Use %ull here.
[llvm/stm8.git] / lib / Transforms / IPO / MergeFunctions.cpp
blobf74144338a611dbd31eab0eb2366a6ee79ab3c9c
1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
20 // When a match is found the functions are folded. If both functions are
21 // overridable, we move the functionality into a new internal function and
22 // leave two overridable thunks to it.
24 //===----------------------------------------------------------------------===//
26 // Future work:
28 // * virtual functions.
30 // Many functions have their address taken by the virtual function table for
31 // the object they belong to. However, as long as it's only used for a lookup
32 // and call, this is irrelevant, and we'd like to fold such functions.
34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
35 // bucket.
37 // * be smarter about bitcasts.
39 // In order to fold functions, we will sometimes add either bitcast instructions
40 // or bitcast constant expressions. Unfortunately, this can confound further
41 // analysis since the two functions differ where one has a bitcast and the
42 // other doesn't. We should learn to look through bitcasts.
44 //===----------------------------------------------------------------------===//
46 #define DEBUG_TYPE "mergefunc"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/FoldingSet.h"
50 #include "llvm/ADT/SmallSet.h"
51 #include "llvm/ADT/Statistic.h"
52 #include "llvm/ADT/STLExtras.h"
53 #include "llvm/Constants.h"
54 #include "llvm/InlineAsm.h"
55 #include "llvm/Instructions.h"
56 #include "llvm/LLVMContext.h"
57 #include "llvm/Module.h"
58 #include "llvm/Operator.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/CallSite.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/IRBuilder.h"
64 #include "llvm/Support/ValueHandle.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetData.h"
67 #include <vector>
68 using namespace llvm;
70 STATISTIC(NumFunctionsMerged, "Number of functions merged");
71 STATISTIC(NumThunksWritten, "Number of thunks generated");
72 STATISTIC(NumAliasesWritten, "Number of aliases generated");
73 STATISTIC(NumDoubleWeak, "Number of new functions created");
75 /// Creates a hash-code for the function which is the same for any two
76 /// functions that will compare equal, without looking at the instructions
77 /// inside the function.
78 static unsigned profileFunction(const Function *F) {
79 const FunctionType *FTy = F->getFunctionType();
81 FoldingSetNodeID ID;
82 ID.AddInteger(F->size());
83 ID.AddInteger(F->getCallingConv());
84 ID.AddBoolean(F->hasGC());
85 ID.AddBoolean(FTy->isVarArg());
86 ID.AddInteger(FTy->getReturnType()->getTypeID());
87 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
88 ID.AddInteger(FTy->getParamType(i)->getTypeID());
89 return ID.ComputeHash();
92 namespace {
94 /// ComparableFunction - A struct that pairs together functions with a
95 /// TargetData so that we can keep them together as elements in the DenseSet.
96 class ComparableFunction {
97 public:
98 static const ComparableFunction EmptyKey;
99 static const ComparableFunction TombstoneKey;
100 static TargetData * const LookupOnly;
102 ComparableFunction(Function *Func, TargetData *TD)
103 : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
105 Function *getFunc() const { return Func; }
106 unsigned getHash() const { return Hash; }
107 TargetData *getTD() const { return TD; }
109 // Drops AssertingVH reference to the function. Outside of debug mode, this
110 // does nothing.
111 void release() {
112 assert(Func &&
113 "Attempted to release function twice, or release empty/tombstone!");
114 Func = NULL;
117 private:
118 explicit ComparableFunction(unsigned Hash)
119 : Func(NULL), Hash(Hash), TD(NULL) {}
121 AssertingVH<Function> Func;
122 unsigned Hash;
123 TargetData *TD;
126 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
127 const ComparableFunction ComparableFunction::TombstoneKey =
128 ComparableFunction(1);
129 TargetData *const ComparableFunction::LookupOnly = (TargetData*)(-1);
133 namespace llvm {
134 template <>
135 struct DenseMapInfo<ComparableFunction> {
136 static ComparableFunction getEmptyKey() {
137 return ComparableFunction::EmptyKey;
139 static ComparableFunction getTombstoneKey() {
140 return ComparableFunction::TombstoneKey;
142 static unsigned getHashValue(const ComparableFunction &CF) {
143 return CF.getHash();
145 static bool isEqual(const ComparableFunction &LHS,
146 const ComparableFunction &RHS);
150 namespace {
152 /// FunctionComparator - Compares two functions to determine whether or not
153 /// they will generate machine code with the same behaviour. TargetData is
154 /// used if available. The comparator always fails conservatively (erring on the
155 /// side of claiming that two functions are different).
156 class FunctionComparator {
157 public:
158 FunctionComparator(const TargetData *TD, const Function *F1,
159 const Function *F2)
160 : F1(F1), F2(F2), TD(TD) {}
162 /// Test whether the two functions have equivalent behaviour.
163 bool compare();
165 private:
166 /// Test whether two basic blocks have equivalent behaviour.
167 bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
169 /// Assign or look up previously assigned numbers for the two values, and
170 /// return whether the numbers are equal. Numbers are assigned in the order
171 /// visited.
172 bool enumerate(const Value *V1, const Value *V2);
174 /// Compare two Instructions for equivalence, similar to
175 /// Instruction::isSameOperationAs but with modifications to the type
176 /// comparison.
177 bool isEquivalentOperation(const Instruction *I1,
178 const Instruction *I2) const;
180 /// Compare two GEPs for equivalent pointer arithmetic.
181 bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
182 bool isEquivalentGEP(const GetElementPtrInst *GEP1,
183 const GetElementPtrInst *GEP2) {
184 return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
187 /// Compare two Types, treating all pointer types as equal.
188 bool isEquivalentType(const Type *Ty1, const Type *Ty2) const;
190 // The two functions undergoing comparison.
191 const Function *F1, *F2;
193 const TargetData *TD;
195 DenseMap<const Value *, const Value *> id_map;
196 DenseSet<const Value *> seen_values;
201 // Any two pointers in the same address space are equivalent, intptr_t and
202 // pointers are equivalent. Otherwise, standard type equivalence rules apply.
203 bool FunctionComparator::isEquivalentType(const Type *Ty1,
204 const Type *Ty2) const {
205 if (Ty1 == Ty2)
206 return true;
207 if (Ty1->getTypeID() != Ty2->getTypeID()) {
208 if (TD) {
209 LLVMContext &Ctx = Ty1->getContext();
210 if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
211 if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
213 return false;
216 switch (Ty1->getTypeID()) {
217 default:
218 llvm_unreachable("Unknown type!");
219 // Fall through in Release mode.
220 case Type::IntegerTyID:
221 case Type::OpaqueTyID:
222 case Type::VectorTyID:
223 // Ty1 == Ty2 would have returned true earlier.
224 return false;
226 case Type::VoidTyID:
227 case Type::FloatTyID:
228 case Type::DoubleTyID:
229 case Type::X86_FP80TyID:
230 case Type::FP128TyID:
231 case Type::PPC_FP128TyID:
232 case Type::LabelTyID:
233 case Type::MetadataTyID:
234 return true;
236 case Type::PointerTyID: {
237 const PointerType *PTy1 = cast<PointerType>(Ty1);
238 const PointerType *PTy2 = cast<PointerType>(Ty2);
239 return PTy1->getAddressSpace() == PTy2->getAddressSpace();
242 case Type::StructTyID: {
243 const StructType *STy1 = cast<StructType>(Ty1);
244 const StructType *STy2 = cast<StructType>(Ty2);
245 if (STy1->getNumElements() != STy2->getNumElements())
246 return false;
248 if (STy1->isPacked() != STy2->isPacked())
249 return false;
251 for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
252 if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
253 return false;
255 return true;
258 case Type::FunctionTyID: {
259 const FunctionType *FTy1 = cast<FunctionType>(Ty1);
260 const FunctionType *FTy2 = cast<FunctionType>(Ty2);
261 if (FTy1->getNumParams() != FTy2->getNumParams() ||
262 FTy1->isVarArg() != FTy2->isVarArg())
263 return false;
265 if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
266 return false;
268 for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
269 if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
270 return false;
272 return true;
275 case Type::ArrayTyID: {
276 const ArrayType *ATy1 = cast<ArrayType>(Ty1);
277 const ArrayType *ATy2 = cast<ArrayType>(Ty2);
278 return ATy1->getNumElements() == ATy2->getNumElements() &&
279 isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
284 // Determine whether the two operations are the same except that pointer-to-A
285 // and pointer-to-B are equivalent. This should be kept in sync with
286 // Instruction::isSameOperationAs.
287 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
288 const Instruction *I2) const {
289 // Differences from Instruction::isSameOperationAs:
290 // * replace type comparison with calls to isEquivalentType.
291 // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
292 // * because of the above, we don't test for the tail bit on calls later on
293 if (I1->getOpcode() != I2->getOpcode() ||
294 I1->getNumOperands() != I2->getNumOperands() ||
295 !isEquivalentType(I1->getType(), I2->getType()) ||
296 !I1->hasSameSubclassOptionalData(I2))
297 return false;
299 // We have two instructions of identical opcode and #operands. Check to see
300 // if all operands are the same type
301 for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
302 if (!isEquivalentType(I1->getOperand(i)->getType(),
303 I2->getOperand(i)->getType()))
304 return false;
306 // Check special state that is a part of some instructions.
307 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
308 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
309 LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
310 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
311 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
312 SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
313 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
314 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
315 if (const CallInst *CI = dyn_cast<CallInst>(I1))
316 return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
317 CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
318 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
319 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
320 CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
321 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
322 if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
323 return false;
324 for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
325 if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
326 return false;
327 return true;
329 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
330 if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
331 return false;
332 for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
333 if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
334 return false;
335 return true;
338 return true;
341 // Determine whether two GEP operations perform the same underlying arithmetic.
342 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
343 const GEPOperator *GEP2) {
344 // When we have target data, we can reduce the GEP down to the value in bytes
345 // added to the address.
346 if (TD && GEP1->hasAllConstantIndices() && GEP2->hasAllConstantIndices()) {
347 SmallVector<Value *, 8> Indices1(GEP1->idx_begin(), GEP1->idx_end());
348 SmallVector<Value *, 8> Indices2(GEP2->idx_begin(), GEP2->idx_end());
349 uint64_t Offset1 = TD->getIndexedOffset(GEP1->getPointerOperandType(),
350 Indices1.data(), Indices1.size());
351 uint64_t Offset2 = TD->getIndexedOffset(GEP2->getPointerOperandType(),
352 Indices2.data(), Indices2.size());
353 return Offset1 == Offset2;
356 if (GEP1->getPointerOperand()->getType() !=
357 GEP2->getPointerOperand()->getType())
358 return false;
360 if (GEP1->getNumOperands() != GEP2->getNumOperands())
361 return false;
363 for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
364 if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
365 return false;
368 return true;
371 // Compare two values used by the two functions under pair-wise comparison. If
372 // this is the first time the values are seen, they're added to the mapping so
373 // that we will detect mismatches on next use.
374 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
375 // Check for function @f1 referring to itself and function @f2 referring to
376 // itself, or referring to each other, or both referring to either of them.
377 // They're all equivalent if the two functions are otherwise equivalent.
378 if (V1 == F1 && V2 == F2)
379 return true;
380 if (V1 == F2 && V2 == F1)
381 return true;
383 if (const Constant *C1 = dyn_cast<Constant>(V1)) {
384 if (V1 == V2) return true;
385 const Constant *C2 = dyn_cast<Constant>(V2);
386 if (!C2) return false;
387 // TODO: constant expressions with GEP or references to F1 or F2.
388 if (C1->isNullValue() && C2->isNullValue() &&
389 isEquivalentType(C1->getType(), C2->getType()))
390 return true;
391 // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
392 // then they must have equal bit patterns.
393 return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
394 C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
397 if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
398 return V1 == V2;
400 // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
401 // check whether it's equal to V2. When there is no mapping then we need to
402 // ensure that V2 isn't already equivalent to something else. For this
403 // purpose, we track the V2 values in a set.
405 const Value *&map_elem = id_map[V1];
406 if (map_elem)
407 return map_elem == V2;
408 if (!seen_values.insert(V2).second)
409 return false;
410 map_elem = V2;
411 return true;
414 // Test whether two basic blocks have equivalent behaviour.
415 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
416 BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
417 BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
419 do {
420 if (!enumerate(F1I, F2I))
421 return false;
423 if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
424 const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
425 if (!GEP2)
426 return false;
428 if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
429 return false;
431 if (!isEquivalentGEP(GEP1, GEP2))
432 return false;
433 } else {
434 if (!isEquivalentOperation(F1I, F2I))
435 return false;
437 assert(F1I->getNumOperands() == F2I->getNumOperands());
438 for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
439 Value *OpF1 = F1I->getOperand(i);
440 Value *OpF2 = F2I->getOperand(i);
442 if (!enumerate(OpF1, OpF2))
443 return false;
445 if (OpF1->getValueID() != OpF2->getValueID() ||
446 !isEquivalentType(OpF1->getType(), OpF2->getType()))
447 return false;
451 ++F1I, ++F2I;
452 } while (F1I != F1E && F2I != F2E);
454 return F1I == F1E && F2I == F2E;
457 // Test whether the two functions have equivalent behaviour.
458 bool FunctionComparator::compare() {
459 // We need to recheck everything, but check the things that weren't included
460 // in the hash first.
462 if (F1->getAttributes() != F2->getAttributes())
463 return false;
465 if (F1->hasGC() != F2->hasGC())
466 return false;
468 if (F1->hasGC() && F1->getGC() != F2->getGC())
469 return false;
471 if (F1->hasSection() != F2->hasSection())
472 return false;
474 if (F1->hasSection() && F1->getSection() != F2->getSection())
475 return false;
477 if (F1->isVarArg() != F2->isVarArg())
478 return false;
480 // TODO: if it's internal and only used in direct calls, we could handle this
481 // case too.
482 if (F1->getCallingConv() != F2->getCallingConv())
483 return false;
485 if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
486 return false;
488 assert(F1->arg_size() == F2->arg_size() &&
489 "Identically typed functions have different numbers of args!");
491 // Visit the arguments so that they get enumerated in the order they're
492 // passed in.
493 for (Function::const_arg_iterator f1i = F1->arg_begin(),
494 f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
495 if (!enumerate(f1i, f2i))
496 llvm_unreachable("Arguments repeat!");
499 // We do a CFG-ordered walk since the actual ordering of the blocks in the
500 // linked list is immaterial. Our walk starts at the entry block for both
501 // functions, then takes each block from each terminator in order. As an
502 // artifact, this also means that unreachable blocks are ignored.
503 SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
504 SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
506 F1BBs.push_back(&F1->getEntryBlock());
507 F2BBs.push_back(&F2->getEntryBlock());
509 VisitedBBs.insert(F1BBs[0]);
510 while (!F1BBs.empty()) {
511 const BasicBlock *F1BB = F1BBs.pop_back_val();
512 const BasicBlock *F2BB = F2BBs.pop_back_val();
514 if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
515 return false;
517 const TerminatorInst *F1TI = F1BB->getTerminator();
518 const TerminatorInst *F2TI = F2BB->getTerminator();
520 assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
521 for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
522 if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
523 continue;
525 F1BBs.push_back(F1TI->getSuccessor(i));
526 F2BBs.push_back(F2TI->getSuccessor(i));
529 return true;
532 namespace {
534 /// MergeFunctions finds functions which will generate identical machine code,
535 /// by considering all pointer types to be equivalent. Once identified,
536 /// MergeFunctions will fold them by replacing a call to one to a call to a
537 /// bitcast of the other.
539 class MergeFunctions : public ModulePass {
540 public:
541 static char ID;
542 MergeFunctions()
543 : ModulePass(ID), HasGlobalAliases(false) {
544 initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
547 bool runOnModule(Module &M);
549 private:
550 typedef DenseSet<ComparableFunction> FnSetType;
552 /// A work queue of functions that may have been modified and should be
553 /// analyzed again.
554 std::vector<WeakVH> Deferred;
556 /// Insert a ComparableFunction into the FnSet, or merge it away if it's
557 /// equal to one that's already present.
558 bool insert(ComparableFunction &NewF);
560 /// Remove a Function from the FnSet and queue it up for a second sweep of
561 /// analysis.
562 void remove(Function *F);
564 /// Find the functions that use this Value and remove them from FnSet and
565 /// queue the functions.
566 void removeUsers(Value *V);
568 /// Replace all direct calls of Old with calls of New. Will bitcast New if
569 /// necessary to make types match.
570 void replaceDirectCallers(Function *Old, Function *New);
572 /// Merge two equivalent functions. Upon completion, G may be deleted, or may
573 /// be converted into a thunk. In either case, it should never be visited
574 /// again.
575 void mergeTwoFunctions(Function *F, Function *G);
577 /// Replace G with a thunk or an alias to F. Deletes G.
578 void writeThunkOrAlias(Function *F, Function *G);
580 /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
581 /// of G with bitcast(F). Deletes G.
582 void writeThunk(Function *F, Function *G);
584 /// Replace G with an alias to F. Deletes G.
585 void writeAlias(Function *F, Function *G);
587 /// The set of all distinct functions. Use the insert() and remove() methods
588 /// to modify it.
589 FnSetType FnSet;
591 /// TargetData for more accurate GEP comparisons. May be NULL.
592 TargetData *TD;
594 /// Whether or not the target supports global aliases.
595 bool HasGlobalAliases;
598 } // end anonymous namespace
600 char MergeFunctions::ID = 0;
601 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
603 ModulePass *llvm::createMergeFunctionsPass() {
604 return new MergeFunctions();
607 bool MergeFunctions::runOnModule(Module &M) {
608 bool Changed = false;
609 TD = getAnalysisIfAvailable<TargetData>();
611 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
612 if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
613 Deferred.push_back(WeakVH(I));
615 FnSet.resize(Deferred.size());
617 do {
618 std::vector<WeakVH> Worklist;
619 Deferred.swap(Worklist);
621 DEBUG(dbgs() << "size of module: " << M.size() << '\n');
622 DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
624 // Insert only strong functions and merge them. Strong function merging
625 // always deletes one of them.
626 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
627 E = Worklist.end(); I != E; ++I) {
628 if (!*I) continue;
629 Function *F = cast<Function>(*I);
630 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
631 !F->mayBeOverridden()) {
632 ComparableFunction CF = ComparableFunction(F, TD);
633 Changed |= insert(CF);
637 // Insert only weak functions and merge them. By doing these second we
638 // create thunks to the strong function when possible. When two weak
639 // functions are identical, we create a new strong function with two weak
640 // weak thunks to it which are identical but not mergable.
641 for (std::vector<WeakVH>::iterator I = Worklist.begin(),
642 E = Worklist.end(); I != E; ++I) {
643 if (!*I) continue;
644 Function *F = cast<Function>(*I);
645 if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
646 F->mayBeOverridden()) {
647 ComparableFunction CF = ComparableFunction(F, TD);
648 Changed |= insert(CF);
651 DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
652 } while (!Deferred.empty());
654 FnSet.clear();
656 return Changed;
659 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
660 const ComparableFunction &RHS) {
661 if (LHS.getFunc() == RHS.getFunc() &&
662 LHS.getHash() == RHS.getHash())
663 return true;
664 if (!LHS.getFunc() || !RHS.getFunc())
665 return false;
667 // One of these is a special "underlying pointer comparison only" object.
668 if (LHS.getTD() == ComparableFunction::LookupOnly ||
669 RHS.getTD() == ComparableFunction::LookupOnly)
670 return false;
672 assert(LHS.getTD() == RHS.getTD() &&
673 "Comparing functions for different targets");
675 return FunctionComparator(LHS.getTD(), LHS.getFunc(),
676 RHS.getFunc()).compare();
679 // Replace direct callers of Old with New.
680 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
681 Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
682 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
683 UI != UE;) {
684 Value::use_iterator TheIter = UI;
685 ++UI;
686 CallSite CS(*TheIter);
687 if (CS && CS.isCallee(TheIter)) {
688 remove(CS.getInstruction()->getParent()->getParent());
689 TheIter.getUse().set(BitcastNew);
694 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
695 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
696 if (HasGlobalAliases && G->hasUnnamedAddr()) {
697 if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
698 G->hasWeakLinkage()) {
699 writeAlias(F, G);
700 return;
704 writeThunk(F, G);
707 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
708 // of G with bitcast(F). Deletes G.
709 void MergeFunctions::writeThunk(Function *F, Function *G) {
710 if (!G->mayBeOverridden()) {
711 // Redirect direct callers of G to F.
712 replaceDirectCallers(G, F);
715 // If G was internal then we may have replaced all uses of G with F. If so,
716 // stop here and delete G. There's no need for a thunk.
717 if (G->hasLocalLinkage() && G->use_empty()) {
718 G->eraseFromParent();
719 return;
722 Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
723 G->getParent());
724 BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
725 IRBuilder<false> Builder(BB);
727 SmallVector<Value *, 16> Args;
728 unsigned i = 0;
729 const FunctionType *FFTy = F->getFunctionType();
730 for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
731 AI != AE; ++AI) {
732 Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
733 ++i;
736 CallInst *CI = Builder.CreateCall(F, Args.begin(), Args.end());
737 CI->setTailCall();
738 CI->setCallingConv(F->getCallingConv());
739 if (NewG->getReturnType()->isVoidTy()) {
740 Builder.CreateRetVoid();
741 } else {
742 Builder.CreateRet(Builder.CreateBitCast(CI, NewG->getReturnType()));
745 NewG->copyAttributesFrom(G);
746 NewG->takeName(G);
747 removeUsers(G);
748 G->replaceAllUsesWith(NewG);
749 G->eraseFromParent();
751 DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
752 ++NumThunksWritten;
755 // Replace G with an alias to F and delete G.
756 void MergeFunctions::writeAlias(Function *F, Function *G) {
757 Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
758 GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
759 BitcastF, G->getParent());
760 F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
761 GA->takeName(G);
762 GA->setVisibility(G->getVisibility());
763 removeUsers(G);
764 G->replaceAllUsesWith(GA);
765 G->eraseFromParent();
767 DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
768 ++NumAliasesWritten;
771 // Merge two equivalent functions. Upon completion, Function G is deleted.
772 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
773 if (F->mayBeOverridden()) {
774 assert(G->mayBeOverridden());
776 if (HasGlobalAliases) {
777 // Make them both thunks to the same internal function.
778 Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
779 F->getParent());
780 H->copyAttributesFrom(F);
781 H->takeName(F);
782 removeUsers(F);
783 F->replaceAllUsesWith(H);
785 unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
787 writeAlias(F, G);
788 writeAlias(F, H);
790 F->setAlignment(MaxAlignment);
791 F->setLinkage(GlobalValue::PrivateLinkage);
792 } else {
793 // We can't merge them. Instead, pick one and update all direct callers
794 // to call it and hope that we improve the instruction cache hit rate.
795 replaceDirectCallers(G, F);
798 ++NumDoubleWeak;
799 } else {
800 writeThunkOrAlias(F, G);
803 ++NumFunctionsMerged;
806 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
807 // that was already inserted.
808 bool MergeFunctions::insert(ComparableFunction &NewF) {
809 std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
810 if (Result.second) {
811 DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
812 return false;
815 const ComparableFunction &OldF = *Result.first;
817 // Never thunk a strong function to a weak function.
818 assert(!OldF.getFunc()->mayBeOverridden() ||
819 NewF.getFunc()->mayBeOverridden());
821 DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == "
822 << NewF.getFunc()->getName() << '\n');
824 Function *DeleteF = NewF.getFunc();
825 NewF.release();
826 mergeTwoFunctions(OldF.getFunc(), DeleteF);
827 return true;
830 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
831 // so that we'll look at it in the next round.
832 void MergeFunctions::remove(Function *F) {
833 // We need to make sure we remove F, not a function "equal" to F per the
834 // function equality comparator.
836 // The special "lookup only" ComparableFunction bypasses the expensive
837 // function comparison in favour of a pointer comparison on the underlying
838 // Function*'s.
839 ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
840 if (FnSet.erase(CF)) {
841 DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
842 Deferred.push_back(F);
846 // For each instruction used by the value, remove() the function that contains
847 // the instruction. This should happen right before a call to RAUW.
848 void MergeFunctions::removeUsers(Value *V) {
849 std::vector<Value *> Worklist;
850 Worklist.push_back(V);
851 while (!Worklist.empty()) {
852 Value *V = Worklist.back();
853 Worklist.pop_back();
855 for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
856 UI != UE; ++UI) {
857 Use &U = UI.getUse();
858 if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
859 remove(I->getParent()->getParent());
860 } else if (isa<GlobalValue>(U.getUser())) {
861 // do nothing
862 } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
863 for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
864 CUI != CUE; ++CUI)
865 Worklist.push_back(*CUI);