1 //===- InstCombinePHI.cpp -------------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the visitPHINode function.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombine.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/STLExtras.h"
21 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
22 /// and if a/b/c and the add's all have a single use, turn this into a phi
23 /// and a single binop.
24 Instruction
*InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode
&PN
) {
25 Instruction
*FirstInst
= cast
<Instruction
>(PN
.getIncomingValue(0));
26 assert(isa
<BinaryOperator
>(FirstInst
) || isa
<CmpInst
>(FirstInst
));
27 unsigned Opc
= FirstInst
->getOpcode();
28 Value
*LHSVal
= FirstInst
->getOperand(0);
29 Value
*RHSVal
= FirstInst
->getOperand(1);
31 const Type
*LHSType
= LHSVal
->getType();
32 const Type
*RHSType
= RHSVal
->getType();
34 bool isNUW
= false, isNSW
= false, isExact
= false;
35 if (OverflowingBinaryOperator
*BO
=
36 dyn_cast
<OverflowingBinaryOperator
>(FirstInst
)) {
37 isNUW
= BO
->hasNoUnsignedWrap();
38 isNSW
= BO
->hasNoSignedWrap();
39 } else if (PossiblyExactOperator
*PEO
=
40 dyn_cast
<PossiblyExactOperator
>(FirstInst
))
41 isExact
= PEO
->isExact();
43 // Scan to see if all operands are the same opcode, and all have one use.
44 for (unsigned i
= 1; i
!= PN
.getNumIncomingValues(); ++i
) {
45 Instruction
*I
= dyn_cast
<Instruction
>(PN
.getIncomingValue(i
));
46 if (!I
|| I
->getOpcode() != Opc
|| !I
->hasOneUse() ||
47 // Verify type of the LHS matches so we don't fold cmp's of different
49 I
->getOperand(0)->getType() != LHSType
||
50 I
->getOperand(1)->getType() != RHSType
)
53 // If they are CmpInst instructions, check their predicates
54 if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
))
55 if (CI
->getPredicate() != cast
<CmpInst
>(FirstInst
)->getPredicate())
59 isNUW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoUnsignedWrap();
61 isNSW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoSignedWrap();
63 isExact
= cast
<PossiblyExactOperator
>(I
)->isExact();
65 // Keep track of which operand needs a phi node.
66 if (I
->getOperand(0) != LHSVal
) LHSVal
= 0;
67 if (I
->getOperand(1) != RHSVal
) RHSVal
= 0;
70 // If both LHS and RHS would need a PHI, don't do this transformation,
71 // because it would increase the number of PHIs entering the block,
72 // which leads to higher register pressure. This is especially
73 // bad when the PHIs are in the header of a loop.
74 if (!LHSVal
&& !RHSVal
)
77 // Otherwise, this is safe to transform!
79 Value
*InLHS
= FirstInst
->getOperand(0);
80 Value
*InRHS
= FirstInst
->getOperand(1);
81 PHINode
*NewLHS
= 0, *NewRHS
= 0;
83 NewLHS
= PHINode::Create(LHSType
, PN
.getNumIncomingValues(),
84 FirstInst
->getOperand(0)->getName() + ".pn");
85 NewLHS
->addIncoming(InLHS
, PN
.getIncomingBlock(0));
86 InsertNewInstBefore(NewLHS
, PN
);
91 NewRHS
= PHINode::Create(RHSType
, PN
.getNumIncomingValues(),
92 FirstInst
->getOperand(1)->getName() + ".pn");
93 NewRHS
->addIncoming(InRHS
, PN
.getIncomingBlock(0));
94 InsertNewInstBefore(NewRHS
, PN
);
98 // Add all operands to the new PHIs.
99 if (NewLHS
|| NewRHS
) {
100 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
101 Instruction
*InInst
= cast
<Instruction
>(PN
.getIncomingValue(i
));
103 Value
*NewInLHS
= InInst
->getOperand(0);
104 NewLHS
->addIncoming(NewInLHS
, PN
.getIncomingBlock(i
));
107 Value
*NewInRHS
= InInst
->getOperand(1);
108 NewRHS
->addIncoming(NewInRHS
, PN
.getIncomingBlock(i
));
113 if (CmpInst
*CIOp
= dyn_cast
<CmpInst
>(FirstInst
))
114 return CmpInst::Create(CIOp
->getOpcode(), CIOp
->getPredicate(),
117 BinaryOperator
*BinOp
= cast
<BinaryOperator
>(FirstInst
);
118 BinaryOperator
*NewBinOp
=
119 BinaryOperator::Create(BinOp
->getOpcode(), LHSVal
, RHSVal
);
120 if (isNUW
) NewBinOp
->setHasNoUnsignedWrap();
121 if (isNSW
) NewBinOp
->setHasNoSignedWrap();
122 if (isExact
) NewBinOp
->setIsExact();
126 Instruction
*InstCombiner::FoldPHIArgGEPIntoPHI(PHINode
&PN
) {
127 GetElementPtrInst
*FirstInst
=cast
<GetElementPtrInst
>(PN
.getIncomingValue(0));
129 SmallVector
<Value
*, 16> FixedOperands(FirstInst
->op_begin(),
130 FirstInst
->op_end());
131 // This is true if all GEP bases are allocas and if all indices into them are
133 bool AllBasePointersAreAllocas
= true;
135 // We don't want to replace this phi if the replacement would require
136 // more than one phi, which leads to higher register pressure. This is
137 // especially bad when the PHIs are in the header of a loop.
138 bool NeededPhi
= false;
140 bool AllInBounds
= true;
142 // Scan to see if all operands are the same opcode, and all have one use.
143 for (unsigned i
= 1; i
!= PN
.getNumIncomingValues(); ++i
) {
144 GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(PN
.getIncomingValue(i
));
145 if (!GEP
|| !GEP
->hasOneUse() || GEP
->getType() != FirstInst
->getType() ||
146 GEP
->getNumOperands() != FirstInst
->getNumOperands())
149 AllInBounds
&= GEP
->isInBounds();
151 // Keep track of whether or not all GEPs are of alloca pointers.
152 if (AllBasePointersAreAllocas
&&
153 (!isa
<AllocaInst
>(GEP
->getOperand(0)) ||
154 !GEP
->hasAllConstantIndices()))
155 AllBasePointersAreAllocas
= false;
157 // Compare the operand lists.
158 for (unsigned op
= 0, e
= FirstInst
->getNumOperands(); op
!= e
; ++op
) {
159 if (FirstInst
->getOperand(op
) == GEP
->getOperand(op
))
162 // Don't merge two GEPs when two operands differ (introducing phi nodes)
163 // if one of the PHIs has a constant for the index. The index may be
164 // substantially cheaper to compute for the constants, so making it a
165 // variable index could pessimize the path. This also handles the case
166 // for struct indices, which must always be constant.
167 if (isa
<ConstantInt
>(FirstInst
->getOperand(op
)) ||
168 isa
<ConstantInt
>(GEP
->getOperand(op
)))
171 if (FirstInst
->getOperand(op
)->getType() !=GEP
->getOperand(op
)->getType())
174 // If we already needed a PHI for an earlier operand, and another operand
175 // also requires a PHI, we'd be introducing more PHIs than we're
176 // eliminating, which increases register pressure on entry to the PHI's
181 FixedOperands
[op
] = 0; // Needs a PHI.
186 // If all of the base pointers of the PHI'd GEPs are from allocas, don't
187 // bother doing this transformation. At best, this will just save a bit of
188 // offset calculation, but all the predecessors will have to materialize the
189 // stack address into a register anyway. We'd actually rather *clone* the
190 // load up into the predecessors so that we have a load of a gep of an alloca,
191 // which can usually all be folded into the load.
192 if (AllBasePointersAreAllocas
)
195 // Otherwise, this is safe to transform. Insert PHI nodes for each operand
197 SmallVector
<PHINode
*, 16> OperandPhis(FixedOperands
.size());
199 bool HasAnyPHIs
= false;
200 for (unsigned i
= 0, e
= FixedOperands
.size(); i
!= e
; ++i
) {
201 if (FixedOperands
[i
]) continue; // operand doesn't need a phi.
202 Value
*FirstOp
= FirstInst
->getOperand(i
);
203 PHINode
*NewPN
= PHINode::Create(FirstOp
->getType(), e
,
204 FirstOp
->getName()+".pn");
205 InsertNewInstBefore(NewPN
, PN
);
207 NewPN
->addIncoming(FirstOp
, PN
.getIncomingBlock(0));
208 OperandPhis
[i
] = NewPN
;
209 FixedOperands
[i
] = NewPN
;
214 // Add all operands to the new PHIs.
216 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
217 GetElementPtrInst
*InGEP
=cast
<GetElementPtrInst
>(PN
.getIncomingValue(i
));
218 BasicBlock
*InBB
= PN
.getIncomingBlock(i
);
220 for (unsigned op
= 0, e
= OperandPhis
.size(); op
!= e
; ++op
)
221 if (PHINode
*OpPhi
= OperandPhis
[op
])
222 OpPhi
->addIncoming(InGEP
->getOperand(op
), InBB
);
226 Value
*Base
= FixedOperands
[0];
227 GetElementPtrInst
*NewGEP
=
228 GetElementPtrInst::Create(Base
, FixedOperands
.begin()+1,
229 FixedOperands
.end());
230 if (AllInBounds
) NewGEP
->setIsInBounds();
235 /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
236 /// sink the load out of the block that defines it. This means that it must be
237 /// obvious the value of the load is not changed from the point of the load to
238 /// the end of the block it is in.
240 /// Finally, it is safe, but not profitable, to sink a load targetting a
241 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
243 static bool isSafeAndProfitableToSinkLoad(LoadInst
*L
) {
244 BasicBlock::iterator BBI
= L
, E
= L
->getParent()->end();
246 for (++BBI
; BBI
!= E
; ++BBI
)
247 if (BBI
->mayWriteToMemory())
250 // Check for non-address taken alloca. If not address-taken already, it isn't
251 // profitable to do this xform.
252 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(L
->getOperand(0))) {
253 bool isAddressTaken
= false;
254 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
257 if (isa
<LoadInst
>(U
)) continue;
258 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
259 // If storing TO the alloca, then the address isn't taken.
260 if (SI
->getOperand(1) == AI
) continue;
262 isAddressTaken
= true;
266 if (!isAddressTaken
&& AI
->isStaticAlloca())
270 // If this load is a load from a GEP with a constant offset from an alloca,
271 // then we don't want to sink it. In its present form, it will be
272 // load [constant stack offset]. Sinking it will cause us to have to
273 // materialize the stack addresses in each predecessor in a register only to
274 // do a shared load from register in the successor.
275 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(L
->getOperand(0)))
276 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(GEP
->getOperand(0)))
277 if (AI
->isStaticAlloca() && GEP
->hasAllConstantIndices())
283 Instruction
*InstCombiner::FoldPHIArgLoadIntoPHI(PHINode
&PN
) {
284 LoadInst
*FirstLI
= cast
<LoadInst
>(PN
.getIncomingValue(0));
286 // When processing loads, we need to propagate two bits of information to the
287 // sunk load: whether it is volatile, and what its alignment is. We currently
288 // don't sink loads when some have their alignment specified and some don't.
289 // visitLoadInst will propagate an alignment onto the load when TD is around,
290 // and if TD isn't around, we can't handle the mixed case.
291 bool isVolatile
= FirstLI
->isVolatile();
292 unsigned LoadAlignment
= FirstLI
->getAlignment();
293 unsigned LoadAddrSpace
= FirstLI
->getPointerAddressSpace();
295 // We can't sink the load if the loaded value could be modified between the
297 if (FirstLI
->getParent() != PN
.getIncomingBlock(0) ||
298 !isSafeAndProfitableToSinkLoad(FirstLI
))
301 // If the PHI is of volatile loads and the load block has multiple
302 // successors, sinking it would remove a load of the volatile value from
303 // the path through the other successor.
305 FirstLI
->getParent()->getTerminator()->getNumSuccessors() != 1)
308 // Check to see if all arguments are the same operation.
309 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
310 LoadInst
*LI
= dyn_cast
<LoadInst
>(PN
.getIncomingValue(i
));
311 if (!LI
|| !LI
->hasOneUse())
314 // We can't sink the load if the loaded value could be modified between
315 // the load and the PHI.
316 if (LI
->isVolatile() != isVolatile
||
317 LI
->getParent() != PN
.getIncomingBlock(i
) ||
318 LI
->getPointerAddressSpace() != LoadAddrSpace
||
319 !isSafeAndProfitableToSinkLoad(LI
))
322 // If some of the loads have an alignment specified but not all of them,
323 // we can't do the transformation.
324 if ((LoadAlignment
!= 0) != (LI
->getAlignment() != 0))
327 LoadAlignment
= std::min(LoadAlignment
, LI
->getAlignment());
329 // If the PHI is of volatile loads and the load block has multiple
330 // successors, sinking it would remove a load of the volatile value from
331 // the path through the other successor.
333 LI
->getParent()->getTerminator()->getNumSuccessors() != 1)
337 // Okay, they are all the same operation. Create a new PHI node of the
338 // correct type, and PHI together all of the LHS's of the instructions.
339 PHINode
*NewPN
= PHINode::Create(FirstLI
->getOperand(0)->getType(),
340 PN
.getNumIncomingValues(),
343 Value
*InVal
= FirstLI
->getOperand(0);
344 NewPN
->addIncoming(InVal
, PN
.getIncomingBlock(0));
346 // Add all operands to the new PHI.
347 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
348 Value
*NewInVal
= cast
<LoadInst
>(PN
.getIncomingValue(i
))->getOperand(0);
349 if (NewInVal
!= InVal
)
351 NewPN
->addIncoming(NewInVal
, PN
.getIncomingBlock(i
));
356 // The new PHI unions all of the same values together. This is really
357 // common, so we handle it intelligently here for compile-time speed.
361 InsertNewInstBefore(NewPN
, PN
);
365 // If this was a volatile load that we are merging, make sure to loop through
366 // and mark all the input loads as non-volatile. If we don't do this, we will
367 // insert a new volatile load and the old ones will not be deletable.
369 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
370 cast
<LoadInst
>(PN
.getIncomingValue(i
))->setVolatile(false);
372 return new LoadInst(PhiVal
, "", isVolatile
, LoadAlignment
);
377 /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
378 /// operator and they all are only used by the PHI, PHI together their
379 /// inputs, and do the operation once, to the result of the PHI.
380 Instruction
*InstCombiner::FoldPHIArgOpIntoPHI(PHINode
&PN
) {
381 Instruction
*FirstInst
= cast
<Instruction
>(PN
.getIncomingValue(0));
383 if (isa
<GetElementPtrInst
>(FirstInst
))
384 return FoldPHIArgGEPIntoPHI(PN
);
385 if (isa
<LoadInst
>(FirstInst
))
386 return FoldPHIArgLoadIntoPHI(PN
);
388 // Scan the instruction, looking for input operations that can be folded away.
389 // If all input operands to the phi are the same instruction (e.g. a cast from
390 // the same type or "+42") we can pull the operation through the PHI, reducing
391 // code size and simplifying code.
392 Constant
*ConstantOp
= 0;
393 const Type
*CastSrcTy
= 0;
394 bool isNUW
= false, isNSW
= false, isExact
= false;
396 if (isa
<CastInst
>(FirstInst
)) {
397 CastSrcTy
= FirstInst
->getOperand(0)->getType();
399 // Be careful about transforming integer PHIs. We don't want to pessimize
400 // the code by turning an i32 into an i1293.
401 if (PN
.getType()->isIntegerTy() && CastSrcTy
->isIntegerTy()) {
402 if (!ShouldChangeType(PN
.getType(), CastSrcTy
))
405 } else if (isa
<BinaryOperator
>(FirstInst
) || isa
<CmpInst
>(FirstInst
)) {
406 // Can fold binop, compare or shift here if the RHS is a constant,
407 // otherwise call FoldPHIArgBinOpIntoPHI.
408 ConstantOp
= dyn_cast
<Constant
>(FirstInst
->getOperand(1));
410 return FoldPHIArgBinOpIntoPHI(PN
);
412 if (OverflowingBinaryOperator
*BO
=
413 dyn_cast
<OverflowingBinaryOperator
>(FirstInst
)) {
414 isNUW
= BO
->hasNoUnsignedWrap();
415 isNSW
= BO
->hasNoSignedWrap();
416 } else if (PossiblyExactOperator
*PEO
=
417 dyn_cast
<PossiblyExactOperator
>(FirstInst
))
418 isExact
= PEO
->isExact();
420 return 0; // Cannot fold this operation.
423 // Check to see if all arguments are the same operation.
424 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
425 Instruction
*I
= dyn_cast
<Instruction
>(PN
.getIncomingValue(i
));
426 if (I
== 0 || !I
->hasOneUse() || !I
->isSameOperationAs(FirstInst
))
429 if (I
->getOperand(0)->getType() != CastSrcTy
)
430 return 0; // Cast operation must match.
431 } else if (I
->getOperand(1) != ConstantOp
) {
436 isNUW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoUnsignedWrap();
438 isNSW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoSignedWrap();
440 isExact
= cast
<PossiblyExactOperator
>(I
)->isExact();
443 // Okay, they are all the same operation. Create a new PHI node of the
444 // correct type, and PHI together all of the LHS's of the instructions.
445 PHINode
*NewPN
= PHINode::Create(FirstInst
->getOperand(0)->getType(),
446 PN
.getNumIncomingValues(),
449 Value
*InVal
= FirstInst
->getOperand(0);
450 NewPN
->addIncoming(InVal
, PN
.getIncomingBlock(0));
452 // Add all operands to the new PHI.
453 for (unsigned i
= 1, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
454 Value
*NewInVal
= cast
<Instruction
>(PN
.getIncomingValue(i
))->getOperand(0);
455 if (NewInVal
!= InVal
)
457 NewPN
->addIncoming(NewInVal
, PN
.getIncomingBlock(i
));
462 // The new PHI unions all of the same values together. This is really
463 // common, so we handle it intelligently here for compile-time speed.
467 InsertNewInstBefore(NewPN
, PN
);
471 // Insert and return the new operation.
472 if (CastInst
*FirstCI
= dyn_cast
<CastInst
>(FirstInst
))
473 return CastInst::Create(FirstCI
->getOpcode(), PhiVal
, PN
.getType());
475 if (BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(FirstInst
)) {
476 BinOp
= BinaryOperator::Create(BinOp
->getOpcode(), PhiVal
, ConstantOp
);
477 if (isNUW
) BinOp
->setHasNoUnsignedWrap();
478 if (isNSW
) BinOp
->setHasNoSignedWrap();
479 if (isExact
) BinOp
->setIsExact();
483 CmpInst
*CIOp
= cast
<CmpInst
>(FirstInst
);
484 return CmpInst::Create(CIOp
->getOpcode(), CIOp
->getPredicate(),
488 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
490 static bool DeadPHICycle(PHINode
*PN
,
491 SmallPtrSet
<PHINode
*, 16> &PotentiallyDeadPHIs
) {
492 if (PN
->use_empty()) return true;
493 if (!PN
->hasOneUse()) return false;
495 // Remember this node, and if we find the cycle, return.
496 if (!PotentiallyDeadPHIs
.insert(PN
))
499 // Don't scan crazily complex things.
500 if (PotentiallyDeadPHIs
.size() == 16)
503 if (PHINode
*PU
= dyn_cast
<PHINode
>(PN
->use_back()))
504 return DeadPHICycle(PU
, PotentiallyDeadPHIs
);
509 /// PHIsEqualValue - Return true if this phi node is always equal to
510 /// NonPhiInVal. This happens with mutually cyclic phi nodes like:
511 /// z = some value; x = phi (y, z); y = phi (x, z)
512 static bool PHIsEqualValue(PHINode
*PN
, Value
*NonPhiInVal
,
513 SmallPtrSet
<PHINode
*, 16> &ValueEqualPHIs
) {
514 // See if we already saw this PHI node.
515 if (!ValueEqualPHIs
.insert(PN
))
518 // Don't scan crazily complex things.
519 if (ValueEqualPHIs
.size() == 16)
522 // Scan the operands to see if they are either phi nodes or are equal to
524 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
525 Value
*Op
= PN
->getIncomingValue(i
);
526 if (PHINode
*OpPN
= dyn_cast
<PHINode
>(Op
)) {
527 if (!PHIsEqualValue(OpPN
, NonPhiInVal
, ValueEqualPHIs
))
529 } else if (Op
!= NonPhiInVal
)
538 struct PHIUsageRecord
{
539 unsigned PHIId
; // The ID # of the PHI (something determinstic to sort on)
540 unsigned Shift
; // The amount shifted.
541 Instruction
*Inst
; // The trunc instruction.
543 PHIUsageRecord(unsigned pn
, unsigned Sh
, Instruction
*User
)
544 : PHIId(pn
), Shift(Sh
), Inst(User
) {}
546 bool operator<(const PHIUsageRecord
&RHS
) const {
547 if (PHIId
< RHS
.PHIId
) return true;
548 if (PHIId
> RHS
.PHIId
) return false;
549 if (Shift
< RHS
.Shift
) return true;
550 if (Shift
> RHS
.Shift
) return false;
551 return Inst
->getType()->getPrimitiveSizeInBits() <
552 RHS
.Inst
->getType()->getPrimitiveSizeInBits();
556 struct LoweredPHIRecord
{
557 PHINode
*PN
; // The PHI that was lowered.
558 unsigned Shift
; // The amount shifted.
559 unsigned Width
; // The width extracted.
561 LoweredPHIRecord(PHINode
*pn
, unsigned Sh
, const Type
*Ty
)
562 : PN(pn
), Shift(Sh
), Width(Ty
->getPrimitiveSizeInBits()) {}
564 // Ctor form used by DenseMap.
565 LoweredPHIRecord(PHINode
*pn
, unsigned Sh
)
566 : PN(pn
), Shift(Sh
), Width(0) {}
572 struct DenseMapInfo
<LoweredPHIRecord
> {
573 static inline LoweredPHIRecord
getEmptyKey() {
574 return LoweredPHIRecord(0, 0);
576 static inline LoweredPHIRecord
getTombstoneKey() {
577 return LoweredPHIRecord(0, 1);
579 static unsigned getHashValue(const LoweredPHIRecord
&Val
) {
580 return DenseMapInfo
<PHINode
*>::getHashValue(Val
.PN
) ^ (Val
.Shift
>>3) ^
583 static bool isEqual(const LoweredPHIRecord
&LHS
,
584 const LoweredPHIRecord
&RHS
) {
585 return LHS
.PN
== RHS
.PN
&& LHS
.Shift
== RHS
.Shift
&&
586 LHS
.Width
== RHS
.Width
;
590 struct isPodLike
<LoweredPHIRecord
> { static const bool value
= true; };
594 /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
595 /// illegal type: see if it is only used by trunc or trunc(lshr) operations. If
596 /// so, we split the PHI into the various pieces being extracted. This sort of
597 /// thing is introduced when SROA promotes an aggregate to large integer values.
599 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
600 /// inttoptr. We should produce new PHIs in the right type.
602 Instruction
*InstCombiner::SliceUpIllegalIntegerPHI(PHINode
&FirstPhi
) {
603 // PHIUsers - Keep track of all of the truncated values extracted from a set
604 // of PHIs, along with their offset. These are the things we want to rewrite.
605 SmallVector
<PHIUsageRecord
, 16> PHIUsers
;
607 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
608 // nodes which are extracted from. PHIsToSlice is a set we use to avoid
609 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
610 // check the uses of (to ensure they are all extracts).
611 SmallVector
<PHINode
*, 8> PHIsToSlice
;
612 SmallPtrSet
<PHINode
*, 8> PHIsInspected
;
614 PHIsToSlice
.push_back(&FirstPhi
);
615 PHIsInspected
.insert(&FirstPhi
);
617 for (unsigned PHIId
= 0; PHIId
!= PHIsToSlice
.size(); ++PHIId
) {
618 PHINode
*PN
= PHIsToSlice
[PHIId
];
620 // Scan the input list of the PHI. If any input is an invoke, and if the
621 // input is defined in the predecessor, then we won't be split the critical
622 // edge which is required to insert a truncate. Because of this, we have to
624 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
625 InvokeInst
*II
= dyn_cast
<InvokeInst
>(PN
->getIncomingValue(i
));
626 if (II
== 0) continue;
627 if (II
->getParent() != PN
->getIncomingBlock(i
))
630 // If we have a phi, and if it's directly in the predecessor, then we have
631 // a critical edge where we need to put the truncate. Since we can't
632 // split the edge in instcombine, we have to bail out.
637 for (Value::use_iterator UI
= PN
->use_begin(), E
= PN
->use_end();
639 Instruction
*User
= cast
<Instruction
>(*UI
);
641 // If the user is a PHI, inspect its uses recursively.
642 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
643 if (PHIsInspected
.insert(UserPN
))
644 PHIsToSlice
.push_back(UserPN
);
648 // Truncates are always ok.
649 if (isa
<TruncInst
>(User
)) {
650 PHIUsers
.push_back(PHIUsageRecord(PHIId
, 0, User
));
654 // Otherwise it must be a lshr which can only be used by one trunc.
655 if (User
->getOpcode() != Instruction::LShr
||
656 !User
->hasOneUse() || !isa
<TruncInst
>(User
->use_back()) ||
657 !isa
<ConstantInt
>(User
->getOperand(1)))
660 unsigned Shift
= cast
<ConstantInt
>(User
->getOperand(1))->getZExtValue();
661 PHIUsers
.push_back(PHIUsageRecord(PHIId
, Shift
, User
->use_back()));
665 // If we have no users, they must be all self uses, just nuke the PHI.
666 if (PHIUsers
.empty())
667 return ReplaceInstUsesWith(FirstPhi
, UndefValue::get(FirstPhi
.getType()));
669 // If this phi node is transformable, create new PHIs for all the pieces
670 // extracted out of it. First, sort the users by their offset and size.
671 array_pod_sort(PHIUsers
.begin(), PHIUsers
.end());
673 DEBUG(errs() << "SLICING UP PHI: " << FirstPhi
<< '\n';
674 for (unsigned i
= 1, e
= PHIsToSlice
.size(); i
!= e
; ++i
)
675 errs() << "AND USER PHI #" << i
<< ": " << *PHIsToSlice
[i
] <<'\n';
678 // PredValues - This is a temporary used when rewriting PHI nodes. It is
679 // hoisted out here to avoid construction/destruction thrashing.
680 DenseMap
<BasicBlock
*, Value
*> PredValues
;
682 // ExtractedVals - Each new PHI we introduce is saved here so we don't
683 // introduce redundant PHIs.
684 DenseMap
<LoweredPHIRecord
, PHINode
*> ExtractedVals
;
686 for (unsigned UserI
= 0, UserE
= PHIUsers
.size(); UserI
!= UserE
; ++UserI
) {
687 unsigned PHIId
= PHIUsers
[UserI
].PHIId
;
688 PHINode
*PN
= PHIsToSlice
[PHIId
];
689 unsigned Offset
= PHIUsers
[UserI
].Shift
;
690 const Type
*Ty
= PHIUsers
[UserI
].Inst
->getType();
694 // If we've already lowered a user like this, reuse the previously lowered
696 if ((EltPHI
= ExtractedVals
[LoweredPHIRecord(PN
, Offset
, Ty
)]) == 0) {
698 // Otherwise, Create the new PHI node for this user.
699 EltPHI
= PHINode::Create(Ty
, PN
->getNumIncomingValues(),
700 PN
->getName()+".off"+Twine(Offset
), PN
);
701 assert(EltPHI
->getType() != PN
->getType() &&
702 "Truncate didn't shrink phi?");
704 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
705 BasicBlock
*Pred
= PN
->getIncomingBlock(i
);
706 Value
*&PredVal
= PredValues
[Pred
];
708 // If we already have a value for this predecessor, reuse it.
710 EltPHI
->addIncoming(PredVal
, Pred
);
714 // Handle the PHI self-reuse case.
715 Value
*InVal
= PN
->getIncomingValue(i
);
718 EltPHI
->addIncoming(PredVal
, Pred
);
722 if (PHINode
*InPHI
= dyn_cast
<PHINode
>(PN
)) {
723 // If the incoming value was a PHI, and if it was one of the PHIs we
724 // already rewrote it, just use the lowered value.
725 if (Value
*Res
= ExtractedVals
[LoweredPHIRecord(InPHI
, Offset
, Ty
)]) {
727 EltPHI
->addIncoming(PredVal
, Pred
);
732 // Otherwise, do an extract in the predecessor.
733 Builder
->SetInsertPoint(Pred
, Pred
->getTerminator());
736 Res
= Builder
->CreateLShr(Res
, ConstantInt::get(InVal
->getType(),
738 Res
= Builder
->CreateTrunc(Res
, Ty
, "extract.t");
740 EltPHI
->addIncoming(Res
, Pred
);
742 // If the incoming value was a PHI, and if it was one of the PHIs we are
743 // rewriting, we will ultimately delete the code we inserted. This
744 // means we need to revisit that PHI to make sure we extract out the
746 if (PHINode
*OldInVal
= dyn_cast
<PHINode
>(PN
->getIncomingValue(i
)))
747 if (PHIsInspected
.count(OldInVal
)) {
748 unsigned RefPHIId
= std::find(PHIsToSlice
.begin(),PHIsToSlice
.end(),
749 OldInVal
)-PHIsToSlice
.begin();
750 PHIUsers
.push_back(PHIUsageRecord(RefPHIId
, Offset
,
751 cast
<Instruction
>(Res
)));
757 DEBUG(errs() << " Made element PHI for offset " << Offset
<< ": "
759 ExtractedVals
[LoweredPHIRecord(PN
, Offset
, Ty
)] = EltPHI
;
762 // Replace the use of this piece with the PHI node.
763 ReplaceInstUsesWith(*PHIUsers
[UserI
].Inst
, EltPHI
);
766 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
768 Value
*Undef
= UndefValue::get(FirstPhi
.getType());
769 for (unsigned i
= 1, e
= PHIsToSlice
.size(); i
!= e
; ++i
)
770 ReplaceInstUsesWith(*PHIsToSlice
[i
], Undef
);
771 return ReplaceInstUsesWith(FirstPhi
, Undef
);
774 // PHINode simplification
776 Instruction
*InstCombiner::visitPHINode(PHINode
&PN
) {
777 // If LCSSA is around, don't mess with Phi nodes
778 if (MustPreserveLCSSA
) return 0;
780 if (Value
*V
= SimplifyInstruction(&PN
, TD
))
781 return ReplaceInstUsesWith(PN
, V
);
783 // If all PHI operands are the same operation, pull them through the PHI,
784 // reducing code size.
785 if (isa
<Instruction
>(PN
.getIncomingValue(0)) &&
786 isa
<Instruction
>(PN
.getIncomingValue(1)) &&
787 cast
<Instruction
>(PN
.getIncomingValue(0))->getOpcode() ==
788 cast
<Instruction
>(PN
.getIncomingValue(1))->getOpcode() &&
789 // FIXME: The hasOneUse check will fail for PHIs that use the value more
790 // than themselves more than once.
791 PN
.getIncomingValue(0)->hasOneUse())
792 if (Instruction
*Result
= FoldPHIArgOpIntoPHI(PN
))
795 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
796 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
797 // PHI)... break the cycle.
798 if (PN
.hasOneUse()) {
799 Instruction
*PHIUser
= cast
<Instruction
>(PN
.use_back());
800 if (PHINode
*PU
= dyn_cast
<PHINode
>(PHIUser
)) {
801 SmallPtrSet
<PHINode
*, 16> PotentiallyDeadPHIs
;
802 PotentiallyDeadPHIs
.insert(&PN
);
803 if (DeadPHICycle(PU
, PotentiallyDeadPHIs
))
804 return ReplaceInstUsesWith(PN
, UndefValue::get(PN
.getType()));
807 // If this phi has a single use, and if that use just computes a value for
808 // the next iteration of a loop, delete the phi. This occurs with unused
809 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
810 // common case here is good because the only other things that catch this
811 // are induction variable analysis (sometimes) and ADCE, which is only run
813 if (PHIUser
->hasOneUse() &&
814 (isa
<BinaryOperator
>(PHIUser
) || isa
<GetElementPtrInst
>(PHIUser
)) &&
815 PHIUser
->use_back() == &PN
) {
816 return ReplaceInstUsesWith(PN
, UndefValue::get(PN
.getType()));
820 // We sometimes end up with phi cycles that non-obviously end up being the
821 // same value, for example:
822 // z = some value; x = phi (y, z); y = phi (x, z)
823 // where the phi nodes don't necessarily need to be in the same block. Do a
824 // quick check to see if the PHI node only contains a single non-phi value, if
825 // so, scan to see if the phi cycle is actually equal to that value.
827 unsigned InValNo
= 0, NumOperandVals
= PN
.getNumIncomingValues();
828 // Scan for the first non-phi operand.
829 while (InValNo
!= NumOperandVals
&&
830 isa
<PHINode
>(PN
.getIncomingValue(InValNo
)))
833 if (InValNo
!= NumOperandVals
) {
834 Value
*NonPhiInVal
= PN
.getOperand(InValNo
);
836 // Scan the rest of the operands to see if there are any conflicts, if so
837 // there is no need to recursively scan other phis.
838 for (++InValNo
; InValNo
!= NumOperandVals
; ++InValNo
) {
839 Value
*OpVal
= PN
.getIncomingValue(InValNo
);
840 if (OpVal
!= NonPhiInVal
&& !isa
<PHINode
>(OpVal
))
844 // If we scanned over all operands, then we have one unique value plus
845 // phi values. Scan PHI nodes to see if they all merge in each other or
847 if (InValNo
== NumOperandVals
) {
848 SmallPtrSet
<PHINode
*, 16> ValueEqualPHIs
;
849 if (PHIsEqualValue(&PN
, NonPhiInVal
, ValueEqualPHIs
))
850 return ReplaceInstUsesWith(PN
, NonPhiInVal
);
855 // If there are multiple PHIs, sort their operands so that they all list
856 // the blocks in the same order. This will help identical PHIs be eliminated
857 // by other passes. Other passes shouldn't depend on this for correctness
859 PHINode
*FirstPN
= cast
<PHINode
>(PN
.getParent()->begin());
861 for (unsigned i
= 0, e
= FirstPN
->getNumIncomingValues(); i
!= e
; ++i
) {
862 BasicBlock
*BBA
= PN
.getIncomingBlock(i
);
863 BasicBlock
*BBB
= FirstPN
->getIncomingBlock(i
);
865 Value
*VA
= PN
.getIncomingValue(i
);
866 unsigned j
= PN
.getBasicBlockIndex(BBB
);
867 Value
*VB
= PN
.getIncomingValue(j
);
868 PN
.setIncomingBlock(i
, BBB
);
869 PN
.setIncomingValue(i
, VB
);
870 PN
.setIncomingBlock(j
, BBA
);
871 PN
.setIncomingValue(j
, VA
);
872 // NOTE: Instcombine normally would want us to "return &PN" if we
873 // modified any of the operands of an instruction. However, since we
874 // aren't adding or removing uses (just rearranging them) we don't do
875 // this in this case.
879 // If this is an integer PHI and we know that it has an illegal type, see if
880 // it is only used by trunc or trunc(lshr) operations. If so, we split the
881 // PHI into the various pieces being extracted. This sort of thing is
882 // introduced when SROA promotes an aggregate to a single large integer type.
883 if (PN
.getType()->isIntegerTy() && TD
&&
884 !TD
->isLegalInteger(PN
.getType()->getPrimitiveSizeInBits()))
885 if (Instruction
*Res
= SliceUpIllegalIntegerPHI(PN
))