1 //===- TailDuplication.cpp - Simplify CFG through tail duplication --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass performs a limited form of tail duplication, intended to simplify
11 // CFGs by removing some unconditional branches. This pass is necessary to
12 // straighten out loops created by the C front-end, but also is capable of
13 // making other code nicer. After this pass is run, the CFG simplify pass
14 // should be run to clean up the mess.
16 // This pass could be enhanced in the future to use profile information to be
19 //===----------------------------------------------------------------------===//
21 #define DEBUG_TYPE "tailduplicate"
22 #include "llvm/Transforms/Scalar.h"
23 #include "llvm/Constant.h"
24 #include "llvm/Function.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Type.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Support/CFG.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/Local.h"
40 STATISTIC(NumEliminated
, "Number of unconditional branches eliminated");
42 static cl::opt
<unsigned>
43 TailDupThreshold("taildup-threshold",
44 cl::desc("Max block size to tail duplicate"),
45 cl::init(1), cl::Hidden
);
48 class TailDup
: public FunctionPass
{
49 bool runOnFunction(Function
&F
);
51 static char ID
; // Pass identification, replacement for typeid
52 TailDup() : FunctionPass(ID
) {
53 initializeTailDupPass(*PassRegistry::getPassRegistry());
57 inline bool shouldEliminateUnconditionalBranch(TerminatorInst
*, unsigned);
58 inline void eliminateUnconditionalBranch(BranchInst
*BI
);
59 SmallPtrSet
<BasicBlock
*, 4> CycleDetector
;
64 INITIALIZE_PASS(TailDup
, "tailduplicate", "Tail Duplication", false, false)
66 // Public interface to the Tail Duplication pass
67 FunctionPass
*llvm::createTailDuplicationPass() { return new TailDup(); }
69 /// runOnFunction - Top level algorithm - Loop over each unconditional branch in
70 /// the function, eliminating it if it looks attractive enough. CycleDetector
71 /// prevents infinite loops by checking that we aren't redirecting a branch to
72 /// a place it already pointed to earlier; see PR 2323.
73 bool TailDup::runOnFunction(Function
&F
) {
75 CycleDetector
.clear();
76 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ) {
77 if (shouldEliminateUnconditionalBranch(I
->getTerminator(),
79 eliminateUnconditionalBranch(cast
<BranchInst
>(I
->getTerminator()));
83 CycleDetector
.clear();
89 /// shouldEliminateUnconditionalBranch - Return true if this branch looks
90 /// attractive to eliminate. We eliminate the branch if the destination basic
91 /// block has <= 5 instructions in it, not counting PHI nodes. In practice,
92 /// since one of these is a terminator instruction, this means that we will add
93 /// up to 4 instructions to the new block.
95 /// We don't count PHI nodes in the count since they will be removed when the
96 /// contents of the block are copied over.
98 bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst
*TI
,
100 BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
);
101 if (!BI
|| !BI
->isUnconditional()) return false; // Not an uncond branch!
103 BasicBlock
*Dest
= BI
->getSuccessor(0);
104 if (Dest
== BI
->getParent()) return false; // Do not loop infinitely!
106 // Do not inline a block if we will just get another branch to the same block!
107 TerminatorInst
*DTI
= Dest
->getTerminator();
108 if (BranchInst
*DBI
= dyn_cast
<BranchInst
>(DTI
))
109 if (DBI
->isUnconditional() && DBI
->getSuccessor(0) == Dest
)
110 return false; // Do not loop infinitely!
112 // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack,
113 // because doing so would require breaking critical edges. This should be
115 if (!DTI
->use_empty())
118 // Do not bother with blocks with only a single predecessor: simplify
119 // CFG will fold these two blocks together!
120 pred_iterator PI
= pred_begin(Dest
), PE
= pred_end(Dest
);
122 if (PI
== PE
) return false; // Exactly one predecessor!
124 BasicBlock::iterator I
= Dest
->getFirstNonPHI();
126 for (unsigned Size
= 0; I
!= Dest
->end(); ++I
) {
127 if (Size
== Threshold
) return false; // The block is too large.
129 // Don't tail duplicate call instructions. They are very large compared to
130 // other instructions.
131 if (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) return false;
133 // Also alloca and malloc.
134 if (isa
<AllocaInst
>(I
)) return false;
136 // Some vector instructions can expand into a number of instructions.
137 if (isa
<ShuffleVectorInst
>(I
) || isa
<ExtractElementInst
>(I
) ||
138 isa
<InsertElementInst
>(I
)) return false;
140 // Only count instructions that are not debugger intrinsics.
141 if (!isa
<DbgInfoIntrinsic
>(I
)) ++Size
;
144 // Do not tail duplicate a block that has thousands of successors into a block
145 // with a single successor if the block has many other predecessors. This can
146 // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in
147 // cases that have a large number of indirect gotos.
148 unsigned NumSuccs
= DTI
->getNumSuccessors();
150 unsigned TooMany
= 128;
151 if (NumSuccs
>= TooMany
) return false;
152 TooMany
= TooMany
/NumSuccs
;
153 for (; PI
!= PE
; ++PI
)
154 if (TooMany
-- == 0) return false;
157 // If this unconditional branch is a fall-through, be careful about
158 // tail duplicating it. In particular, we don't want to taildup it if the
159 // original block will still be there after taildup is completed: doing so
160 // would eliminate the fall-through, requiring unconditional branches.
161 Function::iterator DestI
= Dest
;
162 if (&*--DestI
== BI
->getParent()) {
163 // The uncond branch is a fall-through. Tail duplication of the block is
164 // will eliminate the fall-through-ness and end up cloning the terminator
165 // at the end of the Dest block. Since the original Dest block will
166 // continue to exist, this means that one or the other will not be able to
167 // fall through. One typical example that this helps with is code like:
172 // Cloning the 'if b' block into the end of the first foo block is messy.
174 // The messy case is when the fall-through block falls through to other
175 // blocks. This is what we would be preventing if we cloned the block.
177 if (++DestI
!= Dest
->getParent()->end()) {
178 BasicBlock
*DestSucc
= DestI
;
179 // If any of Dest's successors are fall-throughs, don't do this xform.
180 for (succ_iterator SI
= succ_begin(Dest
), SE
= succ_end(Dest
);
187 // Finally, check that we haven't redirected to this target block earlier;
188 // there are cases where we loop forever if we don't check this (PR 2323).
189 if (!CycleDetector
.insert(Dest
))
195 /// FindObviousSharedDomOf - We know there is a branch from SrcBlock to
196 /// DestBlock, and that SrcBlock is not the only predecessor of DstBlock. If we
197 /// can find a predecessor of SrcBlock that is a dominator of both SrcBlock and
198 /// DstBlock, return it.
199 static BasicBlock
*FindObviousSharedDomOf(BasicBlock
*SrcBlock
,
200 BasicBlock
*DstBlock
) {
201 // SrcBlock must have a single predecessor.
202 pred_iterator PI
= pred_begin(SrcBlock
), PE
= pred_end(SrcBlock
);
203 if (PI
== PE
|| ++PI
!= PE
) return 0;
205 BasicBlock
*SrcPred
= *pred_begin(SrcBlock
);
207 // Look at the predecessors of DstBlock. One of them will be SrcBlock. If
208 // there is only one other pred, get it, otherwise we can't handle it.
209 PI
= pred_begin(DstBlock
); PE
= pred_end(DstBlock
);
210 BasicBlock
*DstOtherPred
= 0;
213 if (++PI
== PE
) return 0;
215 if (++PI
!= PE
) return 0;
218 if (++PI
== PE
|| *PI
!= SrcBlock
|| ++PI
!= PE
) return 0;
221 // We can handle two situations here: "if then" and "if then else" blocks. An
222 // 'if then' situation is just where DstOtherPred == SrcPred.
223 if (DstOtherPred
== SrcPred
)
226 // Check to see if we have an "if then else" situation, which means that
227 // DstOtherPred will have a single predecessor and it will be SrcPred.
228 PI
= pred_begin(DstOtherPred
); PE
= pred_end(DstOtherPred
);
229 if (PI
!= PE
&& *PI
== SrcPred
) {
230 if (++PI
!= PE
) return 0; // Not a single pred.
231 return SrcPred
; // Otherwise, it's an "if then" situation. Return the if.
234 // Otherwise, this is something we can't handle.
239 /// eliminateUnconditionalBranch - Clone the instructions from the destination
240 /// block into the source block, eliminating the specified unconditional branch.
241 /// If the destination block defines values used by successors of the dest
242 /// block, we may need to insert PHI nodes.
244 void TailDup::eliminateUnconditionalBranch(BranchInst
*Branch
) {
245 BasicBlock
*SourceBlock
= Branch
->getParent();
246 BasicBlock
*DestBlock
= Branch
->getSuccessor(0);
247 assert(SourceBlock
!= DestBlock
&& "Our predicate is broken!");
249 DEBUG(dbgs() << "TailDuplication[" << SourceBlock
->getParent()->getName()
250 << "]: Eliminating branch: " << *Branch
);
252 // See if we can avoid duplicating code by moving it up to a dominator of both
254 if (BasicBlock
*DomBlock
= FindObviousSharedDomOf(SourceBlock
, DestBlock
)) {
255 DEBUG(dbgs() << "Found shared dominator: " << DomBlock
->getName() << "\n");
257 // If there are non-phi instructions in DestBlock that have no operands
258 // defined in DestBlock, and if the instruction has no side effects, we can
259 // move the instruction to DomBlock instead of duplicating it.
260 BasicBlock::iterator BBI
= DestBlock
->getFirstNonPHI();
261 while (!isa
<TerminatorInst
>(BBI
)) {
262 Instruction
*I
= BBI
++;
264 bool CanHoist
= I
->isSafeToSpeculativelyExecute() &&
265 !I
->mayReadFromMemory();
267 for (unsigned op
= 0, e
= I
->getNumOperands(); op
!= e
; ++op
)
268 if (Instruction
*OpI
= dyn_cast
<Instruction
>(I
->getOperand(op
)))
269 if (OpI
->getParent() == DestBlock
||
270 (isa
<InvokeInst
>(OpI
) && OpI
->getParent() == DomBlock
)) {
275 // Remove from DestBlock, move right before the term in DomBlock.
276 DestBlock
->getInstList().remove(I
);
277 DomBlock
->getInstList().insert(DomBlock
->getTerminator(), I
);
278 DEBUG(dbgs() << "Hoisted: " << *I
);
284 // Tail duplication can not update SSA properties correctly if the values
285 // defined in the duplicated tail are used outside of the tail itself. For
286 // this reason, we spill all values that are used outside of the tail to the
288 for (BasicBlock::iterator I
= DestBlock
->begin(); I
!= DestBlock
->end(); ++I
)
289 if (I
->isUsedOutsideOfBlock(DestBlock
)) {
290 // We found a use outside of the tail. Create a new stack slot to
291 // break this inter-block usage pattern.
292 DemoteRegToStack(*I
);
295 // We are going to have to map operands from the original block B to the new
296 // copy of the block B'. If there are PHI nodes in the DestBlock, these PHI
297 // nodes also define part of this mapping. Loop over these PHI nodes, adding
298 // them to our mapping.
300 std::map
<Value
*, Value
*> ValueMapping
;
302 BasicBlock::iterator BI
= DestBlock
->begin();
303 bool HadPHINodes
= isa
<PHINode
>(BI
);
304 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
305 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(SourceBlock
);
307 // Clone the non-phi instructions of the dest block into the source block,
308 // keeping track of the mapping...
310 for (; BI
!= DestBlock
->end(); ++BI
) {
311 Instruction
*New
= BI
->clone();
312 New
->setName(BI
->getName());
313 SourceBlock
->getInstList().push_back(New
);
314 ValueMapping
[BI
] = New
;
317 // Now that we have built the mapping information and cloned all of the
318 // instructions (giving us a new terminator, among other things), walk the new
319 // instructions, rewriting references of old instructions to use new
322 BI
= Branch
; ++BI
; // Get an iterator to the first new instruction
323 for (; BI
!= SourceBlock
->end(); ++BI
)
324 for (unsigned i
= 0, e
= BI
->getNumOperands(); i
!= e
; ++i
) {
325 std::map
<Value
*, Value
*>::const_iterator I
=
326 ValueMapping
.find(BI
->getOperand(i
));
327 if (I
!= ValueMapping
.end())
328 BI
->setOperand(i
, I
->second
);
331 // Next we check to see if any of the successors of DestBlock had PHI nodes.
332 // If so, we need to add entries to the PHI nodes for SourceBlock now.
333 for (succ_iterator SI
= succ_begin(DestBlock
), SE
= succ_end(DestBlock
);
335 BasicBlock
*Succ
= *SI
;
336 for (BasicBlock::iterator PNI
= Succ
->begin(); isa
<PHINode
>(PNI
); ++PNI
) {
337 PHINode
*PN
= cast
<PHINode
>(PNI
);
338 // Ok, we have a PHI node. Figure out what the incoming value was for the
340 Value
*IV
= PN
->getIncomingValueForBlock(DestBlock
);
342 // Remap the value if necessary...
343 std::map
<Value
*, Value
*>::const_iterator I
= ValueMapping
.find(IV
);
344 if (I
!= ValueMapping
.end())
346 PN
->addIncoming(IV
, SourceBlock
);
350 // Next, remove the old branch instruction, and any PHI node entries that we
352 BI
= Branch
; ++BI
; // Get an iterator to the first new instruction
353 DestBlock
->removePredecessor(SourceBlock
); // Remove entries in PHI nodes...
354 SourceBlock
->getInstList().erase(Branch
); // Destroy the uncond branch...
356 // Final step: now that we have finished everything up, walk the cloned
357 // instructions one last time, constant propagating and DCE'ing them, because
358 // they may not be needed anymore.
361 while (BI
!= SourceBlock
->end()) {
362 Instruction
*Inst
= BI
++;
363 if (isInstructionTriviallyDead(Inst
))
364 Inst
->eraseFromParent();
365 else if (Value
*V
= SimplifyInstruction(Inst
)) {
366 Inst
->replaceAllUsesWith(V
);
367 Inst
->eraseFromParent();
372 ++NumEliminated
; // We just killed a branch!