Use %ull here.
[llvm/stm8.git] / lib / Transforms / Scalar / CodeGenPrepare.cpp
blob018439018553be5fca6891639f85f67a848b6093
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "codegenprepare"
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/IntrinsicInst.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Analysis/Dominators.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/ProfileInfo.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
31 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Transforms/Utils/BuildLibCalls.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/Assembly/Writer.h"
38 #include "llvm/Support/CallSite.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/GetElementPtrTypeIterator.h"
42 #include "llvm/Support/PatternMatch.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Support/IRBuilder.h"
45 #include "llvm/Support/ValueHandle.h"
46 using namespace llvm;
47 using namespace llvm::PatternMatch;
49 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
50 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated");
51 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts");
52 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
53 "sunken Cmps");
54 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
55 "of sunken Casts");
56 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
57 "computations were sunk");
58 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads");
59 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized");
60 STATISTIC(NumRetsDup, "Number of return instructions duplicated");
62 static cl::opt<bool> DisableBranchOpts(
63 "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
64 cl::desc("Disable branch optimizations in CodeGenPrepare"));
66 namespace {
67 class CodeGenPrepare : public FunctionPass {
68 /// TLI - Keep a pointer of a TargetLowering to consult for determining
69 /// transformation profitability.
70 const TargetLowering *TLI;
71 DominatorTree *DT;
72 ProfileInfo *PFI;
74 /// CurInstIterator - As we scan instructions optimizing them, this is the
75 /// next instruction to optimize. Xforms that can invalidate this should
76 /// update it.
77 BasicBlock::iterator CurInstIterator;
79 /// Keeps track of non-local addresses that have been sunk into a block.
80 /// This allows us to avoid inserting duplicate code for blocks with
81 /// multiple load/stores of the same address.
82 DenseMap<Value*, Value*> SunkAddrs;
84 /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
85 /// be updated.
86 bool ModifiedDT;
88 public:
89 static char ID; // Pass identification, replacement for typeid
90 explicit CodeGenPrepare(const TargetLowering *tli = 0)
91 : FunctionPass(ID), TLI(tli) {
92 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
94 bool runOnFunction(Function &F);
96 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
97 AU.addPreserved<DominatorTree>();
98 AU.addPreserved<ProfileInfo>();
101 private:
102 bool EliminateMostlyEmptyBlocks(Function &F);
103 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
104 void EliminateMostlyEmptyBlock(BasicBlock *BB);
105 bool OptimizeBlock(BasicBlock &BB);
106 bool OptimizeInst(Instruction *I);
107 bool OptimizeMemoryInst(Instruction *I, Value *Addr, const Type *AccessTy);
108 bool OptimizeInlineAsmInst(CallInst *CS);
109 bool OptimizeCallInst(CallInst *CI);
110 bool MoveExtToFormExtLoad(Instruction *I);
111 bool OptimizeExtUses(Instruction *I);
112 bool DupRetToEnableTailCallOpts(ReturnInst *RI);
116 char CodeGenPrepare::ID = 0;
117 INITIALIZE_PASS(CodeGenPrepare, "codegenprepare",
118 "Optimize for code generation", false, false)
120 FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
121 return new CodeGenPrepare(TLI);
124 bool CodeGenPrepare::runOnFunction(Function &F) {
125 bool EverMadeChange = false;
127 ModifiedDT = false;
128 DT = getAnalysisIfAvailable<DominatorTree>();
129 PFI = getAnalysisIfAvailable<ProfileInfo>();
131 // First pass, eliminate blocks that contain only PHI nodes and an
132 // unconditional branch.
133 EverMadeChange |= EliminateMostlyEmptyBlocks(F);
135 bool MadeChange = true;
136 while (MadeChange) {
137 MadeChange = false;
138 for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
139 BasicBlock *BB = I++;
140 MadeChange |= OptimizeBlock(*BB);
142 EverMadeChange |= MadeChange;
145 SunkAddrs.clear();
147 if (!DisableBranchOpts) {
148 MadeChange = false;
149 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
150 MadeChange |= ConstantFoldTerminator(BB);
152 if (MadeChange)
153 ModifiedDT = true;
154 EverMadeChange |= MadeChange;
157 if (ModifiedDT && DT)
158 DT->DT->recalculate(F);
160 return EverMadeChange;
163 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
164 /// debug info directives, and an unconditional branch. Passes before isel
165 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
166 /// isel. Start by eliminating these blocks so we can split them the way we
167 /// want them.
168 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
169 bool MadeChange = false;
170 // Note that this intentionally skips the entry block.
171 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
172 BasicBlock *BB = I++;
174 // If this block doesn't end with an uncond branch, ignore it.
175 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
176 if (!BI || !BI->isUnconditional())
177 continue;
179 // If the instruction before the branch (skipping debug info) isn't a phi
180 // node, then other stuff is happening here.
181 BasicBlock::iterator BBI = BI;
182 if (BBI != BB->begin()) {
183 --BBI;
184 while (isa<DbgInfoIntrinsic>(BBI)) {
185 if (BBI == BB->begin())
186 break;
187 --BBI;
189 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
190 continue;
193 // Do not break infinite loops.
194 BasicBlock *DestBB = BI->getSuccessor(0);
195 if (DestBB == BB)
196 continue;
198 if (!CanMergeBlocks(BB, DestBB))
199 continue;
201 EliminateMostlyEmptyBlock(BB);
202 MadeChange = true;
204 return MadeChange;
207 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
208 /// single uncond branch between them, and BB contains no other non-phi
209 /// instructions.
210 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
211 const BasicBlock *DestBB) const {
212 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
213 // the successor. If there are more complex condition (e.g. preheaders),
214 // don't mess around with them.
215 BasicBlock::const_iterator BBI = BB->begin();
216 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
217 for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
218 UI != E; ++UI) {
219 const Instruction *User = cast<Instruction>(*UI);
220 if (User->getParent() != DestBB || !isa<PHINode>(User))
221 return false;
222 // If User is inside DestBB block and it is a PHINode then check
223 // incoming value. If incoming value is not from BB then this is
224 // a complex condition (e.g. preheaders) we want to avoid here.
225 if (User->getParent() == DestBB) {
226 if (const PHINode *UPN = dyn_cast<PHINode>(User))
227 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
228 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
229 if (Insn && Insn->getParent() == BB &&
230 Insn->getParent() != UPN->getIncomingBlock(I))
231 return false;
237 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
238 // and DestBB may have conflicting incoming values for the block. If so, we
239 // can't merge the block.
240 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
241 if (!DestBBPN) return true; // no conflict.
243 // Collect the preds of BB.
244 SmallPtrSet<const BasicBlock*, 16> BBPreds;
245 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
246 // It is faster to get preds from a PHI than with pred_iterator.
247 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
248 BBPreds.insert(BBPN->getIncomingBlock(i));
249 } else {
250 BBPreds.insert(pred_begin(BB), pred_end(BB));
253 // Walk the preds of DestBB.
254 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
255 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
256 if (BBPreds.count(Pred)) { // Common predecessor?
257 BBI = DestBB->begin();
258 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
259 const Value *V1 = PN->getIncomingValueForBlock(Pred);
260 const Value *V2 = PN->getIncomingValueForBlock(BB);
262 // If V2 is a phi node in BB, look up what the mapped value will be.
263 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
264 if (V2PN->getParent() == BB)
265 V2 = V2PN->getIncomingValueForBlock(Pred);
267 // If there is a conflict, bail out.
268 if (V1 != V2) return false;
273 return true;
277 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
278 /// an unconditional branch in it.
279 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
280 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
281 BasicBlock *DestBB = BI->getSuccessor(0);
283 DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
285 // If the destination block has a single pred, then this is a trivial edge,
286 // just collapse it.
287 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
288 if (SinglePred != DestBB) {
289 // Remember if SinglePred was the entry block of the function. If so, we
290 // will need to move BB back to the entry position.
291 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
292 MergeBasicBlockIntoOnlyPred(DestBB, this);
294 if (isEntry && BB != &BB->getParent()->getEntryBlock())
295 BB->moveBefore(&BB->getParent()->getEntryBlock());
297 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
298 return;
302 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
303 // to handle the new incoming edges it is about to have.
304 PHINode *PN;
305 for (BasicBlock::iterator BBI = DestBB->begin();
306 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
307 // Remove the incoming value for BB, and remember it.
308 Value *InVal = PN->removeIncomingValue(BB, false);
310 // Two options: either the InVal is a phi node defined in BB or it is some
311 // value that dominates BB.
312 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
313 if (InValPhi && InValPhi->getParent() == BB) {
314 // Add all of the input values of the input PHI as inputs of this phi.
315 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
316 PN->addIncoming(InValPhi->getIncomingValue(i),
317 InValPhi->getIncomingBlock(i));
318 } else {
319 // Otherwise, add one instance of the dominating value for each edge that
320 // we will be adding.
321 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
322 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
323 PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
324 } else {
325 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
326 PN->addIncoming(InVal, *PI);
331 // The PHIs are now updated, change everything that refers to BB to use
332 // DestBB and remove BB.
333 BB->replaceAllUsesWith(DestBB);
334 if (DT && !ModifiedDT) {
335 BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock();
336 BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
337 BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
338 DT->changeImmediateDominator(DestBB, NewIDom);
339 DT->eraseNode(BB);
341 if (PFI) {
342 PFI->replaceAllUses(BB, DestBB);
343 PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
345 BB->eraseFromParent();
346 ++NumBlocksElim;
348 DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
351 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
352 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
353 /// sink it into user blocks to reduce the number of virtual
354 /// registers that must be created and coalesced.
356 /// Return true if any changes are made.
358 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
359 // If this is a noop copy,
360 EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
361 EVT DstVT = TLI.getValueType(CI->getType());
363 // This is an fp<->int conversion?
364 if (SrcVT.isInteger() != DstVT.isInteger())
365 return false;
367 // If this is an extension, it will be a zero or sign extension, which
368 // isn't a noop.
369 if (SrcVT.bitsLT(DstVT)) return false;
371 // If these values will be promoted, find out what they will be promoted
372 // to. This helps us consider truncates on PPC as noop copies when they
373 // are.
374 if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
375 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
376 if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
377 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
379 // If, after promotion, these are the same types, this is a noop copy.
380 if (SrcVT != DstVT)
381 return false;
383 BasicBlock *DefBB = CI->getParent();
385 /// InsertedCasts - Only insert a cast in each block once.
386 DenseMap<BasicBlock*, CastInst*> InsertedCasts;
388 bool MadeChange = false;
389 for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
390 UI != E; ) {
391 Use &TheUse = UI.getUse();
392 Instruction *User = cast<Instruction>(*UI);
394 // Figure out which BB this cast is used in. For PHI's this is the
395 // appropriate predecessor block.
396 BasicBlock *UserBB = User->getParent();
397 if (PHINode *PN = dyn_cast<PHINode>(User)) {
398 UserBB = PN->getIncomingBlock(UI);
401 // Preincrement use iterator so we don't invalidate it.
402 ++UI;
404 // If this user is in the same block as the cast, don't change the cast.
405 if (UserBB == DefBB) continue;
407 // If we have already inserted a cast into this block, use it.
408 CastInst *&InsertedCast = InsertedCasts[UserBB];
410 if (!InsertedCast) {
411 BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
413 InsertedCast =
414 CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
415 InsertPt);
416 MadeChange = true;
419 // Replace a use of the cast with a use of the new cast.
420 TheUse = InsertedCast;
421 ++NumCastUses;
424 // If we removed all uses, nuke the cast.
425 if (CI->use_empty()) {
426 CI->eraseFromParent();
427 MadeChange = true;
430 return MadeChange;
433 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
434 /// the number of virtual registers that must be created and coalesced. This is
435 /// a clear win except on targets with multiple condition code registers
436 /// (PowerPC), where it might lose; some adjustment may be wanted there.
438 /// Return true if any changes are made.
439 static bool OptimizeCmpExpression(CmpInst *CI) {
440 BasicBlock *DefBB = CI->getParent();
442 /// InsertedCmp - Only insert a cmp in each block once.
443 DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
445 bool MadeChange = false;
446 for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
447 UI != E; ) {
448 Use &TheUse = UI.getUse();
449 Instruction *User = cast<Instruction>(*UI);
451 // Preincrement use iterator so we don't invalidate it.
452 ++UI;
454 // Don't bother for PHI nodes.
455 if (isa<PHINode>(User))
456 continue;
458 // Figure out which BB this cmp is used in.
459 BasicBlock *UserBB = User->getParent();
461 // If this user is in the same block as the cmp, don't change the cmp.
462 if (UserBB == DefBB) continue;
464 // If we have already inserted a cmp into this block, use it.
465 CmpInst *&InsertedCmp = InsertedCmps[UserBB];
467 if (!InsertedCmp) {
468 BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
470 InsertedCmp =
471 CmpInst::Create(CI->getOpcode(),
472 CI->getPredicate(), CI->getOperand(0),
473 CI->getOperand(1), "", InsertPt);
474 MadeChange = true;
477 // Replace a use of the cmp with a use of the new cmp.
478 TheUse = InsertedCmp;
479 ++NumCmpUses;
482 // If we removed all uses, nuke the cmp.
483 if (CI->use_empty())
484 CI->eraseFromParent();
486 return MadeChange;
489 namespace {
490 class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
491 protected:
492 void replaceCall(Value *With) {
493 CI->replaceAllUsesWith(With);
494 CI->eraseFromParent();
496 bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
497 if (ConstantInt *SizeCI =
498 dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
499 return SizeCI->isAllOnesValue();
500 return false;
503 } // end anonymous namespace
505 bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
506 BasicBlock *BB = CI->getParent();
508 // Lower inline assembly if we can.
509 // If we found an inline asm expession, and if the target knows how to
510 // lower it to normal LLVM code, do so now.
511 if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
512 if (TLI->ExpandInlineAsm(CI)) {
513 // Avoid invalidating the iterator.
514 CurInstIterator = BB->begin();
515 // Avoid processing instructions out of order, which could cause
516 // reuse before a value is defined.
517 SunkAddrs.clear();
518 return true;
520 // Sink address computing for memory operands into the block.
521 if (OptimizeInlineAsmInst(CI))
522 return true;
525 // Lower all uses of llvm.objectsize.*
526 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
527 if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
528 bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
529 const Type *ReturnTy = CI->getType();
530 Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
532 // Substituting this can cause recursive simplifications, which can
533 // invalidate our iterator. Use a WeakVH to hold onto it in case this
534 // happens.
535 WeakVH IterHandle(CurInstIterator);
537 ReplaceAndSimplifyAllUses(CI, RetVal, TLI ? TLI->getTargetData() : 0,
538 ModifiedDT ? 0 : DT);
540 // If the iterator instruction was recursively deleted, start over at the
541 // start of the block.
542 if (IterHandle != CurInstIterator) {
543 CurInstIterator = BB->begin();
544 SunkAddrs.clear();
546 return true;
549 // From here on out we're working with named functions.
550 if (CI->getCalledFunction() == 0) return false;
552 // We'll need TargetData from here on out.
553 const TargetData *TD = TLI ? TLI->getTargetData() : 0;
554 if (!TD) return false;
556 // Lower all default uses of _chk calls. This is very similar
557 // to what InstCombineCalls does, but here we are only lowering calls
558 // that have the default "don't know" as the objectsize. Anything else
559 // should be left alone.
560 CodeGenPrepareFortifiedLibCalls Simplifier;
561 return Simplifier.fold(CI, TD);
564 /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
565 /// instructions to the predecessor to enable tail call optimizations. The
566 /// case it is currently looking for is:
567 /// bb0:
568 /// %tmp0 = tail call i32 @f0()
569 /// br label %return
570 /// bb1:
571 /// %tmp1 = tail call i32 @f1()
572 /// br label %return
573 /// bb2:
574 /// %tmp2 = tail call i32 @f2()
575 /// br label %return
576 /// return:
577 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
578 /// ret i32 %retval
580 /// =>
582 /// bb0:
583 /// %tmp0 = tail call i32 @f0()
584 /// ret i32 %tmp0
585 /// bb1:
586 /// %tmp1 = tail call i32 @f1()
587 /// ret i32 %tmp1
588 /// bb2:
589 /// %tmp2 = tail call i32 @f2()
590 /// ret i32 %tmp2
592 bool CodeGenPrepare::DupRetToEnableTailCallOpts(ReturnInst *RI) {
593 if (!TLI)
594 return false;
596 Value *V = RI->getReturnValue();
597 PHINode *PN = V ? dyn_cast<PHINode>(V) : NULL;
598 if (V && !PN)
599 return false;
601 BasicBlock *BB = RI->getParent();
602 if (PN && PN->getParent() != BB)
603 return false;
605 // It's not safe to eliminate the sign / zero extension of the return value.
606 // See llvm::isInTailCallPosition().
607 const Function *F = BB->getParent();
608 unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
609 if ((CallerRetAttr & Attribute::ZExt) || (CallerRetAttr & Attribute::SExt))
610 return false;
612 // Make sure there are no instructions between the PHI and return, or that the
613 // return is the first instruction in the block.
614 if (PN) {
615 BasicBlock::iterator BI = BB->begin();
616 do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
617 if (&*BI != RI)
618 return false;
619 } else {
620 BasicBlock::iterator BI = BB->begin();
621 while (isa<DbgInfoIntrinsic>(BI)) ++BI;
622 if (&*BI != RI)
623 return false;
626 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
627 /// call.
628 SmallVector<CallInst*, 4> TailCalls;
629 if (PN) {
630 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
631 CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
632 // Make sure the phi value is indeed produced by the tail call.
633 if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
634 TLI->mayBeEmittedAsTailCall(CI))
635 TailCalls.push_back(CI);
637 } else {
638 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
639 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
640 if (!VisitedBBs.insert(*PI))
641 continue;
643 BasicBlock::InstListType &InstList = (*PI)->getInstList();
644 BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
645 BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
646 do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
647 if (RI == RE)
648 continue;
650 CallInst *CI = dyn_cast<CallInst>(&*RI);
651 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
652 TailCalls.push_back(CI);
656 bool Changed = false;
657 for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
658 CallInst *CI = TailCalls[i];
659 CallSite CS(CI);
661 // Conservatively require the attributes of the call to match those of the
662 // return. Ignore noalias because it doesn't affect the call sequence.
663 unsigned CalleeRetAttr = CS.getAttributes().getRetAttributes();
664 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
665 continue;
667 // Make sure the call instruction is followed by an unconditional branch to
668 // the return block.
669 BasicBlock *CallBB = CI->getParent();
670 BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
671 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
672 continue;
674 // Duplicate the return into CallBB.
675 (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
676 ModifiedDT = Changed = true;
677 ++NumRetsDup;
680 // If we eliminated all predecessors of the block, delete the block now.
681 if (Changed && pred_begin(BB) == pred_end(BB))
682 BB->eraseFromParent();
684 return Changed;
687 //===----------------------------------------------------------------------===//
688 // Memory Optimization
689 //===----------------------------------------------------------------------===//
691 /// IsNonLocalValue - Return true if the specified values are defined in a
692 /// different basic block than BB.
693 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
694 if (Instruction *I = dyn_cast<Instruction>(V))
695 return I->getParent() != BB;
696 return false;
699 /// OptimizeMemoryInst - Load and Store Instructions often have
700 /// addressing modes that can do significant amounts of computation. As such,
701 /// instruction selection will try to get the load or store to do as much
702 /// computation as possible for the program. The problem is that isel can only
703 /// see within a single block. As such, we sink as much legal addressing mode
704 /// stuff into the block as possible.
706 /// This method is used to optimize both load/store and inline asms with memory
707 /// operands.
708 bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
709 const Type *AccessTy) {
710 Value *Repl = Addr;
712 // Try to collapse single-value PHI nodes. This is necessary to undo
713 // unprofitable PRE transformations.
714 SmallVector<Value*, 8> worklist;
715 SmallPtrSet<Value*, 16> Visited;
716 worklist.push_back(Addr);
718 // Use a worklist to iteratively look through PHI nodes, and ensure that
719 // the addressing mode obtained from the non-PHI roots of the graph
720 // are equivalent.
721 Value *Consensus = 0;
722 unsigned NumUsesConsensus = 0;
723 bool IsNumUsesConsensusValid = false;
724 SmallVector<Instruction*, 16> AddrModeInsts;
725 ExtAddrMode AddrMode;
726 while (!worklist.empty()) {
727 Value *V = worklist.back();
728 worklist.pop_back();
730 // Break use-def graph loops.
731 if (Visited.count(V)) {
732 Consensus = 0;
733 break;
736 Visited.insert(V);
738 // For a PHI node, push all of its incoming values.
739 if (PHINode *P = dyn_cast<PHINode>(V)) {
740 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
741 worklist.push_back(P->getIncomingValue(i));
742 continue;
745 // For non-PHIs, determine the addressing mode being computed.
746 SmallVector<Instruction*, 16> NewAddrModeInsts;
747 ExtAddrMode NewAddrMode =
748 AddressingModeMatcher::Match(V, AccessTy,MemoryInst,
749 NewAddrModeInsts, *TLI);
751 // This check is broken into two cases with very similar code to avoid using
752 // getNumUses() as much as possible. Some values have a lot of uses, so
753 // calling getNumUses() unconditionally caused a significant compile-time
754 // regression.
755 if (!Consensus) {
756 Consensus = V;
757 AddrMode = NewAddrMode;
758 AddrModeInsts = NewAddrModeInsts;
759 continue;
760 } else if (NewAddrMode == AddrMode) {
761 if (!IsNumUsesConsensusValid) {
762 NumUsesConsensus = Consensus->getNumUses();
763 IsNumUsesConsensusValid = true;
766 // Ensure that the obtained addressing mode is equivalent to that obtained
767 // for all other roots of the PHI traversal. Also, when choosing one
768 // such root as representative, select the one with the most uses in order
769 // to keep the cost modeling heuristics in AddressingModeMatcher
770 // applicable.
771 unsigned NumUses = V->getNumUses();
772 if (NumUses > NumUsesConsensus) {
773 Consensus = V;
774 NumUsesConsensus = NumUses;
775 AddrModeInsts = NewAddrModeInsts;
777 continue;
780 Consensus = 0;
781 break;
784 // If the addressing mode couldn't be determined, or if multiple different
785 // ones were determined, bail out now.
786 if (!Consensus) return false;
788 // Check to see if any of the instructions supersumed by this addr mode are
789 // non-local to I's BB.
790 bool AnyNonLocal = false;
791 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
792 if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
793 AnyNonLocal = true;
794 break;
798 // If all the instructions matched are already in this BB, don't do anything.
799 if (!AnyNonLocal) {
800 DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n");
801 return false;
804 // Insert this computation right after this user. Since our caller is
805 // scanning from the top of the BB to the bottom, reuse of the expr are
806 // guaranteed to happen later.
807 BasicBlock::iterator InsertPt = MemoryInst;
809 // Now that we determined the addressing expression we want to use and know
810 // that we have to sink it into this block. Check to see if we have already
811 // done this for some other load/store instr in this block. If so, reuse the
812 // computation.
813 Value *&SunkAddr = SunkAddrs[Addr];
814 if (SunkAddr) {
815 DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
816 << *MemoryInst);
817 if (SunkAddr->getType() != Addr->getType())
818 SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
819 } else {
820 DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
821 << *MemoryInst);
822 const Type *IntPtrTy =
823 TLI->getTargetData()->getIntPtrType(AccessTy->getContext());
825 Value *Result = 0;
827 // Start with the base register. Do this first so that subsequent address
828 // matching finds it last, which will prevent it from trying to match it
829 // as the scaled value in case it happens to be a mul. That would be
830 // problematic if we've sunk a different mul for the scale, because then
831 // we'd end up sinking both muls.
832 if (AddrMode.BaseReg) {
833 Value *V = AddrMode.BaseReg;
834 if (V->getType()->isPointerTy())
835 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
836 if (V->getType() != IntPtrTy)
837 V = CastInst::CreateIntegerCast(V, IntPtrTy, /*isSigned=*/true,
838 "sunkaddr", InsertPt);
839 Result = V;
842 // Add the scale value.
843 if (AddrMode.Scale) {
844 Value *V = AddrMode.ScaledReg;
845 if (V->getType() == IntPtrTy) {
846 // done.
847 } else if (V->getType()->isPointerTy()) {
848 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
849 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
850 cast<IntegerType>(V->getType())->getBitWidth()) {
851 V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
852 } else {
853 V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
855 if (AddrMode.Scale != 1)
856 V = BinaryOperator::CreateMul(V, ConstantInt::get(IntPtrTy,
857 AddrMode.Scale),
858 "sunkaddr", InsertPt);
859 if (Result)
860 Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
861 else
862 Result = V;
865 // Add in the BaseGV if present.
866 if (AddrMode.BaseGV) {
867 Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
868 InsertPt);
869 if (Result)
870 Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
871 else
872 Result = V;
875 // Add in the Base Offset if present.
876 if (AddrMode.BaseOffs) {
877 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
878 if (Result)
879 Result = BinaryOperator::CreateAdd(Result, V, "sunkaddr", InsertPt);
880 else
881 Result = V;
884 if (Result == 0)
885 SunkAddr = Constant::getNullValue(Addr->getType());
886 else
887 SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
890 MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
892 // If we have no uses, recursively delete the value and all dead instructions
893 // using it.
894 if (Repl->use_empty()) {
895 // This can cause recursive deletion, which can invalidate our iterator.
896 // Use a WeakVH to hold onto it in case this happens.
897 WeakVH IterHandle(CurInstIterator);
898 BasicBlock *BB = CurInstIterator->getParent();
900 RecursivelyDeleteTriviallyDeadInstructions(Repl);
902 if (IterHandle != CurInstIterator) {
903 // If the iterator instruction was recursively deleted, start over at the
904 // start of the block.
905 CurInstIterator = BB->begin();
906 SunkAddrs.clear();
907 } else {
908 // This address is now available for reassignment, so erase the table
909 // entry; we don't want to match some completely different instruction.
910 SunkAddrs[Addr] = 0;
913 ++NumMemoryInsts;
914 return true;
917 /// OptimizeInlineAsmInst - If there are any memory operands, use
918 /// OptimizeMemoryInst to sink their address computing into the block when
919 /// possible / profitable.
920 bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
921 bool MadeChange = false;
923 TargetLowering::AsmOperandInfoVector
924 TargetConstraints = TLI->ParseConstraints(CS);
925 unsigned ArgNo = 0;
926 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
927 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
929 // Compute the constraint code and ConstraintType to use.
930 TLI->ComputeConstraintToUse(OpInfo, SDValue());
932 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
933 OpInfo.isIndirect) {
934 Value *OpVal = CS->getArgOperand(ArgNo++);
935 MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
936 } else if (OpInfo.Type == InlineAsm::isInput)
937 ArgNo++;
940 return MadeChange;
943 /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
944 /// basic block as the load, unless conditions are unfavorable. This allows
945 /// SelectionDAG to fold the extend into the load.
947 bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
948 // Look for a load being extended.
949 LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
950 if (!LI) return false;
952 // If they're already in the same block, there's nothing to do.
953 if (LI->getParent() == I->getParent())
954 return false;
956 // If the load has other users and the truncate is not free, this probably
957 // isn't worthwhile.
958 if (!LI->hasOneUse() &&
959 TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
960 !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
961 !TLI->isTruncateFree(I->getType(), LI->getType()))
962 return false;
964 // Check whether the target supports casts folded into loads.
965 unsigned LType;
966 if (isa<ZExtInst>(I))
967 LType = ISD::ZEXTLOAD;
968 else {
969 assert(isa<SExtInst>(I) && "Unexpected ext type!");
970 LType = ISD::SEXTLOAD;
972 if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
973 return false;
975 // Move the extend into the same block as the load, so that SelectionDAG
976 // can fold it.
977 I->removeFromParent();
978 I->insertAfter(LI);
979 ++NumExtsMoved;
980 return true;
983 bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
984 BasicBlock *DefBB = I->getParent();
986 // If the result of a {s|z}ext and its source are both live out, rewrite all
987 // other uses of the source with result of extension.
988 Value *Src = I->getOperand(0);
989 if (Src->hasOneUse())
990 return false;
992 // Only do this xform if truncating is free.
993 if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
994 return false;
996 // Only safe to perform the optimization if the source is also defined in
997 // this block.
998 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
999 return false;
1001 bool DefIsLiveOut = false;
1002 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1003 UI != E; ++UI) {
1004 Instruction *User = cast<Instruction>(*UI);
1006 // Figure out which BB this ext is used in.
1007 BasicBlock *UserBB = User->getParent();
1008 if (UserBB == DefBB) continue;
1009 DefIsLiveOut = true;
1010 break;
1012 if (!DefIsLiveOut)
1013 return false;
1015 // Make sure non of the uses are PHI nodes.
1016 for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1017 UI != E; ++UI) {
1018 Instruction *User = cast<Instruction>(*UI);
1019 BasicBlock *UserBB = User->getParent();
1020 if (UserBB == DefBB) continue;
1021 // Be conservative. We don't want this xform to end up introducing
1022 // reloads just before load / store instructions.
1023 if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
1024 return false;
1027 // InsertedTruncs - Only insert one trunc in each block once.
1028 DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
1030 bool MadeChange = false;
1031 for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1032 UI != E; ++UI) {
1033 Use &TheUse = UI.getUse();
1034 Instruction *User = cast<Instruction>(*UI);
1036 // Figure out which BB this ext is used in.
1037 BasicBlock *UserBB = User->getParent();
1038 if (UserBB == DefBB) continue;
1040 // Both src and def are live in this block. Rewrite the use.
1041 Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
1043 if (!InsertedTrunc) {
1044 BasicBlock::iterator InsertPt = UserBB->getFirstNonPHI();
1046 InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
1049 // Replace a use of the {s|z}ext source with a use of the result.
1050 TheUse = InsertedTrunc;
1051 ++NumExtUses;
1052 MadeChange = true;
1055 return MadeChange;
1058 bool CodeGenPrepare::OptimizeInst(Instruction *I) {
1059 if (PHINode *P = dyn_cast<PHINode>(I)) {
1060 // It is possible for very late stage optimizations (such as SimplifyCFG)
1061 // to introduce PHI nodes too late to be cleaned up. If we detect such a
1062 // trivial PHI, go ahead and zap it here.
1063 if (Value *V = SimplifyInstruction(P)) {
1064 P->replaceAllUsesWith(V);
1065 P->eraseFromParent();
1066 ++NumPHIsElim;
1067 return true;
1069 return false;
1072 if (CastInst *CI = dyn_cast<CastInst>(I)) {
1073 // If the source of the cast is a constant, then this should have
1074 // already been constant folded. The only reason NOT to constant fold
1075 // it is if something (e.g. LSR) was careful to place the constant
1076 // evaluation in a block other than then one that uses it (e.g. to hoist
1077 // the address of globals out of a loop). If this is the case, we don't
1078 // want to forward-subst the cast.
1079 if (isa<Constant>(CI->getOperand(0)))
1080 return false;
1082 if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
1083 return true;
1085 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
1086 bool MadeChange = MoveExtToFormExtLoad(I);
1087 return MadeChange | OptimizeExtUses(I);
1089 return false;
1092 if (CmpInst *CI = dyn_cast<CmpInst>(I))
1093 return OptimizeCmpExpression(CI);
1095 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1096 if (TLI)
1097 return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
1098 return false;
1101 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1102 if (TLI)
1103 return OptimizeMemoryInst(I, SI->getOperand(1),
1104 SI->getOperand(0)->getType());
1105 return false;
1108 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1109 if (GEPI->hasAllZeroIndices()) {
1110 /// The GEP operand must be a pointer, so must its result -> BitCast
1111 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
1112 GEPI->getName(), GEPI);
1113 GEPI->replaceAllUsesWith(NC);
1114 GEPI->eraseFromParent();
1115 ++NumGEPsElim;
1116 OptimizeInst(NC);
1117 return true;
1119 return false;
1122 if (CallInst *CI = dyn_cast<CallInst>(I))
1123 return OptimizeCallInst(CI);
1125 if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
1126 return DupRetToEnableTailCallOpts(RI);
1128 return false;
1131 // In this pass we look for GEP and cast instructions that are used
1132 // across basic blocks and rewrite them to improve basic-block-at-a-time
1133 // selection.
1134 bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
1135 SunkAddrs.clear();
1136 bool MadeChange = false;
1138 CurInstIterator = BB.begin();
1139 for (BasicBlock::iterator E = BB.end(); CurInstIterator != E; )
1140 MadeChange |= OptimizeInst(CurInstIterator++);
1142 return MadeChange;