Use %ull here.
[llvm/stm8.git] / lib / Transforms / Utils / InlineFunction.cpp
blob2cb1d3b136c79d09a4f6b804b5edb86a9d182941
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/Cloning.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Module.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/Intrinsics.h"
22 #include "llvm/Attributes.h"
23 #include "llvm/Analysis/CallGraph.h"
24 #include "llvm/Analysis/DebugInfo.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/Support/CallSite.h"
31 using namespace llvm;
33 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
34 return InlineFunction(CallSite(CI), IFI);
36 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
37 return InlineFunction(CallSite(II), IFI);
41 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
42 /// an invoke, we have to turn all of the calls that can throw into
43 /// invokes. This function analyze BB to see if there are any calls, and if so,
44 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
45 /// nodes in that block with the values specified in InvokeDestPHIValues.
46 ///
47 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
48 BasicBlock *InvokeDest,
49 const SmallVectorImpl<Value*> &InvokeDestPHIValues) {
50 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
51 Instruction *I = BBI++;
53 // We only need to check for function calls: inlined invoke
54 // instructions require no special handling.
55 CallInst *CI = dyn_cast<CallInst>(I);
56 if (CI == 0) continue;
58 // If this call cannot unwind, don't convert it to an invoke.
59 if (CI->doesNotThrow())
60 continue;
62 // Convert this function call into an invoke instruction.
63 // First, split the basic block.
64 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
66 // Next, create the new invoke instruction, inserting it at the end
67 // of the old basic block.
68 ImmutableCallSite CS(CI);
69 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
70 InvokeInst *II =
71 InvokeInst::Create(CI->getCalledValue(), Split, InvokeDest,
72 InvokeArgs.begin(), InvokeArgs.end(),
73 CI->getName(), BB->getTerminator());
74 II->setCallingConv(CI->getCallingConv());
75 II->setAttributes(CI->getAttributes());
77 // Make sure that anything using the call now uses the invoke! This also
78 // updates the CallGraph if present, because it uses a WeakVH.
79 CI->replaceAllUsesWith(II);
81 // Delete the unconditional branch inserted by splitBasicBlock
82 BB->getInstList().pop_back();
83 Split->getInstList().pop_front(); // Delete the original call
85 // Update any PHI nodes in the exceptional block to indicate that
86 // there is now a new entry in them.
87 unsigned i = 0;
88 for (BasicBlock::iterator I = InvokeDest->begin();
89 isa<PHINode>(I); ++I, ++i)
90 cast<PHINode>(I)->addIncoming(InvokeDestPHIValues[i], BB);
92 // This basic block is now complete, the caller will continue scanning the
93 // next one.
94 return;
99 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
100 /// in the body of the inlined function into invokes and turn unwind
101 /// instructions into branches to the invoke unwind dest.
103 /// II is the invoke instruction being inlined. FirstNewBlock is the first
104 /// block of the inlined code (the last block is the end of the function),
105 /// and InlineCodeInfo is information about the code that got inlined.
106 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
107 ClonedCodeInfo &InlinedCodeInfo) {
108 BasicBlock *InvokeDest = II->getUnwindDest();
109 SmallVector<Value*, 8> InvokeDestPHIValues;
111 // If there are PHI nodes in the unwind destination block, we need to
112 // keep track of which values came into them from this invoke, then remove
113 // the entry for this block.
114 BasicBlock *InvokeBlock = II->getParent();
115 for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
116 PHINode *PN = cast<PHINode>(I);
117 // Save the value to use for this edge.
118 InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
121 Function *Caller = FirstNewBlock->getParent();
123 // The inlined code is currently at the end of the function, scan from the
124 // start of the inlined code to its end, checking for stuff we need to
125 // rewrite. If the code doesn't have calls or unwinds, we know there is
126 // nothing to rewrite.
127 if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
128 // Now that everything is happy, we have one final detail. The PHI nodes in
129 // the exception destination block still have entries due to the original
130 // invoke instruction. Eliminate these entries (which might even delete the
131 // PHI node) now.
132 InvokeDest->removePredecessor(II->getParent());
133 return;
136 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
137 if (InlinedCodeInfo.ContainsCalls)
138 HandleCallsInBlockInlinedThroughInvoke(BB, InvokeDest,
139 InvokeDestPHIValues);
141 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
142 // An UnwindInst requires special handling when it gets inlined into an
143 // invoke site. Once this happens, we know that the unwind would cause
144 // a control transfer to the invoke exception destination, so we can
145 // transform it into a direct branch to the exception destination.
146 BranchInst::Create(InvokeDest, UI);
148 // Delete the unwind instruction!
149 UI->eraseFromParent();
151 // Update any PHI nodes in the exceptional block to indicate that
152 // there is now a new entry in them.
153 unsigned i = 0;
154 for (BasicBlock::iterator I = InvokeDest->begin();
155 isa<PHINode>(I); ++I, ++i) {
156 PHINode *PN = cast<PHINode>(I);
157 PN->addIncoming(InvokeDestPHIValues[i], BB);
162 // Now that everything is happy, we have one final detail. The PHI nodes in
163 // the exception destination block still have entries due to the original
164 // invoke instruction. Eliminate these entries (which might even delete the
165 // PHI node) now.
166 InvokeDest->removePredecessor(II->getParent());
169 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
170 /// into the caller, update the specified callgraph to reflect the changes we
171 /// made. Note that it's possible that not all code was copied over, so only
172 /// some edges of the callgraph may remain.
173 static void UpdateCallGraphAfterInlining(CallSite CS,
174 Function::iterator FirstNewBlock,
175 ValueToValueMapTy &VMap,
176 InlineFunctionInfo &IFI) {
177 CallGraph &CG = *IFI.CG;
178 const Function *Caller = CS.getInstruction()->getParent()->getParent();
179 const Function *Callee = CS.getCalledFunction();
180 CallGraphNode *CalleeNode = CG[Callee];
181 CallGraphNode *CallerNode = CG[Caller];
183 // Since we inlined some uninlined call sites in the callee into the caller,
184 // add edges from the caller to all of the callees of the callee.
185 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
187 // Consider the case where CalleeNode == CallerNode.
188 CallGraphNode::CalledFunctionsVector CallCache;
189 if (CalleeNode == CallerNode) {
190 CallCache.assign(I, E);
191 I = CallCache.begin();
192 E = CallCache.end();
195 for (; I != E; ++I) {
196 const Value *OrigCall = I->first;
198 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
199 // Only copy the edge if the call was inlined!
200 if (VMI == VMap.end() || VMI->second == 0)
201 continue;
203 // If the call was inlined, but then constant folded, there is no edge to
204 // add. Check for this case.
205 Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
206 if (NewCall == 0) continue;
208 // Remember that this call site got inlined for the client of
209 // InlineFunction.
210 IFI.InlinedCalls.push_back(NewCall);
212 // It's possible that inlining the callsite will cause it to go from an
213 // indirect to a direct call by resolving a function pointer. If this
214 // happens, set the callee of the new call site to a more precise
215 // destination. This can also happen if the call graph node of the caller
216 // was just unnecessarily imprecise.
217 if (I->second->getFunction() == 0)
218 if (Function *F = CallSite(NewCall).getCalledFunction()) {
219 // Indirect call site resolved to direct call.
220 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
222 continue;
225 CallerNode->addCalledFunction(CallSite(NewCall), I->second);
228 // Update the call graph by deleting the edge from Callee to Caller. We must
229 // do this after the loop above in case Caller and Callee are the same.
230 CallerNode->removeCallEdgeFor(CS);
233 /// HandleByValArgument - When inlining a call site that has a byval argument,
234 /// we have to make the implicit memcpy explicit by adding it.
235 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
236 const Function *CalledFunc,
237 InlineFunctionInfo &IFI,
238 unsigned ByValAlignment) {
239 const Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
241 // If the called function is readonly, then it could not mutate the caller's
242 // copy of the byval'd memory. In this case, it is safe to elide the copy and
243 // temporary.
244 if (CalledFunc->onlyReadsMemory()) {
245 // If the byval argument has a specified alignment that is greater than the
246 // passed in pointer, then we either have to round up the input pointer or
247 // give up on this transformation.
248 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
249 return Arg;
251 // If the pointer is already known to be sufficiently aligned, or if we can
252 // round it up to a larger alignment, then we don't need a temporary.
253 if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
254 IFI.TD) >= ByValAlignment)
255 return Arg;
257 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
258 // for code quality, but rarely happens and is required for correctness.
261 LLVMContext &Context = Arg->getContext();
263 const Type *VoidPtrTy = Type::getInt8PtrTy(Context);
265 // Create the alloca. If we have TargetData, use nice alignment.
266 unsigned Align = 1;
267 if (IFI.TD)
268 Align = IFI.TD->getPrefTypeAlignment(AggTy);
270 // If the byval had an alignment specified, we *must* use at least that
271 // alignment, as it is required by the byval argument (and uses of the
272 // pointer inside the callee).
273 Align = std::max(Align, ByValAlignment);
275 Function *Caller = TheCall->getParent()->getParent();
277 Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
278 &*Caller->begin()->begin());
279 // Emit a memcpy.
280 const Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
281 Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
282 Intrinsic::memcpy,
283 Tys, 3);
284 Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
285 Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
287 Value *Size;
288 if (IFI.TD == 0)
289 Size = ConstantExpr::getSizeOf(AggTy);
290 else
291 Size = ConstantInt::get(Type::getInt64Ty(Context),
292 IFI.TD->getTypeStoreSize(AggTy));
294 // Always generate a memcpy of alignment 1 here because we don't know
295 // the alignment of the src pointer. Other optimizations can infer
296 // better alignment.
297 Value *CallArgs[] = {
298 DestCast, SrcCast, Size,
299 ConstantInt::get(Type::getInt32Ty(Context), 1),
300 ConstantInt::getFalse(Context) // isVolatile
302 CallInst *TheMemCpy =
303 CallInst::Create(MemCpyFn, CallArgs, CallArgs+5, "", TheCall);
305 // If we have a call graph, update it.
306 if (CallGraph *CG = IFI.CG) {
307 CallGraphNode *MemCpyCGN = CG->getOrInsertFunction(MemCpyFn);
308 CallGraphNode *CallerNode = (*CG)[Caller];
309 CallerNode->addCalledFunction(TheMemCpy, MemCpyCGN);
312 // Uses of the argument in the function should use our new alloca
313 // instead.
314 return NewAlloca;
317 // InlineFunction - This function inlines the called function into the basic
318 // block of the caller. This returns false if it is not possible to inline this
319 // call. The program is still in a well defined state if this occurs though.
321 // Note that this only does one level of inlining. For example, if the
322 // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
323 // exists in the instruction stream. Similiarly this will inline a recursive
324 // function by one level.
326 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
327 Instruction *TheCall = CS.getInstruction();
328 LLVMContext &Context = TheCall->getContext();
329 assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
330 "Instruction not in function!");
332 // If IFI has any state in it, zap it before we fill it in.
333 IFI.reset();
335 const Function *CalledFunc = CS.getCalledFunction();
336 if (CalledFunc == 0 || // Can't inline external function or indirect
337 CalledFunc->isDeclaration() || // call, or call to a vararg function!
338 CalledFunc->getFunctionType()->isVarArg()) return false;
340 // If the call to the callee is not a tail call, we must clear the 'tail'
341 // flags on any calls that we inline.
342 bool MustClearTailCallFlags =
343 !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
345 // If the call to the callee cannot throw, set the 'nounwind' flag on any
346 // calls that we inline.
347 bool MarkNoUnwind = CS.doesNotThrow();
349 BasicBlock *OrigBB = TheCall->getParent();
350 Function *Caller = OrigBB->getParent();
352 // GC poses two hazards to inlining, which only occur when the callee has GC:
353 // 1. If the caller has no GC, then the callee's GC must be propagated to the
354 // caller.
355 // 2. If the caller has a differing GC, it is invalid to inline.
356 if (CalledFunc->hasGC()) {
357 if (!Caller->hasGC())
358 Caller->setGC(CalledFunc->getGC());
359 else if (CalledFunc->getGC() != Caller->getGC())
360 return false;
363 // Get an iterator to the last basic block in the function, which will have
364 // the new function inlined after it.
366 Function::iterator LastBlock = &Caller->back();
368 // Make sure to capture all of the return instructions from the cloned
369 // function.
370 SmallVector<ReturnInst*, 8> Returns;
371 ClonedCodeInfo InlinedFunctionInfo;
372 Function::iterator FirstNewBlock;
374 { // Scope to destroy VMap after cloning.
375 ValueToValueMapTy VMap;
377 assert(CalledFunc->arg_size() == CS.arg_size() &&
378 "No varargs calls can be inlined!");
380 // Calculate the vector of arguments to pass into the function cloner, which
381 // matches up the formal to the actual argument values.
382 CallSite::arg_iterator AI = CS.arg_begin();
383 unsigned ArgNo = 0;
384 for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
385 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
386 Value *ActualArg = *AI;
388 // When byval arguments actually inlined, we need to make the copy implied
389 // by them explicit. However, we don't do this if the callee is readonly
390 // or readnone, because the copy would be unneeded: the callee doesn't
391 // modify the struct.
392 if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
393 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
394 CalledFunc->getParamAlignment(ArgNo+1));
396 // Calls that we inline may use the new alloca, so we need to clear
397 // their 'tail' flags if HandleByValArgument introduced a new alloca and
398 // the callee has calls.
399 MustClearTailCallFlags |= ActualArg != *AI;
402 VMap[I] = ActualArg;
405 // We want the inliner to prune the code as it copies. We would LOVE to
406 // have no dead or constant instructions leftover after inlining occurs
407 // (which can happen, e.g., because an argument was constant), but we'll be
408 // happy with whatever the cloner can do.
409 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
410 /*ModuleLevelChanges=*/false, Returns, ".i",
411 &InlinedFunctionInfo, IFI.TD, TheCall);
413 // Remember the first block that is newly cloned over.
414 FirstNewBlock = LastBlock; ++FirstNewBlock;
416 // Update the callgraph if requested.
417 if (IFI.CG)
418 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
421 // If there are any alloca instructions in the block that used to be the entry
422 // block for the callee, move them to the entry block of the caller. First
423 // calculate which instruction they should be inserted before. We insert the
424 // instructions at the end of the current alloca list.
427 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
428 for (BasicBlock::iterator I = FirstNewBlock->begin(),
429 E = FirstNewBlock->end(); I != E; ) {
430 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
431 if (AI == 0) continue;
433 // If the alloca is now dead, remove it. This often occurs due to code
434 // specialization.
435 if (AI->use_empty()) {
436 AI->eraseFromParent();
437 continue;
440 if (!isa<Constant>(AI->getArraySize()))
441 continue;
443 // Keep track of the static allocas that we inline into the caller.
444 IFI.StaticAllocas.push_back(AI);
446 // Scan for the block of allocas that we can move over, and move them
447 // all at once.
448 while (isa<AllocaInst>(I) &&
449 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
450 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
451 ++I;
454 // Transfer all of the allocas over in a block. Using splice means
455 // that the instructions aren't removed from the symbol table, then
456 // reinserted.
457 Caller->getEntryBlock().getInstList().splice(InsertPoint,
458 FirstNewBlock->getInstList(),
459 AI, I);
463 // If the inlined code contained dynamic alloca instructions, wrap the inlined
464 // code with llvm.stacksave/llvm.stackrestore intrinsics.
465 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
466 Module *M = Caller->getParent();
467 // Get the two intrinsics we care about.
468 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
469 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
471 // If we are preserving the callgraph, add edges to the stacksave/restore
472 // functions for the calls we insert.
473 CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
474 if (CallGraph *CG = IFI.CG) {
475 StackSaveCGN = CG->getOrInsertFunction(StackSave);
476 StackRestoreCGN = CG->getOrInsertFunction(StackRestore);
477 CallerNode = (*CG)[Caller];
480 // Insert the llvm.stacksave.
481 CallInst *SavedPtr = CallInst::Create(StackSave, "savedstack",
482 FirstNewBlock->begin());
483 if (IFI.CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
485 // Insert a call to llvm.stackrestore before any return instructions in the
486 // inlined function.
487 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
488 CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", Returns[i]);
489 if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
492 // Count the number of StackRestore calls we insert.
493 unsigned NumStackRestores = Returns.size();
495 // If we are inlining an invoke instruction, insert restores before each
496 // unwind. These unwinds will be rewritten into branches later.
497 if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
498 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
499 BB != E; ++BB)
500 if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
501 CallInst *CI = CallInst::Create(StackRestore, SavedPtr, "", UI);
502 if (IFI.CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
503 ++NumStackRestores;
508 // If we are inlining tail call instruction through a call site that isn't
509 // marked 'tail', we must remove the tail marker for any calls in the inlined
510 // code. Also, calls inlined through a 'nounwind' call site should be marked
511 // 'nounwind'.
512 if (InlinedFunctionInfo.ContainsCalls &&
513 (MustClearTailCallFlags || MarkNoUnwind)) {
514 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
515 BB != E; ++BB)
516 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
517 if (CallInst *CI = dyn_cast<CallInst>(I)) {
518 if (MustClearTailCallFlags)
519 CI->setTailCall(false);
520 if (MarkNoUnwind)
521 CI->setDoesNotThrow();
525 // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
526 // instructions are unreachable.
527 if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
528 for (Function::iterator BB = FirstNewBlock, E = Caller->end();
529 BB != E; ++BB) {
530 TerminatorInst *Term = BB->getTerminator();
531 if (isa<UnwindInst>(Term)) {
532 new UnreachableInst(Context, Term);
533 BB->getInstList().erase(Term);
537 // If we are inlining for an invoke instruction, we must make sure to rewrite
538 // any inlined 'unwind' instructions into branches to the invoke exception
539 // destination, and call instructions into invoke instructions.
540 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
541 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
543 // If we cloned in _exactly one_ basic block, and if that block ends in a
544 // return instruction, we splice the body of the inlined callee directly into
545 // the calling basic block.
546 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
547 // Move all of the instructions right before the call.
548 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
549 FirstNewBlock->begin(), FirstNewBlock->end());
550 // Remove the cloned basic block.
551 Caller->getBasicBlockList().pop_back();
553 // If the call site was an invoke instruction, add a branch to the normal
554 // destination.
555 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
556 BranchInst::Create(II->getNormalDest(), TheCall);
558 // If the return instruction returned a value, replace uses of the call with
559 // uses of the returned value.
560 if (!TheCall->use_empty()) {
561 ReturnInst *R = Returns[0];
562 if (TheCall == R->getReturnValue())
563 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
564 else
565 TheCall->replaceAllUsesWith(R->getReturnValue());
567 // Since we are now done with the Call/Invoke, we can delete it.
568 TheCall->eraseFromParent();
570 // Since we are now done with the return instruction, delete it also.
571 Returns[0]->eraseFromParent();
573 // We are now done with the inlining.
574 return true;
577 // Otherwise, we have the normal case, of more than one block to inline or
578 // multiple return sites.
580 // We want to clone the entire callee function into the hole between the
581 // "starter" and "ender" blocks. How we accomplish this depends on whether
582 // this is an invoke instruction or a call instruction.
583 BasicBlock *AfterCallBB;
584 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
586 // Add an unconditional branch to make this look like the CallInst case...
587 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
589 // Split the basic block. This guarantees that no PHI nodes will have to be
590 // updated due to new incoming edges, and make the invoke case more
591 // symmetric to the call case.
592 AfterCallBB = OrigBB->splitBasicBlock(NewBr,
593 CalledFunc->getName()+".exit");
595 } else { // It's a call
596 // If this is a call instruction, we need to split the basic block that
597 // the call lives in.
599 AfterCallBB = OrigBB->splitBasicBlock(TheCall,
600 CalledFunc->getName()+".exit");
603 // Change the branch that used to go to AfterCallBB to branch to the first
604 // basic block of the inlined function.
606 TerminatorInst *Br = OrigBB->getTerminator();
607 assert(Br && Br->getOpcode() == Instruction::Br &&
608 "splitBasicBlock broken!");
609 Br->setOperand(0, FirstNewBlock);
612 // Now that the function is correct, make it a little bit nicer. In
613 // particular, move the basic blocks inserted from the end of the function
614 // into the space made by splitting the source basic block.
615 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
616 FirstNewBlock, Caller->end());
618 // Handle all of the return instructions that we just cloned in, and eliminate
619 // any users of the original call/invoke instruction.
620 const Type *RTy = CalledFunc->getReturnType();
622 PHINode *PHI = 0;
623 if (Returns.size() > 1) {
624 // The PHI node should go at the front of the new basic block to merge all
625 // possible incoming values.
626 if (!TheCall->use_empty()) {
627 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
628 AfterCallBB->begin());
629 // Anything that used the result of the function call should now use the
630 // PHI node as their operand.
631 TheCall->replaceAllUsesWith(PHI);
634 // Loop over all of the return instructions adding entries to the PHI node
635 // as appropriate.
636 if (PHI) {
637 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
638 ReturnInst *RI = Returns[i];
639 assert(RI->getReturnValue()->getType() == PHI->getType() &&
640 "Ret value not consistent in function!");
641 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
646 // Add a branch to the merge points and remove return instructions.
647 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
648 ReturnInst *RI = Returns[i];
649 BranchInst::Create(AfterCallBB, RI);
650 RI->eraseFromParent();
652 } else if (!Returns.empty()) {
653 // Otherwise, if there is exactly one return value, just replace anything
654 // using the return value of the call with the computed value.
655 if (!TheCall->use_empty()) {
656 if (TheCall == Returns[0]->getReturnValue())
657 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
658 else
659 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
662 // Splice the code from the return block into the block that it will return
663 // to, which contains the code that was after the call.
664 BasicBlock *ReturnBB = Returns[0]->getParent();
665 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
666 ReturnBB->getInstList());
668 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
669 ReturnBB->replaceAllUsesWith(AfterCallBB);
671 // Delete the return instruction now and empty ReturnBB now.
672 Returns[0]->eraseFromParent();
673 ReturnBB->eraseFromParent();
674 } else if (!TheCall->use_empty()) {
675 // No returns, but something is using the return value of the call. Just
676 // nuke the result.
677 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
680 // Since we are now done with the Call/Invoke, we can delete it.
681 TheCall->eraseFromParent();
683 // We should always be able to fold the entry block of the function into the
684 // single predecessor of the block...
685 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
686 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
688 // Splice the code entry block into calling block, right before the
689 // unconditional branch.
690 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
691 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
693 // Remove the unconditional branch.
694 OrigBB->getInstList().erase(Br);
696 // Now we can remove the CalleeEntry block, which is now empty.
697 Caller->getBasicBlockList().erase(CalleeEntry);
699 // If we inserted a phi node, check to see if it has a single value (e.g. all
700 // the entries are the same or undef). If so, remove the PHI so it doesn't
701 // block other optimizations.
702 if (PHI)
703 if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
704 PHI->replaceAllUsesWith(V);
705 PHI->eraseFromParent();
708 return true;