Use %ull here.
[llvm/stm8.git] / lib / Transforms / Utils / AddrModeMatcher.cpp
blobbe7bed1cecdf0cc34ad355c931a9be0b5f8bb2e9
1 //===- AddrModeMatcher.cpp - Addressing mode matching facility --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements target addressing mode matcher class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
15 #include "llvm/DerivedTypes.h"
16 #include "llvm/GlobalValue.h"
17 #include "llvm/Instruction.h"
18 #include "llvm/Assembly/Writer.h"
19 #include "llvm/Target/TargetData.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/GetElementPtrTypeIterator.h"
22 #include "llvm/Support/PatternMatch.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Support/CallSite.h"
26 using namespace llvm;
27 using namespace llvm::PatternMatch;
29 void ExtAddrMode::print(raw_ostream &OS) const {
30 bool NeedPlus = false;
31 OS << "[";
32 if (BaseGV) {
33 OS << (NeedPlus ? " + " : "")
34 << "GV:";
35 WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
36 NeedPlus = true;
39 if (BaseOffs)
40 OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
42 if (BaseReg) {
43 OS << (NeedPlus ? " + " : "")
44 << "Base:";
45 WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
46 NeedPlus = true;
48 if (Scale) {
49 OS << (NeedPlus ? " + " : "")
50 << Scale << "*";
51 WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
52 NeedPlus = true;
55 OS << ']';
58 void ExtAddrMode::dump() const {
59 print(dbgs());
60 dbgs() << '\n';
64 /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
65 /// Return true and update AddrMode if this addr mode is legal for the target,
66 /// false if not.
67 bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
68 unsigned Depth) {
69 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
70 // mode. Just process that directly.
71 if (Scale == 1)
72 return MatchAddr(ScaleReg, Depth);
74 // If the scale is 0, it takes nothing to add this.
75 if (Scale == 0)
76 return true;
78 // If we already have a scale of this value, we can add to it, otherwise, we
79 // need an available scale field.
80 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
81 return false;
83 ExtAddrMode TestAddrMode = AddrMode;
85 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
86 // [A+B + A*7] -> [B+A*8].
87 TestAddrMode.Scale += Scale;
88 TestAddrMode.ScaledReg = ScaleReg;
90 // If the new address isn't legal, bail out.
91 if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
92 return false;
94 // It was legal, so commit it.
95 AddrMode = TestAddrMode;
97 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
98 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
99 // X*Scale + C*Scale to addr mode.
100 ConstantInt *CI = 0; Value *AddLHS = 0;
101 if (isa<Instruction>(ScaleReg) && // not a constant expr.
102 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
103 TestAddrMode.ScaledReg = AddLHS;
104 TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
106 // If this addressing mode is legal, commit it and remember that we folded
107 // this instruction.
108 if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
109 AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
110 AddrMode = TestAddrMode;
111 return true;
115 // Otherwise, not (x+c)*scale, just return what we have.
116 return true;
119 /// MightBeFoldableInst - This is a little filter, which returns true if an
120 /// addressing computation involving I might be folded into a load/store
121 /// accessing it. This doesn't need to be perfect, but needs to accept at least
122 /// the set of instructions that MatchOperationAddr can.
123 static bool MightBeFoldableInst(Instruction *I) {
124 switch (I->getOpcode()) {
125 case Instruction::BitCast:
126 // Don't touch identity bitcasts.
127 if (I->getType() == I->getOperand(0)->getType())
128 return false;
129 return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
130 case Instruction::PtrToInt:
131 // PtrToInt is always a noop, as we know that the int type is pointer sized.
132 return true;
133 case Instruction::IntToPtr:
134 // We know the input is intptr_t, so this is foldable.
135 return true;
136 case Instruction::Add:
137 return true;
138 case Instruction::Mul:
139 case Instruction::Shl:
140 // Can only handle X*C and X << C.
141 return isa<ConstantInt>(I->getOperand(1));
142 case Instruction::GetElementPtr:
143 return true;
144 default:
145 return false;
150 /// MatchOperationAddr - Given an instruction or constant expr, see if we can
151 /// fold the operation into the addressing mode. If so, update the addressing
152 /// mode and return true, otherwise return false without modifying AddrMode.
153 bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
154 unsigned Depth) {
155 // Avoid exponential behavior on extremely deep expression trees.
156 if (Depth >= 5) return false;
158 switch (Opcode) {
159 case Instruction::PtrToInt:
160 // PtrToInt is always a noop, as we know that the int type is pointer sized.
161 return MatchAddr(AddrInst->getOperand(0), Depth);
162 case Instruction::IntToPtr:
163 // This inttoptr is a no-op if the integer type is pointer sized.
164 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
165 TLI.getPointerTy())
166 return MatchAddr(AddrInst->getOperand(0), Depth);
167 return false;
168 case Instruction::BitCast:
169 // BitCast is always a noop, and we can handle it as long as it is
170 // int->int or pointer->pointer (we don't want int<->fp or something).
171 if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
172 AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
173 // Don't touch identity bitcasts. These were probably put here by LSR,
174 // and we don't want to mess around with them. Assume it knows what it
175 // is doing.
176 AddrInst->getOperand(0)->getType() != AddrInst->getType())
177 return MatchAddr(AddrInst->getOperand(0), Depth);
178 return false;
179 case Instruction::Add: {
180 // Check to see if we can merge in the RHS then the LHS. If so, we win.
181 ExtAddrMode BackupAddrMode = AddrMode;
182 unsigned OldSize = AddrModeInsts.size();
183 if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
184 MatchAddr(AddrInst->getOperand(0), Depth+1))
185 return true;
187 // Restore the old addr mode info.
188 AddrMode = BackupAddrMode;
189 AddrModeInsts.resize(OldSize);
191 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
192 if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
193 MatchAddr(AddrInst->getOperand(1), Depth+1))
194 return true;
196 // Otherwise we definitely can't merge the ADD in.
197 AddrMode = BackupAddrMode;
198 AddrModeInsts.resize(OldSize);
199 break;
201 //case Instruction::Or:
202 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
203 //break;
204 case Instruction::Mul:
205 case Instruction::Shl: {
206 // Can only handle X*C and X << C.
207 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
208 if (!RHS) return false;
209 int64_t Scale = RHS->getSExtValue();
210 if (Opcode == Instruction::Shl)
211 Scale = 1LL << Scale;
213 return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
215 case Instruction::GetElementPtr: {
216 // Scan the GEP. We check it if it contains constant offsets and at most
217 // one variable offset.
218 int VariableOperand = -1;
219 unsigned VariableScale = 0;
221 int64_t ConstantOffset = 0;
222 const TargetData *TD = TLI.getTargetData();
223 gep_type_iterator GTI = gep_type_begin(AddrInst);
224 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
225 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
226 const StructLayout *SL = TD->getStructLayout(STy);
227 unsigned Idx =
228 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
229 ConstantOffset += SL->getElementOffset(Idx);
230 } else {
231 uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
232 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
233 ConstantOffset += CI->getSExtValue()*TypeSize;
234 } else if (TypeSize) { // Scales of zero don't do anything.
235 // We only allow one variable index at the moment.
236 if (VariableOperand != -1)
237 return false;
239 // Remember the variable index.
240 VariableOperand = i;
241 VariableScale = TypeSize;
246 // A common case is for the GEP to only do a constant offset. In this case,
247 // just add it to the disp field and check validity.
248 if (VariableOperand == -1) {
249 AddrMode.BaseOffs += ConstantOffset;
250 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
251 // Check to see if we can fold the base pointer in too.
252 if (MatchAddr(AddrInst->getOperand(0), Depth+1))
253 return true;
255 AddrMode.BaseOffs -= ConstantOffset;
256 return false;
259 // Save the valid addressing mode in case we can't match.
260 ExtAddrMode BackupAddrMode = AddrMode;
261 unsigned OldSize = AddrModeInsts.size();
263 // See if the scale and offset amount is valid for this target.
264 AddrMode.BaseOffs += ConstantOffset;
266 // Match the base operand of the GEP.
267 if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
268 // If it couldn't be matched, just stuff the value in a register.
269 if (AddrMode.HasBaseReg) {
270 AddrMode = BackupAddrMode;
271 AddrModeInsts.resize(OldSize);
272 return false;
274 AddrMode.HasBaseReg = true;
275 AddrMode.BaseReg = AddrInst->getOperand(0);
278 // Match the remaining variable portion of the GEP.
279 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
280 Depth)) {
281 // If it couldn't be matched, try stuffing the base into a register
282 // instead of matching it, and retrying the match of the scale.
283 AddrMode = BackupAddrMode;
284 AddrModeInsts.resize(OldSize);
285 if (AddrMode.HasBaseReg)
286 return false;
287 AddrMode.HasBaseReg = true;
288 AddrMode.BaseReg = AddrInst->getOperand(0);
289 AddrMode.BaseOffs += ConstantOffset;
290 if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
291 VariableScale, Depth)) {
292 // If even that didn't work, bail.
293 AddrMode = BackupAddrMode;
294 AddrModeInsts.resize(OldSize);
295 return false;
299 return true;
302 return false;
305 /// MatchAddr - If we can, try to add the value of 'Addr' into the current
306 /// addressing mode. If Addr can't be added to AddrMode this returns false and
307 /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type
308 /// or intptr_t for the target.
310 bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
311 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
312 // Fold in immediates if legal for the target.
313 AddrMode.BaseOffs += CI->getSExtValue();
314 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
315 return true;
316 AddrMode.BaseOffs -= CI->getSExtValue();
317 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
318 // If this is a global variable, try to fold it into the addressing mode.
319 if (AddrMode.BaseGV == 0) {
320 AddrMode.BaseGV = GV;
321 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
322 return true;
323 AddrMode.BaseGV = 0;
325 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
326 ExtAddrMode BackupAddrMode = AddrMode;
327 unsigned OldSize = AddrModeInsts.size();
329 // Check to see if it is possible to fold this operation.
330 if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
331 // Okay, it's possible to fold this. Check to see if it is actually
332 // *profitable* to do so. We use a simple cost model to avoid increasing
333 // register pressure too much.
334 if (I->hasOneUse() ||
335 IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
336 AddrModeInsts.push_back(I);
337 return true;
340 // It isn't profitable to do this, roll back.
341 //cerr << "NOT FOLDING: " << *I;
342 AddrMode = BackupAddrMode;
343 AddrModeInsts.resize(OldSize);
345 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
346 if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
347 return true;
348 } else if (isa<ConstantPointerNull>(Addr)) {
349 // Null pointer gets folded without affecting the addressing mode.
350 return true;
353 // Worse case, the target should support [reg] addressing modes. :)
354 if (!AddrMode.HasBaseReg) {
355 AddrMode.HasBaseReg = true;
356 AddrMode.BaseReg = Addr;
357 // Still check for legality in case the target supports [imm] but not [i+r].
358 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
359 return true;
360 AddrMode.HasBaseReg = false;
361 AddrMode.BaseReg = 0;
364 // If the base register is already taken, see if we can do [r+r].
365 if (AddrMode.Scale == 0) {
366 AddrMode.Scale = 1;
367 AddrMode.ScaledReg = Addr;
368 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
369 return true;
370 AddrMode.Scale = 0;
371 AddrMode.ScaledReg = 0;
373 // Couldn't match.
374 return false;
378 /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
379 /// inline asm call are due to memory operands. If so, return true, otherwise
380 /// return false.
381 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
382 const TargetLowering &TLI) {
383 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
384 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
385 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
387 // Compute the constraint code and ConstraintType to use.
388 TLI.ComputeConstraintToUse(OpInfo, SDValue());
390 // If this asm operand is our Value*, and if it isn't an indirect memory
391 // operand, we can't fold it!
392 if (OpInfo.CallOperandVal == OpVal &&
393 (OpInfo.ConstraintType != TargetLowering::C_Memory ||
394 !OpInfo.isIndirect))
395 return false;
398 return true;
402 /// FindAllMemoryUses - Recursively walk all the uses of I until we find a
403 /// memory use. If we find an obviously non-foldable instruction, return true.
404 /// Add the ultimately found memory instructions to MemoryUses.
405 static bool FindAllMemoryUses(Instruction *I,
406 SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
407 SmallPtrSet<Instruction*, 16> &ConsideredInsts,
408 const TargetLowering &TLI) {
409 // If we already considered this instruction, we're done.
410 if (!ConsideredInsts.insert(I))
411 return false;
413 // If this is an obviously unfoldable instruction, bail out.
414 if (!MightBeFoldableInst(I))
415 return true;
417 // Loop over all the uses, recursively processing them.
418 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
419 UI != E; ++UI) {
420 User *U = *UI;
422 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
423 MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
424 continue;
427 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
428 unsigned opNo = UI.getOperandNo();
429 if (opNo == 0) return true; // Storing addr, not into addr.
430 MemoryUses.push_back(std::make_pair(SI, opNo));
431 continue;
434 if (CallInst *CI = dyn_cast<CallInst>(U)) {
435 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
436 if (!IA) return true;
438 // If this is a memory operand, we're cool, otherwise bail out.
439 if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
440 return true;
441 continue;
444 if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
445 TLI))
446 return true;
449 return false;
453 /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
454 /// the use site that we're folding it into. If so, there is no cost to
455 /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values
456 /// that we know are live at the instruction already.
457 bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
458 Value *KnownLive2) {
459 // If Val is either of the known-live values, we know it is live!
460 if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
461 return true;
463 // All values other than instructions and arguments (e.g. constants) are live.
464 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
466 // If Val is a constant sized alloca in the entry block, it is live, this is
467 // true because it is just a reference to the stack/frame pointer, which is
468 // live for the whole function.
469 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
470 if (AI->isStaticAlloca())
471 return true;
473 // Check to see if this value is already used in the memory instruction's
474 // block. If so, it's already live into the block at the very least, so we
475 // can reasonably fold it.
476 BasicBlock *MemBB = MemoryInst->getParent();
477 for (Value::use_iterator UI = Val->use_begin(), E = Val->use_end();
478 UI != E; ++UI)
479 // We know that uses of arguments and instructions have to be instructions.
480 if (cast<Instruction>(*UI)->getParent() == MemBB)
481 return true;
483 return false;
488 /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
489 /// mode of the machine to fold the specified instruction into a load or store
490 /// that ultimately uses it. However, the specified instruction has multiple
491 /// uses. Given this, it may actually increase register pressure to fold it
492 /// into the load. For example, consider this code:
494 /// X = ...
495 /// Y = X+1
496 /// use(Y) -> nonload/store
497 /// Z = Y+1
498 /// load Z
500 /// In this case, Y has multiple uses, and can be folded into the load of Z
501 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
502 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
503 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
504 /// number of computations either.
506 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
507 /// X was live across 'load Z' for other reasons, we actually *would* want to
508 /// fold the addressing mode in the Z case. This would make Y die earlier.
509 bool AddressingModeMatcher::
510 IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
511 ExtAddrMode &AMAfter) {
512 if (IgnoreProfitability) return true;
514 // AMBefore is the addressing mode before this instruction was folded into it,
515 // and AMAfter is the addressing mode after the instruction was folded. Get
516 // the set of registers referenced by AMAfter and subtract out those
517 // referenced by AMBefore: this is the set of values which folding in this
518 // address extends the lifetime of.
520 // Note that there are only two potential values being referenced here,
521 // BaseReg and ScaleReg (global addresses are always available, as are any
522 // folded immediates).
523 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
525 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
526 // lifetime wasn't extended by adding this instruction.
527 if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
528 BaseReg = 0;
529 if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
530 ScaledReg = 0;
532 // If folding this instruction (and it's subexprs) didn't extend any live
533 // ranges, we're ok with it.
534 if (BaseReg == 0 && ScaledReg == 0)
535 return true;
537 // If all uses of this instruction are ultimately load/store/inlineasm's,
538 // check to see if their addressing modes will include this instruction. If
539 // so, we can fold it into all uses, so it doesn't matter if it has multiple
540 // uses.
541 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
542 SmallPtrSet<Instruction*, 16> ConsideredInsts;
543 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
544 return false; // Has a non-memory, non-foldable use!
546 // Now that we know that all uses of this instruction are part of a chain of
547 // computation involving only operations that could theoretically be folded
548 // into a memory use, loop over each of these uses and see if they could
549 // *actually* fold the instruction.
550 SmallVector<Instruction*, 32> MatchedAddrModeInsts;
551 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
552 Instruction *User = MemoryUses[i].first;
553 unsigned OpNo = MemoryUses[i].second;
555 // Get the access type of this use. If the use isn't a pointer, we don't
556 // know what it accesses.
557 Value *Address = User->getOperand(OpNo);
558 if (!Address->getType()->isPointerTy())
559 return false;
560 const Type *AddressAccessTy =
561 cast<PointerType>(Address->getType())->getElementType();
563 // Do a match against the root of this address, ignoring profitability. This
564 // will tell us if the addressing mode for the memory operation will
565 // *actually* cover the shared instruction.
566 ExtAddrMode Result;
567 AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
568 MemoryInst, Result);
569 Matcher.IgnoreProfitability = true;
570 bool Success = Matcher.MatchAddr(Address, 0);
571 (void)Success; assert(Success && "Couldn't select *anything*?");
573 // If the match didn't cover I, then it won't be shared by it.
574 if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
575 I) == MatchedAddrModeInsts.end())
576 return false;
578 MatchedAddrModeInsts.clear();
581 return true;