Use %ull here.
[llvm/stm8.git] / lib / Target / X86 / X86InstrInfo.h
blob4625b4c986ab1f977ddbd88d41b92e0445bfb0f0
1 //===- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*- ===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #ifndef X86INSTRUCTIONINFO_H
15 #define X86INSTRUCTIONINFO_H
17 #include "llvm/Target/TargetInstrInfo.h"
18 #include "X86.h"
19 #include "X86RegisterInfo.h"
20 #include "llvm/ADT/DenseMap.h"
22 namespace llvm {
23 class X86RegisterInfo;
24 class X86TargetMachine;
26 namespace X86 {
27 // Enums for memory operand decoding. Each memory operand is represented with
28 // a 5 operand sequence in the form:
29 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30 // These enums help decode this.
31 enum {
32 AddrBaseReg = 0,
33 AddrScaleAmt = 1,
34 AddrIndexReg = 2,
35 AddrDisp = 3,
37 /// AddrSegmentReg - The operand # of the segment in the memory operand.
38 AddrSegmentReg = 4,
40 /// AddrNumOperands - Total number of operands in a memory reference.
41 AddrNumOperands = 5
45 // X86 specific condition code. These correspond to X86_*_COND in
46 // X86InstrInfo.td. They must be kept in synch.
47 enum CondCode {
48 COND_A = 0,
49 COND_AE = 1,
50 COND_B = 2,
51 COND_BE = 3,
52 COND_E = 4,
53 COND_G = 5,
54 COND_GE = 6,
55 COND_L = 7,
56 COND_LE = 8,
57 COND_NE = 9,
58 COND_NO = 10,
59 COND_NP = 11,
60 COND_NS = 12,
61 COND_O = 13,
62 COND_P = 14,
63 COND_S = 15,
65 // Artificial condition codes. These are used by AnalyzeBranch
66 // to indicate a block terminated with two conditional branches to
67 // the same location. This occurs in code using FCMP_OEQ or FCMP_UNE,
68 // which can't be represented on x86 with a single condition. These
69 // are never used in MachineInstrs.
70 COND_NE_OR_P,
71 COND_NP_OR_E,
73 COND_INVALID
76 // Turn condition code into conditional branch opcode.
77 unsigned GetCondBranchFromCond(CondCode CC);
79 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
80 /// e.g. turning COND_E to COND_NE.
81 CondCode GetOppositeBranchCondition(X86::CondCode CC);
85 /// X86II - This namespace holds all of the target specific flags that
86 /// instruction info tracks.
87 ///
88 namespace X86II {
89 /// Target Operand Flag enum.
90 enum TOF {
91 //===------------------------------------------------------------------===//
92 // X86 Specific MachineOperand flags.
94 MO_NO_FLAG,
96 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
97 /// relocation of:
98 /// SYMBOL_LABEL + [. - PICBASELABEL]
99 MO_GOT_ABSOLUTE_ADDRESS,
101 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
102 /// immediate should get the value of the symbol minus the PIC base label:
103 /// SYMBOL_LABEL - PICBASELABEL
104 MO_PIC_BASE_OFFSET,
106 /// MO_GOT - On a symbol operand this indicates that the immediate is the
107 /// offset to the GOT entry for the symbol name from the base of the GOT.
109 /// See the X86-64 ELF ABI supplement for more details.
110 /// SYMBOL_LABEL @GOT
111 MO_GOT,
113 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
114 /// the offset to the location of the symbol name from the base of the GOT.
116 /// See the X86-64 ELF ABI supplement for more details.
117 /// SYMBOL_LABEL @GOTOFF
118 MO_GOTOFF,
120 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
121 /// offset to the GOT entry for the symbol name from the current code
122 /// location.
124 /// See the X86-64 ELF ABI supplement for more details.
125 /// SYMBOL_LABEL @GOTPCREL
126 MO_GOTPCREL,
128 /// MO_PLT - On a symbol operand this indicates that the immediate is
129 /// offset to the PLT entry of symbol name from the current code location.
131 /// See the X86-64 ELF ABI supplement for more details.
132 /// SYMBOL_LABEL @PLT
133 MO_PLT,
135 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
136 /// some TLS offset.
138 /// See 'ELF Handling for Thread-Local Storage' for more details.
139 /// SYMBOL_LABEL @TLSGD
140 MO_TLSGD,
142 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
143 /// some TLS offset.
145 /// See 'ELF Handling for Thread-Local Storage' for more details.
146 /// SYMBOL_LABEL @GOTTPOFF
147 MO_GOTTPOFF,
149 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
150 /// some TLS offset.
152 /// See 'ELF Handling for Thread-Local Storage' for more details.
153 /// SYMBOL_LABEL @INDNTPOFF
154 MO_INDNTPOFF,
156 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
157 /// some TLS offset.
159 /// See 'ELF Handling for Thread-Local Storage' for more details.
160 /// SYMBOL_LABEL @TPOFF
161 MO_TPOFF,
163 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
164 /// some TLS offset.
166 /// See 'ELF Handling for Thread-Local Storage' for more details.
167 /// SYMBOL_LABEL @NTPOFF
168 MO_NTPOFF,
170 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
171 /// reference is actually to the "__imp_FOO" symbol. This is used for
172 /// dllimport linkage on windows.
173 MO_DLLIMPORT,
175 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
176 /// reference is actually to the "FOO$stub" symbol. This is used for calls
177 /// and jumps to external functions on Tiger and earlier.
178 MO_DARWIN_STUB,
180 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
181 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
182 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
183 MO_DARWIN_NONLAZY,
185 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
186 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
187 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
188 MO_DARWIN_NONLAZY_PIC_BASE,
190 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
191 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
192 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
193 /// stub.
194 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
196 /// MO_TLVP - On a symbol operand this indicates that the immediate is
197 /// some TLS offset.
199 /// This is the TLS offset for the Darwin TLS mechanism.
200 MO_TLVP,
202 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
203 /// is some TLS offset from the picbase.
205 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
206 MO_TLVP_PIC_BASE
210 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
211 /// a reference to a stub for a global, not the global itself.
212 inline static bool isGlobalStubReference(unsigned char TargetFlag) {
213 switch (TargetFlag) {
214 case X86II::MO_DLLIMPORT: // dllimport stub.
215 case X86II::MO_GOTPCREL: // rip-relative GOT reference.
216 case X86II::MO_GOT: // normal GOT reference.
217 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Normal $non_lazy_ptr ref.
218 case X86II::MO_DARWIN_NONLAZY: // Normal $non_lazy_ptr ref.
219 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Hidden $non_lazy_ptr ref.
220 return true;
221 default:
222 return false;
226 /// isGlobalRelativeToPICBase - Return true if the specified global value
227 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
228 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
229 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag) {
230 switch (TargetFlag) {
231 case X86II::MO_GOTOFF: // isPICStyleGOT: local global.
232 case X86II::MO_GOT: // isPICStyleGOT: other global.
233 case X86II::MO_PIC_BASE_OFFSET: // Darwin local global.
234 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: // Darwin/32 external global.
235 case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: // Darwin/32 hidden global.
236 case X86II::MO_TLVP: // ??? Pretty sure..
237 return true;
238 default:
239 return false;
243 /// X86II - This namespace holds all of the target specific flags that
244 /// instruction info tracks.
246 namespace X86II {
247 enum {
248 //===------------------------------------------------------------------===//
249 // Instruction encodings. These are the standard/most common forms for X86
250 // instructions.
253 // PseudoFrm - This represents an instruction that is a pseudo instruction
254 // or one that has not been implemented yet. It is illegal to code generate
255 // it, but tolerated for intermediate implementation stages.
256 Pseudo = 0,
258 /// Raw - This form is for instructions that don't have any operands, so
259 /// they are just a fixed opcode value, like 'leave'.
260 RawFrm = 1,
262 /// AddRegFrm - This form is used for instructions like 'push r32' that have
263 /// their one register operand added to their opcode.
264 AddRegFrm = 2,
266 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
267 /// to specify a destination, which in this case is a register.
269 MRMDestReg = 3,
271 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
272 /// to specify a destination, which in this case is memory.
274 MRMDestMem = 4,
276 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
277 /// to specify a source, which in this case is a register.
279 MRMSrcReg = 5,
281 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
282 /// to specify a source, which in this case is memory.
284 MRMSrcMem = 6,
286 /// MRM[0-7][rm] - These forms are used to represent instructions that use
287 /// a Mod/RM byte, and use the middle field to hold extended opcode
288 /// information. In the intel manual these are represented as /0, /1, ...
291 // First, instructions that operate on a register r/m operand...
292 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
293 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
295 // Next, instructions that operate on a memory r/m operand...
296 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
297 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
299 // MRMInitReg - This form is used for instructions whose source and
300 // destinations are the same register.
301 MRMInitReg = 32,
303 //// MRM_C1 - A mod/rm byte of exactly 0xC1.
304 MRM_C1 = 33,
305 MRM_C2 = 34,
306 MRM_C3 = 35,
307 MRM_C4 = 36,
308 MRM_C8 = 37,
309 MRM_C9 = 38,
310 MRM_E8 = 39,
311 MRM_F0 = 40,
312 MRM_F8 = 41,
313 MRM_F9 = 42,
314 MRM_D0 = 45,
315 MRM_D1 = 46,
317 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
318 /// immediates, the first of which is a 16-bit immediate (specified by
319 /// the imm encoding) and the second is a 8-bit fixed value.
320 RawFrmImm8 = 43,
322 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
323 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
324 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
325 /// manual, this operand is described as pntr16:32 and pntr16:16
326 RawFrmImm16 = 44,
328 FormMask = 63,
330 //===------------------------------------------------------------------===//
331 // Actual flags...
333 // OpSize - Set if this instruction requires an operand size prefix (0x66),
334 // which most often indicates that the instruction operates on 16 bit data
335 // instead of 32 bit data.
336 OpSize = 1 << 6,
338 // AsSize - Set if this instruction requires an operand size prefix (0x67),
339 // which most often indicates that the instruction address 16 bit address
340 // instead of 32 bit address (or 32 bit address in 64 bit mode).
341 AdSize = 1 << 7,
343 //===------------------------------------------------------------------===//
344 // Op0Mask - There are several prefix bytes that are used to form two byte
345 // opcodes. These are currently 0x0F, 0xF3, and 0xD8-0xDF. This mask is
346 // used to obtain the setting of this field. If no bits in this field is
347 // set, there is no prefix byte for obtaining a multibyte opcode.
349 Op0Shift = 8,
350 Op0Mask = 0x1F << Op0Shift,
352 // TB - TwoByte - Set if this instruction has a two byte opcode, which
353 // starts with a 0x0F byte before the real opcode.
354 TB = 1 << Op0Shift,
356 // REP - The 0xF3 prefix byte indicating repetition of the following
357 // instruction.
358 REP = 2 << Op0Shift,
360 // D8-DF - These escape opcodes are used by the floating point unit. These
361 // values must remain sequential.
362 D8 = 3 << Op0Shift, D9 = 4 << Op0Shift,
363 DA = 5 << Op0Shift, DB = 6 << Op0Shift,
364 DC = 7 << Op0Shift, DD = 8 << Op0Shift,
365 DE = 9 << Op0Shift, DF = 10 << Op0Shift,
367 // XS, XD - These prefix codes are for single and double precision scalar
368 // floating point operations performed in the SSE registers.
369 XD = 11 << Op0Shift, XS = 12 << Op0Shift,
371 // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
372 T8 = 13 << Op0Shift, TA = 14 << Op0Shift,
373 A6 = 15 << Op0Shift, A7 = 16 << Op0Shift,
375 // TF - Prefix before and after 0x0F
376 TF = 17 << Op0Shift,
378 //===------------------------------------------------------------------===//
379 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
380 // They are used to specify GPRs and SSE registers, 64-bit operand size,
381 // etc. We only cares about REX.W and REX.R bits and only the former is
382 // statically determined.
384 REXShift = Op0Shift + 5,
385 REX_W = 1 << REXShift,
387 //===------------------------------------------------------------------===//
388 // This three-bit field describes the size of an immediate operand. Zero is
389 // unused so that we can tell if we forgot to set a value.
390 ImmShift = REXShift + 1,
391 ImmMask = 7 << ImmShift,
392 Imm8 = 1 << ImmShift,
393 Imm8PCRel = 2 << ImmShift,
394 Imm16 = 3 << ImmShift,
395 Imm16PCRel = 4 << ImmShift,
396 Imm32 = 5 << ImmShift,
397 Imm32PCRel = 6 << ImmShift,
398 Imm64 = 7 << ImmShift,
400 //===------------------------------------------------------------------===//
401 // FP Instruction Classification... Zero is non-fp instruction.
403 // FPTypeMask - Mask for all of the FP types...
404 FPTypeShift = ImmShift + 3,
405 FPTypeMask = 7 << FPTypeShift,
407 // NotFP - The default, set for instructions that do not use FP registers.
408 NotFP = 0 << FPTypeShift,
410 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
411 ZeroArgFP = 1 << FPTypeShift,
413 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
414 OneArgFP = 2 << FPTypeShift,
416 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
417 // result back to ST(0). For example, fcos, fsqrt, etc.
419 OneArgFPRW = 3 << FPTypeShift,
421 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
422 // explicit argument, storing the result to either ST(0) or the implicit
423 // argument. For example: fadd, fsub, fmul, etc...
424 TwoArgFP = 4 << FPTypeShift,
426 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
427 // explicit argument, but have no destination. Example: fucom, fucomi, ...
428 CompareFP = 5 << FPTypeShift,
430 // CondMovFP - "2 operand" floating point conditional move instructions.
431 CondMovFP = 6 << FPTypeShift,
433 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
434 SpecialFP = 7 << FPTypeShift,
436 // Lock prefix
437 LOCKShift = FPTypeShift + 3,
438 LOCK = 1 << LOCKShift,
440 // Segment override prefixes. Currently we just need ability to address
441 // stuff in gs and fs segments.
442 SegOvrShift = LOCKShift + 1,
443 SegOvrMask = 3 << SegOvrShift,
444 FS = 1 << SegOvrShift,
445 GS = 2 << SegOvrShift,
447 // Execution domain for SSE instructions in bits 23, 24.
448 // 0 in bits 23-24 means normal, non-SSE instruction.
449 SSEDomainShift = SegOvrShift + 2,
451 OpcodeShift = SSEDomainShift + 2,
452 OpcodeMask = 0xFFULL << OpcodeShift,
454 //===------------------------------------------------------------------===//
455 /// VEX - The opcode prefix used by AVX instructions
456 VEXShift = OpcodeShift + 8,
457 VEX = 1U << 0,
459 /// VEX_W - Has a opcode specific functionality, but is used in the same
460 /// way as REX_W is for regular SSE instructions.
461 VEX_W = 1U << 1,
463 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
464 /// address instructions in SSE are represented as 3 address ones in AVX
465 /// and the additional register is encoded in VEX_VVVV prefix.
466 VEX_4V = 1U << 2,
468 /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
469 /// must be encoded in the i8 immediate field. This usually happens in
470 /// instructions with 4 operands.
471 VEX_I8IMM = 1U << 3,
473 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
474 /// instruction uses 256-bit wide registers. This is usually auto detected
475 /// if a VR256 register is used, but some AVX instructions also have this
476 /// field marked when using a f256 memory references.
477 VEX_L = 1U << 4,
479 /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
480 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
481 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
482 /// storing a classifier in the imm8 field. To simplify our implementation,
483 /// we handle this by storeing the classifier in the opcode field and using
484 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
485 Has3DNow0F0FOpcode = 1U << 5
488 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
489 // specified machine instruction.
491 static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
492 return TSFlags >> X86II::OpcodeShift;
495 static inline bool hasImm(uint64_t TSFlags) {
496 return (TSFlags & X86II::ImmMask) != 0;
499 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
500 /// of the specified instruction.
501 static inline unsigned getSizeOfImm(uint64_t TSFlags) {
502 switch (TSFlags & X86II::ImmMask) {
503 default: assert(0 && "Unknown immediate size");
504 case X86II::Imm8:
505 case X86II::Imm8PCRel: return 1;
506 case X86II::Imm16:
507 case X86II::Imm16PCRel: return 2;
508 case X86II::Imm32:
509 case X86II::Imm32PCRel: return 4;
510 case X86II::Imm64: return 8;
514 /// isImmPCRel - Return true if the immediate of the specified instruction's
515 /// TSFlags indicates that it is pc relative.
516 static inline unsigned isImmPCRel(uint64_t TSFlags) {
517 switch (TSFlags & X86II::ImmMask) {
518 default: assert(0 && "Unknown immediate size");
519 case X86II::Imm8PCRel:
520 case X86II::Imm16PCRel:
521 case X86II::Imm32PCRel:
522 return true;
523 case X86II::Imm8:
524 case X86II::Imm16:
525 case X86II::Imm32:
526 case X86II::Imm64:
527 return false;
531 /// getMemoryOperandNo - The function returns the MCInst operand # for the
532 /// first field of the memory operand. If the instruction doesn't have a
533 /// memory operand, this returns -1.
535 /// Note that this ignores tied operands. If there is a tied register which
536 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
537 /// counted as one operand.
539 static inline int getMemoryOperandNo(uint64_t TSFlags) {
540 switch (TSFlags & X86II::FormMask) {
541 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this form");
542 default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
543 case X86II::Pseudo:
544 case X86II::RawFrm:
545 case X86II::AddRegFrm:
546 case X86II::MRMDestReg:
547 case X86II::MRMSrcReg:
548 case X86II::RawFrmImm8:
549 case X86II::RawFrmImm16:
550 return -1;
551 case X86II::MRMDestMem:
552 return 0;
553 case X86II::MRMSrcMem: {
554 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
555 unsigned FirstMemOp = 1;
556 if (HasVEX_4V)
557 ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
559 // FIXME: Maybe lea should have its own form? This is a horrible hack.
560 //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
561 // Opcode == X86::LEA16r || Opcode == X86::LEA32r)
562 return FirstMemOp;
564 case X86II::MRM0r: case X86II::MRM1r:
565 case X86II::MRM2r: case X86II::MRM3r:
566 case X86II::MRM4r: case X86II::MRM5r:
567 case X86II::MRM6r: case X86II::MRM7r:
568 return -1;
569 case X86II::MRM0m: case X86II::MRM1m:
570 case X86II::MRM2m: case X86II::MRM3m:
571 case X86II::MRM4m: case X86II::MRM5m:
572 case X86II::MRM6m: case X86II::MRM7m:
573 return 0;
574 case X86II::MRM_C1:
575 case X86II::MRM_C2:
576 case X86II::MRM_C3:
577 case X86II::MRM_C4:
578 case X86II::MRM_C8:
579 case X86II::MRM_C9:
580 case X86II::MRM_E8:
581 case X86II::MRM_F0:
582 case X86II::MRM_F8:
583 case X86II::MRM_F9:
584 case X86II::MRM_D0:
585 case X86II::MRM_D1:
586 return -1;
591 inline static bool isScale(const MachineOperand &MO) {
592 return MO.isImm() &&
593 (MO.getImm() == 1 || MO.getImm() == 2 ||
594 MO.getImm() == 4 || MO.getImm() == 8);
597 inline static bool isLeaMem(const MachineInstr *MI, unsigned Op) {
598 if (MI->getOperand(Op).isFI()) return true;
599 return Op+4 <= MI->getNumOperands() &&
600 MI->getOperand(Op ).isReg() && isScale(MI->getOperand(Op+1)) &&
601 MI->getOperand(Op+2).isReg() &&
602 (MI->getOperand(Op+3).isImm() ||
603 MI->getOperand(Op+3).isGlobal() ||
604 MI->getOperand(Op+3).isCPI() ||
605 MI->getOperand(Op+3).isJTI());
608 inline static bool isMem(const MachineInstr *MI, unsigned Op) {
609 if (MI->getOperand(Op).isFI()) return true;
610 return Op+5 <= MI->getNumOperands() &&
611 MI->getOperand(Op+4).isReg() &&
612 isLeaMem(MI, Op);
615 class X86InstrInfo : public TargetInstrInfoImpl {
616 X86TargetMachine &TM;
617 const X86RegisterInfo RI;
619 /// RegOp2MemOpTable2Addr, RegOp2MemOpTable0, RegOp2MemOpTable1,
620 /// RegOp2MemOpTable2 - Load / store folding opcode maps.
622 DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2Addr;
623 DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable0;
624 DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable1;
625 DenseMap<unsigned, std::pair<unsigned,unsigned> > RegOp2MemOpTable2;
627 /// MemOp2RegOpTable - Load / store unfolding opcode map.
629 DenseMap<unsigned, std::pair<unsigned, unsigned> > MemOp2RegOpTable;
631 public:
632 explicit X86InstrInfo(X86TargetMachine &tm);
634 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
635 /// such, whenever a client has an instance of instruction info, it should
636 /// always be able to get register info as well (through this method).
638 virtual const X86RegisterInfo &getRegisterInfo() const { return RI; }
640 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
641 /// extension instruction. That is, it's like a copy where it's legal for the
642 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
643 /// true, then it's expected the pre-extension value is available as a subreg
644 /// of the result register. This also returns the sub-register index in
645 /// SubIdx.
646 virtual bool isCoalescableExtInstr(const MachineInstr &MI,
647 unsigned &SrcReg, unsigned &DstReg,
648 unsigned &SubIdx) const;
650 unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const;
651 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
652 /// stack locations as well. This uses a heuristic so it isn't
653 /// reliable for correctness.
654 unsigned isLoadFromStackSlotPostFE(const MachineInstr *MI,
655 int &FrameIndex) const;
657 /// hasLoadFromStackSlot - If the specified machine instruction has
658 /// a load from a stack slot, return true along with the FrameIndex
659 /// of the loaded stack slot and the machine mem operand containing
660 /// the reference. If not, return false. Unlike
661 /// isLoadFromStackSlot, this returns true for any instructions that
662 /// loads from the stack. This is a hint only and may not catch all
663 /// cases.
664 bool hasLoadFromStackSlot(const MachineInstr *MI,
665 const MachineMemOperand *&MMO,
666 int &FrameIndex) const;
668 unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const;
669 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
670 /// stack locations as well. This uses a heuristic so it isn't
671 /// reliable for correctness.
672 unsigned isStoreToStackSlotPostFE(const MachineInstr *MI,
673 int &FrameIndex) const;
675 /// hasStoreToStackSlot - If the specified machine instruction has a
676 /// store to a stack slot, return true along with the FrameIndex of
677 /// the loaded stack slot and the machine mem operand containing the
678 /// reference. If not, return false. Unlike isStoreToStackSlot,
679 /// this returns true for any instructions that loads from the
680 /// stack. This is a hint only and may not catch all cases.
681 bool hasStoreToStackSlot(const MachineInstr *MI,
682 const MachineMemOperand *&MMO,
683 int &FrameIndex) const;
685 bool isReallyTriviallyReMaterializable(const MachineInstr *MI,
686 AliasAnalysis *AA) const;
687 void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
688 unsigned DestReg, unsigned SubIdx,
689 const MachineInstr *Orig,
690 const TargetRegisterInfo &TRI) const;
692 /// convertToThreeAddress - This method must be implemented by targets that
693 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
694 /// may be able to convert a two-address instruction into a true
695 /// three-address instruction on demand. This allows the X86 target (for
696 /// example) to convert ADD and SHL instructions into LEA instructions if they
697 /// would require register copies due to two-addressness.
699 /// This method returns a null pointer if the transformation cannot be
700 /// performed, otherwise it returns the new instruction.
702 virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
703 MachineBasicBlock::iterator &MBBI,
704 LiveVariables *LV) const;
706 /// commuteInstruction - We have a few instructions that must be hacked on to
707 /// commute them.
709 virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
711 // Branch analysis.
712 virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;
713 virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
714 MachineBasicBlock *&FBB,
715 SmallVectorImpl<MachineOperand> &Cond,
716 bool AllowModify) const;
717 virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const;
718 virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
719 MachineBasicBlock *FBB,
720 const SmallVectorImpl<MachineOperand> &Cond,
721 DebugLoc DL) const;
722 virtual void copyPhysReg(MachineBasicBlock &MBB,
723 MachineBasicBlock::iterator MI, DebugLoc DL,
724 unsigned DestReg, unsigned SrcReg,
725 bool KillSrc) const;
726 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
727 MachineBasicBlock::iterator MI,
728 unsigned SrcReg, bool isKill, int FrameIndex,
729 const TargetRegisterClass *RC,
730 const TargetRegisterInfo *TRI) const;
732 virtual void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
733 SmallVectorImpl<MachineOperand> &Addr,
734 const TargetRegisterClass *RC,
735 MachineInstr::mmo_iterator MMOBegin,
736 MachineInstr::mmo_iterator MMOEnd,
737 SmallVectorImpl<MachineInstr*> &NewMIs) const;
739 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
740 MachineBasicBlock::iterator MI,
741 unsigned DestReg, int FrameIndex,
742 const TargetRegisterClass *RC,
743 const TargetRegisterInfo *TRI) const;
745 virtual void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
746 SmallVectorImpl<MachineOperand> &Addr,
747 const TargetRegisterClass *RC,
748 MachineInstr::mmo_iterator MMOBegin,
749 MachineInstr::mmo_iterator MMOEnd,
750 SmallVectorImpl<MachineInstr*> &NewMIs) const;
751 virtual
752 MachineInstr *emitFrameIndexDebugValue(MachineFunction &MF,
753 int FrameIx, uint64_t Offset,
754 const MDNode *MDPtr,
755 DebugLoc DL) const;
757 /// foldMemoryOperand - If this target supports it, fold a load or store of
758 /// the specified stack slot into the specified machine instruction for the
759 /// specified operand(s). If this is possible, the target should perform the
760 /// folding and return true, otherwise it should return false. If it folds
761 /// the instruction, it is likely that the MachineInstruction the iterator
762 /// references has been changed.
763 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
764 MachineInstr* MI,
765 const SmallVectorImpl<unsigned> &Ops,
766 int FrameIndex) const;
768 /// foldMemoryOperand - Same as the previous version except it allows folding
769 /// of any load and store from / to any address, not just from a specific
770 /// stack slot.
771 virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
772 MachineInstr* MI,
773 const SmallVectorImpl<unsigned> &Ops,
774 MachineInstr* LoadMI) const;
776 /// canFoldMemoryOperand - Returns true if the specified load / store is
777 /// folding is possible.
778 virtual bool canFoldMemoryOperand(const MachineInstr*,
779 const SmallVectorImpl<unsigned> &) const;
781 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
782 /// a store or a load and a store into two or more instruction. If this is
783 /// possible, returns true as well as the new instructions by reference.
784 virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
785 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
786 SmallVectorImpl<MachineInstr*> &NewMIs) const;
788 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
789 SmallVectorImpl<SDNode*> &NewNodes) const;
791 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
792 /// instruction after load / store are unfolded from an instruction of the
793 /// specified opcode. It returns zero if the specified unfolding is not
794 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
795 /// index of the operand which will hold the register holding the loaded
796 /// value.
797 virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc,
798 bool UnfoldLoad, bool UnfoldStore,
799 unsigned *LoadRegIndex = 0) const;
801 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
802 /// to determine if two loads are loading from the same base address. It
803 /// should only return true if the base pointers are the same and the
804 /// only differences between the two addresses are the offset. It also returns
805 /// the offsets by reference.
806 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
807 int64_t &Offset1, int64_t &Offset2) const;
809 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
810 /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
811 /// be scheduled togther. On some targets if two loads are loading from
812 /// addresses in the same cache line, it's better if they are scheduled
813 /// together. This function takes two integers that represent the load offsets
814 /// from the common base address. It returns true if it decides it's desirable
815 /// to schedule the two loads together. "NumLoads" is the number of loads that
816 /// have already been scheduled after Load1.
817 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
818 int64_t Offset1, int64_t Offset2,
819 unsigned NumLoads) const;
821 virtual void getNoopForMachoTarget(MCInst &NopInst) const;
823 virtual
824 bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const;
826 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
827 /// instruction that defines the specified register class.
828 bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const;
830 static bool isX86_64NonExtLowByteReg(unsigned reg) {
831 return (reg == X86::SPL || reg == X86::BPL ||
832 reg == X86::SIL || reg == X86::DIL);
835 static bool isX86_64ExtendedReg(const MachineOperand &MO) {
836 if (!MO.isReg()) return false;
837 return isX86_64ExtendedReg(MO.getReg());
840 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
841 /// higher) register? e.g. r8, xmm8, xmm13, etc.
842 static bool isX86_64ExtendedReg(unsigned RegNo);
844 /// getGlobalBaseReg - Return a virtual register initialized with the
845 /// the global base register value. Output instructions required to
846 /// initialize the register in the function entry block, if necessary.
848 unsigned getGlobalBaseReg(MachineFunction *MF) const;
850 /// GetSSEDomain - Return the SSE execution domain of MI as the first element,
851 /// and a bitmask of possible arguments to SetSSEDomain ase the second.
852 std::pair<uint16_t, uint16_t> GetSSEDomain(const MachineInstr *MI) const;
854 /// SetSSEDomain - Set the SSEDomain of MI.
855 void SetSSEDomain(MachineInstr *MI, unsigned Domain) const;
857 MachineInstr* foldMemoryOperandImpl(MachineFunction &MF,
858 MachineInstr* MI,
859 unsigned OpNum,
860 const SmallVectorImpl<MachineOperand> &MOs,
861 unsigned Size, unsigned Alignment) const;
863 bool isHighLatencyDef(int opc) const;
865 bool hasHighOperandLatency(const InstrItineraryData *ItinData,
866 const MachineRegisterInfo *MRI,
867 const MachineInstr *DefMI, unsigned DefIdx,
868 const MachineInstr *UseMI, unsigned UseIdx) const;
870 private:
871 MachineInstr * convertToThreeAddressWithLEA(unsigned MIOpc,
872 MachineFunction::iterator &MFI,
873 MachineBasicBlock::iterator &MBBI,
874 LiveVariables *LV) const;
876 /// isFrameOperand - Return true and the FrameIndex if the specified
877 /// operand and follow operands form a reference to the stack frame.
878 bool isFrameOperand(const MachineInstr *MI, unsigned int Op,
879 int &FrameIndex) const;
882 } // End llvm namespace
884 #endif