1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "early-cse"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/Instructions.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/Dominators.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/Transforms/Utils/Local.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/RecyclingAllocator.h"
25 #include "llvm/ADT/ScopedHashTable.h"
26 #include "llvm/ADT/Statistic.h"
29 STATISTIC(NumSimplify
, "Number of instructions simplified or DCE'd");
30 STATISTIC(NumCSE
, "Number of instructions CSE'd");
31 STATISTIC(NumCSELoad
, "Number of load instructions CSE'd");
32 STATISTIC(NumCSECall
, "Number of call instructions CSE'd");
33 STATISTIC(NumDSE
, "Number of trivial dead stores removed");
35 static unsigned getHash(const void *V
) {
36 return DenseMapInfo
<const void*>::getHashValue(V
);
39 //===----------------------------------------------------------------------===//
41 //===----------------------------------------------------------------------===//
44 /// SimpleValue - Instances of this struct represent available values in the
45 /// scoped hash table.
49 SimpleValue(Instruction
*I
) : Inst(I
) {
50 assert((isSentinel() || canHandle(I
)) && "Inst can't be handled!");
53 bool isSentinel() const {
54 return Inst
== DenseMapInfo
<Instruction
*>::getEmptyKey() ||
55 Inst
== DenseMapInfo
<Instruction
*>::getTombstoneKey();
58 static bool canHandle(Instruction
*Inst
) {
59 // This can only handle non-void readnone functions.
60 if (CallInst
*CI
= dyn_cast
<CallInst
>(Inst
))
61 return CI
->doesNotAccessMemory() && !CI
->getType()->isVoidTy();
62 return isa
<CastInst
>(Inst
) || isa
<BinaryOperator
>(Inst
) ||
63 isa
<GetElementPtrInst
>(Inst
) || isa
<CmpInst
>(Inst
) ||
64 isa
<SelectInst
>(Inst
) || isa
<ExtractElementInst
>(Inst
) ||
65 isa
<InsertElementInst
>(Inst
) || isa
<ShuffleVectorInst
>(Inst
) ||
66 isa
<ExtractValueInst
>(Inst
) || isa
<InsertValueInst
>(Inst
);
72 // SimpleValue is POD.
73 template<> struct isPodLike
<SimpleValue
> {
74 static const bool value
= true;
77 template<> struct DenseMapInfo
<SimpleValue
> {
78 static inline SimpleValue
getEmptyKey() {
79 return DenseMapInfo
<Instruction
*>::getEmptyKey();
81 static inline SimpleValue
getTombstoneKey() {
82 return DenseMapInfo
<Instruction
*>::getTombstoneKey();
84 static unsigned getHashValue(SimpleValue Val
);
85 static bool isEqual(SimpleValue LHS
, SimpleValue RHS
);
89 unsigned DenseMapInfo
<SimpleValue
>::getHashValue(SimpleValue Val
) {
90 Instruction
*Inst
= Val
.Inst
;
92 // Hash in all of the operands as pointers.
94 for (unsigned i
= 0, e
= Inst
->getNumOperands(); i
!= e
; ++i
)
95 Res
^= getHash(Inst
->getOperand(i
)) << i
;
97 if (CastInst
*CI
= dyn_cast
<CastInst
>(Inst
))
98 Res
^= getHash(CI
->getType());
99 else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(Inst
))
100 Res
^= CI
->getPredicate();
101 else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(Inst
)) {
102 for (ExtractValueInst::idx_iterator I
= EVI
->idx_begin(),
103 E
= EVI
->idx_end(); I
!= E
; ++I
)
105 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(Inst
)) {
106 for (InsertValueInst::idx_iterator I
= IVI
->idx_begin(),
107 E
= IVI
->idx_end(); I
!= E
; ++I
)
110 // nothing extra to hash in.
111 assert((isa
<CallInst
>(Inst
) ||
112 isa
<BinaryOperator
>(Inst
) || isa
<GetElementPtrInst
>(Inst
) ||
113 isa
<SelectInst
>(Inst
) || isa
<ExtractElementInst
>(Inst
) ||
114 isa
<InsertElementInst
>(Inst
) || isa
<ShuffleVectorInst
>(Inst
)) &&
115 "Invalid/unknown instruction");
118 // Mix in the opcode.
119 return (Res
<< 1) ^ Inst
->getOpcode();
122 bool DenseMapInfo
<SimpleValue
>::isEqual(SimpleValue LHS
, SimpleValue RHS
) {
123 Instruction
*LHSI
= LHS
.Inst
, *RHSI
= RHS
.Inst
;
125 if (LHS
.isSentinel() || RHS
.isSentinel())
128 if (LHSI
->getOpcode() != RHSI
->getOpcode()) return false;
129 return LHSI
->isIdenticalTo(RHSI
);
132 //===----------------------------------------------------------------------===//
134 //===----------------------------------------------------------------------===//
137 /// CallValue - Instances of this struct represent available call values in
138 /// the scoped hash table.
142 CallValue(Instruction
*I
) : Inst(I
) {
143 assert((isSentinel() || canHandle(I
)) && "Inst can't be handled!");
146 bool isSentinel() const {
147 return Inst
== DenseMapInfo
<Instruction
*>::getEmptyKey() ||
148 Inst
== DenseMapInfo
<Instruction
*>::getTombstoneKey();
151 static bool canHandle(Instruction
*Inst
) {
152 // Don't value number anything that returns void.
153 if (Inst
->getType()->isVoidTy())
156 CallInst
*CI
= dyn_cast
<CallInst
>(Inst
);
157 if (CI
== 0 || !CI
->onlyReadsMemory())
166 template<> struct isPodLike
<CallValue
> {
167 static const bool value
= true;
170 template<> struct DenseMapInfo
<CallValue
> {
171 static inline CallValue
getEmptyKey() {
172 return DenseMapInfo
<Instruction
*>::getEmptyKey();
174 static inline CallValue
getTombstoneKey() {
175 return DenseMapInfo
<Instruction
*>::getTombstoneKey();
177 static unsigned getHashValue(CallValue Val
);
178 static bool isEqual(CallValue LHS
, CallValue RHS
);
181 unsigned DenseMapInfo
<CallValue
>::getHashValue(CallValue Val
) {
182 Instruction
*Inst
= Val
.Inst
;
183 // Hash in all of the operands as pointers.
185 for (unsigned i
= 0, e
= Inst
->getNumOperands(); i
!= e
; ++i
) {
186 assert(!Inst
->getOperand(i
)->getType()->isMetadataTy() &&
187 "Cannot value number calls with metadata operands");
188 Res
^= getHash(Inst
->getOperand(i
)) << i
;
191 // Mix in the opcode.
192 return (Res
<< 1) ^ Inst
->getOpcode();
195 bool DenseMapInfo
<CallValue
>::isEqual(CallValue LHS
, CallValue RHS
) {
196 Instruction
*LHSI
= LHS
.Inst
, *RHSI
= RHS
.Inst
;
197 if (LHS
.isSentinel() || RHS
.isSentinel())
199 return LHSI
->isIdenticalTo(RHSI
);
203 //===----------------------------------------------------------------------===//
205 //===----------------------------------------------------------------------===//
209 /// EarlyCSE - This pass does a simple depth-first walk over the dominator
210 /// tree, eliminating trivially redundant instructions and using instsimplify
211 /// to canonicalize things as it goes. It is intended to be fast and catch
212 /// obvious cases so that instcombine and other passes are more effective. It
213 /// is expected that a later pass of GVN will catch the interesting/hard
215 class EarlyCSE
: public FunctionPass
{
217 const TargetData
*TD
;
219 typedef RecyclingAllocator
<BumpPtrAllocator
,
220 ScopedHashTableVal
<SimpleValue
, Value
*> > AllocatorTy
;
221 typedef ScopedHashTable
<SimpleValue
, Value
*, DenseMapInfo
<SimpleValue
>,
222 AllocatorTy
> ScopedHTType
;
224 /// AvailableValues - This scoped hash table contains the current values of
225 /// all of our simple scalar expressions. As we walk down the domtree, we
226 /// look to see if instructions are in this: if so, we replace them with what
227 /// we find, otherwise we insert them so that dominated values can succeed in
229 ScopedHTType
*AvailableValues
;
231 /// AvailableLoads - This scoped hash table contains the current values
232 /// of loads. This allows us to get efficient access to dominating loads when
233 /// we have a fully redundant load. In addition to the most recent load, we
234 /// keep track of a generation count of the read, which is compared against
235 /// the current generation count. The current generation count is
236 /// incremented after every possibly writing memory operation, which ensures
237 /// that we only CSE loads with other loads that have no intervening store.
238 typedef RecyclingAllocator
<BumpPtrAllocator
,
239 ScopedHashTableVal
<Value
*, std::pair
<Value
*, unsigned> > > LoadMapAllocator
;
240 typedef ScopedHashTable
<Value
*, std::pair
<Value
*, unsigned>,
241 DenseMapInfo
<Value
*>, LoadMapAllocator
> LoadHTType
;
242 LoadHTType
*AvailableLoads
;
244 /// AvailableCalls - This scoped hash table contains the current values
245 /// of read-only call values. It uses the same generation count as loads.
246 typedef ScopedHashTable
<CallValue
, std::pair
<Value
*, unsigned> > CallHTType
;
247 CallHTType
*AvailableCalls
;
249 /// CurrentGeneration - This is the current generation of the memory value.
250 unsigned CurrentGeneration
;
253 explicit EarlyCSE() : FunctionPass(ID
) {
254 initializeEarlyCSEPass(*PassRegistry::getPassRegistry());
257 bool runOnFunction(Function
&F
);
261 bool processNode(DomTreeNode
*Node
);
263 // This transformation requires dominator postdominator info
264 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
265 AU
.addRequired
<DominatorTree
>();
266 AU
.setPreservesCFG();
271 char EarlyCSE::ID
= 0;
273 // createEarlyCSEPass - The public interface to this file.
274 FunctionPass
*llvm::createEarlyCSEPass() {
275 return new EarlyCSE();
278 INITIALIZE_PASS_BEGIN(EarlyCSE
, "early-cse", "Early CSE", false, false)
279 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
280 INITIALIZE_PASS_END(EarlyCSE
, "early-cse", "Early CSE", false, false)
282 bool EarlyCSE::processNode(DomTreeNode
*Node
) {
283 // Define a scope in the scoped hash table. When we are done processing this
284 // domtree node and recurse back up to our parent domtree node, this will pop
285 // off all the values we install.
286 ScopedHTType::ScopeTy
Scope(*AvailableValues
);
288 // Define a scope for the load values so that anything we add will get
289 // popped when we recurse back up to our parent domtree node.
290 LoadHTType::ScopeTy
LoadScope(*AvailableLoads
);
292 // Define a scope for the call values so that anything we add will get
293 // popped when we recurse back up to our parent domtree node.
294 CallHTType::ScopeTy
CallScope(*AvailableCalls
);
296 BasicBlock
*BB
= Node
->getBlock();
298 // If this block has a single predecessor, then the predecessor is the parent
299 // of the domtree node and all of the live out memory values are still current
300 // in this block. If this block has multiple predecessors, then they could
301 // have invalidated the live-out memory values of our parent value. For now,
302 // just be conservative and invalidate memory if this block has multiple
304 if (BB
->getSinglePredecessor() == 0)
307 /// LastStore - Keep track of the last non-volatile store that we saw... for
308 /// as long as there in no instruction that reads memory. If we see a store
309 /// to the same location, we delete the dead store. This zaps trivial dead
310 /// stores which can occur in bitfield code among other things.
311 StoreInst
*LastStore
= 0;
313 bool Changed
= false;
315 // See if any instructions in the block can be eliminated. If so, do it. If
316 // not, add them to AvailableValues.
317 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ) {
318 Instruction
*Inst
= I
++;
320 // Dead instructions should just be removed.
321 if (isInstructionTriviallyDead(Inst
)) {
322 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst
<< '\n');
323 Inst
->eraseFromParent();
329 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
330 // its simpler value.
331 if (Value
*V
= SimplifyInstruction(Inst
, TD
, DT
)) {
332 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst
<< " to: " << *V
<< '\n');
333 Inst
->replaceAllUsesWith(V
);
334 Inst
->eraseFromParent();
340 // If this is a simple instruction that we can value number, process it.
341 if (SimpleValue::canHandle(Inst
)) {
342 // See if the instruction has an available value. If so, use it.
343 if (Value
*V
= AvailableValues
->lookup(Inst
)) {
344 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst
<< " to: " << *V
<< '\n');
345 Inst
->replaceAllUsesWith(V
);
346 Inst
->eraseFromParent();
352 // Otherwise, just remember that this value is available.
353 AvailableValues
->insert(Inst
, Inst
);
357 // If this is a non-volatile load, process it.
358 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(Inst
)) {
359 // Ignore volatile loads.
360 if (LI
->isVolatile()) {
365 // If we have an available version of this load, and if it is the right
366 // generation, replace this instruction.
367 std::pair
<Value
*, unsigned> InVal
=
368 AvailableLoads
->lookup(Inst
->getOperand(0));
369 if (InVal
.first
!= 0 && InVal
.second
== CurrentGeneration
) {
370 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
<< " to: "
371 << *InVal
.first
<< '\n');
372 if (!Inst
->use_empty()) Inst
->replaceAllUsesWith(InVal
.first
);
373 Inst
->eraseFromParent();
379 // Otherwise, remember that we have this instruction.
380 AvailableLoads
->insert(Inst
->getOperand(0),
381 std::pair
<Value
*, unsigned>(Inst
, CurrentGeneration
));
386 // If this instruction may read from memory, forget LastStore.
387 if (Inst
->mayReadFromMemory())
390 // If this is a read-only call, process it.
391 if (CallValue::canHandle(Inst
)) {
392 // If we have an available version of this call, and if it is the right
393 // generation, replace this instruction.
394 std::pair
<Value
*, unsigned> InVal
= AvailableCalls
->lookup(Inst
);
395 if (InVal
.first
!= 0 && InVal
.second
== CurrentGeneration
) {
396 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
<< " to: "
397 << *InVal
.first
<< '\n');
398 if (!Inst
->use_empty()) Inst
->replaceAllUsesWith(InVal
.first
);
399 Inst
->eraseFromParent();
405 // Otherwise, remember that we have this instruction.
406 AvailableCalls
->insert(Inst
,
407 std::pair
<Value
*, unsigned>(Inst
, CurrentGeneration
));
411 // Okay, this isn't something we can CSE at all. Check to see if it is
412 // something that could modify memory. If so, our available memory values
413 // cannot be used so bump the generation count.
414 if (Inst
->mayWriteToMemory()) {
417 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
418 // We do a trivial form of DSE if there are two stores to the same
419 // location with no intervening loads. Delete the earlier store.
421 LastStore
->getPointerOperand() == SI
->getPointerOperand()) {
422 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
<< " due to: "
424 LastStore
->eraseFromParent();
431 // Okay, we just invalidated anything we knew about loaded values. Try
432 // to salvage *something* by remembering that the stored value is a live
433 // version of the pointer. It is safe to forward from volatile stores
434 // to non-volatile loads, so we don't have to check for volatility of
436 AvailableLoads
->insert(SI
->getPointerOperand(),
437 std::pair
<Value
*, unsigned>(SI
->getValueOperand(), CurrentGeneration
));
439 // Remember that this was the last store we saw for DSE.
440 if (!SI
->isVolatile())
446 unsigned LiveOutGeneration
= CurrentGeneration
;
447 for (DomTreeNode::iterator I
= Node
->begin(), E
= Node
->end(); I
!= E
; ++I
) {
448 Changed
|= processNode(*I
);
449 // Pop any generation changes off the stack from the recursive walk.
450 CurrentGeneration
= LiveOutGeneration
;
456 bool EarlyCSE::runOnFunction(Function
&F
) {
457 TD
= getAnalysisIfAvailable
<TargetData
>();
458 DT
= &getAnalysis
<DominatorTree
>();
460 // Tables that the pass uses when walking the domtree.
461 ScopedHTType AVTable
;
462 AvailableValues
= &AVTable
;
463 LoadHTType LoadTable
;
464 AvailableLoads
= &LoadTable
;
465 CallHTType CallTable
;
466 AvailableCalls
= &CallTable
;
468 CurrentGeneration
= 0;
469 return processNode(DT
->getRootNode());