Use %ull here.
[llvm/stm8.git] / lib / Transforms / Scalar / EarlyCSE.cpp
blob3d3f17b26fc6aff3db00b2ee9fb7b74ba64b3d79
1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "early-cse"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/Dominators.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/RecyclingAllocator.h"
25 #include "llvm/ADT/ScopedHashTable.h"
26 #include "llvm/ADT/Statistic.h"
27 using namespace llvm;
29 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
30 STATISTIC(NumCSE, "Number of instructions CSE'd");
31 STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
32 STATISTIC(NumCSECall, "Number of call instructions CSE'd");
33 STATISTIC(NumDSE, "Number of trivial dead stores removed");
35 static unsigned getHash(const void *V) {
36 return DenseMapInfo<const void*>::getHashValue(V);
39 //===----------------------------------------------------------------------===//
40 // SimpleValue
41 //===----------------------------------------------------------------------===//
43 namespace {
44 /// SimpleValue - Instances of this struct represent available values in the
45 /// scoped hash table.
46 struct SimpleValue {
47 Instruction *Inst;
49 SimpleValue(Instruction *I) : Inst(I) {
50 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
53 bool isSentinel() const {
54 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
55 Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
58 static bool canHandle(Instruction *Inst) {
59 // This can only handle non-void readnone functions.
60 if (CallInst *CI = dyn_cast<CallInst>(Inst))
61 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
62 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
63 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
64 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
65 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
66 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
71 namespace llvm {
72 // SimpleValue is POD.
73 template<> struct isPodLike<SimpleValue> {
74 static const bool value = true;
77 template<> struct DenseMapInfo<SimpleValue> {
78 static inline SimpleValue getEmptyKey() {
79 return DenseMapInfo<Instruction*>::getEmptyKey();
81 static inline SimpleValue getTombstoneKey() {
82 return DenseMapInfo<Instruction*>::getTombstoneKey();
84 static unsigned getHashValue(SimpleValue Val);
85 static bool isEqual(SimpleValue LHS, SimpleValue RHS);
89 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
90 Instruction *Inst = Val.Inst;
92 // Hash in all of the operands as pointers.
93 unsigned Res = 0;
94 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
95 Res ^= getHash(Inst->getOperand(i)) << i;
97 if (CastInst *CI = dyn_cast<CastInst>(Inst))
98 Res ^= getHash(CI->getType());
99 else if (CmpInst *CI = dyn_cast<CmpInst>(Inst))
100 Res ^= CI->getPredicate();
101 else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) {
102 for (ExtractValueInst::idx_iterator I = EVI->idx_begin(),
103 E = EVI->idx_end(); I != E; ++I)
104 Res ^= *I;
105 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) {
106 for (InsertValueInst::idx_iterator I = IVI->idx_begin(),
107 E = IVI->idx_end(); I != E; ++I)
108 Res ^= *I;
109 } else {
110 // nothing extra to hash in.
111 assert((isa<CallInst>(Inst) ||
112 isa<BinaryOperator>(Inst) || isa<GetElementPtrInst>(Inst) ||
113 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
114 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst)) &&
115 "Invalid/unknown instruction");
118 // Mix in the opcode.
119 return (Res << 1) ^ Inst->getOpcode();
122 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
123 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
125 if (LHS.isSentinel() || RHS.isSentinel())
126 return LHSI == RHSI;
128 if (LHSI->getOpcode() != RHSI->getOpcode()) return false;
129 return LHSI->isIdenticalTo(RHSI);
132 //===----------------------------------------------------------------------===//
133 // CallValue
134 //===----------------------------------------------------------------------===//
136 namespace {
137 /// CallValue - Instances of this struct represent available call values in
138 /// the scoped hash table.
139 struct CallValue {
140 Instruction *Inst;
142 CallValue(Instruction *I) : Inst(I) {
143 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
146 bool isSentinel() const {
147 return Inst == DenseMapInfo<Instruction*>::getEmptyKey() ||
148 Inst == DenseMapInfo<Instruction*>::getTombstoneKey();
151 static bool canHandle(Instruction *Inst) {
152 // Don't value number anything that returns void.
153 if (Inst->getType()->isVoidTy())
154 return false;
156 CallInst *CI = dyn_cast<CallInst>(Inst);
157 if (CI == 0 || !CI->onlyReadsMemory())
158 return false;
159 return true;
164 namespace llvm {
165 // CallValue is POD.
166 template<> struct isPodLike<CallValue> {
167 static const bool value = true;
170 template<> struct DenseMapInfo<CallValue> {
171 static inline CallValue getEmptyKey() {
172 return DenseMapInfo<Instruction*>::getEmptyKey();
174 static inline CallValue getTombstoneKey() {
175 return DenseMapInfo<Instruction*>::getTombstoneKey();
177 static unsigned getHashValue(CallValue Val);
178 static bool isEqual(CallValue LHS, CallValue RHS);
181 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
182 Instruction *Inst = Val.Inst;
183 // Hash in all of the operands as pointers.
184 unsigned Res = 0;
185 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) {
186 assert(!Inst->getOperand(i)->getType()->isMetadataTy() &&
187 "Cannot value number calls with metadata operands");
188 Res ^= getHash(Inst->getOperand(i)) << i;
191 // Mix in the opcode.
192 return (Res << 1) ^ Inst->getOpcode();
195 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
196 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
197 if (LHS.isSentinel() || RHS.isSentinel())
198 return LHSI == RHSI;
199 return LHSI->isIdenticalTo(RHSI);
203 //===----------------------------------------------------------------------===//
204 // EarlyCSE pass.
205 //===----------------------------------------------------------------------===//
207 namespace {
209 /// EarlyCSE - This pass does a simple depth-first walk over the dominator
210 /// tree, eliminating trivially redundant instructions and using instsimplify
211 /// to canonicalize things as it goes. It is intended to be fast and catch
212 /// obvious cases so that instcombine and other passes are more effective. It
213 /// is expected that a later pass of GVN will catch the interesting/hard
214 /// cases.
215 class EarlyCSE : public FunctionPass {
216 public:
217 const TargetData *TD;
218 DominatorTree *DT;
219 typedef RecyclingAllocator<BumpPtrAllocator,
220 ScopedHashTableVal<SimpleValue, Value*> > AllocatorTy;
221 typedef ScopedHashTable<SimpleValue, Value*, DenseMapInfo<SimpleValue>,
222 AllocatorTy> ScopedHTType;
224 /// AvailableValues - This scoped hash table contains the current values of
225 /// all of our simple scalar expressions. As we walk down the domtree, we
226 /// look to see if instructions are in this: if so, we replace them with what
227 /// we find, otherwise we insert them so that dominated values can succeed in
228 /// their lookup.
229 ScopedHTType *AvailableValues;
231 /// AvailableLoads - This scoped hash table contains the current values
232 /// of loads. This allows us to get efficient access to dominating loads when
233 /// we have a fully redundant load. In addition to the most recent load, we
234 /// keep track of a generation count of the read, which is compared against
235 /// the current generation count. The current generation count is
236 /// incremented after every possibly writing memory operation, which ensures
237 /// that we only CSE loads with other loads that have no intervening store.
238 typedef RecyclingAllocator<BumpPtrAllocator,
239 ScopedHashTableVal<Value*, std::pair<Value*, unsigned> > > LoadMapAllocator;
240 typedef ScopedHashTable<Value*, std::pair<Value*, unsigned>,
241 DenseMapInfo<Value*>, LoadMapAllocator> LoadHTType;
242 LoadHTType *AvailableLoads;
244 /// AvailableCalls - This scoped hash table contains the current values
245 /// of read-only call values. It uses the same generation count as loads.
246 typedef ScopedHashTable<CallValue, std::pair<Value*, unsigned> > CallHTType;
247 CallHTType *AvailableCalls;
249 /// CurrentGeneration - This is the current generation of the memory value.
250 unsigned CurrentGeneration;
252 static char ID;
253 explicit EarlyCSE() : FunctionPass(ID) {
254 initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
257 bool runOnFunction(Function &F);
259 private:
261 bool processNode(DomTreeNode *Node);
263 // This transformation requires dominator postdominator info
264 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
265 AU.addRequired<DominatorTree>();
266 AU.setPreservesCFG();
271 char EarlyCSE::ID = 0;
273 // createEarlyCSEPass - The public interface to this file.
274 FunctionPass *llvm::createEarlyCSEPass() {
275 return new EarlyCSE();
278 INITIALIZE_PASS_BEGIN(EarlyCSE, "early-cse", "Early CSE", false, false)
279 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
280 INITIALIZE_PASS_END(EarlyCSE, "early-cse", "Early CSE", false, false)
282 bool EarlyCSE::processNode(DomTreeNode *Node) {
283 // Define a scope in the scoped hash table. When we are done processing this
284 // domtree node and recurse back up to our parent domtree node, this will pop
285 // off all the values we install.
286 ScopedHTType::ScopeTy Scope(*AvailableValues);
288 // Define a scope for the load values so that anything we add will get
289 // popped when we recurse back up to our parent domtree node.
290 LoadHTType::ScopeTy LoadScope(*AvailableLoads);
292 // Define a scope for the call values so that anything we add will get
293 // popped when we recurse back up to our parent domtree node.
294 CallHTType::ScopeTy CallScope(*AvailableCalls);
296 BasicBlock *BB = Node->getBlock();
298 // If this block has a single predecessor, then the predecessor is the parent
299 // of the domtree node and all of the live out memory values are still current
300 // in this block. If this block has multiple predecessors, then they could
301 // have invalidated the live-out memory values of our parent value. For now,
302 // just be conservative and invalidate memory if this block has multiple
303 // predecessors.
304 if (BB->getSinglePredecessor() == 0)
305 ++CurrentGeneration;
307 /// LastStore - Keep track of the last non-volatile store that we saw... for
308 /// as long as there in no instruction that reads memory. If we see a store
309 /// to the same location, we delete the dead store. This zaps trivial dead
310 /// stores which can occur in bitfield code among other things.
311 StoreInst *LastStore = 0;
313 bool Changed = false;
315 // See if any instructions in the block can be eliminated. If so, do it. If
316 // not, add them to AvailableValues.
317 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
318 Instruction *Inst = I++;
320 // Dead instructions should just be removed.
321 if (isInstructionTriviallyDead(Inst)) {
322 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
323 Inst->eraseFromParent();
324 Changed = true;
325 ++NumSimplify;
326 continue;
329 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
330 // its simpler value.
331 if (Value *V = SimplifyInstruction(Inst, TD, DT)) {
332 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n');
333 Inst->replaceAllUsesWith(V);
334 Inst->eraseFromParent();
335 Changed = true;
336 ++NumSimplify;
337 continue;
340 // If this is a simple instruction that we can value number, process it.
341 if (SimpleValue::canHandle(Inst)) {
342 // See if the instruction has an available value. If so, use it.
343 if (Value *V = AvailableValues->lookup(Inst)) {
344 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n');
345 Inst->replaceAllUsesWith(V);
346 Inst->eraseFromParent();
347 Changed = true;
348 ++NumCSE;
349 continue;
352 // Otherwise, just remember that this value is available.
353 AvailableValues->insert(Inst, Inst);
354 continue;
357 // If this is a non-volatile load, process it.
358 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
359 // Ignore volatile loads.
360 if (LI->isVolatile()) {
361 LastStore = 0;
362 continue;
365 // If we have an available version of this load, and if it is the right
366 // generation, replace this instruction.
367 std::pair<Value*, unsigned> InVal =
368 AvailableLoads->lookup(Inst->getOperand(0));
369 if (InVal.first != 0 && InVal.second == CurrentGeneration) {
370 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst << " to: "
371 << *InVal.first << '\n');
372 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
373 Inst->eraseFromParent();
374 Changed = true;
375 ++NumCSELoad;
376 continue;
379 // Otherwise, remember that we have this instruction.
380 AvailableLoads->insert(Inst->getOperand(0),
381 std::pair<Value*, unsigned>(Inst, CurrentGeneration));
382 LastStore = 0;
383 continue;
386 // If this instruction may read from memory, forget LastStore.
387 if (Inst->mayReadFromMemory())
388 LastStore = 0;
390 // If this is a read-only call, process it.
391 if (CallValue::canHandle(Inst)) {
392 // If we have an available version of this call, and if it is the right
393 // generation, replace this instruction.
394 std::pair<Value*, unsigned> InVal = AvailableCalls->lookup(Inst);
395 if (InVal.first != 0 && InVal.second == CurrentGeneration) {
396 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst << " to: "
397 << *InVal.first << '\n');
398 if (!Inst->use_empty()) Inst->replaceAllUsesWith(InVal.first);
399 Inst->eraseFromParent();
400 Changed = true;
401 ++NumCSECall;
402 continue;
405 // Otherwise, remember that we have this instruction.
406 AvailableCalls->insert(Inst,
407 std::pair<Value*, unsigned>(Inst, CurrentGeneration));
408 continue;
411 // Okay, this isn't something we can CSE at all. Check to see if it is
412 // something that could modify memory. If so, our available memory values
413 // cannot be used so bump the generation count.
414 if (Inst->mayWriteToMemory()) {
415 ++CurrentGeneration;
417 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
418 // We do a trivial form of DSE if there are two stores to the same
419 // location with no intervening loads. Delete the earlier store.
420 if (LastStore &&
421 LastStore->getPointerOperand() == SI->getPointerOperand()) {
422 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore << " due to: "
423 << *Inst << '\n');
424 LastStore->eraseFromParent();
425 Changed = true;
426 ++NumDSE;
427 LastStore = 0;
428 continue;
431 // Okay, we just invalidated anything we knew about loaded values. Try
432 // to salvage *something* by remembering that the stored value is a live
433 // version of the pointer. It is safe to forward from volatile stores
434 // to non-volatile loads, so we don't have to check for volatility of
435 // the store.
436 AvailableLoads->insert(SI->getPointerOperand(),
437 std::pair<Value*, unsigned>(SI->getValueOperand(), CurrentGeneration));
439 // Remember that this was the last store we saw for DSE.
440 if (!SI->isVolatile())
441 LastStore = SI;
446 unsigned LiveOutGeneration = CurrentGeneration;
447 for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I) {
448 Changed |= processNode(*I);
449 // Pop any generation changes off the stack from the recursive walk.
450 CurrentGeneration = LiveOutGeneration;
452 return Changed;
456 bool EarlyCSE::runOnFunction(Function &F) {
457 TD = getAnalysisIfAvailable<TargetData>();
458 DT = &getAnalysis<DominatorTree>();
460 // Tables that the pass uses when walking the domtree.
461 ScopedHTType AVTable;
462 AvailableValues = &AVTable;
463 LoadHTType LoadTable;
464 AvailableLoads = &LoadTable;
465 CallHTType CallTable;
466 AvailableCalls = &CallTable;
468 CurrentGeneration = 0;
469 return processNode(DT->getRootNode());