1 //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass promotes "by reference" arguments to be "by value" arguments. In
11 // practice, this means looking for internal functions that have pointer
12 // arguments. If it can prove, through the use of alias analysis, that an
13 // argument is *only* loaded, then it can pass the value into the function
14 // instead of the address of the value. This can cause recursive simplification
15 // of code and lead to the elimination of allocas (especially in C++ template
16 // code like the STL).
18 // This pass also handles aggregate arguments that are passed into a function,
19 // scalarizing them if the elements of the aggregate are only loaded. Note that
20 // by default it refuses to scalarize aggregates which would require passing in
21 // more than three operands to the function, because passing thousands of
22 // operands for a large array or structure is unprofitable! This limit can be
23 // configured or disabled, however.
25 // Note that this transformation could also be done for arguments that are only
26 // stored to (returning the value instead), but does not currently. This case
27 // would be best handled when and if LLVM begins supporting multiple return
28 // values from functions.
30 //===----------------------------------------------------------------------===//
32 #define DEBUG_TYPE "argpromotion"
33 #include "llvm/Transforms/IPO.h"
34 #include "llvm/Constants.h"
35 #include "llvm/DerivedTypes.h"
36 #include "llvm/Module.h"
37 #include "llvm/CallGraphSCCPass.h"
38 #include "llvm/Instructions.h"
39 #include "llvm/LLVMContext.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/CallGraph.h"
42 #include "llvm/Support/CallSite.h"
43 #include "llvm/Support/CFG.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/ADT/DepthFirstIterator.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringExtras.h"
52 STATISTIC(NumArgumentsPromoted
, "Number of pointer arguments promoted");
53 STATISTIC(NumAggregatesPromoted
, "Number of aggregate arguments promoted");
54 STATISTIC(NumByValArgsPromoted
, "Number of byval arguments promoted");
55 STATISTIC(NumArgumentsDead
, "Number of dead pointer args eliminated");
58 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
60 struct ArgPromotion
: public CallGraphSCCPass
{
61 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
62 AU
.addRequired
<AliasAnalysis
>();
63 CallGraphSCCPass::getAnalysisUsage(AU
);
66 virtual bool runOnSCC(CallGraphSCC
&SCC
);
67 static char ID
; // Pass identification, replacement for typeid
68 explicit ArgPromotion(unsigned maxElements
= 3)
69 : CallGraphSCCPass(ID
), maxElements(maxElements
) {
70 initializeArgPromotionPass(*PassRegistry::getPassRegistry());
73 /// A vector used to hold the indices of a single GEP instruction
74 typedef std::vector
<uint64_t> IndicesVector
;
77 CallGraphNode
*PromoteArguments(CallGraphNode
*CGN
);
78 bool isSafeToPromoteArgument(Argument
*Arg
, bool isByVal
) const;
79 CallGraphNode
*DoPromotion(Function
*F
,
80 SmallPtrSet
<Argument
*, 8> &ArgsToPromote
,
81 SmallPtrSet
<Argument
*, 8> &ByValArgsToTransform
);
82 /// The maximum number of elements to expand, or 0 for unlimited.
87 char ArgPromotion::ID
= 0;
88 INITIALIZE_PASS_BEGIN(ArgPromotion
, "argpromotion",
89 "Promote 'by reference' arguments to scalars", false, false)
90 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
91 INITIALIZE_AG_DEPENDENCY(CallGraph
)
92 INITIALIZE_PASS_END(ArgPromotion
, "argpromotion",
93 "Promote 'by reference' arguments to scalars", false, false)
95 Pass
*llvm::createArgumentPromotionPass(unsigned maxElements
) {
96 return new ArgPromotion(maxElements
);
99 bool ArgPromotion::runOnSCC(CallGraphSCC
&SCC
) {
100 bool Changed
= false, LocalChange
;
102 do { // Iterate until we stop promoting from this SCC.
104 // Attempt to promote arguments from all functions in this SCC.
105 for (CallGraphSCC::iterator I
= SCC
.begin(), E
= SCC
.end(); I
!= E
; ++I
) {
106 if (CallGraphNode
*CGN
= PromoteArguments(*I
)) {
108 SCC
.ReplaceNode(*I
, CGN
);
111 Changed
|= LocalChange
; // Remember that we changed something.
112 } while (LocalChange
);
117 /// PromoteArguments - This method checks the specified function to see if there
118 /// are any promotable arguments and if it is safe to promote the function (for
119 /// example, all callers are direct). If safe to promote some arguments, it
120 /// calls the DoPromotion method.
122 CallGraphNode
*ArgPromotion::PromoteArguments(CallGraphNode
*CGN
) {
123 Function
*F
= CGN
->getFunction();
125 // Make sure that it is local to this module.
126 if (!F
|| !F
->hasLocalLinkage()) return 0;
128 // First check: see if there are any pointer arguments! If not, quick exit.
129 SmallVector
<std::pair
<Argument
*, unsigned>, 16> PointerArgs
;
131 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
132 I
!= E
; ++I
, ++ArgNo
)
133 if (I
->getType()->isPointerTy())
134 PointerArgs
.push_back(std::pair
<Argument
*, unsigned>(I
, ArgNo
));
135 if (PointerArgs
.empty()) return 0;
137 // Second check: make sure that all callers are direct callers. We can't
138 // transform functions that have indirect callers. Also see if the function
139 // is self-recursive.
140 bool isSelfRecursive
= false;
141 for (Value::use_iterator UI
= F
->use_begin(), E
= F
->use_end();
144 // Must be a direct call.
145 if (CS
.getInstruction() == 0 || !CS
.isCallee(UI
)) return 0;
147 if (CS
.getInstruction()->getParent()->getParent() == F
)
148 isSelfRecursive
= true;
151 // Check to see which arguments are promotable. If an argument is promotable,
152 // add it to ArgsToPromote.
153 SmallPtrSet
<Argument
*, 8> ArgsToPromote
;
154 SmallPtrSet
<Argument
*, 8> ByValArgsToTransform
;
155 for (unsigned i
= 0; i
!= PointerArgs
.size(); ++i
) {
156 bool isByVal
= F
->paramHasAttr(PointerArgs
[i
].second
+1, Attribute::ByVal
);
157 Argument
*PtrArg
= PointerArgs
[i
].first
;
158 const Type
*AgTy
= cast
<PointerType
>(PtrArg
->getType())->getElementType();
160 // If this is a byval argument, and if the aggregate type is small, just
161 // pass the elements, which is always safe.
163 if (const StructType
*STy
= dyn_cast
<StructType
>(AgTy
)) {
164 if (maxElements
> 0 && STy
->getNumElements() > maxElements
) {
165 DEBUG(dbgs() << "argpromotion disable promoting argument '"
166 << PtrArg
->getName() << "' because it would require adding more"
167 << " than " << maxElements
<< " arguments to the function.\n");
171 // If all the elements are single-value types, we can promote it.
172 bool AllSimple
= true;
173 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
174 if (!STy
->getElementType(i
)->isSingleValueType()) {
180 // Safe to transform, don't even bother trying to "promote" it.
181 // Passing the elements as a scalar will allow scalarrepl to hack on
182 // the new alloca we introduce.
184 ByValArgsToTransform
.insert(PtrArg
);
190 // If the argument is a recursive type and we're in a recursive
191 // function, we could end up infinitely peeling the function argument.
192 if (isSelfRecursive
) {
193 if (const StructType
*STy
= dyn_cast
<StructType
>(AgTy
)) {
194 bool RecursiveType
= false;
195 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
196 if (STy
->getElementType(i
) == PtrArg
->getType()) {
197 RecursiveType
= true;
206 // Otherwise, see if we can promote the pointer to its value.
207 if (isSafeToPromoteArgument(PtrArg
, isByVal
))
208 ArgsToPromote
.insert(PtrArg
);
211 // No promotable pointer arguments.
212 if (ArgsToPromote
.empty() && ByValArgsToTransform
.empty())
215 return DoPromotion(F
, ArgsToPromote
, ByValArgsToTransform
);
218 /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
219 /// all callees pass in a valid pointer for the specified function argument.
220 static bool AllCallersPassInValidPointerForArgument(Argument
*Arg
) {
221 Function
*Callee
= Arg
->getParent();
223 unsigned ArgNo
= std::distance(Callee
->arg_begin(),
224 Function::arg_iterator(Arg
));
226 // Look at all call sites of the function. At this pointer we know we only
227 // have direct callees.
228 for (Value::use_iterator UI
= Callee
->use_begin(), E
= Callee
->use_end();
231 assert(CS
&& "Should only have direct calls!");
233 if (!CS
.getArgument(ArgNo
)->isDereferenceablePointer())
239 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
240 /// that is greater than or equal to the size of prefix, and each of the
241 /// elements in Prefix is the same as the corresponding elements in Longer.
243 /// This means it also returns true when Prefix and Longer are equal!
244 static bool IsPrefix(const ArgPromotion::IndicesVector
&Prefix
,
245 const ArgPromotion::IndicesVector
&Longer
) {
246 if (Prefix
.size() > Longer
.size())
248 for (unsigned i
= 0, e
= Prefix
.size(); i
!= e
; ++i
)
249 if (Prefix
[i
] != Longer
[i
])
255 /// Checks if Indices, or a prefix of Indices, is in Set.
256 static bool PrefixIn(const ArgPromotion::IndicesVector
&Indices
,
257 std::set
<ArgPromotion::IndicesVector
> &Set
) {
258 std::set
<ArgPromotion::IndicesVector
>::iterator Low
;
259 Low
= Set
.upper_bound(Indices
);
260 if (Low
!= Set
.begin())
262 // Low is now the last element smaller than or equal to Indices. This means
263 // it points to a prefix of Indices (possibly Indices itself), if such
266 // This load is safe if any prefix of its operands is safe to load.
267 return Low
!= Set
.end() && IsPrefix(*Low
, Indices
);
270 /// Mark the given indices (ToMark) as safe in the given set of indices
271 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
272 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
273 /// already. Furthermore, any indices that Indices is itself a prefix of, are
274 /// removed from Safe (since they are implicitely safe because of Indices now).
275 static void MarkIndicesSafe(const ArgPromotion::IndicesVector
&ToMark
,
276 std::set
<ArgPromotion::IndicesVector
> &Safe
) {
277 std::set
<ArgPromotion::IndicesVector
>::iterator Low
;
278 Low
= Safe
.upper_bound(ToMark
);
279 // Guard against the case where Safe is empty
280 if (Low
!= Safe
.begin())
282 // Low is now the last element smaller than or equal to Indices. This
283 // means it points to a prefix of Indices (possibly Indices itself), if
284 // such prefix exists.
285 if (Low
!= Safe
.end()) {
286 if (IsPrefix(*Low
, ToMark
))
287 // If there is already a prefix of these indices (or exactly these
288 // indices) marked a safe, don't bother adding these indices
291 // Increment Low, so we can use it as a "insert before" hint
295 Low
= Safe
.insert(Low
, ToMark
);
297 // If there we're a prefix of longer index list(s), remove those
298 std::set
<ArgPromotion::IndicesVector
>::iterator End
= Safe
.end();
299 while (Low
!= End
&& IsPrefix(ToMark
, *Low
)) {
300 std::set
<ArgPromotion::IndicesVector
>::iterator Remove
= Low
;
306 /// isSafeToPromoteArgument - As you might guess from the name of this method,
307 /// it checks to see if it is both safe and useful to promote the argument.
308 /// This method limits promotion of aggregates to only promote up to three
309 /// elements of the aggregate in order to avoid exploding the number of
310 /// arguments passed in.
311 bool ArgPromotion::isSafeToPromoteArgument(Argument
*Arg
, bool isByVal
) const {
312 typedef std::set
<IndicesVector
> GEPIndicesSet
;
314 // Quick exit for unused arguments
315 if (Arg
->use_empty())
318 // We can only promote this argument if all of the uses are loads, or are GEP
319 // instructions (with constant indices) that are subsequently loaded.
321 // Promoting the argument causes it to be loaded in the caller
322 // unconditionally. This is only safe if we can prove that either the load
323 // would have happened in the callee anyway (ie, there is a load in the entry
324 // block) or the pointer passed in at every call site is guaranteed to be
326 // In the former case, invalid loads can happen, but would have happened
327 // anyway, in the latter case, invalid loads won't happen. This prevents us
328 // from introducing an invalid load that wouldn't have happened in the
331 // This set will contain all sets of indices that are loaded in the entry
332 // block, and thus are safe to unconditionally load in the caller.
333 GEPIndicesSet SafeToUnconditionallyLoad
;
335 // This set contains all the sets of indices that we are planning to promote.
336 // This makes it possible to limit the number of arguments added.
337 GEPIndicesSet ToPromote
;
339 // If the pointer is always valid, any load with first index 0 is valid.
340 if (isByVal
|| AllCallersPassInValidPointerForArgument(Arg
))
341 SafeToUnconditionallyLoad
.insert(IndicesVector(1, 0));
343 // First, iterate the entry block and mark loads of (geps of) arguments as
345 BasicBlock
*EntryBlock
= Arg
->getParent()->begin();
346 // Declare this here so we can reuse it
347 IndicesVector Indices
;
348 for (BasicBlock::iterator I
= EntryBlock
->begin(), E
= EntryBlock
->end();
350 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
351 Value
*V
= LI
->getPointerOperand();
352 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(V
)) {
353 V
= GEP
->getPointerOperand();
355 // This load actually loads (part of) Arg? Check the indices then.
356 Indices
.reserve(GEP
->getNumIndices());
357 for (User::op_iterator II
= GEP
->idx_begin(), IE
= GEP
->idx_end();
359 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(*II
))
360 Indices
.push_back(CI
->getSExtValue());
362 // We found a non-constant GEP index for this argument? Bail out
363 // right away, can't promote this argument at all.
366 // Indices checked out, mark them as safe
367 MarkIndicesSafe(Indices
, SafeToUnconditionallyLoad
);
370 } else if (V
== Arg
) {
371 // Direct loads are equivalent to a GEP with a single 0 index.
372 MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad
);
376 // Now, iterate all uses of the argument to see if there are any uses that are
377 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
378 SmallVector
<LoadInst
*, 16> Loads
;
379 IndicesVector Operands
;
380 for (Value::use_iterator UI
= Arg
->use_begin(), E
= Arg
->use_end();
384 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
385 if (LI
->isVolatile()) return false; // Don't hack volatile loads
387 // Direct loads are equivalent to a GEP with a zero index and then a load.
388 Operands
.push_back(0);
389 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
390 if (GEP
->use_empty()) {
391 // Dead GEP's cause trouble later. Just remove them if we run into
393 getAnalysis
<AliasAnalysis
>().deleteValue(GEP
);
394 GEP
->eraseFromParent();
395 // TODO: This runs the above loop over and over again for dead GEPs
396 // Couldn't we just do increment the UI iterator earlier and erase the
398 return isSafeToPromoteArgument(Arg
, isByVal
);
401 // Ensure that all of the indices are constants.
402 for (User::op_iterator i
= GEP
->idx_begin(), e
= GEP
->idx_end();
404 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(*i
))
405 Operands
.push_back(C
->getSExtValue());
407 return false; // Not a constant operand GEP!
409 // Ensure that the only users of the GEP are load instructions.
410 for (Value::use_iterator UI
= GEP
->use_begin(), E
= GEP
->use_end();
412 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
)) {
413 if (LI
->isVolatile()) return false; // Don't hack volatile loads
416 // Other uses than load?
420 return false; // Not a load or a GEP.
423 // Now, see if it is safe to promote this load / loads of this GEP. Loading
424 // is safe if Operands, or a prefix of Operands, is marked as safe.
425 if (!PrefixIn(Operands
, SafeToUnconditionallyLoad
))
428 // See if we are already promoting a load with these indices. If not, check
429 // to make sure that we aren't promoting too many elements. If so, nothing
431 if (ToPromote
.find(Operands
) == ToPromote
.end()) {
432 if (maxElements
> 0 && ToPromote
.size() == maxElements
) {
433 DEBUG(dbgs() << "argpromotion not promoting argument '"
434 << Arg
->getName() << "' because it would require adding more "
435 << "than " << maxElements
<< " arguments to the function.\n");
436 // We limit aggregate promotion to only promoting up to a fixed number
437 // of elements of the aggregate.
440 ToPromote
.insert(Operands
);
444 if (Loads
.empty()) return true; // No users, this is a dead argument.
446 // Okay, now we know that the argument is only used by load instructions and
447 // it is safe to unconditionally perform all of them. Use alias analysis to
448 // check to see if the pointer is guaranteed to not be modified from entry of
449 // the function to each of the load instructions.
451 // Because there could be several/many load instructions, remember which
452 // blocks we know to be transparent to the load.
453 SmallPtrSet
<BasicBlock
*, 16> TranspBlocks
;
455 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
457 for (unsigned i
= 0, e
= Loads
.size(); i
!= e
; ++i
) {
458 // Check to see if the load is invalidated from the start of the block to
460 LoadInst
*Load
= Loads
[i
];
461 BasicBlock
*BB
= Load
->getParent();
463 AliasAnalysis::Location Loc
= AA
.getLocation(Load
);
464 if (AA
.canInstructionRangeModify(BB
->front(), *Load
, Loc
))
465 return false; // Pointer is invalidated!
467 // Now check every path from the entry block to the load for transparency.
468 // To do this, we perform a depth first search on the inverse CFG from the
470 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
472 for (idf_ext_iterator
<BasicBlock
*, SmallPtrSet
<BasicBlock
*, 16> >
473 I
= idf_ext_begin(P
, TranspBlocks
),
474 E
= idf_ext_end(P
, TranspBlocks
); I
!= E
; ++I
)
475 if (AA
.canBasicBlockModify(**I
, Loc
))
480 // If the path from the entry of the function to each load is free of
481 // instructions that potentially invalidate the load, we can make the
486 /// DoPromotion - This method actually performs the promotion of the specified
487 /// arguments, and returns the new function. At this point, we know that it's
489 CallGraphNode
*ArgPromotion::DoPromotion(Function
*F
,
490 SmallPtrSet
<Argument
*, 8> &ArgsToPromote
,
491 SmallPtrSet
<Argument
*, 8> &ByValArgsToTransform
) {
493 // Start by computing a new prototype for the function, which is the same as
494 // the old function, but has modified arguments.
495 const FunctionType
*FTy
= F
->getFunctionType();
496 std::vector
<const Type
*> Params
;
498 typedef std::set
<IndicesVector
> ScalarizeTable
;
500 // ScalarizedElements - If we are promoting a pointer that has elements
501 // accessed out of it, keep track of which elements are accessed so that we
502 // can add one argument for each.
504 // Arguments that are directly loaded will have a zero element value here, to
505 // handle cases where there are both a direct load and GEP accesses.
507 std::map
<Argument
*, ScalarizeTable
> ScalarizedElements
;
509 // OriginalLoads - Keep track of a representative load instruction from the
510 // original function so that we can tell the alias analysis implementation
511 // what the new GEP/Load instructions we are inserting look like.
512 std::map
<IndicesVector
, LoadInst
*> OriginalLoads
;
514 // Attributes - Keep track of the parameter attributes for the arguments
515 // that we are *not* promoting. For the ones that we do promote, the parameter
516 // attributes are lost
517 SmallVector
<AttributeWithIndex
, 8> AttributesVec
;
518 const AttrListPtr
&PAL
= F
->getAttributes();
520 // Add any return attributes.
521 if (Attributes attrs
= PAL
.getRetAttributes())
522 AttributesVec
.push_back(AttributeWithIndex::get(0, attrs
));
524 // First, determine the new argument list
525 unsigned ArgIndex
= 1;
526 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(); I
!= E
;
528 if (ByValArgsToTransform
.count(I
)) {
529 // Simple byval argument? Just add all the struct element types.
530 const Type
*AgTy
= cast
<PointerType
>(I
->getType())->getElementType();
531 const StructType
*STy
= cast
<StructType
>(AgTy
);
532 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
533 Params
.push_back(STy
->getElementType(i
));
534 ++NumByValArgsPromoted
;
535 } else if (!ArgsToPromote
.count(I
)) {
536 // Unchanged argument
537 Params
.push_back(I
->getType());
538 if (Attributes attrs
= PAL
.getParamAttributes(ArgIndex
))
539 AttributesVec
.push_back(AttributeWithIndex::get(Params
.size(), attrs
));
540 } else if (I
->use_empty()) {
541 // Dead argument (which are always marked as promotable)
544 // Okay, this is being promoted. This means that the only uses are loads
545 // or GEPs which are only used by loads
547 // In this table, we will track which indices are loaded from the argument
548 // (where direct loads are tracked as no indices).
549 ScalarizeTable
&ArgIndices
= ScalarizedElements
[I
];
550 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
552 Instruction
*User
= cast
<Instruction
>(*UI
);
553 assert(isa
<LoadInst
>(User
) || isa
<GetElementPtrInst
>(User
));
554 IndicesVector Indices
;
555 Indices
.reserve(User
->getNumOperands() - 1);
556 // Since loads will only have a single operand, and GEPs only a single
557 // non-index operand, this will record direct loads without any indices,
558 // and gep+loads with the GEP indices.
559 for (User::op_iterator II
= User
->op_begin() + 1, IE
= User
->op_end();
561 Indices
.push_back(cast
<ConstantInt
>(*II
)->getSExtValue());
562 // GEPs with a single 0 index can be merged with direct loads
563 if (Indices
.size() == 1 && Indices
.front() == 0)
565 ArgIndices
.insert(Indices
);
567 if (LoadInst
*L
= dyn_cast
<LoadInst
>(User
))
570 // Take any load, we will use it only to update Alias Analysis
571 OrigLoad
= cast
<LoadInst
>(User
->use_back());
572 OriginalLoads
[Indices
] = OrigLoad
;
575 // Add a parameter to the function for each element passed in.
576 for (ScalarizeTable::iterator SI
= ArgIndices
.begin(),
577 E
= ArgIndices
.end(); SI
!= E
; ++SI
) {
578 // not allowed to dereference ->begin() if size() is 0
579 Params
.push_back(GetElementPtrInst::getIndexedType(I
->getType(),
582 assert(Params
.back());
585 if (ArgIndices
.size() == 1 && ArgIndices
.begin()->empty())
586 ++NumArgumentsPromoted
;
588 ++NumAggregatesPromoted
;
592 // Add any function attributes.
593 if (Attributes attrs
= PAL
.getFnAttributes())
594 AttributesVec
.push_back(AttributeWithIndex::get(~0, attrs
));
596 const Type
*RetTy
= FTy
->getReturnType();
598 // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
599 // have zero fixed arguments.
600 bool ExtraArgHack
= false;
601 if (Params
.empty() && FTy
->isVarArg()) {
603 Params
.push_back(Type::getInt32Ty(F
->getContext()));
606 // Construct the new function type using the new arguments.
607 FunctionType
*NFTy
= FunctionType::get(RetTy
, Params
, FTy
->isVarArg());
609 // Create the new function body and insert it into the module.
610 Function
*NF
= Function::Create(NFTy
, F
->getLinkage(), F
->getName());
611 NF
->copyAttributesFrom(F
);
614 DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF
<< "\n"
617 // Recompute the parameter attributes list based on the new arguments for
619 NF
->setAttributes(AttrListPtr::get(AttributesVec
.begin(),
620 AttributesVec
.end()));
621 AttributesVec
.clear();
623 F
->getParent()->getFunctionList().insert(F
, NF
);
626 // Get the alias analysis information that we need to update to reflect our
628 AliasAnalysis
&AA
= getAnalysis
<AliasAnalysis
>();
630 // Get the callgraph information that we need to update to reflect our
632 CallGraph
&CG
= getAnalysis
<CallGraph
>();
634 // Get a new callgraph node for NF.
635 CallGraphNode
*NF_CGN
= CG
.getOrInsertFunction(NF
);
637 // Loop over all of the callers of the function, transforming the call sites
638 // to pass in the loaded pointers.
640 SmallVector
<Value
*, 16> Args
;
641 while (!F
->use_empty()) {
642 CallSite
CS(F
->use_back());
643 assert(CS
.getCalledFunction() == F
);
644 Instruction
*Call
= CS
.getInstruction();
645 const AttrListPtr
&CallPAL
= CS
.getAttributes();
647 // Add any return attributes.
648 if (Attributes attrs
= CallPAL
.getRetAttributes())
649 AttributesVec
.push_back(AttributeWithIndex::get(0, attrs
));
651 // Loop over the operands, inserting GEP and loads in the caller as
653 CallSite::arg_iterator AI
= CS
.arg_begin();
655 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
656 I
!= E
; ++I
, ++AI
, ++ArgIndex
)
657 if (!ArgsToPromote
.count(I
) && !ByValArgsToTransform
.count(I
)) {
658 Args
.push_back(*AI
); // Unmodified argument
660 if (Attributes Attrs
= CallPAL
.getParamAttributes(ArgIndex
))
661 AttributesVec
.push_back(AttributeWithIndex::get(Args
.size(), Attrs
));
663 } else if (ByValArgsToTransform
.count(I
)) {
664 // Emit a GEP and load for each element of the struct.
665 const Type
*AgTy
= cast
<PointerType
>(I
->getType())->getElementType();
666 const StructType
*STy
= cast
<StructType
>(AgTy
);
668 ConstantInt::get(Type::getInt32Ty(F
->getContext()), 0), 0 };
669 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
670 Idxs
[1] = ConstantInt::get(Type::getInt32Ty(F
->getContext()), i
);
671 Value
*Idx
= GetElementPtrInst::Create(*AI
, Idxs
, Idxs
+2,
672 (*AI
)->getName()+"."+utostr(i
),
674 // TODO: Tell AA about the new values?
675 Args
.push_back(new LoadInst(Idx
, Idx
->getName()+".val", Call
));
677 } else if (!I
->use_empty()) {
678 // Non-dead argument: insert GEPs and loads as appropriate.
679 ScalarizeTable
&ArgIndices
= ScalarizedElements
[I
];
680 // Store the Value* version of the indices in here, but declare it now
682 std::vector
<Value
*> Ops
;
683 for (ScalarizeTable::iterator SI
= ArgIndices
.begin(),
684 E
= ArgIndices
.end(); SI
!= E
; ++SI
) {
686 LoadInst
*OrigLoad
= OriginalLoads
[*SI
];
688 Ops
.reserve(SI
->size());
689 const Type
*ElTy
= V
->getType();
690 for (IndicesVector::const_iterator II
= SI
->begin(),
691 IE
= SI
->end(); II
!= IE
; ++II
) {
692 // Use i32 to index structs, and i64 for others (pointers/arrays).
693 // This satisfies GEP constraints.
694 const Type
*IdxTy
= (ElTy
->isStructTy() ?
695 Type::getInt32Ty(F
->getContext()) :
696 Type::getInt64Ty(F
->getContext()));
697 Ops
.push_back(ConstantInt::get(IdxTy
, *II
));
698 // Keep track of the type we're currently indexing.
699 ElTy
= cast
<CompositeType
>(ElTy
)->getTypeAtIndex(*II
);
701 // And create a GEP to extract those indices.
702 V
= GetElementPtrInst::Create(V
, Ops
.begin(), Ops
.end(),
703 V
->getName()+".idx", Call
);
705 AA
.copyValue(OrigLoad
->getOperand(0), V
);
707 // Since we're replacing a load make sure we take the alignment
708 // of the previous load.
709 LoadInst
*newLoad
= new LoadInst(V
, V
->getName()+".val", Call
);
710 newLoad
->setAlignment(OrigLoad
->getAlignment());
711 // Transfer the TBAA info too.
712 newLoad
->setMetadata(LLVMContext::MD_tbaa
,
713 OrigLoad
->getMetadata(LLVMContext::MD_tbaa
));
714 Args
.push_back(newLoad
);
715 AA
.copyValue(OrigLoad
, Args
.back());
720 Args
.push_back(Constant::getNullValue(Type::getInt32Ty(F
->getContext())));
722 // Push any varargs arguments on the list.
723 for (; AI
!= CS
.arg_end(); ++AI
, ++ArgIndex
) {
725 if (Attributes Attrs
= CallPAL
.getParamAttributes(ArgIndex
))
726 AttributesVec
.push_back(AttributeWithIndex::get(Args
.size(), Attrs
));
729 // Add any function attributes.
730 if (Attributes attrs
= CallPAL
.getFnAttributes())
731 AttributesVec
.push_back(AttributeWithIndex::get(~0, attrs
));
734 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Call
)) {
735 New
= InvokeInst::Create(NF
, II
->getNormalDest(), II
->getUnwindDest(),
736 Args
.begin(), Args
.end(), "", Call
);
737 cast
<InvokeInst
>(New
)->setCallingConv(CS
.getCallingConv());
738 cast
<InvokeInst
>(New
)->setAttributes(AttrListPtr::get(AttributesVec
.begin(),
739 AttributesVec
.end()));
741 New
= CallInst::Create(NF
, Args
.begin(), Args
.end(), "", Call
);
742 cast
<CallInst
>(New
)->setCallingConv(CS
.getCallingConv());
743 cast
<CallInst
>(New
)->setAttributes(AttrListPtr::get(AttributesVec
.begin(),
744 AttributesVec
.end()));
745 if (cast
<CallInst
>(Call
)->isTailCall())
746 cast
<CallInst
>(New
)->setTailCall();
749 AttributesVec
.clear();
751 // Update the alias analysis implementation to know that we are replacing
752 // the old call with a new one.
753 AA
.replaceWithNewValue(Call
, New
);
755 // Update the callgraph to know that the callsite has been transformed.
756 CallGraphNode
*CalleeNode
= CG
[Call
->getParent()->getParent()];
757 CalleeNode
->replaceCallEdge(Call
, New
, NF_CGN
);
759 if (!Call
->use_empty()) {
760 Call
->replaceAllUsesWith(New
);
764 // Finally, remove the old call from the program, reducing the use-count of
766 Call
->eraseFromParent();
769 // Since we have now created the new function, splice the body of the old
770 // function right into the new function, leaving the old rotting hulk of the
772 NF
->getBasicBlockList().splice(NF
->begin(), F
->getBasicBlockList());
774 // Loop over the argument list, transfering uses of the old arguments over to
775 // the new arguments, also transfering over the names as well.
777 for (Function::arg_iterator I
= F
->arg_begin(), E
= F
->arg_end(),
778 I2
= NF
->arg_begin(); I
!= E
; ++I
) {
779 if (!ArgsToPromote
.count(I
) && !ByValArgsToTransform
.count(I
)) {
780 // If this is an unmodified argument, move the name and users over to the
782 I
->replaceAllUsesWith(I2
);
784 AA
.replaceWithNewValue(I
, I2
);
789 if (ByValArgsToTransform
.count(I
)) {
790 // In the callee, we create an alloca, and store each of the new incoming
791 // arguments into the alloca.
792 Instruction
*InsertPt
= NF
->begin()->begin();
794 // Just add all the struct element types.
795 const Type
*AgTy
= cast
<PointerType
>(I
->getType())->getElementType();
796 Value
*TheAlloca
= new AllocaInst(AgTy
, 0, "", InsertPt
);
797 const StructType
*STy
= cast
<StructType
>(AgTy
);
799 ConstantInt::get(Type::getInt32Ty(F
->getContext()), 0), 0 };
801 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
) {
802 Idxs
[1] = ConstantInt::get(Type::getInt32Ty(F
->getContext()), i
);
804 GetElementPtrInst::Create(TheAlloca
, Idxs
, Idxs
+2,
805 TheAlloca
->getName()+"."+Twine(i
),
807 I2
->setName(I
->getName()+"."+Twine(i
));
808 new StoreInst(I2
++, Idx
, InsertPt
);
811 // Anything that used the arg should now use the alloca.
812 I
->replaceAllUsesWith(TheAlloca
);
813 TheAlloca
->takeName(I
);
814 AA
.replaceWithNewValue(I
, TheAlloca
);
818 if (I
->use_empty()) {
823 // Otherwise, if we promoted this argument, then all users are load
824 // instructions (or GEPs with only load users), and all loads should be
825 // using the new argument that we added.
826 ScalarizeTable
&ArgIndices
= ScalarizedElements
[I
];
828 while (!I
->use_empty()) {
829 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
->use_back())) {
830 assert(ArgIndices
.begin()->empty() &&
831 "Load element should sort to front!");
832 I2
->setName(I
->getName()+".val");
833 LI
->replaceAllUsesWith(I2
);
834 AA
.replaceWithNewValue(LI
, I2
);
835 LI
->eraseFromParent();
836 DEBUG(dbgs() << "*** Promoted load of argument '" << I
->getName()
837 << "' in function '" << F
->getName() << "'\n");
839 GetElementPtrInst
*GEP
= cast
<GetElementPtrInst
>(I
->use_back());
840 IndicesVector Operands
;
841 Operands
.reserve(GEP
->getNumIndices());
842 for (User::op_iterator II
= GEP
->idx_begin(), IE
= GEP
->idx_end();
844 Operands
.push_back(cast
<ConstantInt
>(*II
)->getSExtValue());
846 // GEPs with a single 0 index can be merged with direct loads
847 if (Operands
.size() == 1 && Operands
.front() == 0)
850 Function::arg_iterator TheArg
= I2
;
851 for (ScalarizeTable::iterator It
= ArgIndices
.begin();
852 *It
!= Operands
; ++It
, ++TheArg
) {
853 assert(It
!= ArgIndices
.end() && "GEP not handled??");
856 std::string NewName
= I
->getName();
857 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
) {
858 NewName
+= "." + utostr(Operands
[i
]);
861 TheArg
->setName(NewName
);
863 DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg
->getName()
864 << "' of function '" << NF
->getName() << "'\n");
866 // All of the uses must be load instructions. Replace them all with
867 // the argument specified by ArgNo.
868 while (!GEP
->use_empty()) {
869 LoadInst
*L
= cast
<LoadInst
>(GEP
->use_back());
870 L
->replaceAllUsesWith(TheArg
);
871 AA
.replaceWithNewValue(L
, TheArg
);
872 L
->eraseFromParent();
875 GEP
->eraseFromParent();
879 // Increment I2 past all of the arguments added for this promoted pointer.
880 for (unsigned i
= 0, e
= ArgIndices
.size(); i
!= e
; ++i
)
884 // Notify the alias analysis implementation that we inserted a new argument.
886 AA
.copyValue(Constant::getNullValue(Type::getInt32Ty(F
->getContext())),
890 // Tell the alias analysis that the old function is about to disappear.
891 AA
.replaceWithNewValue(F
, NF
);
894 NF_CGN
->stealCalledFunctionsFrom(CG
[F
]);
896 // Now that the old function is dead, delete it. If there is a dangling
897 // reference to the CallgraphNode, just leave the dead function around for
898 // someone else to nuke.
899 CallGraphNode
*CGN
= CG
[F
];
900 if (CGN
->getNumReferences() == 0)
901 delete CG
.removeFunctionFromModule(CGN
);
903 F
->setLinkage(Function::ExternalLinkage
);