1 //===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation is designed for use by code generators which do not yet
11 // support stack unwinding. This pass supports two models of exception handling
12 // lowering, the 'cheap' support and the 'expensive' support.
14 // 'Cheap' exception handling support gives the program the ability to execute
15 // any program which does not "throw an exception", by turning 'invoke'
16 // instructions into calls and by turning 'unwind' instructions into calls to
17 // abort(). If the program does dynamically use the unwind instruction, the
18 // program will print a message then abort.
20 // 'Expensive' exception handling support gives the full exception handling
21 // support to the program at the cost of making the 'invoke' instruction
22 // really expensive. It basically inserts setjmp/longjmp calls to emulate the
23 // exception handling as necessary.
25 // Because the 'expensive' support slows down programs a lot, and EH is only
26 // used for a subset of the programs, it must be specifically enabled by an
29 // Note that after this pass runs the CFG is not entirely accurate (exceptional
30 // control flow edges are not correct anymore) so only very simple things should
31 // be done after the lowerinvoke pass has run (like generation of native code).
32 // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33 // support the invoke instruction yet" lowering pass.
35 //===----------------------------------------------------------------------===//
37 #define DEBUG_TYPE "lowerinvoke"
38 #include "llvm/Transforms/Scalar.h"
39 #include "llvm/Constants.h"
40 #include "llvm/DerivedTypes.h"
41 #include "llvm/Instructions.h"
42 #include "llvm/Intrinsics.h"
43 #include "llvm/LLVMContext.h"
44 #include "llvm/Module.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Target/TargetLowering.h"
56 STATISTIC(NumInvokes
, "Number of invokes replaced");
57 STATISTIC(NumUnwinds
, "Number of unwinds replaced");
58 STATISTIC(NumSpilled
, "Number of registers live across unwind edges");
60 static cl::opt
<bool> ExpensiveEHSupport("enable-correct-eh-support",
61 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
64 class LowerInvoke
: public FunctionPass
{
65 // Used for both models.
68 // Used for expensive EH support.
70 GlobalVariable
*JBListHead
;
71 Constant
*SetJmpFn
, *LongJmpFn
, *StackSaveFn
, *StackRestoreFn
;
72 bool useExpensiveEHSupport
;
74 // We peek in TLI to grab the target's jmp_buf size and alignment
75 const TargetLowering
*TLI
;
78 static char ID
; // Pass identification, replacement for typeid
79 explicit LowerInvoke(const TargetLowering
*tli
= NULL
,
80 bool useExpensiveEHSupport
= ExpensiveEHSupport
)
81 : FunctionPass(ID
), useExpensiveEHSupport(useExpensiveEHSupport
),
83 initializeLowerInvokePass(*PassRegistry::getPassRegistry());
85 bool doInitialization(Module
&M
);
86 bool runOnFunction(Function
&F
);
88 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
89 // This is a cluster of orthogonal Transforms
90 AU
.addPreserved("mem2reg");
91 AU
.addPreservedID(LowerSwitchID
);
95 bool insertCheapEHSupport(Function
&F
);
96 void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl
<InvokeInst
*>&Invokes
);
97 void rewriteExpensiveInvoke(InvokeInst
*II
, unsigned InvokeNo
,
98 AllocaInst
*InvokeNum
, AllocaInst
*StackPtr
,
99 SwitchInst
*CatchSwitch
);
100 bool insertExpensiveEHSupport(Function
&F
);
104 char LowerInvoke::ID
= 0;
105 INITIALIZE_PASS(LowerInvoke
, "lowerinvoke",
106 "Lower invoke and unwind, for unwindless code generators",
109 char &llvm::LowerInvokePassID
= LowerInvoke::ID
;
111 // Public Interface To the LowerInvoke pass.
112 FunctionPass
*llvm::createLowerInvokePass(const TargetLowering
*TLI
) {
113 return new LowerInvoke(TLI
, ExpensiveEHSupport
);
115 FunctionPass
*llvm::createLowerInvokePass(const TargetLowering
*TLI
,
116 bool useExpensiveEHSupport
) {
117 return new LowerInvoke(TLI
, useExpensiveEHSupport
);
120 // doInitialization - Make sure that there is a prototype for abort in the
122 bool LowerInvoke::doInitialization(Module
&M
) {
123 const Type
*VoidPtrTy
=
124 Type::getInt8PtrTy(M
.getContext());
125 if (useExpensiveEHSupport
) {
126 // Insert a type for the linked list of jump buffers.
127 unsigned JBSize
= TLI
? TLI
->getJumpBufSize() : 0;
128 JBSize
= JBSize
? JBSize
: 200;
129 const Type
*JmpBufTy
= ArrayType::get(VoidPtrTy
, JBSize
);
131 { // The type is recursive, so use a type holder.
132 std::vector
<const Type
*> Elements
;
133 Elements
.push_back(JmpBufTy
);
134 OpaqueType
*OT
= OpaqueType::get(M
.getContext());
135 Elements
.push_back(PointerType::getUnqual(OT
));
136 PATypeHolder
JBLType(StructType::get(M
.getContext(), Elements
));
137 OT
->refineAbstractTypeTo(JBLType
.get()); // Complete the cycle.
138 JBLinkTy
= JBLType
.get();
139 M
.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy
);
142 const Type
*PtrJBList
= PointerType::getUnqual(JBLinkTy
);
144 // Now that we've done that, insert the jmpbuf list head global, unless it
146 if (!(JBListHead
= M
.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList
))) {
147 JBListHead
= new GlobalVariable(M
, PtrJBList
, false,
148 GlobalValue::LinkOnceAnyLinkage
,
149 Constant::getNullValue(PtrJBList
),
150 "llvm.sjljeh.jblist");
153 // VisualStudio defines setjmp as _setjmp
154 #if defined(_MSC_VER) && defined(setjmp) && \
155 !defined(setjmp_undefined_for_msvc)
156 # pragma push_macro("setjmp")
158 # define setjmp_undefined_for_msvc
161 SetJmpFn
= Intrinsic::getDeclaration(&M
, Intrinsic::setjmp
);
163 #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
164 // let's return it to _setjmp state
165 # pragma pop_macro("setjmp")
166 # undef setjmp_undefined_for_msvc
169 LongJmpFn
= Intrinsic::getDeclaration(&M
, Intrinsic::longjmp
);
170 StackSaveFn
= Intrinsic::getDeclaration(&M
, Intrinsic::stacksave
);
171 StackRestoreFn
= Intrinsic::getDeclaration(&M
, Intrinsic::stackrestore
);
174 // We need the 'write' and 'abort' functions for both models.
175 AbortFn
= M
.getOrInsertFunction("abort", Type::getVoidTy(M
.getContext()),
180 bool LowerInvoke::insertCheapEHSupport(Function
&F
) {
181 bool Changed
= false;
182 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
183 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator())) {
184 SmallVector
<Value
*,16> CallArgs(II
->op_begin(), II
->op_end() - 3);
185 // Insert a normal call instruction...
186 CallInst
*NewCall
= CallInst::Create(II
->getCalledValue(),
187 CallArgs
.begin(), CallArgs
.end(),
189 NewCall
->takeName(II
);
190 NewCall
->setCallingConv(II
->getCallingConv());
191 NewCall
->setAttributes(II
->getAttributes());
192 NewCall
->setDebugLoc(II
->getDebugLoc());
193 II
->replaceAllUsesWith(NewCall
);
195 // Insert an unconditional branch to the normal destination.
196 BranchInst::Create(II
->getNormalDest(), II
);
198 // Remove any PHI node entries from the exception destination.
199 II
->getUnwindDest()->removePredecessor(BB
);
201 // Remove the invoke instruction now.
202 BB
->getInstList().erase(II
);
204 ++NumInvokes
; Changed
= true;
205 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
206 // Insert a call to abort()
207 CallInst::Create(AbortFn
, "", UI
)->setTailCall();
209 // Insert a return instruction. This really should be a "barrier", as it
211 ReturnInst::Create(F
.getContext(),
212 F
.getReturnType()->isVoidTy() ?
213 0 : Constant::getNullValue(F
.getReturnType()), UI
);
215 // Remove the unwind instruction now.
216 BB
->getInstList().erase(UI
);
218 ++NumUnwinds
; Changed
= true;
223 /// rewriteExpensiveInvoke - Insert code and hack the function to replace the
224 /// specified invoke instruction with a call.
225 void LowerInvoke::rewriteExpensiveInvoke(InvokeInst
*II
, unsigned InvokeNo
,
226 AllocaInst
*InvokeNum
,
227 AllocaInst
*StackPtr
,
228 SwitchInst
*CatchSwitch
) {
229 ConstantInt
*InvokeNoC
= ConstantInt::get(Type::getInt32Ty(II
->getContext()),
232 // If the unwind edge has phi nodes, split the edge.
233 if (isa
<PHINode
>(II
->getUnwindDest()->begin())) {
234 SplitCriticalEdge(II
, 1, this);
236 // If there are any phi nodes left, they must have a single predecessor.
237 while (PHINode
*PN
= dyn_cast
<PHINode
>(II
->getUnwindDest()->begin())) {
238 PN
->replaceAllUsesWith(PN
->getIncomingValue(0));
239 PN
->eraseFromParent();
243 // Insert a store of the invoke num before the invoke and store zero into the
244 // location afterward.
245 new StoreInst(InvokeNoC
, InvokeNum
, true, II
); // volatile
247 // Insert a store of the stack ptr before the invoke, so we can restore it
248 // later in the exception case.
249 CallInst
* StackSaveRet
= CallInst::Create(StackSaveFn
, "ssret", II
);
250 new StoreInst(StackSaveRet
, StackPtr
, true, II
); // volatile
252 BasicBlock::iterator NI
= II
->getNormalDest()->getFirstNonPHI();
254 new StoreInst(Constant::getNullValue(Type::getInt32Ty(II
->getContext())),
255 InvokeNum
, false, NI
);
257 Instruction
* StackPtrLoad
= new LoadInst(StackPtr
, "stackptr.restore", true,
258 II
->getUnwindDest()->getFirstNonPHI()
260 CallInst::Create(StackRestoreFn
, StackPtrLoad
, "")->insertAfter(StackPtrLoad
);
262 // Add a switch case to our unwind block.
263 CatchSwitch
->addCase(InvokeNoC
, II
->getUnwindDest());
265 // Insert a normal call instruction.
266 SmallVector
<Value
*,16> CallArgs(II
->op_begin(), II
->op_end() - 3);
267 CallInst
*NewCall
= CallInst::Create(II
->getCalledValue(),
268 CallArgs
.begin(), CallArgs
.end(), "",
270 NewCall
->takeName(II
);
271 NewCall
->setCallingConv(II
->getCallingConv());
272 NewCall
->setAttributes(II
->getAttributes());
273 NewCall
->setDebugLoc(II
->getDebugLoc());
274 II
->replaceAllUsesWith(NewCall
);
276 // Replace the invoke with an uncond branch.
277 BranchInst::Create(II
->getNormalDest(), NewCall
->getParent());
278 II
->eraseFromParent();
281 /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
282 /// we reach blocks we've already seen.
283 static void MarkBlocksLiveIn(BasicBlock
*BB
, std::set
<BasicBlock
*> &LiveBBs
) {
284 if (!LiveBBs
.insert(BB
).second
) return; // already been here.
286 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
287 MarkBlocksLiveIn(*PI
, LiveBBs
);
290 // First thing we need to do is scan the whole function for values that are
291 // live across unwind edges. Each value that is live across an unwind edge
292 // we spill into a stack location, guaranteeing that there is nothing live
293 // across the unwind edge. This process also splits all critical edges
294 // coming out of invoke's.
296 splitLiveRangesLiveAcrossInvokes(SmallVectorImpl
<InvokeInst
*> &Invokes
) {
297 // First step, split all critical edges from invoke instructions.
298 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
) {
299 InvokeInst
*II
= Invokes
[i
];
300 SplitCriticalEdge(II
, 0, this);
301 SplitCriticalEdge(II
, 1, this);
302 assert(!isa
<PHINode
>(II
->getNormalDest()) &&
303 !isa
<PHINode
>(II
->getUnwindDest()) &&
304 "critical edge splitting left single entry phi nodes?");
307 Function
*F
= Invokes
.back()->getParent()->getParent();
309 // To avoid having to handle incoming arguments specially, we lower each arg
310 // to a copy instruction in the entry block. This ensures that the argument
311 // value itself cannot be live across the entry block.
312 BasicBlock::iterator AfterAllocaInsertPt
= F
->begin()->begin();
313 while (isa
<AllocaInst
>(AfterAllocaInsertPt
) &&
314 isa
<ConstantInt
>(cast
<AllocaInst
>(AfterAllocaInsertPt
)->getArraySize()))
315 ++AfterAllocaInsertPt
;
316 for (Function::arg_iterator AI
= F
->arg_begin(), E
= F
->arg_end();
318 const Type
*Ty
= AI
->getType();
319 // Aggregate types can't be cast, but are legal argument types, so we have
320 // to handle them differently. We use an extract/insert pair as a
321 // lightweight method to achieve the same goal.
322 if (isa
<StructType
>(Ty
) || isa
<ArrayType
>(Ty
) || isa
<VectorType
>(Ty
)) {
323 Instruction
*EI
= ExtractValueInst::Create(AI
, 0, "",AfterAllocaInsertPt
);
324 Instruction
*NI
= InsertValueInst::Create(AI
, EI
, 0);
326 AI
->replaceAllUsesWith(NI
);
327 // Set the operand of the instructions back to the AllocaInst.
328 EI
->setOperand(0, AI
);
329 NI
->setOperand(0, AI
);
331 // This is always a no-op cast because we're casting AI to AI->getType()
332 // so src and destination types are identical. BitCast is the only
334 CastInst
*NC
= new BitCastInst(
335 AI
, AI
->getType(), AI
->getName()+".tmp", AfterAllocaInsertPt
);
336 AI
->replaceAllUsesWith(NC
);
337 // Set the operand of the cast instruction back to the AllocaInst.
338 // Normally it's forbidden to replace a CastInst's operand because it
339 // could cause the opcode to reflect an illegal conversion. However,
340 // we're replacing it here with the same value it was constructed with.
341 // We do this because the above replaceAllUsesWith() clobbered the
342 // operand, but we want this one to remain.
343 NC
->setOperand(0, AI
);
347 // Finally, scan the code looking for instructions with bad live ranges.
348 for (Function::iterator BB
= F
->begin(), E
= F
->end(); BB
!= E
; ++BB
)
349 for (BasicBlock::iterator II
= BB
->begin(), E
= BB
->end(); II
!= E
; ++II
) {
350 // Ignore obvious cases we don't have to handle. In particular, most
351 // instructions either have no uses or only have a single use inside the
352 // current block. Ignore them quickly.
353 Instruction
*Inst
= II
;
354 if (Inst
->use_empty()) continue;
355 if (Inst
->hasOneUse() &&
356 cast
<Instruction
>(Inst
->use_back())->getParent() == BB
&&
357 !isa
<PHINode
>(Inst
->use_back())) continue;
359 // If this is an alloca in the entry block, it's not a real register
361 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Inst
))
362 if (isa
<ConstantInt
>(AI
->getArraySize()) && BB
== F
->begin())
365 // Avoid iterator invalidation by copying users to a temporary vector.
366 SmallVector
<Instruction
*,16> Users
;
367 for (Value::use_iterator UI
= Inst
->use_begin(), E
= Inst
->use_end();
369 Instruction
*User
= cast
<Instruction
>(*UI
);
370 if (User
->getParent() != BB
|| isa
<PHINode
>(User
))
371 Users
.push_back(User
);
374 // Scan all of the uses and see if the live range is live across an unwind
375 // edge. If we find a use live across an invoke edge, create an alloca
376 // and spill the value.
377 std::set
<InvokeInst
*> InvokesWithStoreInserted
;
379 // Find all of the blocks that this value is live in.
380 std::set
<BasicBlock
*> LiveBBs
;
381 LiveBBs
.insert(Inst
->getParent());
382 while (!Users
.empty()) {
383 Instruction
*U
= Users
.back();
386 if (!isa
<PHINode
>(U
)) {
387 MarkBlocksLiveIn(U
->getParent(), LiveBBs
);
389 // Uses for a PHI node occur in their predecessor block.
390 PHINode
*PN
= cast
<PHINode
>(U
);
391 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
)
392 if (PN
->getIncomingValue(i
) == Inst
)
393 MarkBlocksLiveIn(PN
->getIncomingBlock(i
), LiveBBs
);
397 // Now that we know all of the blocks that this thing is live in, see if
398 // it includes any of the unwind locations.
399 bool NeedsSpill
= false;
400 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
) {
401 BasicBlock
*UnwindBlock
= Invokes
[i
]->getUnwindDest();
402 if (UnwindBlock
!= BB
&& LiveBBs
.count(UnwindBlock
)) {
407 // If we decided we need a spill, do it.
410 DemoteRegToStack(*Inst
, true);
415 bool LowerInvoke::insertExpensiveEHSupport(Function
&F
) {
416 SmallVector
<ReturnInst
*,16> Returns
;
417 SmallVector
<UnwindInst
*,16> Unwinds
;
418 SmallVector
<InvokeInst
*,16> Invokes
;
420 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
421 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
->getTerminator())) {
422 // Remember all return instructions in case we insert an invoke into this
424 Returns
.push_back(RI
);
425 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(BB
->getTerminator())) {
426 Invokes
.push_back(II
);
427 } else if (UnwindInst
*UI
= dyn_cast
<UnwindInst
>(BB
->getTerminator())) {
428 Unwinds
.push_back(UI
);
431 if (Unwinds
.empty() && Invokes
.empty()) return false;
433 NumInvokes
+= Invokes
.size();
434 NumUnwinds
+= Unwinds
.size();
436 // TODO: This is not an optimal way to do this. In particular, this always
437 // inserts setjmp calls into the entries of functions with invoke instructions
438 // even though there are possibly paths through the function that do not
439 // execute any invokes. In particular, for functions with early exits, e.g.
440 // the 'addMove' method in hexxagon, it would be nice to not have to do the
441 // setjmp stuff on the early exit path. This requires a bit of dataflow, but
442 // would not be too hard to do.
444 // If we have an invoke instruction, insert a setjmp that dominates all
445 // invokes. After the setjmp, use a cond branch that goes to the original
446 // code path on zero, and to a designated 'catch' block of nonzero.
447 Value
*OldJmpBufPtr
= 0;
448 if (!Invokes
.empty()) {
449 // First thing we need to do is scan the whole function for values that are
450 // live across unwind edges. Each value that is live across an unwind edge
451 // we spill into a stack location, guaranteeing that there is nothing live
452 // across the unwind edge. This process also splits all critical edges
453 // coming out of invoke's.
454 splitLiveRangesLiveAcrossInvokes(Invokes
);
456 BasicBlock
*EntryBB
= F
.begin();
458 // Create an alloca for the incoming jump buffer ptr and the new jump buffer
459 // that needs to be restored on all exits from the function. This is an
460 // alloca because the value needs to be live across invokes.
461 unsigned Align
= TLI
? TLI
->getJumpBufAlignment() : 0;
463 new AllocaInst(JBLinkTy
, 0, Align
,
464 "jblink", F
.begin()->begin());
466 Value
*Idx
[] = { Constant::getNullValue(Type::getInt32Ty(F
.getContext())),
467 ConstantInt::get(Type::getInt32Ty(F
.getContext()), 1) };
468 OldJmpBufPtr
= GetElementPtrInst::Create(JmpBuf
, &Idx
[0], &Idx
[2],
470 EntryBB
->getTerminator());
472 // Copy the JBListHead to the alloca.
473 Value
*OldBuf
= new LoadInst(JBListHead
, "oldjmpbufptr", true,
474 EntryBB
->getTerminator());
475 new StoreInst(OldBuf
, OldJmpBufPtr
, true, EntryBB
->getTerminator());
477 // Add the new jumpbuf to the list.
478 new StoreInst(JmpBuf
, JBListHead
, true, EntryBB
->getTerminator());
480 // Create the catch block. The catch block is basically a big switch
481 // statement that goes to all of the invoke catch blocks.
482 BasicBlock
*CatchBB
=
483 BasicBlock::Create(F
.getContext(), "setjmp.catch", &F
);
485 // Create an alloca which keeps track of the stack pointer before every
486 // invoke, this allows us to properly restore the stack pointer after
488 AllocaInst
*StackPtr
= new AllocaInst(Type::getInt8PtrTy(F
.getContext()), 0,
489 "stackptr", EntryBB
->begin());
491 // Create an alloca which keeps track of which invoke is currently
492 // executing. For normal calls it contains zero.
493 AllocaInst
*InvokeNum
= new AllocaInst(Type::getInt32Ty(F
.getContext()), 0,
494 "invokenum",EntryBB
->begin());
495 new StoreInst(ConstantInt::get(Type::getInt32Ty(F
.getContext()), 0),
496 InvokeNum
, true, EntryBB
->getTerminator());
498 // Insert a load in the Catch block, and a switch on its value. By default,
499 // we go to a block that just does an unwind (which is the correct action
500 // for a standard call).
501 BasicBlock
*UnwindBB
= BasicBlock::Create(F
.getContext(), "unwindbb", &F
);
502 Unwinds
.push_back(new UnwindInst(F
.getContext(), UnwindBB
));
504 Value
*CatchLoad
= new LoadInst(InvokeNum
, "invoke.num", true, CatchBB
);
505 SwitchInst
*CatchSwitch
=
506 SwitchInst::Create(CatchLoad
, UnwindBB
, Invokes
.size(), CatchBB
);
508 // Now that things are set up, insert the setjmp call itself.
510 // Split the entry block to insert the conditional branch for the setjmp.
511 BasicBlock
*ContBlock
= EntryBB
->splitBasicBlock(EntryBB
->getTerminator(),
514 Idx
[1] = ConstantInt::get(Type::getInt32Ty(F
.getContext()), 0);
515 Value
*JmpBufPtr
= GetElementPtrInst::Create(JmpBuf
, &Idx
[0], &Idx
[2],
517 EntryBB
->getTerminator());
518 JmpBufPtr
= new BitCastInst(JmpBufPtr
,
519 Type::getInt8PtrTy(F
.getContext()),
520 "tmp", EntryBB
->getTerminator());
521 Value
*SJRet
= CallInst::Create(SetJmpFn
, JmpBufPtr
, "sjret",
522 EntryBB
->getTerminator());
524 // Compare the return value to zero.
525 Value
*IsNormal
= new ICmpInst(EntryBB
->getTerminator(),
526 ICmpInst::ICMP_EQ
, SJRet
,
527 Constant::getNullValue(SJRet
->getType()),
529 // Nuke the uncond branch.
530 EntryBB
->getTerminator()->eraseFromParent();
532 // Put in a new condbranch in its place.
533 BranchInst::Create(ContBlock
, CatchBB
, IsNormal
, EntryBB
);
535 // At this point, we are all set up, rewrite each invoke instruction.
536 for (unsigned i
= 0, e
= Invokes
.size(); i
!= e
; ++i
)
537 rewriteExpensiveInvoke(Invokes
[i
], i
+1, InvokeNum
, StackPtr
, CatchSwitch
);
540 // We know that there is at least one unwind.
542 // Create three new blocks, the block to load the jmpbuf ptr and compare
543 // against null, the block to do the longjmp, and the error block for if it
544 // is null. Add them at the end of the function because they are not hot.
545 BasicBlock
*UnwindHandler
= BasicBlock::Create(F
.getContext(),
547 BasicBlock
*UnwindBlock
= BasicBlock::Create(F
.getContext(), "unwind", &F
);
548 BasicBlock
*TermBlock
= BasicBlock::Create(F
.getContext(), "unwinderror", &F
);
550 // If this function contains an invoke, restore the old jumpbuf ptr.
553 // Before the return, insert a copy from the saved value to the new value.
554 BufPtr
= new LoadInst(OldJmpBufPtr
, "oldjmpbufptr", UnwindHandler
);
555 new StoreInst(BufPtr
, JBListHead
, UnwindHandler
);
557 BufPtr
= new LoadInst(JBListHead
, "ehlist", UnwindHandler
);
560 // Load the JBList, if it's null, then there was no catch!
561 Value
*NotNull
= new ICmpInst(*UnwindHandler
, ICmpInst::ICMP_NE
, BufPtr
,
562 Constant::getNullValue(BufPtr
->getType()),
564 BranchInst::Create(UnwindBlock
, TermBlock
, NotNull
, UnwindHandler
);
566 // Create the block to do the longjmp.
567 // Get a pointer to the jmpbuf and longjmp.
568 Value
*Idx
[] = { Constant::getNullValue(Type::getInt32Ty(F
.getContext())),
569 ConstantInt::get(Type::getInt32Ty(F
.getContext()), 0) };
570 Idx
[0] = GetElementPtrInst::Create(BufPtr
, &Idx
[0], &Idx
[2], "JmpBuf",
572 Idx
[0] = new BitCastInst(Idx
[0],
573 Type::getInt8PtrTy(F
.getContext()),
575 Idx
[1] = ConstantInt::get(Type::getInt32Ty(F
.getContext()), 1);
576 CallInst::Create(LongJmpFn
, &Idx
[0], &Idx
[2], "", UnwindBlock
);
577 new UnreachableInst(F
.getContext(), UnwindBlock
);
579 // Set up the term block ("throw without a catch").
580 new UnreachableInst(F
.getContext(), TermBlock
);
582 // Insert a call to abort()
583 CallInst::Create(AbortFn
, "",
584 TermBlock
->getTerminator())->setTailCall();
587 // Replace all unwinds with a branch to the unwind handler.
588 for (unsigned i
= 0, e
= Unwinds
.size(); i
!= e
; ++i
) {
589 BranchInst::Create(UnwindHandler
, Unwinds
[i
]);
590 Unwinds
[i
]->eraseFromParent();
593 // Finally, for any returns from this function, if this function contains an
594 // invoke, restore the old jmpbuf pointer to its input value.
596 for (unsigned i
= 0, e
= Returns
.size(); i
!= e
; ++i
) {
597 ReturnInst
*R
= Returns
[i
];
599 // Before the return, insert a copy from the saved value to the new value.
600 Value
*OldBuf
= new LoadInst(OldJmpBufPtr
, "oldjmpbufptr", true, R
);
601 new StoreInst(OldBuf
, JBListHead
, true, R
);
608 bool LowerInvoke::runOnFunction(Function
&F
) {
609 if (useExpensiveEHSupport
)
610 return insertExpensiveEHSupport(F
);
612 return insertCheapEHSupport(F
);