Use %ull here.
[llvm/stm8.git] / lib / Transforms / Scalar / SimplifyCFGPass.cpp
blob0bcec6b987112ede306c0a52783eb5db96be8e96
1 //===- SimplifyCFGPass.cpp - CFG Simplification Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements dead code elimination and basic block merging, along
11 // with a collection of other peephole control flow optimizations. For example:
13 // * Removes basic blocks with no predecessors.
14 // * Merges a basic block into its predecessor if there is only one and the
15 // predecessor only has one successor.
16 // * Eliminates PHI nodes for basic blocks with a single predecessor.
17 // * Eliminates a basic block that only contains an unconditional branch.
18 // * Changes invoke instructions to nounwind functions to be calls.
19 // * Change things like "if (x) if (y)" into "if (x&y)".
20 // * etc..
22 //===----------------------------------------------------------------------===//
24 #define DEBUG_TYPE "simplifycfg"
25 #include "llvm/Transforms/Scalar.h"
26 #include "llvm/Transforms/Utils/Local.h"
27 #include "llvm/Constants.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/IntrinsicInst.h"
30 #include "llvm/Module.h"
31 #include "llvm/Attributes.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/Statistic.h"
38 using namespace llvm;
40 STATISTIC(NumSimpl, "Number of blocks simplified");
42 namespace {
43 struct CFGSimplifyPass : public FunctionPass {
44 static char ID; // Pass identification, replacement for typeid
45 CFGSimplifyPass() : FunctionPass(ID) {
46 initializeCFGSimplifyPassPass(*PassRegistry::getPassRegistry());
49 virtual bool runOnFunction(Function &F);
53 char CFGSimplifyPass::ID = 0;
54 INITIALIZE_PASS(CFGSimplifyPass, "simplifycfg",
55 "Simplify the CFG", false, false)
57 // Public interface to the CFGSimplification pass
58 FunctionPass *llvm::createCFGSimplificationPass() {
59 return new CFGSimplifyPass();
62 /// ChangeToUnreachable - Insert an unreachable instruction before the specified
63 /// instruction, making it and the rest of the code in the block dead.
64 static void ChangeToUnreachable(Instruction *I, bool UseLLVMTrap) {
65 BasicBlock *BB = I->getParent();
66 // Loop over all of the successors, removing BB's entry from any PHI
67 // nodes.
68 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
69 (*SI)->removePredecessor(BB);
71 // Insert a call to llvm.trap right before this. This turns the undefined
72 // behavior into a hard fail instead of falling through into random code.
73 if (UseLLVMTrap) {
74 Function *TrapFn =
75 Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
76 CallInst::Create(TrapFn, "", I);
78 new UnreachableInst(I->getContext(), I);
80 // All instructions after this are dead.
81 BasicBlock::iterator BBI = I, BBE = BB->end();
82 while (BBI != BBE) {
83 if (!BBI->use_empty())
84 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
85 BB->getInstList().erase(BBI++);
89 /// ChangeToCall - Convert the specified invoke into a normal call.
90 static void ChangeToCall(InvokeInst *II) {
91 BasicBlock *BB = II->getParent();
92 SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
93 CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args.begin(),
94 Args.end(), "", II);
95 NewCall->takeName(II);
96 NewCall->setCallingConv(II->getCallingConv());
97 NewCall->setAttributes(II->getAttributes());
98 II->replaceAllUsesWith(NewCall);
100 // Follow the call by a branch to the normal destination.
101 BranchInst::Create(II->getNormalDest(), II);
103 // Update PHI nodes in the unwind destination
104 II->getUnwindDest()->removePredecessor(BB);
105 BB->getInstList().erase(II);
108 static bool MarkAliveBlocks(BasicBlock *BB,
109 SmallPtrSet<BasicBlock*, 128> &Reachable) {
111 SmallVector<BasicBlock*, 128> Worklist;
112 Worklist.push_back(BB);
113 bool Changed = false;
114 do {
115 BB = Worklist.pop_back_val();
117 if (!Reachable.insert(BB))
118 continue;
120 // Do a quick scan of the basic block, turning any obviously unreachable
121 // instructions into LLVM unreachable insts. The instruction combining pass
122 // canonicalizes unreachable insts into stores to null or undef.
123 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
124 if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
125 if (CI->doesNotReturn()) {
126 // If we found a call to a no-return function, insert an unreachable
127 // instruction after it. Make sure there isn't *already* one there
128 // though.
129 ++BBI;
130 if (!isa<UnreachableInst>(BBI)) {
131 // Don't insert a call to llvm.trap right before the unreachable.
132 ChangeToUnreachable(BBI, false);
133 Changed = true;
135 break;
139 // Store to undef and store to null are undefined and used to signal that
140 // they should be changed to unreachable by passes that can't modify the
141 // CFG.
142 if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
143 // Don't touch volatile stores.
144 if (SI->isVolatile()) continue;
146 Value *Ptr = SI->getOperand(1);
148 if (isa<UndefValue>(Ptr) ||
149 (isa<ConstantPointerNull>(Ptr) &&
150 SI->getPointerAddressSpace() == 0)) {
151 ChangeToUnreachable(SI, true);
152 Changed = true;
153 break;
158 // Turn invokes that call 'nounwind' functions into ordinary calls.
159 if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()))
160 if (II->doesNotThrow()) {
161 ChangeToCall(II);
162 Changed = true;
165 Changed |= ConstantFoldTerminator(BB);
166 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
167 Worklist.push_back(*SI);
168 } while (!Worklist.empty());
169 return Changed;
172 /// RemoveUnreachableBlocksFromFn - Remove blocks that are not reachable, even
173 /// if they are in a dead cycle. Return true if a change was made, false
174 /// otherwise.
175 static bool RemoveUnreachableBlocksFromFn(Function &F) {
176 SmallPtrSet<BasicBlock*, 128> Reachable;
177 bool Changed = MarkAliveBlocks(F.begin(), Reachable);
179 // If there are unreachable blocks in the CFG...
180 if (Reachable.size() == F.size())
181 return Changed;
183 assert(Reachable.size() < F.size());
184 NumSimpl += F.size()-Reachable.size();
186 // Loop over all of the basic blocks that are not reachable, dropping all of
187 // their internal references...
188 for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
189 if (Reachable.count(BB))
190 continue;
192 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
193 if (Reachable.count(*SI))
194 (*SI)->removePredecessor(BB);
195 BB->dropAllReferences();
198 for (Function::iterator I = ++F.begin(); I != F.end();)
199 if (!Reachable.count(I))
200 I = F.getBasicBlockList().erase(I);
201 else
202 ++I;
204 return true;
207 /// MergeEmptyReturnBlocks - If we have more than one empty (other than phi
208 /// node) return blocks, merge them together to promote recursive block merging.
209 static bool MergeEmptyReturnBlocks(Function &F) {
210 bool Changed = false;
212 BasicBlock *RetBlock = 0;
214 // Scan all the blocks in the function, looking for empty return blocks.
215 for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; ) {
216 BasicBlock &BB = *BBI++;
218 // Only look at return blocks.
219 ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator());
220 if (Ret == 0) continue;
222 // Only look at the block if it is empty or the only other thing in it is a
223 // single PHI node that is the operand to the return.
224 if (Ret != &BB.front()) {
225 // Check for something else in the block.
226 BasicBlock::iterator I = Ret;
227 --I;
228 // Skip over debug info.
229 while (isa<DbgInfoIntrinsic>(I) && I != BB.begin())
230 --I;
231 if (!isa<DbgInfoIntrinsic>(I) &&
232 (!isa<PHINode>(I) || I != BB.begin() ||
233 Ret->getNumOperands() == 0 ||
234 Ret->getOperand(0) != I))
235 continue;
238 // If this is the first returning block, remember it and keep going.
239 if (RetBlock == 0) {
240 RetBlock = &BB;
241 continue;
244 // Otherwise, we found a duplicate return block. Merge the two.
245 Changed = true;
247 // Case when there is no input to the return or when the returned values
248 // agree is trivial. Note that they can't agree if there are phis in the
249 // blocks.
250 if (Ret->getNumOperands() == 0 ||
251 Ret->getOperand(0) ==
252 cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0)) {
253 BB.replaceAllUsesWith(RetBlock);
254 BB.eraseFromParent();
255 continue;
258 // If the canonical return block has no PHI node, create one now.
259 PHINode *RetBlockPHI = dyn_cast<PHINode>(RetBlock->begin());
260 if (RetBlockPHI == 0) {
261 Value *InVal = cast<ReturnInst>(RetBlock->getTerminator())->getOperand(0);
262 pred_iterator PB = pred_begin(RetBlock), PE = pred_end(RetBlock);
263 RetBlockPHI = PHINode::Create(Ret->getOperand(0)->getType(),
264 std::distance(PB, PE), "merge",
265 &RetBlock->front());
267 for (pred_iterator PI = PB; PI != PE; ++PI)
268 RetBlockPHI->addIncoming(InVal, *PI);
269 RetBlock->getTerminator()->setOperand(0, RetBlockPHI);
272 // Turn BB into a block that just unconditionally branches to the return
273 // block. This handles the case when the two return blocks have a common
274 // predecessor but that return different things.
275 RetBlockPHI->addIncoming(Ret->getOperand(0), &BB);
276 BB.getTerminator()->eraseFromParent();
277 BranchInst::Create(RetBlock, &BB);
280 return Changed;
283 /// IterativeSimplifyCFG - Call SimplifyCFG on all the blocks in the function,
284 /// iterating until no more changes are made.
285 static bool IterativeSimplifyCFG(Function &F, const TargetData *TD) {
286 bool Changed = false;
287 bool LocalChange = true;
288 while (LocalChange) {
289 LocalChange = false;
291 // Loop over all of the basic blocks and remove them if they are unneeded...
293 for (Function::iterator BBIt = F.begin(); BBIt != F.end(); ) {
294 if (SimplifyCFG(BBIt++, TD)) {
295 LocalChange = true;
296 ++NumSimpl;
299 Changed |= LocalChange;
301 return Changed;
304 // It is possible that we may require multiple passes over the code to fully
305 // simplify the CFG.
307 bool CFGSimplifyPass::runOnFunction(Function &F) {
308 const TargetData *TD = getAnalysisIfAvailable<TargetData>();
309 bool EverChanged = RemoveUnreachableBlocksFromFn(F);
310 EverChanged |= MergeEmptyReturnBlocks(F);
311 EverChanged |= IterativeSimplifyCFG(F, TD);
313 // If neither pass changed anything, we're done.
314 if (!EverChanged) return false;
316 // IterativeSimplifyCFG can (rarely) make some loops dead. If this happens,
317 // RemoveUnreachableBlocksFromFn is needed to nuke them, which means we should
318 // iterate between the two optimizations. We structure the code like this to
319 // avoid reruning IterativeSimplifyCFG if the second pass of
320 // RemoveUnreachableBlocksFromFn doesn't do anything.
321 if (!RemoveUnreachableBlocksFromFn(F))
322 return true;
324 do {
325 EverChanged = IterativeSimplifyCFG(F, TD);
326 EverChanged |= RemoveUnreachableBlocksFromFn(F);
327 } while (EverChanged);
329 return true;