1 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
13 //===----------------------------------------------------------------------===//
15 #ifndef X86ISELLOWERING_H
16 #define X86ISELLOWERING_H
18 #include "X86Subtarget.h"
19 #include "X86RegisterInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "llvm/Target/TargetLowering.h"
22 #include "llvm/Target/TargetOptions.h"
23 #include "llvm/CodeGen/FastISel.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
29 // X86 Specific DAG Nodes
31 // Start the numbering where the builtin ops leave off.
32 FIRST_NUMBER
= ISD::BUILTIN_OP_END
,
34 /// BSF - Bit scan forward.
35 /// BSR - Bit scan reverse.
39 /// SHLD, SHRD - Double shift instructions. These correspond to
40 /// X86::SHLDxx and X86::SHRDxx instructions.
44 /// FAND - Bitwise logical AND of floating point values. This corresponds
45 /// to X86::ANDPS or X86::ANDPD.
48 /// FOR - Bitwise logical OR of floating point values. This corresponds
49 /// to X86::ORPS or X86::ORPD.
52 /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53 /// to X86::XORPS or X86::XORPD.
56 /// FSRL - Bitwise logical right shift of floating point values. These
57 /// corresponds to X86::PSRLDQ.
60 /// CALL - These operations represent an abstract X86 call
61 /// instruction, which includes a bunch of information. In particular the
62 /// operands of these node are:
64 /// #0 - The incoming token chain
66 /// #2 - The number of arg bytes the caller pushes on the stack.
67 /// #3 - The number of arg bytes the callee pops off the stack.
68 /// #4 - The value to pass in AL/AX/EAX (optional)
69 /// #5 - The value to pass in DL/DX/EDX (optional)
71 /// The result values of these nodes are:
73 /// #0 - The outgoing token chain
74 /// #1 - The first register result value (optional)
75 /// #2 - The second register result value (optional)
79 /// RDTSC_DAG - This operation implements the lowering for
83 /// X86 compare and logical compare instructions.
86 /// X86 bit-test instructions.
89 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
90 /// operand, usually produced by a CMP instruction.
93 // Same as SETCC except it's materialized with a sbb and the value is all
94 // one's or all zero's.
95 SETCC_CARRY
, // R = carry_bit ? ~0 : 0
97 /// X86 conditional moves. Operand 0 and operand 1 are the two values
98 /// to select from. Operand 2 is the condition code, and operand 3 is the
99 /// flag operand produced by a CMP or TEST instruction. It also writes a
103 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
104 /// is the block to branch if condition is true, operand 2 is the
105 /// condition code, and operand 3 is the flag operand produced by a CMP
106 /// or TEST instruction.
109 /// Return with a flag operand. Operand 0 is the chain operand, operand
110 /// 1 is the number of bytes of stack to pop.
113 /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
116 /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
119 /// GlobalBaseReg - On Darwin, this node represents the result of the popl
120 /// at function entry, used for PIC code.
123 /// Wrapper - A wrapper node for TargetConstantPool,
124 /// TargetExternalSymbol, and TargetGlobalAddress.
127 /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
128 /// relative displacements.
131 /// MOVQ2DQ - Copies a 64-bit value from an MMX vector to the low word
132 /// of an XMM vector, with the high word zero filled.
135 /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
136 /// to an MMX vector. If you think this is too close to the previous
137 /// mnemonic, so do I; blame Intel.
140 /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
141 /// i32, corresponds to X86::PEXTRB.
144 /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
145 /// i32, corresponds to X86::PEXTRW.
148 /// INSERTPS - Insert any element of a 4 x float vector into any element
149 /// of a destination 4 x floatvector.
152 /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
153 /// corresponds to X86::PINSRB.
156 /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
157 /// corresponds to X86::PINSRW.
160 /// PSHUFB - Shuffle 16 8-bit values within a vector.
163 /// PANDN - and with not'd value.
166 /// PSIGNB/W/D - Copy integer sign.
167 PSIGNB
, PSIGNW
, PSIGND
,
169 /// PBLENDVB - Variable blend
172 /// FMAX, FMIN - Floating point max and min.
176 /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
177 /// approximation. Note that these typically require refinement
178 /// in order to obtain suitable precision.
181 // TLSADDR - Thread Local Storage.
184 // TLSCALL - Thread Local Storage. When calling to an OS provided
185 // thunk at the address from an earlier relocation.
188 // EH_RETURN - Exception Handling helpers.
191 /// TC_RETURN - Tail call return.
193 /// operand #1 callee (register or absolute)
194 /// operand #2 stack adjustment
195 /// operand #3 optional in flag
198 // VZEXT_MOVL - Vector move low and zero extend.
201 // VSHL, VSRL - Vector logical left / right shift.
204 // CMPPD, CMPPS - Vector double/float comparison.
205 // CMPPD, CMPPS - Vector double/float comparison.
208 // PCMP* - Vector integer comparisons.
209 PCMPEQB
, PCMPEQW
, PCMPEQD
, PCMPEQQ
,
210 PCMPGTB
, PCMPGTW
, PCMPGTD
, PCMPGTQ
,
212 // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
213 ADD
, SUB
, ADC
, SBB
, SMUL
,
214 INC
, DEC
, OR
, XOR
, AND
,
216 UMUL
, // LOW, HI, FLAGS = umul LHS, RHS
218 // MUL_IMM - X86 specific multiply by immediate.
221 // PTEST - Vector bitwise comparisons
224 // TESTP - Vector packed fp sign bitwise comparisons
227 // Several flavors of instructions with vector shuffle behaviors.
266 // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
267 // according to %al. An operator is needed so that this can be expanded
268 // with control flow.
269 VASTART_SAVE_XMM_REGS
,
271 // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
280 // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
281 // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
282 // Atomic 64-bit binary operations.
283 ATOMADD64_DAG
= ISD::FIRST_TARGET_MEMORY_OPCODE
,
291 // LCMPXCHG_DAG, LCMPXCHG8_DAG - Compare and swap.
295 // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
298 // FNSTCW16m - Store FP control world into i16 memory.
301 /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
302 /// integer destination in memory and a FP reg source. This corresponds
303 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
304 /// has two inputs (token chain and address) and two outputs (int value
305 /// and token chain).
310 /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
311 /// integer source in memory and FP reg result. This corresponds to the
312 /// X86::FILD*m instructions. It has three inputs (token chain, address,
313 /// and source type) and two outputs (FP value and token chain). FILD_FLAG
314 /// also produces a flag).
318 /// FLD - This instruction implements an extending load to FP stack slots.
319 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
320 /// operand, ptr to load from, and a ValueType node indicating the type
324 /// FST - This instruction implements a truncating store to FP stack
325 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
326 /// chain operand, value to store, address, and a ValueType to store it
330 /// VAARG_64 - This instruction grabs the address of the next argument
331 /// from a va_list. (reads and modifies the va_list in memory)
334 // WARNING: Do not add anything in the end unless you want the node to
335 // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
336 // thought as target memory ops!
340 /// Define some predicates that are used for node matching.
342 /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
343 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
344 bool isPSHUFDMask(ShuffleVectorSDNode
*N
);
346 /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
347 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
348 bool isPSHUFHWMask(ShuffleVectorSDNode
*N
);
350 /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
351 /// specifies a shuffle of elements that is suitable for input to PSHUFD.
352 bool isPSHUFLWMask(ShuffleVectorSDNode
*N
);
354 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
355 /// specifies a shuffle of elements that is suitable for input to SHUFP*.
356 bool isSHUFPMask(ShuffleVectorSDNode
*N
);
358 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
359 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
360 bool isMOVHLPSMask(ShuffleVectorSDNode
*N
);
362 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
363 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
365 bool isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode
*N
);
367 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
368 /// specifies a shuffle of elements that is suitable for MOVLP{S|D}.
369 bool isMOVLPMask(ShuffleVectorSDNode
*N
);
371 /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
372 /// specifies a shuffle of elements that is suitable for MOVHP{S|D}.
373 /// as well as MOVLHPS.
374 bool isMOVLHPSMask(ShuffleVectorSDNode
*N
);
376 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
377 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
378 bool isUNPCKLMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false);
380 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
381 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
382 bool isUNPCKHMask(ShuffleVectorSDNode
*N
, bool V2IsSplat
= false);
384 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
385 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
387 bool isUNPCKL_v_undef_Mask(ShuffleVectorSDNode
*N
);
389 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
390 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
392 bool isUNPCKH_v_undef_Mask(ShuffleVectorSDNode
*N
);
394 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
395 /// specifies a shuffle of elements that is suitable for input to MOVSS,
396 /// MOVSD, and MOVD, i.e. setting the lowest element.
397 bool isMOVLMask(ShuffleVectorSDNode
*N
);
399 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
400 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
401 bool isMOVSHDUPMask(ShuffleVectorSDNode
*N
);
403 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
404 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
405 bool isMOVSLDUPMask(ShuffleVectorSDNode
*N
);
407 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
408 /// specifies a shuffle of elements that is suitable for input to MOVDDUP.
409 bool isMOVDDUPMask(ShuffleVectorSDNode
*N
);
411 /// isPALIGNRMask - Return true if the specified VECTOR_SHUFFLE operand
412 /// specifies a shuffle of elements that is suitable for input to PALIGNR.
413 bool isPALIGNRMask(ShuffleVectorSDNode
*N
);
415 /// isVEXTRACTF128Index - Return true if the specified
416 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
417 /// suitable for input to VEXTRACTF128.
418 bool isVEXTRACTF128Index(SDNode
*N
);
420 /// isVINSERTF128Index - Return true if the specified
421 /// INSERT_SUBVECTOR operand specifies a subvector insert that is
422 /// suitable for input to VINSERTF128.
423 bool isVINSERTF128Index(SDNode
*N
);
425 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
426 /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
428 unsigned getShuffleSHUFImmediate(SDNode
*N
);
430 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
431 /// the specified VECTOR_SHUFFLE mask with PSHUFHW instruction.
432 unsigned getShufflePSHUFHWImmediate(SDNode
*N
);
434 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
435 /// the specified VECTOR_SHUFFLE mask with PSHUFLW instruction.
436 unsigned getShufflePSHUFLWImmediate(SDNode
*N
);
438 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
439 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
440 unsigned getShufflePALIGNRImmediate(SDNode
*N
);
442 /// getExtractVEXTRACTF128Immediate - Return the appropriate
443 /// immediate to extract the specified EXTRACT_SUBVECTOR index
444 /// with VEXTRACTF128 instructions.
445 unsigned getExtractVEXTRACTF128Immediate(SDNode
*N
);
447 /// getInsertVINSERTF128Immediate - Return the appropriate
448 /// immediate to insert at the specified INSERT_SUBVECTOR index
449 /// with VINSERTF128 instructions.
450 unsigned getInsertVINSERTF128Immediate(SDNode
*N
);
452 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
454 bool isZeroNode(SDValue Elt
);
456 /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
457 /// fit into displacement field of the instruction.
458 bool isOffsetSuitableForCodeModel(int64_t Offset
, CodeModel::Model M
,
459 bool hasSymbolicDisplacement
= true);
462 //===--------------------------------------------------------------------===//
463 // X86TargetLowering - X86 Implementation of the TargetLowering interface
464 class X86TargetLowering
: public TargetLowering
{
466 explicit X86TargetLowering(X86TargetMachine
&TM
);
468 virtual unsigned getJumpTableEncoding() const;
470 virtual MVT
getShiftAmountTy(EVT LHSTy
) const { return MVT::i8
; }
472 virtual const MCExpr
*
473 LowerCustomJumpTableEntry(const MachineJumpTableInfo
*MJTI
,
474 const MachineBasicBlock
*MBB
, unsigned uid
,
475 MCContext
&Ctx
) const;
477 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
479 virtual SDValue
getPICJumpTableRelocBase(SDValue Table
,
480 SelectionDAG
&DAG
) const;
481 virtual const MCExpr
*
482 getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
483 unsigned JTI
, MCContext
&Ctx
) const;
485 /// getStackPtrReg - Return the stack pointer register we are using: either
487 unsigned getStackPtrReg() const { return X86StackPtr
; }
489 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
490 /// function arguments in the caller parameter area. For X86, aggregates
491 /// that contains are placed at 16-byte boundaries while the rest are at
492 /// 4-byte boundaries.
493 virtual unsigned getByValTypeAlignment(const Type
*Ty
) const;
495 /// getOptimalMemOpType - Returns the target specific optimal type for load
496 /// and store operations as a result of memset, memcpy, and memmove
497 /// lowering. If DstAlign is zero that means it's safe to destination
498 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
499 /// means there isn't a need to check it against alignment requirement,
500 /// probably because the source does not need to be loaded. If
501 /// 'NonScalarIntSafe' is true, that means it's safe to return a
502 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
503 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
504 /// constant so it does not need to be loaded.
505 /// It returns EVT::Other if the type should be determined using generic
506 /// target-independent logic.
508 getOptimalMemOpType(uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
,
509 bool NonScalarIntSafe
, bool MemcpyStrSrc
,
510 MachineFunction
&MF
) const;
512 /// allowsUnalignedMemoryAccesses - Returns true if the target allows
513 /// unaligned memory accesses. of the specified type.
514 virtual bool allowsUnalignedMemoryAccesses(EVT VT
) const {
518 /// LowerOperation - Provide custom lowering hooks for some operations.
520 virtual SDValue
LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const;
522 /// ReplaceNodeResults - Replace the results of node with an illegal result
523 /// type with new values built out of custom code.
525 virtual void ReplaceNodeResults(SDNode
*N
, SmallVectorImpl
<SDValue
>&Results
,
526 SelectionDAG
&DAG
) const;
529 virtual SDValue
PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
) const;
531 /// isTypeDesirableForOp - Return true if the target has native support for
532 /// the specified value type and it is 'desirable' to use the type for the
533 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
534 /// instruction encodings are longer and some i16 instructions are slow.
535 virtual bool isTypeDesirableForOp(unsigned Opc
, EVT VT
) const;
537 /// isTypeDesirable - Return true if the target has native support for the
538 /// specified value type and it is 'desirable' to use the type. e.g. On x86
539 /// i16 is legal, but undesirable since i16 instruction encodings are longer
540 /// and some i16 instructions are slow.
541 virtual bool IsDesirableToPromoteOp(SDValue Op
, EVT
&PVT
) const;
543 virtual MachineBasicBlock
*
544 EmitInstrWithCustomInserter(MachineInstr
*MI
,
545 MachineBasicBlock
*MBB
) const;
548 /// getTargetNodeName - This method returns the name of a target specific
550 virtual const char *getTargetNodeName(unsigned Opcode
) const;
552 /// getSetCCResultType - Return the ISD::SETCC ValueType
553 virtual MVT::SimpleValueType
getSetCCResultType(EVT VT
) const;
555 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
556 /// in Mask are known to be either zero or one and return them in the
557 /// KnownZero/KnownOne bitsets.
558 virtual void computeMaskedBitsForTargetNode(const SDValue Op
,
562 const SelectionDAG
&DAG
,
563 unsigned Depth
= 0) const;
565 // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
566 // operation that are sign bits.
567 virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op
,
568 unsigned Depth
) const;
571 isGAPlusOffset(SDNode
*N
, const GlobalValue
* &GA
, int64_t &Offset
) const;
573 SDValue
getReturnAddressFrameIndex(SelectionDAG
&DAG
) const;
575 virtual bool ExpandInlineAsm(CallInst
*CI
) const;
577 ConstraintType
getConstraintType(const std::string
&Constraint
) const;
579 /// Examine constraint string and operand type and determine a weight value.
580 /// The operand object must already have been set up with the operand type.
581 virtual ConstraintWeight
getSingleConstraintMatchWeight(
582 AsmOperandInfo
&info
, const char *constraint
) const;
584 std::vector
<unsigned>
585 getRegClassForInlineAsmConstraint(const std::string
&Constraint
,
588 virtual const char *LowerXConstraint(EVT ConstraintVT
) const;
590 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
591 /// vector. If it is invalid, don't add anything to Ops. If hasMemory is
592 /// true it means one of the asm constraint of the inline asm instruction
593 /// being processed is 'm'.
594 virtual void LowerAsmOperandForConstraint(SDValue Op
,
595 char ConstraintLetter
,
596 std::vector
<SDValue
> &Ops
,
597 SelectionDAG
&DAG
) const;
599 /// getRegForInlineAsmConstraint - Given a physical register constraint
600 /// (e.g. {edx}), return the register number and the register class for the
601 /// register. This should only be used for C_Register constraints. On
602 /// error, this returns a register number of 0.
603 std::pair
<unsigned, const TargetRegisterClass
*>
604 getRegForInlineAsmConstraint(const std::string
&Constraint
,
607 /// isLegalAddressingMode - Return true if the addressing mode represented
608 /// by AM is legal for this target, for a load/store of the specified type.
609 virtual bool isLegalAddressingMode(const AddrMode
&AM
, const Type
*Ty
)const;
611 /// isTruncateFree - Return true if it's free to truncate a value of
612 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
613 /// register EAX to i16 by referencing its sub-register AX.
614 virtual bool isTruncateFree(const Type
*Ty1
, const Type
*Ty2
) const;
615 virtual bool isTruncateFree(EVT VT1
, EVT VT2
) const;
617 /// isZExtFree - Return true if any actual instruction that defines a
618 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
619 /// register. This does not necessarily include registers defined in
620 /// unknown ways, such as incoming arguments, or copies from unknown
621 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
622 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
623 /// all instructions that define 32-bit values implicit zero-extend the
624 /// result out to 64 bits.
625 virtual bool isZExtFree(const Type
*Ty1
, const Type
*Ty2
) const;
626 virtual bool isZExtFree(EVT VT1
, EVT VT2
) const;
628 /// isNarrowingProfitable - Return true if it's profitable to narrow
629 /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
630 /// from i32 to i8 but not from i32 to i16.
631 virtual bool isNarrowingProfitable(EVT VT1
, EVT VT2
) const;
633 /// isFPImmLegal - Returns true if the target can instruction select the
634 /// specified FP immediate natively. If false, the legalizer will
635 /// materialize the FP immediate as a load from a constant pool.
636 virtual bool isFPImmLegal(const APFloat
&Imm
, EVT VT
) const;
638 /// isShuffleMaskLegal - Targets can use this to indicate that they only
639 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
640 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
641 /// values are assumed to be legal.
642 virtual bool isShuffleMaskLegal(const SmallVectorImpl
<int> &Mask
,
645 /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
646 /// used by Targets can use this to indicate if there is a suitable
647 /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
649 virtual bool isVectorClearMaskLegal(const SmallVectorImpl
<int> &Mask
,
652 /// ShouldShrinkFPConstant - If true, then instruction selection should
653 /// seek to shrink the FP constant of the specified type to a smaller type
654 /// in order to save space and / or reduce runtime.
655 virtual bool ShouldShrinkFPConstant(EVT VT
) const {
656 // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
657 // expensive than a straight movsd. On the other hand, it's important to
658 // shrink long double fp constant since fldt is very slow.
659 return !X86ScalarSSEf64
|| VT
== MVT::f80
;
662 const X86Subtarget
* getSubtarget() const {
666 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
667 /// computed in an SSE register, not on the X87 floating point stack.
668 bool isScalarFPTypeInSSEReg(EVT VT
) const {
669 return (VT
== MVT::f64
&& X86ScalarSSEf64
) || // f64 is when SSE2
670 (VT
== MVT::f32
&& X86ScalarSSEf32
); // f32 is when SSE1
673 /// createFastISel - This method returns a target specific FastISel object,
674 /// or null if the target does not support "fast" ISel.
675 virtual FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
) const;
677 /// getFunctionAlignment - Return the Log2 alignment of this function.
678 virtual unsigned getFunctionAlignment(const Function
*F
) const;
680 /// getStackCookieLocation - Return true if the target stores stack
681 /// protector cookies at a fixed offset in some non-standard address
682 /// space, and populates the address space and offset as
684 virtual bool getStackCookieLocation(unsigned &AddressSpace
, unsigned &Offset
) const;
687 std::pair
<const TargetRegisterClass
*, uint8_t>
688 findRepresentativeClass(EVT VT
) const;
691 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
692 /// make the right decision when generating code for different targets.
693 const X86Subtarget
*Subtarget
;
694 const X86RegisterInfo
*RegInfo
;
695 const TargetData
*TD
;
697 /// X86StackPtr - X86 physical register used as stack ptr.
698 unsigned X86StackPtr
;
700 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
701 /// floating point ops.
702 /// When SSE is available, use it for f32 operations.
703 /// When SSE2 is available, use it for f64 operations.
704 bool X86ScalarSSEf32
;
705 bool X86ScalarSSEf64
;
707 /// LegalFPImmediates - A list of legal fp immediates.
708 std::vector
<APFloat
> LegalFPImmediates
;
710 /// addLegalFPImmediate - Indicate that this x86 target can instruction
711 /// select the specified FP immediate natively.
712 void addLegalFPImmediate(const APFloat
& Imm
) {
713 LegalFPImmediates
.push_back(Imm
);
716 SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
717 CallingConv::ID CallConv
, bool isVarArg
,
718 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
719 DebugLoc dl
, SelectionDAG
&DAG
,
720 SmallVectorImpl
<SDValue
> &InVals
) const;
721 SDValue
LowerMemArgument(SDValue Chain
,
722 CallingConv::ID CallConv
,
723 const SmallVectorImpl
<ISD::InputArg
> &ArgInfo
,
724 DebugLoc dl
, SelectionDAG
&DAG
,
725 const CCValAssign
&VA
, MachineFrameInfo
*MFI
,
727 SDValue
LowerMemOpCallTo(SDValue Chain
, SDValue StackPtr
, SDValue Arg
,
728 DebugLoc dl
, SelectionDAG
&DAG
,
729 const CCValAssign
&VA
,
730 ISD::ArgFlagsTy Flags
) const;
732 // Call lowering helpers.
734 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
735 /// for tail call optimization. Targets which want to do tail call
736 /// optimization should implement this function.
737 bool IsEligibleForTailCallOptimization(SDValue Callee
,
738 CallingConv::ID CalleeCC
,
740 bool isCalleeStructRet
,
741 bool isCallerStructRet
,
742 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
743 const SmallVectorImpl
<SDValue
> &OutVals
,
744 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
745 SelectionDAG
& DAG
) const;
746 bool IsCalleePop(bool isVarArg
, CallingConv::ID CallConv
) const;
747 SDValue
EmitTailCallLoadRetAddr(SelectionDAG
&DAG
, SDValue
&OutRetAddr
,
748 SDValue Chain
, bool IsTailCall
, bool Is64Bit
,
749 int FPDiff
, DebugLoc dl
) const;
751 unsigned GetAlignedArgumentStackSize(unsigned StackSize
,
752 SelectionDAG
&DAG
) const;
754 std::pair
<SDValue
,SDValue
> FP_TO_INTHelper(SDValue Op
, SelectionDAG
&DAG
,
755 bool isSigned
) const;
757 SDValue
LowerAsSplatVectorLoad(SDValue SrcOp
, EVT VT
, DebugLoc dl
,
758 SelectionDAG
&DAG
) const;
759 SDValue
LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
760 SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
) const;
761 SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) const;
762 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
763 SDValue
LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
) const;
764 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
) const;
765 SDValue
LowerINSERT_VECTOR_ELT_SSE4(SDValue Op
, SelectionDAG
&DAG
) const;
766 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
767 SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
768 SDValue
LowerINSERT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
) const;
769 SDValue
LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const;
770 SDValue
LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const;
771 SDValue
LowerGlobalAddress(const GlobalValue
*GV
, DebugLoc dl
,
772 int64_t Offset
, SelectionDAG
&DAG
) const;
773 SDValue
LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const;
774 SDValue
LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const;
775 SDValue
LowerExternalSymbol(SDValue Op
, SelectionDAG
&DAG
) const;
776 SDValue
LowerShift(SDValue Op
, SelectionDAG
&DAG
) const;
777 SDValue
BuildFILD(SDValue Op
, EVT SrcVT
, SDValue Chain
, SDValue StackSlot
,
778 SelectionDAG
&DAG
) const;
779 SDValue
LowerBITCAST(SDValue op
, SelectionDAG
&DAG
) const;
780 SDValue
LowerSINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
781 SDValue
LowerUINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const;
782 SDValue
LowerUINT_TO_FP_i64(SDValue Op
, SelectionDAG
&DAG
) const;
783 SDValue
LowerUINT_TO_FP_i32(SDValue Op
, SelectionDAG
&DAG
) const;
784 SDValue
LowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) const;
785 SDValue
LowerFP_TO_UINT(SDValue Op
, SelectionDAG
&DAG
) const;
786 SDValue
LowerFABS(SDValue Op
, SelectionDAG
&DAG
) const;
787 SDValue
LowerFNEG(SDValue Op
, SelectionDAG
&DAG
) const;
788 SDValue
LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const;
789 SDValue
LowerToBT(SDValue And
, ISD::CondCode CC
,
790 DebugLoc dl
, SelectionDAG
&DAG
) const;
791 SDValue
LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
792 SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
) const;
793 SDValue
LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const;
794 SDValue
LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const;
795 SDValue
LowerMEMSET(SDValue Op
, SelectionDAG
&DAG
) const;
796 SDValue
LowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const;
797 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const;
798 SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const;
799 SDValue
LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const;
800 SDValue
LowerVACOPY(SDValue Op
, SelectionDAG
&DAG
) const;
801 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const;
802 SDValue
LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const;
803 SDValue
LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const;
804 SDValue
LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const;
805 SDValue
LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
) const;
806 SDValue
LowerTRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const;
807 SDValue
LowerFLT_ROUNDS_(SDValue Op
, SelectionDAG
&DAG
) const;
808 SDValue
LowerCTLZ(SDValue Op
, SelectionDAG
&DAG
) const;
809 SDValue
LowerCTTZ(SDValue Op
, SelectionDAG
&DAG
) const;
810 SDValue
LowerMUL_V2I64(SDValue Op
, SelectionDAG
&DAG
) const;
811 SDValue
LowerSHL(SDValue Op
, SelectionDAG
&DAG
) const;
812 SDValue
LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) const;
814 SDValue
LowerCMP_SWAP(SDValue Op
, SelectionDAG
&DAG
) const;
815 SDValue
LowerLOAD_SUB(SDValue Op
, SelectionDAG
&DAG
) const;
816 SDValue
LowerREADCYCLECOUNTER(SDValue Op
, SelectionDAG
&DAG
) const;
817 SDValue
LowerMEMBARRIER(SDValue Op
, SelectionDAG
&DAG
) const;
819 // Utility functions to help LowerVECTOR_SHUFFLE
820 SDValue
LowerVECTOR_SHUFFLEv8i16(SDValue Op
, SelectionDAG
&DAG
) const;
823 LowerFormalArguments(SDValue Chain
,
824 CallingConv::ID CallConv
, bool isVarArg
,
825 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
826 DebugLoc dl
, SelectionDAG
&DAG
,
827 SmallVectorImpl
<SDValue
> &InVals
) const;
829 LowerCall(SDValue Chain
, SDValue Callee
,
830 CallingConv::ID CallConv
, bool isVarArg
, bool &isTailCall
,
831 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
832 const SmallVectorImpl
<SDValue
> &OutVals
,
833 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
834 DebugLoc dl
, SelectionDAG
&DAG
,
835 SmallVectorImpl
<SDValue
> &InVals
) const;
838 LowerReturn(SDValue Chain
,
839 CallingConv::ID CallConv
, bool isVarArg
,
840 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
841 const SmallVectorImpl
<SDValue
> &OutVals
,
842 DebugLoc dl
, SelectionDAG
&DAG
) const;
844 virtual bool isUsedByReturnOnly(SDNode
*N
) const;
846 virtual bool mayBeEmittedAsTailCall(CallInst
*CI
) const;
849 getTypeForExtArgOrReturn(LLVMContext
&Context
, EVT VT
,
850 ISD::NodeType ExtendKind
) const;
853 CanLowerReturn(CallingConv::ID CallConv
, bool isVarArg
,
854 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
855 LLVMContext
&Context
) const;
857 void ReplaceATOMIC_BINARY_64(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
858 SelectionDAG
&DAG
, unsigned NewOp
) const;
860 /// Utility function to emit string processing sse4.2 instructions
861 /// that return in xmm0.
862 /// This takes the instruction to expand, the associated machine basic
863 /// block, the number of args, and whether or not the second arg is
864 /// in memory or not.
865 MachineBasicBlock
*EmitPCMP(MachineInstr
*BInstr
, MachineBasicBlock
*BB
,
866 unsigned argNum
, bool inMem
) const;
868 /// Utility functions to emit monitor and mwait instructions. These
869 /// need to make sure that the arguments to the intrinsic are in the
870 /// correct registers.
871 MachineBasicBlock
*EmitMonitor(MachineInstr
*MI
,
872 MachineBasicBlock
*BB
) const;
873 MachineBasicBlock
*EmitMwait(MachineInstr
*MI
, MachineBasicBlock
*BB
) const;
875 /// Utility function to emit atomic bitwise operations (and, or, xor).
876 /// It takes the bitwise instruction to expand, the associated machine basic
877 /// block, and the associated X86 opcodes for reg/reg and reg/imm.
878 MachineBasicBlock
*EmitAtomicBitwiseWithCustomInserter(
879 MachineInstr
*BInstr
,
880 MachineBasicBlock
*BB
,
887 TargetRegisterClass
*RC
,
888 bool invSrc
= false) const;
890 MachineBasicBlock
*EmitAtomicBit6432WithCustomInserter(
891 MachineInstr
*BInstr
,
892 MachineBasicBlock
*BB
,
897 bool invSrc
= false) const;
899 /// Utility function to emit atomic min and max. It takes the min/max
900 /// instruction to expand, the associated basic block, and the associated
901 /// cmov opcode for moving the min or max value.
902 MachineBasicBlock
*EmitAtomicMinMaxWithCustomInserter(MachineInstr
*BInstr
,
903 MachineBasicBlock
*BB
,
904 unsigned cmovOpc
) const;
906 // Utility function to emit the low-level va_arg code for X86-64.
907 MachineBasicBlock
*EmitVAARG64WithCustomInserter(
909 MachineBasicBlock
*MBB
) const;
911 /// Utility function to emit the xmm reg save portion of va_start.
912 MachineBasicBlock
*EmitVAStartSaveXMMRegsWithCustomInserter(
913 MachineInstr
*BInstr
,
914 MachineBasicBlock
*BB
) const;
916 MachineBasicBlock
*EmitLoweredSelect(MachineInstr
*I
,
917 MachineBasicBlock
*BB
) const;
919 MachineBasicBlock
*EmitLoweredWinAlloca(MachineInstr
*MI
,
920 MachineBasicBlock
*BB
) const;
922 MachineBasicBlock
*EmitLoweredTLSCall(MachineInstr
*MI
,
923 MachineBasicBlock
*BB
) const;
925 MachineBasicBlock
*emitLoweredTLSAddr(MachineInstr
*MI
,
926 MachineBasicBlock
*BB
) const;
928 /// Emit nodes that will be selected as "test Op0,Op0", or something
929 /// equivalent, for use with the given x86 condition code.
930 SDValue
EmitTest(SDValue Op0
, unsigned X86CC
, SelectionDAG
&DAG
) const;
932 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
933 /// equivalent, for use with the given x86 condition code.
934 SDValue
EmitCmp(SDValue Op0
, SDValue Op1
, unsigned X86CC
,
935 SelectionDAG
&DAG
) const;
939 FastISel
*createFastISel(FunctionLoweringInfo
&funcInfo
);
943 #endif // X86ISELLOWERING_H