IndexReg = ShVal;
784 } else {
785 AM.IndexReg = ShVal;
787 return false;
789 break;
792 case ISD::SMUL_LOHI:
793 case ISD::UMUL_LOHI:
794 // A mul_lohi where we need the low part can be folded as a plain multiply.
795 if (N.getResNo() != 0) break;
796 // FALL THROUGH
797 case ISD::MUL:
798 case X86ISD::MUL_IMM:
799 // X*[3,5,9] -> X+X*[2,4,8]
800 if (AM.BaseType == X86ISelAddressMode::RegBase &&
801 AM.Base_Reg.getNode() == 0 &&
802 AM.IndexReg.getNode() == 0) {
803 if (ConstantSDNode
804 *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
805 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
806 CN->getZExtValue() == 9) {
807 AM.Scale = unsigned(CN->getZExtValue())-1;
809 SDValue MulVal = N.getNode()->getOperand(0);
810 SDValue Reg;
812 // Okay, we know that we have a scale by now. However, if the scaled
813 // value is an add of something and a constant, we can fold the
814 // constant into the disp field here.
815 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
816 isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
817 Reg = MulVal.getNode()->getOperand(0);
818 ConstantSDNode *AddVal =
819 cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
820 uint64_t Disp = AM.Disp + AddVal->getSExtValue() *
821 CN->getZExtValue();
822 if (!is64Bit ||
823 X86::isOffsetSuitableForCodeModel(Disp, M,
824 AM.hasSymbolicDisplacement()))
825 AM.Disp = Disp;
826 else
827 Reg = N.getNode()->getOperand(0);
828 } else {
829 Reg = N.getNode()->getOperand(0);
832 AM.IndexReg = AM.Base_Reg = Reg;
833 return false;
836 break;
838 case ISD::SUB: {
839 // Given A-B, if A can be completely folded into the address and
840 // the index field with the index field unused, use -B as the index.
841 // This is a win if a has multiple parts that can be folded into
842 // the address. Also, this saves a mov if the base register has
843 // other uses, since it avoids a two-address sub instruction, however
844 // it costs an additional mov if the index register has other uses.
846 // Add an artificial use to this node so that we can keep track of
847 // it if it gets CSE'd with a different node.
848 HandleSDNode Handle(N);
850 // Test if the LHS of the sub can be folded.
851 X86ISelAddressMode Backup = AM;
852 if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
853 AM = Backup;
854 break;
856 // Test if the index field is free for use.
857 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
858 AM = Backup;
859 break;
862 int Cost = 0;
863 SDValue RHS = Handle.getValue().getNode()->getOperand(1);
864 // If the RHS involves a register with multiple uses, this
865 // transformation incurs an extra mov, due to the neg instruction
866 // clobbering its operand.
867 if (!RHS.getNode()->hasOneUse() ||
868 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
869 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
870 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
871 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
872 RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
873 ++Cost;
874 // If the base is a register with multiple uses, this
875 // transformation may save a mov.
876 if ((AM.BaseType == X86ISelAddressMode::RegBase &&
877 AM.Base_Reg.getNode() &&
878 !AM.Base_Reg.getNode()->hasOneUse()) ||
879 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
880 --Cost;
881 // If the folded LHS was interesting, this transformation saves
882 // address arithmetic.
883 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
884 ((AM.Disp != 0) && (Backup.Disp == 0)) +
885 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
886 --Cost;
887 // If it doesn't look like it may be an overall win, don't do it.
888 if (Cost >= 0) {
889 AM = Backup;
890 break;
893 // Ok, the transformation is legal and appears profitable. Go for it.
894 SDValue Zero = CurDAG->getConstant(0, N.getValueType());
895 SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
896 AM.IndexReg = Neg;
897 AM.Scale = 1;
899 // Insert the new nodes into the topological ordering.
900 if (Zero.getNode()->getNodeId() == -1 ||
901 Zero.getNode()->getNodeId() > N.getNode()->getNodeId()) {
902 CurDAG->RepositionNode(N.getNode(), Zero.getNode());
903 Zero.getNode()->setNodeId(N.getNode()->getNodeId());
905 if (Neg.getNode()->getNodeId() == -1 ||
906 Neg.getNode()->getNodeId() > N.getNode()->getNodeId()) {
907 CurDAG->RepositionNode(N.getNode(), Neg.getNode());
908 Neg.getNode()->setNodeId(N.getNode()->getNodeId());
910 return false;
913 case ISD::ADD: {
914 // Add an artificial use to this node so that we can keep track of
915 // it if it gets CSE'd with a different node.
916 HandleSDNode Handle(N);
918 X86ISelAddressMode Backup = AM;
919 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
920 !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
921 return false;
922 AM = Backup;
924 // Try again after commuting the operands.
925 if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
926 !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
927 return false;
928 AM = Backup;
930 // If we couldn't fold both operands into the address at the same time,
931 // see if we can just put each operand into a register and fold at least
932 // the add.
933 if (AM.BaseType == X86ISelAddressMode::RegBase &&
934 !AM.Base_Reg.getNode() &&
935 !AM.IndexReg.getNode()) {
936 N = Handle.getValue();
937 AM.Base_Reg = N.getOperand(0);
938 AM.IndexReg = N.getOperand(1);
939 AM.Scale = 1;
940 return false;
942 N = Handle.getValue();
943 break;
946 case ISD::OR:
947 // Handle "X | C" as "X + C" iff X is known to have C bits clear.
948 if (CurDAG->isBaseWithConstantOffset(N)) {
949 X86ISelAddressMode Backup = AM;
950 ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
951 uint64_t Offset = CN->getSExtValue();
953 // Start with the LHS as an addr mode.
954 if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
955 // Address could not have picked a GV address for the displacement.
956 AM.GV == NULL &&
957 // On x86-64, the resultant disp must fit in 32-bits.
958 (!is64Bit ||
959 X86::isOffsetSuitableForCodeModel(AM.Disp + Offset, M,
960 AM.hasSymbolicDisplacement()))) {
961 AM.Disp += Offset;
962 return false;
964 AM = Backup;
966 break;
968 case ISD::AND: {
969 // Perform some heroic transforms on an and of a constant-count shift
970 // with a constant to enable use of the scaled offset field.
972 SDValue Shift = N.getOperand(0);
973 if (Shift.getNumOperands() != 2) break;
975 // Scale must not be used already.
976 if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
978 SDValue X = Shift.getOperand(0);
979 ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
980 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
981 if (!C1 || !C2) break;
983 // Handle "(X >> (8-C1)) & C2" as "(X >> 8) & 0xff)" if safe. This
984 // allows us to convert the shift and and into an h-register extract and
985 // a scaled index.
986 if (Shift.getOpcode() == ISD::SRL && Shift.hasOneUse()) {
987 unsigned ScaleLog = 8 - C1->getZExtValue();
988 if (ScaleLog > 0 && ScaleLog < 4 &&
989 C2->getZExtValue() == (UINT64_C(0xff) << ScaleLog)) {
990 SDValue Eight = CurDAG->getConstant(8, MVT::i8);
991 SDValue Mask = CurDAG->getConstant(0xff, N.getValueType());
992 SDValue Srl = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
993 X, Eight);
994 SDValue And = CurDAG->getNode(ISD::AND, dl, N.getValueType(),
995 Srl, Mask);
996 SDValue ShlCount = CurDAG->getConstant(ScaleLog, MVT::i8);
997 SDValue Shl = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
998 And, ShlCount);
1000 // Insert the new nodes into the topological ordering.
1001 if (Eight.getNode()->getNodeId() == -1 ||
1002 Eight.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1003 CurDAG->RepositionNode(X.getNode(), Eight.getNode());
1004 Eight.getNode()->setNodeId(X.getNode()->getNodeId());
1006 if (Mask.getNode()->getNodeId() == -1 ||
1007 Mask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1008 CurDAG->RepositionNode(X.getNode(), Mask.getNode());
1009 Mask.getNode()->setNodeId(X.getNode()->getNodeId());
1011 if (Srl.getNode()->getNodeId() == -1 ||
1012 Srl.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1013 CurDAG->RepositionNode(Shift.getNode(), Srl.getNode());
1014 Srl.getNode()->setNodeId(Shift.getNode()->getNodeId());
1016 if (And.getNode()->getNodeId() == -1 ||
1017 And.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1018 CurDAG->RepositionNode(N.getNode(), And.getNode());
1019 And.getNode()->setNodeId(N.getNode()->getNodeId());
1021 if (ShlCount.getNode()->getNodeId() == -1 ||
1022 ShlCount.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1023 CurDAG->RepositionNode(X.getNode(), ShlCount.getNode());
1024 ShlCount.getNode()->setNodeId(N.getNode()->getNodeId());
1026 if (Shl.getNode()->getNodeId() == -1 ||
1027 Shl.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1028 CurDAG->RepositionNode(N.getNode(), Shl.getNode());
1029 Shl.getNode()->setNodeId(N.getNode()->getNodeId());
1031 CurDAG->ReplaceAllUsesWith(N, Shl);
1032 AM.IndexReg = And;
1033 AM.Scale = (1 << ScaleLog);
1034 return false;
1038 // Handle "(X << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
1039 // allows us to fold the shift into this addressing mode.
1040 if (Shift.getOpcode() != ISD::SHL) break;
1042 // Not likely to be profitable if either the AND or SHIFT node has more
1043 // than one use (unless all uses are for address computation). Besides,
1044 // isel mechanism requires their node ids to be reused.
1045 if (!N.hasOneUse() || !Shift.hasOneUse())
1046 break;
1048 // Verify that the shift amount is something we can fold.
1049 unsigned ShiftCst = C1->getZExtValue();
1050 if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
1051 break;
1053 // Get the new AND mask, this folds to a constant.
1054 SDValue NewANDMask = CurDAG->getNode(ISD::SRL, dl, N.getValueType(),
1055 SDValue(C2, 0), SDValue(C1, 0));
1056 SDValue NewAND = CurDAG->getNode(ISD::AND, dl, N.getValueType(), X,
1057 NewANDMask);
1058 SDValue NewSHIFT = CurDAG->getNode(ISD::SHL, dl, N.getValueType(),
1059 NewAND, SDValue(C1, 0));
1061 // Insert the new nodes into the topological ordering.
1062 if (C1->getNodeId() > X.getNode()->getNodeId()) {
1063 CurDAG->RepositionNode(X.getNode(), C1);
1064 C1->setNodeId(X.getNode()->getNodeId());
1066 if (NewANDMask.getNode()->getNodeId() == -1 ||
1067 NewANDMask.getNode()->getNodeId() > X.getNode()->getNodeId()) {
1068 CurDAG->RepositionNode(X.getNode(), NewANDMask.getNode());
1069 NewANDMask.getNode()->setNodeId(X.getNode()->getNodeId());
1071 if (NewAND.getNode()->getNodeId() == -1 ||
1072 NewAND.getNode()->getNodeId() > Shift.getNode()->getNodeId()) {
1073 CurDAG->RepositionNode(Shift.getNode(), NewAND.getNode());
1074 NewAND.getNode()->setNodeId(Shift.getNode()->getNodeId());
1076 if (NewSHIFT.getNode()->getNodeId() == -1 ||
1077 NewSHIFT.getNode()->getNodeId() > N.getNode()->getNodeId()) {
1078 CurDAG->RepositionNode(N.getNode(), NewSHIFT.getNode());
1079 NewSHIFT.getNode()->setNodeId(N.getNode()->getNodeId());
1082 CurDAG->ReplaceAllUsesWith(N, NewSHIFT);
1084 AM.Scale = 1 << ShiftCst;
1085 AM.IndexReg = NewAND;
1086 return false;
1090 return MatchAddressBase(N, AM);
1093 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1094 /// specified addressing mode without any further recursion.
1095 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1096 // Is the base register already occupied?
1097 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1098 // If so, check to see if the scale index register is set.
1099 if (AM.IndexReg.getNode() == 0) {
1100 AM.IndexReg = N;
1101 AM.Scale = 1;
1102 return false;
1105 // Otherwise, we cannot select it.
1106 return true;
1109 // Default, generate it as a register.
1110 AM.BaseType = X86ISelAddressMode::RegBase;
1111 AM.Base_Reg = N;
1112 return false;
1115 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1116 /// It returns the operands which make up the maximal addressing mode it can
1117 /// match by reference.
1119 /// Parent is the parent node of the addr operand that is being matched. It
1120 /// is always a load, store, atomic node, or null. It is only null when
1121 /// checking memory operands for inline asm nodes.
1122 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1123 SDValue &Scale, SDValue &Index,
1124 SDValue &Disp, SDValue &Segment) {
1125 X86ISelAddressMode AM;
1127 if (Parent &&
1128 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1129 // that are not a MemSDNode, and thus don't have proper addrspace info.
1130 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1131 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1132 Parent->getOpcode() != X86ISD::TLSCALL) { // Fixme
1133 unsigned AddrSpace =
1134 cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1135 // AddrSpace 256 -> GS, 257 -> FS.
1136 if (AddrSpace == 256)
1137 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1138 if (AddrSpace == 257)
1139 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1142 if (MatchAddress(N, AM))
1143 return false;
1145 EVT VT = N.getValueType();
1146 if (AM.BaseType == X86ISelAddressMode::RegBase) {
1147 if (!AM.Base_Reg.getNode())
1148 AM.Base_Reg = CurDAG->getRegister(0, VT);
1151 if (!AM.IndexReg.getNode())
1152 AM.IndexReg = CurDAG->getRegister(0, VT);
1154 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1155 return true;
1158 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1159 /// match a load whose top elements are either undef or zeros. The load flavor
1160 /// is derived from the type of N, which is either v4f32 or v2f64.
1162 /// We also return:
1163 /// PatternChainNode: this is the matched node that has a chain input and
1164 /// output.
1165 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1166 SDValue N, SDValue &Base,
1167 SDValue &Scale, SDValue &Index,
1168 SDValue &Disp, SDValue &Segment,
1169 SDValue &PatternNodeWithChain) {
1170 if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1171 PatternNodeWithChain = N.getOperand(0);
1172 if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1173 PatternNodeWithChain.hasOneUse() &&
1174 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1175 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1176 LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1177 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1178 return false;
1179 return true;
1183 // Also handle the case where we explicitly require zeros in the top
1184 // elements. This is a vector shuffle from the zero vector.
1185 if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1186 // Check to see if the top elements are all zeros (or bitcast of zeros).
1187 N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1188 N.getOperand(0).getNode()->hasOneUse() &&
1189 ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1190 N.getOperand(0).getOperand(0).hasOneUse() &&
1191 IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1192 IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1193 // Okay, this is a zero extending load. Fold it.
1194 LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1195 if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1196 return false;
1197 PatternNodeWithChain = SDValue(LD, 0);
1198 return true;
1200 return false;
1204 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1205 /// mode it matches can be cost effectively emitted as an LEA instruction.
1206 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1207 SDValue &Base, SDValue &Scale,
1208 SDValue &Index, SDValue &Disp,
1209 SDValue &Segment) {
1210 X86ISelAddressMode AM;
1212 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1213 // segments.
1214 SDValue Copy = AM.Segment;
1215 SDValue T = CurDAG->getRegister(0, MVT::i32);
1216 AM.Segment = T;
1217 if (MatchAddress(N, AM))
1218 return false;
1219 assert (T == AM.Segment);
1220 AM.Segment = Copy;
1222 EVT VT = N.getValueType();
1223 unsigned Complexity = 0;
1224 if (AM.BaseType == X86ISelAddressMode::RegBase)
1225 if (AM.Base_Reg.getNode())
1226 Complexity = 1;
1227 else
1228 AM.Base_Reg = CurDAG->getRegister(0, VT);
1229 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1230 Complexity = 4;
1232 if (AM.IndexReg.getNode())
1233 Complexity++;
1234 else
1235 AM.IndexReg = CurDAG->getRegister(0, VT);
1237 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1238 // a simple shift.
1239 if (AM.Scale > 1)
1240 Complexity++;
1242 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1243 // to a LEA. This is determined with some expermentation but is by no means
1244 // optimal (especially for code size consideration). LEA is nice because of
1245 // its three-address nature. Tweak the cost function again when we can run
1246 // convertToThreeAddress() at register allocation time.
1247 if (AM.hasSymbolicDisplacement()) {
1248 // For X86-64, we should always use lea to materialize RIP relative
1249 // addresses.
1250 if (Subtarget->is64Bit())
1251 Complexity = 4;
1252 else
1253 Complexity += 2;
1256 if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1257 Complexity++;
1259 // If it isn't worth using an LEA, reject it.
1260 if (Complexity <= 2)
1261 return false;
1263 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1264 return true;
1267 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1268 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1269 SDValue &Scale, SDValue &Index,
1270 SDValue &Disp, SDValue &Segment) {
1271 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1272 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1274 X86ISelAddressMode AM;
1275 AM.GV = GA->getGlobal();
1276 AM.Disp += GA->getOffset();
1277 AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1278 AM.SymbolFlags = GA->getTargetFlags();
1280 if (N.getValueType() == MVT::i32) {
1281 AM.Scale = 1;
1282 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1283 } else {
1284 AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1287 getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1288 return true;
1292 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1293 SDValue &Base, SDValue &Scale,
1294 SDValue &Index, SDValue &Disp,
1295 SDValue &Segment) {
1296 if (!ISD::isNON_EXTLoad(N.getNode()) ||
1297 !IsProfitableToFold(N, P, P) ||
1298 !IsLegalToFold(N, P, P, OptLevel))
1299 return false;
1301 return SelectAddr(N.getNode(),
1302 N.getOperand(1), Base, Scale, Index, Disp, Segment);
1305 /// getGlobalBaseReg - Return an SDNode that returns the value of
1306 /// the global base register. Output instructions required to
1307 /// initialize the global base register, if necessary.
1309 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1310 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1311 return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
1314 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1315 SDValue Chain = Node->getOperand(0);
1316 SDValue In1 = Node->getOperand(1);
1317 SDValue In2L = Node->getOperand(2);
1318 SDValue In2H = Node->getOperand(3);
1319 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1320 if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1321 return NULL;
1322 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1323 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1324 const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1325 SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(),
1326 MVT::i32, MVT::i32, MVT::Other, Ops,
1327 array_lengthof(Ops));
1328 cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1329 return ResNode;
1332 SDNode *X86DAGToDAGISel::SelectAtomicLoadAdd(SDNode *Node, EVT NVT) {
1333 if (Node->hasAnyUseOfValue(0))
1334 return 0;
1336 // Optimize common patterns for __sync_add_and_fetch and
1337 // __sync_sub_and_fetch where the result is not used. This allows us
1338 // to use "lock" version of add, sub, inc, dec instructions.
1339 // FIXME: Do not use special instructions but instead add the "lock"
1340 // prefix to the target node somehow. The extra information will then be
1341 // transferred to machine instruction and it denotes the prefix.
1342 SDValue Chain = Node->getOperand(0);
1343 SDValue Ptr = Node->getOperand(1);
1344 SDValue Val = Node->getOperand(2);
1345 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1346 if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1347 return 0;
1349 bool isInc = false, isDec = false, isSub = false, isCN = false;
1350 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val);
1351 if (CN) {
1352 isCN = true;
1353 int64_t CNVal = CN->getSExtValue();
1354 if (CNVal == 1)
1355 isInc = true;
1356 else if (CNVal == -1)
1357 isDec = true;
1358 else if (CNVal >= 0)
1359 Val = CurDAG->getTargetConstant(CNVal, NVT);
1360 else {
1361 isSub = true;
1362 Val = CurDAG->getTargetConstant(-CNVal, NVT);
1364 } else if (Val.hasOneUse() &&
1365 Val.getOpcode() == ISD::SUB &&
1366 X86::isZeroNode(Val.getOperand(0))) {
1367 isSub = true;
1368 Val = Val.getOperand(1);
1371 unsigned Opc = 0;
1372 switch (NVT.getSimpleVT().SimpleTy) {
1373 default: return 0;
1374 case MVT::i8:
1375 if (isInc)
1376 Opc = X86::LOCK_INC8m;
1377 else if (isDec)
1378 Opc = X86::LOCK_DEC8m;
1379 else if (isSub) {
1380 if (isCN)
1381 Opc = X86::LOCK_SUB8mi;
1382 else
1383 Opc = X86::LOCK_SUB8mr;
1384 } else {
1385 if (isCN)
1386 Opc = X86::LOCK_ADD8mi;
1387 else
1388 Opc = X86::LOCK_ADD8mr;
1390 break;
1391 case MVT::i16:
1392 if (isInc)
1393 Opc = X86::LOCK_INC16m;
1394 else if (isDec)
1395 Opc = X86::LOCK_DEC16m;
1396 else if (isSub) {
1397 if (isCN) {
1398 if (immSext8(Val.getNode()))
1399 Opc = X86::LOCK_SUB16mi8;
1400 else
1401 Opc = X86::LOCK_SUB16mi;
1402 } else
1403 Opc = X86::LOCK_SUB16mr;
1404 } else {
1405 if (isCN) {
1406 if (immSext8(Val.getNode()))
1407 Opc = X86::LOCK_ADD16mi8;
1408 else
1409 Opc = X86::LOCK_ADD16mi;
1410 } else
1411 Opc = X86::LOCK_ADD16mr;
1413 break;
1414 case MVT::i32:
1415 if (isInc)
1416 Opc = X86::LOCK_INC32m;
1417 else if (isDec)
1418 Opc = X86::LOCK_DEC32m;
1419 else if (isSub) {
1420 if (isCN) {
1421 if (immSext8(Val.getNode()))
1422 Opc = X86::LOCK_SUB32mi8;
1423 else
1424 Opc = X86::LOCK_SUB32mi;
1425 } else
1426 Opc = X86::LOCK_SUB32mr;
1427 } else {
1428 if (isCN) {
1429 if (immSext8(Val.getNode()))
1430 Opc = X86::LOCK_ADD32mi8;
1431 else
1432 Opc = X86::LOCK_ADD32mi;
1433 } else
1434 Opc = X86::LOCK_ADD32mr;
1436 break;
1437 case MVT::i64:
1438 if (isInc)
1439 Opc = X86::LOCK_INC64m;
1440 else if (isDec)
1441 Opc = X86::LOCK_DEC64m;
1442 else if (isSub) {
1443 Opc = X86::LOCK_SUB64mr;
1444 if (isCN) {
1445 if (immSext8(Val.getNode()))
1446 Opc = X86::LOCK_SUB64mi8;
1447 else if (i64immSExt32(Val.getNode()))
1448 Opc = X86::LOCK_SUB64mi32;
1450 } else {
1451 Opc = X86::LOCK_ADD64mr;
1452 if (isCN) {
1453 if (immSext8(Val.getNode()))
1454 Opc = X86::LOCK_ADD64mi8;
1455 else if (i64immSExt32(Val.getNode()))
1456 Opc = X86::LOCK_ADD64mi32;
1459 break;
1462 DebugLoc dl = Node->getDebugLoc();
1463 SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1464 dl, NVT), 0);
1465 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1466 MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1467 if (isInc || isDec) {
1468 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1469 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 6), 0);
1470 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1471 SDValue RetVals[] = { Undef, Ret };
1472 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1473 } else {
1474 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1475 SDValue Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops, 7), 0);
1476 cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1477 SDValue RetVals[] = { Undef, Ret };
1478 return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1482 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1483 /// any uses which require the SF or OF bits to be accurate.
1484 static bool HasNoSignedComparisonUses(SDNode *N) {
1485 // Examine each user of the node.
1486 for (SDNode::use_iterator UI = N->use_begin(),
1487 UE = N->use_end(); UI != UE; ++UI) {
1488 // Only examine CopyToReg uses.
1489 if (UI->getOpcode() != ISD::CopyToReg)
1490 return false;
1491 // Only examine CopyToReg uses that copy to EFLAGS.
1492 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1493 X86::EFLAGS)
1494 return false;
1495 // Examine each user of the CopyToReg use.
1496 for (SDNode::use_iterator FlagUI = UI->use_begin(),
1497 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1498 // Only examine the Flag result.
1499 if (FlagUI.getUse().getResNo() != 1) continue;
1500 // Anything unusual: assume conservatively.
1501 if (!FlagUI->isMachineOpcode()) return false;
1502 // Examine the opcode of the user.
1503 switch (FlagUI->getMachineOpcode()) {
1504 // These comparisons don't treat the most significant bit specially.
1505 case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1506 case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1507 case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1508 case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1509 case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1510 case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1511 case X86::CMOVA16rr: case X86::CMOVA16rm:
1512 case X86::CMOVA32rr: case X86::CMOVA32rm:
1513 case X86::CMOVA64rr: case X86::CMOVA64rm:
1514 case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1515 case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1516 case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1517 case X86::CMOVB16rr: case X86::CMOVB16rm:
1518 case X86::CMOVB32rr: case X86::CMOVB32rm:
1519 case X86::CMOVB64rr: case X86::CMOVB64rm:
1520 case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1521 case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1522 case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1523 case X86::CMOVE16rr: case X86::CMOVE16rm:
1524 case X86::CMOVE32rr: case X86::CMOVE32rm:
1525 case X86::CMOVE64rr: case X86::CMOVE64rm:
1526 case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1527 case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1528 case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1529 case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1530 case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1531 case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1532 case X86::CMOVP16rr: case X86::CMOVP16rm:
1533 case X86::CMOVP32rr: case X86::CMOVP32rm:
1534 case X86::CMOVP64rr: case X86::CMOVP64rm:
1535 continue;
1536 // Anything else: assume conservatively.
1537 default: return false;
1541 return true;
1544 SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
1545 EVT NVT = Node->getValueType(0);
1546 unsigned Opc, MOpc;
1547 unsigned Opcode = Node->getOpcode();
1548 DebugLoc dl = Node->getDebugLoc();
1550 DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
1552 if (Node->isMachineOpcode()) {
1553 DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
1554 return NULL; // Already selected.
1557 switch (Opcode) {
1558 default: break;
1559 case X86ISD::GlobalBaseReg:
1560 return getGlobalBaseReg();
1562 case X86ISD::ATOMOR64_DAG:
1563 return SelectAtomic64(Node, X86::ATOMOR6432);
1564 case X86ISD::ATOMXOR64_DAG:
1565 return SelectAtomic64(Node, X86::ATOMXOR6432);
1566 case X86ISD::ATOMADD64_DAG:
1567 return SelectAtomic64(Node, X86::ATOMADD6432);
1568 case X86ISD::ATOMSUB64_DAG:
1569 return SelectAtomic64(Node, X86::ATOMSUB6432);
1570 case X86ISD::ATOMNAND64_DAG:
1571 return SelectAtomic64(Node, X86::ATOMNAND6432);
1572 case X86ISD::ATOMAND64_DAG:
1573 return SelectAtomic64(Node, X86::ATOMAND6432);
1574 case X86ISD::ATOMSWAP64_DAG:
1575 return SelectAtomic64(Node, X86::ATOMSWAP6432);
1577 case ISD::ATOMIC_LOAD_ADD: {
1578 SDNode *RetVal = SelectAtomicLoadAdd(Node, NVT);
1579 if (RetVal)
1580 return RetVal;
1581 break;
1583 case X86ISD::UMUL: {
1584 SDValue N0 = Node->getOperand(0);
1585 SDValue N1 = Node->getOperand(1);
1587 unsigned LoReg;
1588 switch (NVT.getSimpleVT().SimpleTy) {
1589 default: llvm_unreachable("Unsupported VT!");
1590 case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break;
1591 case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
1592 case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
1593 case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
1596 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1597 N0, SDValue()).getValue(1);
1599 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
1600 SDValue Ops[] = {N1, InFlag};
1601 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops, 2);
1603 ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
1604 ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
1605 ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
1606 return NULL;
1609 case ISD::SMUL_LOHI:
1610 case ISD::UMUL_LOHI: {
1611 SDValue N0 = Node->getOperand(0);
1612 SDValue N1 = Node->getOperand(1);
1614 bool isSigned = Opcode == ISD::SMUL_LOHI;
1615 if (!isSigned) {
1616 switch (NVT.getSimpleVT().SimpleTy) {
1617 default: llvm_unreachable("Unsupported VT!");
1618 case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
1619 case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
1620 case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
1621 case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
1623 } else {
1624 switch (NVT.getSimpleVT().SimpleTy) {
1625 default: llvm_unreachable("Unsupported VT!");
1626 case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
1627 case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
1628 case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
1629 case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
1633 unsigned LoReg, HiReg;
1634 switch (NVT.getSimpleVT().SimpleTy) {
1635 default: llvm_unreachable("Unsupported VT!");
1636 case MVT::i8: LoReg = X86::AL; HiReg = X86::AH; break;
1637 case MVT::i16: LoReg = X86::AX; HiReg = X86::DX; break;
1638 case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
1639 case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
1642 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1643 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1644 // Multiply is commmutative.
1645 if (!foldedLoad) {
1646 foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1647 if (foldedLoad)
1648 std::swap(N0, N1);
1651 SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
1652 N0, SDValue()).getValue(1);
1654 if (foldedLoad) {
1655 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1656 InFlag };
1657 SDNode *CNode =
1658 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1659 array_lengthof(Ops));
1660 InFlag = SDValue(CNode, 1);
1662 // Update the chain.
1663 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1664 } else {
1665 SDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag);
1666 InFlag = SDValue(CNode, 0);
1669 // Prevent use of AH in a REX instruction by referencing AX instead.
1670 if (HiReg == X86::AH && Subtarget->is64Bit() &&
1671 !SDValue(Node, 1).use_empty()) {
1672 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1673 X86::AX, MVT::i16, InFlag);
1674 InFlag = Result.getValue(2);
1675 // Get the low part if needed. Don't use getCopyFromReg for aliasing
1676 // registers.
1677 if (!SDValue(Node, 0).use_empty())
1678 ReplaceUses(SDValue(Node, 1),
1679 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1681 // Shift AX down 8 bits.
1682 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1683 Result,
1684 CurDAG->getTargetConstant(8, MVT::i8)), 0);
1685 // Then truncate it down to i8.
1686 ReplaceUses(SDValue(Node, 1),
1687 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1689 // Copy the low half of the result, if it is needed.
1690 if (!SDValue(Node, 0).use_empty()) {
1691 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1692 LoReg, NVT, InFlag);
1693 InFlag = Result.getValue(2);
1694 ReplaceUses(SDValue(Node, 0), Result);
1695 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1697 // Copy the high half of the result, if it is needed.
1698 if (!SDValue(Node, 1).use_empty()) {
1699 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1700 HiReg, NVT, InFlag);
1701 InFlag = Result.getValue(2);
1702 ReplaceUses(SDValue(Node, 1), Result);
1703 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1706 return NULL;
1709 case ISD::SDIVREM:
1710 case ISD::UDIVREM: {
1711 SDValue N0 = Node->getOperand(0);
1712 SDValue N1 = Node->getOperand(1);
1714 bool isSigned = Opcode == ISD::SDIVREM;
1715 if (!isSigned) {
1716 switch (NVT.getSimpleVT().SimpleTy) {
1717 default: llvm_unreachable("Unsupported VT!");
1718 case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
1719 case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
1720 case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
1721 case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
1723 } else {
1724 switch (NVT.getSimpleVT().SimpleTy) {
1725 default: llvm_unreachable("Unsupported VT!");
1726 case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
1727 case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
1728 case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
1729 case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
1733 unsigned LoReg, HiReg, ClrReg;
1734 unsigned ClrOpcode, SExtOpcode;
1735 switch (NVT.getSimpleVT().SimpleTy) {
1736 default: llvm_unreachable("Unsupported VT!");
1737 case MVT::i8:
1738 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
1739 ClrOpcode = 0;
1740 SExtOpcode = X86::CBW;
1741 break;
1742 case MVT::i16:
1743 LoReg = X86::AX; HiReg = X86::DX;
1744 ClrOpcode = X86::MOV16r0; ClrReg = X86::DX;
1745 SExtOpcode = X86::CWD;
1746 break;
1747 case MVT::i32:
1748 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
1749 ClrOpcode = X86::MOV32r0;
1750 SExtOpcode = X86::CDQ;
1751 break;
1752 case MVT::i64:
1753 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
1754 ClrOpcode = X86::MOV64r0;
1755 SExtOpcode = X86::CQO;
1756 break;
1759 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1760 bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
1761 bool signBitIsZero = CurDAG->SignBitIsZero(N0);
1763 SDValue InFlag;
1764 if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
1765 // Special case for div8, just use a move with zero extension to AX to
1766 // clear the upper 8 bits (AH).
1767 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
1768 if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
1769 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
1770 Move =
1771 SDValue(CurDAG->getMachineNode(X86::MOVZX16rm8, dl, MVT::i16,
1772 MVT::Other, Ops,
1773 array_lengthof(Ops)), 0);
1774 Chain = Move.getValue(1);
1775 ReplaceUses(N0.getValue(1), Chain);
1776 } else {
1777 Move =
1778 SDValue(CurDAG->getMachineNode(X86::MOVZX16rr8, dl, MVT::i16, N0),0);
1779 Chain = CurDAG->getEntryNode();
1781 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, Move, SDValue());
1782 InFlag = Chain.getValue(1);
1783 } else {
1784 InFlag =
1785 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
1786 LoReg, N0, SDValue()).getValue(1);
1787 if (isSigned && !signBitIsZero) {
1788 // Sign extend the low part into the high part.
1789 InFlag =
1790 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
1791 } else {
1792 // Zero out the high part, effectively zero extending the input.
1793 SDValue ClrNode =
1794 SDValue(CurDAG->getMachineNode(ClrOpcode, dl, NVT), 0);
1795 InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
1796 ClrNode, InFlag).getValue(1);
1800 if (foldedLoad) {
1801 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
1802 InFlag };
1803 SDNode *CNode =
1804 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops,
1805 array_lengthof(Ops));
1806 InFlag = SDValue(CNode, 1);
1807 // Update the chain.
1808 ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
1809 } else {
1810 InFlag =
1811 SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
1814 // Prevent use of AH in a REX instruction by referencing AX instead.
1815 // Shift it down 8 bits.
1816 if (HiReg == X86::AH && Subtarget->is64Bit() &&
1817 !SDValue(Node, 1).use_empty()) {
1818 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1819 X86::AX, MVT::i16, InFlag);
1820 InFlag = Result.getValue(2);
1822 // If we also need AL (the quotient), get it by extracting a subreg from
1823 // Result. The fast register allocator does not like multiple CopyFromReg
1824 // nodes using aliasing registers.
1825 if (!SDValue(Node, 0).use_empty())
1826 ReplaceUses(SDValue(Node, 0),
1827 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1829 // Shift AX right by 8 bits instead of using AH.
1830 Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
1831 Result,
1832 CurDAG->getTargetConstant(8, MVT::i8)),
1834 ReplaceUses(SDValue(Node, 1),
1835 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
1837 // Copy the division (low) result, if it is needed.
1838 if (!SDValue(Node, 0).use_empty()) {
1839 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1840 LoReg, NVT, InFlag);
1841 InFlag = Result.getValue(2);
1842 ReplaceUses(SDValue(Node, 0), Result);
1843 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1845 // Copy the remainder (high) result, if it is needed.
1846 if (!SDValue(Node, 1).use_empty()) {
1847 SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
1848 HiReg, NVT, InFlag);
1849 InFlag = Result.getValue(2);
1850 ReplaceUses(SDValue(Node, 1), Result);
1851 DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
1853 return NULL;
1856 case X86ISD::CMP: {
1857 SDValue N0 = Node->getOperand(0);
1858 SDValue N1 = Node->getOperand(1);
1860 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
1861 // use a smaller encoding.
1862 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
1863 HasNoSignedComparisonUses(Node))
1864 // Look past the truncate if CMP is the only use of it.
1865 N0 = N0.getOperand(0);
1866 if (N0.getNode()->getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
1867 N0.getValueType() != MVT::i8 &&
1868 X86::isZeroNode(N1)) {
1869 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
1870 if (!C) break;
1872 // For example, convert "testl %eax, $8" to "testb %al, $8"
1873 if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
1874 (!(C->getZExtValue() & 0x80) ||
1875 HasNoSignedComparisonUses(Node))) {
1876 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
1877 SDValue Reg = N0.getNode()->getOperand(0);
1879 // On x86-32, only the ABCD registers have 8-bit subregisters.
1880 if (!Subtarget->is64Bit()) {
1881 TargetRegisterClass *TRC = 0;
1882 switch (N0.getValueType().getSimpleVT().SimpleTy) {
1883 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1884 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1885 default: llvm_unreachable("Unsupported TEST operand type!");
1887 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1888 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1889 Reg.getValueType(), Reg, RC), 0);
1892 // Extract the l-register.
1893 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
1894 MVT::i8, Reg);
1896 // Emit a testb.
1897 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32, Subreg, Imm);
1900 // For example, "testl %eax, $2048" to "testb %ah, $8".
1901 if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
1902 (!(C->getZExtValue() & 0x8000) ||
1903 HasNoSignedComparisonUses(Node))) {
1904 // Shift the immediate right by 8 bits.
1905 SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
1906 MVT::i8);
1907 SDValue Reg = N0.getNode()->getOperand(0);
1909 // Put the value in an ABCD register.
1910 TargetRegisterClass *TRC = 0;
1911 switch (N0.getValueType().getSimpleVT().SimpleTy) {
1912 case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
1913 case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
1914 case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
1915 default: llvm_unreachable("Unsupported TEST operand type!");
1917 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
1918 Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
1919 Reg.getValueType(), Reg, RC), 0);
1921 // Extract the h-register.
1922 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
1923 MVT::i8, Reg);
1925 // Emit a testb. No special NOREX tricks are needed since there's
1926 // only one GPR operand!
1927 return CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
1928 Subreg, ShiftedImm);
1931 // For example, "testl %eax, $32776" to "testw %ax, $32776".
1932 if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
1933 N0.getValueType() != MVT::i16 &&
1934 (!(C->getZExtValue() & 0x8000) ||
1935 HasNoSignedComparisonUses(Node))) {
1936 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
1937 SDValue Reg = N0.getNode()->getOperand(0);
1939 // Extract the 16-bit subregister.
1940 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
1941 MVT::i16, Reg);
1943 // Emit a testw.
1944 return CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32, Subreg, Imm);
1947 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
1948 if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
1949 N0.getValueType() == MVT::i64 &&
1950 (!(C->getZExtValue() & 0x80000000) ||
1951 HasNoSignedComparisonUses(Node))) {
1952 SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
1953 SDValue Reg = N0.getNode()->getOperand(0);
1955 // Extract the 32-bit subregister.
1956 SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
1957 MVT::i32, Reg);
1959 // Emit a testl.
1960 return CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32, Subreg, Imm);
1963 break;
1967 SDNode *ResNode = SelectCode(Node);
1969 DEBUG(dbgs() << "=> ";
1970 if (ResNode == NULL || ResNode == Node)
1971 Node->dump(CurDAG);
1972 else
1973 ResNode->dump(CurDAG);
1974 dbgs() << '\n');
1976 return ResNode;
1979 bool X86DAGToDAGISel::
1980 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
1981 std::vector<SDValue> &OutOps) {
1982 SDValue Op0, Op1, Op2, Op3, Op4;
1983 switch (ConstraintCode) {
1984 case 'o': // offsetable ??
1985 case 'v': // not offsetable ??
1986 default: return true;
1987 case 'm': // memory
1988 if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
1989 return true;
1990 break;
1993 OutOps.push_back(Op0);
1994 OutOps.push_back(Op1);
1995 OutOps.push_back(Op2);
1996 OutOps.push_back(Op3);
1997 OutOps.push_back(Op4);
1998 return false;
2001 /// createX86ISelDag - This pass converts a legalized DAG into a
2002 /// X86-specific DAG, ready for instruction scheduling.
2004 FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2005 llvm::CodeGenOpt::Level OptLevel) {
2006 return new X86DAGToDAGISel(TM, OptLevel);