1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file promotes memory references to be register references. It promotes
11 // alloca instructions which only have loads and stores as uses. An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
16 // The algorithm used here is based on:
18 // Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19 // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20 // Programming Languages
21 // POPL '95. ACM, New York, NY, 62-73.
23 // It has been modified to not explicitly use the DJ graph data structure and to
24 // directly compute pruned SSA using per-variable liveness information.
26 //===----------------------------------------------------------------------===//
28 #define DEBUG_TYPE "mem2reg"
29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
30 #include "llvm/Constants.h"
31 #include "llvm/DerivedTypes.h"
32 #include "llvm/Function.h"
33 #include "llvm/Instructions.h"
34 #include "llvm/IntrinsicInst.h"
35 #include "llvm/Metadata.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/DebugInfo.h"
38 #include "llvm/Analysis/DIBuilder.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/InstructionSimplify.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/Support/CFG.h"
53 STATISTIC(NumLocalPromoted
, "Number of alloca's promoted within one block");
54 STATISTIC(NumSingleStore
, "Number of alloca's promoted with a single store");
55 STATISTIC(NumDeadAlloca
, "Number of dead alloca's removed");
56 STATISTIC(NumPHIInsert
, "Number of PHI nodes inserted");
60 struct DenseMapInfo
<std::pair
<BasicBlock
*, unsigned> > {
61 typedef std::pair
<BasicBlock
*, unsigned> EltTy
;
62 static inline EltTy
getEmptyKey() {
63 return EltTy(reinterpret_cast<BasicBlock
*>(-1), ~0U);
65 static inline EltTy
getTombstoneKey() {
66 return EltTy(reinterpret_cast<BasicBlock
*>(-2), 0U);
68 static unsigned getHashValue(const std::pair
<BasicBlock
*, unsigned> &Val
) {
69 return DenseMapInfo
<void*>::getHashValue(Val
.first
) + Val
.second
*2;
71 static bool isEqual(const EltTy
&LHS
, const EltTy
&RHS
) {
77 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
78 /// This is true if there are only loads and stores to the alloca.
80 bool llvm::isAllocaPromotable(const AllocaInst
*AI
) {
81 // FIXME: If the memory unit is of pointer or integer type, we can permit
82 // assignments to subsections of the memory unit.
84 // Only allow direct and non-volatile loads and stores...
85 for (Value::const_use_iterator UI
= AI
->use_begin(), UE
= AI
->use_end();
86 UI
!= UE
; ++UI
) { // Loop over all of the uses of the alloca
88 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
91 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
92 if (SI
->getOperand(0) == AI
)
93 return false; // Don't allow a store OF the AI, only INTO the AI.
104 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
105 /// alloca 'V', if any.
106 static DbgDeclareInst
*FindAllocaDbgDeclare(Value
*V
) {
107 if (MDNode
*DebugNode
= MDNode::getIfExists(V
->getContext(), &V
, 1))
108 for (Value::use_iterator UI
= DebugNode
->use_begin(),
109 E
= DebugNode
->use_end(); UI
!= E
; ++UI
)
110 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(*UI
))
119 // Data package used by RenamePass()
120 class RenamePassData
{
122 typedef std::vector
<Value
*> ValVector
;
124 RenamePassData() : BB(NULL
), Pred(NULL
), Values() {}
125 RenamePassData(BasicBlock
*B
, BasicBlock
*P
,
126 const ValVector
&V
) : BB(B
), Pred(P
), Values(V
) {}
131 void swap(RenamePassData
&RHS
) {
132 std::swap(BB
, RHS
.BB
);
133 std::swap(Pred
, RHS
.Pred
);
134 Values
.swap(RHS
.Values
);
138 /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
139 /// load/store instructions in the block that directly load or store an alloca.
141 /// This functionality is important because it avoids scanning large basic
142 /// blocks multiple times when promoting many allocas in the same block.
143 class LargeBlockInfo
{
144 /// InstNumbers - For each instruction that we track, keep the index of the
145 /// instruction. The index starts out as the number of the instruction from
146 /// the start of the block.
147 DenseMap
<const Instruction
*, unsigned> InstNumbers
;
150 /// isInterestingInstruction - This code only looks at accesses to allocas.
151 static bool isInterestingInstruction(const Instruction
*I
) {
152 return (isa
<LoadInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(0))) ||
153 (isa
<StoreInst
>(I
) && isa
<AllocaInst
>(I
->getOperand(1)));
156 /// getInstructionIndex - Get or calculate the index of the specified
158 unsigned getInstructionIndex(const Instruction
*I
) {
159 assert(isInterestingInstruction(I
) &&
160 "Not a load/store to/from an alloca?");
162 // If we already have this instruction number, return it.
163 DenseMap
<const Instruction
*, unsigned>::iterator It
= InstNumbers
.find(I
);
164 if (It
!= InstNumbers
.end()) return It
->second
;
166 // Scan the whole block to get the instruction. This accumulates
167 // information for every interesting instruction in the block, in order to
168 // avoid gratuitus rescans.
169 const BasicBlock
*BB
= I
->getParent();
171 for (BasicBlock::const_iterator BBI
= BB
->begin(), E
= BB
->end();
173 if (isInterestingInstruction(BBI
))
174 InstNumbers
[BBI
] = InstNo
++;
175 It
= InstNumbers
.find(I
);
177 assert(It
!= InstNumbers
.end() && "Didn't insert instruction?");
181 void deleteValue(const Instruction
*I
) {
182 InstNumbers
.erase(I
);
190 struct PromoteMem2Reg
{
191 /// Allocas - The alloca instructions being promoted.
193 std::vector
<AllocaInst
*> Allocas
;
197 /// AST - An AliasSetTracker object to update. If null, don't update it.
199 AliasSetTracker
*AST
;
201 /// AllocaLookup - Reverse mapping of Allocas.
203 DenseMap
<AllocaInst
*, unsigned> AllocaLookup
;
205 /// NewPhiNodes - The PhiNodes we're adding.
207 DenseMap
<std::pair
<BasicBlock
*, unsigned>, PHINode
*> NewPhiNodes
;
209 /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
210 /// it corresponds to.
211 DenseMap
<PHINode
*, unsigned> PhiToAllocaMap
;
213 /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
214 /// each alloca that is of pointer type, we keep track of what to copyValue
215 /// to the inserted PHI nodes here.
217 std::vector
<Value
*> PointerAllocaValues
;
219 /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
220 /// intrinsic that describes it, if any, so that we can convert it to a
221 /// dbg.value intrinsic if the alloca gets promoted.
222 SmallVector
<DbgDeclareInst
*, 8> AllocaDbgDeclares
;
224 /// Visited - The set of basic blocks the renamer has already visited.
226 SmallPtrSet
<BasicBlock
*, 16> Visited
;
228 /// BBNumbers - Contains a stable numbering of basic blocks to avoid
229 /// non-determinstic behavior.
230 DenseMap
<BasicBlock
*, unsigned> BBNumbers
;
232 /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
233 DenseMap
<DomTreeNode
*, unsigned> DomLevels
;
235 /// BBNumPreds - Lazily compute the number of predecessors a block has.
236 DenseMap
<const BasicBlock
*, unsigned> BBNumPreds
;
238 PromoteMem2Reg(const std::vector
<AllocaInst
*> &A
, DominatorTree
&dt
,
239 AliasSetTracker
*ast
)
240 : Allocas(A
), DT(dt
), DIB(0), AST(ast
) {}
247 /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
249 bool dominates(BasicBlock
*BB1
, BasicBlock
*BB2
) const {
250 return DT
.dominates(BB1
, BB2
);
254 void RemoveFromAllocasList(unsigned &AllocaIdx
) {
255 Allocas
[AllocaIdx
] = Allocas
.back();
260 unsigned getNumPreds(const BasicBlock
*BB
) {
261 unsigned &NP
= BBNumPreds
[BB
];
263 NP
= std::distance(pred_begin(BB
), pred_end(BB
))+1;
267 void DetermineInsertionPoint(AllocaInst
*AI
, unsigned AllocaNum
,
269 void ComputeLiveInBlocks(AllocaInst
*AI
, AllocaInfo
&Info
,
270 const SmallPtrSet
<BasicBlock
*, 32> &DefBlocks
,
271 SmallPtrSet
<BasicBlock
*, 32> &LiveInBlocks
);
273 void RewriteSingleStoreAlloca(AllocaInst
*AI
, AllocaInfo
&Info
,
274 LargeBlockInfo
&LBI
);
275 void PromoteSingleBlockAlloca(AllocaInst
*AI
, AllocaInfo
&Info
,
276 LargeBlockInfo
&LBI
);
278 void RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
279 RenamePassData::ValVector
&IncVals
,
280 std::vector
<RenamePassData
> &Worklist
);
281 bool QueuePhiNode(BasicBlock
*BB
, unsigned AllocaIdx
, unsigned &Version
);
285 SmallVector
<BasicBlock
*, 32> DefiningBlocks
;
286 SmallVector
<BasicBlock
*, 32> UsingBlocks
;
288 StoreInst
*OnlyStore
;
289 BasicBlock
*OnlyBlock
;
290 bool OnlyUsedInOneBlock
;
292 Value
*AllocaPointerVal
;
293 DbgDeclareInst
*DbgDeclare
;
296 DefiningBlocks
.clear();
300 OnlyUsedInOneBlock
= true;
301 AllocaPointerVal
= 0;
305 /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
307 void AnalyzeAlloca(AllocaInst
*AI
) {
310 // As we scan the uses of the alloca instruction, keep track of stores,
311 // and decide whether all of the loads and stores to the alloca are within
312 // the same basic block.
313 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
315 Instruction
*User
= cast
<Instruction
>(*UI
++);
317 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(User
)) {
318 // Remember the basic blocks which define new values for the alloca
319 DefiningBlocks
.push_back(SI
->getParent());
320 AllocaPointerVal
= SI
->getOperand(0);
323 LoadInst
*LI
= cast
<LoadInst
>(User
);
324 // Otherwise it must be a load instruction, keep track of variable
326 UsingBlocks
.push_back(LI
->getParent());
327 AllocaPointerVal
= LI
;
330 if (OnlyUsedInOneBlock
) {
332 OnlyBlock
= User
->getParent();
333 else if (OnlyBlock
!= User
->getParent())
334 OnlyUsedInOneBlock
= false;
338 DbgDeclare
= FindAllocaDbgDeclare(AI
);
342 typedef std::pair
<DomTreeNode
*, unsigned> DomTreeNodePair
;
344 struct DomTreeNodeCompare
{
345 bool operator()(const DomTreeNodePair
&LHS
, const DomTreeNodePair
&RHS
) {
346 return LHS
.second
< RHS
.second
;
349 } // end of anonymous namespace
352 void PromoteMem2Reg::run() {
353 Function
&F
= *DT
.getRoot()->getParent();
355 if (AST
) PointerAllocaValues
.resize(Allocas
.size());
356 AllocaDbgDeclares
.resize(Allocas
.size());
361 for (unsigned AllocaNum
= 0; AllocaNum
!= Allocas
.size(); ++AllocaNum
) {
362 AllocaInst
*AI
= Allocas
[AllocaNum
];
364 assert(isAllocaPromotable(AI
) &&
365 "Cannot promote non-promotable alloca!");
366 assert(AI
->getParent()->getParent() == &F
&&
367 "All allocas should be in the same function, which is same as DF!");
369 if (AI
->use_empty()) {
370 // If there are no uses of the alloca, just delete it now.
371 if (AST
) AST
->deleteValue(AI
);
372 AI
->eraseFromParent();
374 // Remove the alloca from the Allocas list, since it has been processed
375 RemoveFromAllocasList(AllocaNum
);
380 // Calculate the set of read and write-locations for each alloca. This is
381 // analogous to finding the 'uses' and 'definitions' of each variable.
382 Info
.AnalyzeAlloca(AI
);
384 // If there is only a single store to this value, replace any loads of
385 // it that are directly dominated by the definition with the value stored.
386 if (Info
.DefiningBlocks
.size() == 1) {
387 RewriteSingleStoreAlloca(AI
, Info
, LBI
);
389 // Finally, after the scan, check to see if the store is all that is left.
390 if (Info
.UsingBlocks
.empty()) {
391 // Record debuginfo for the store and remove the declaration's debuginfo.
392 if (DbgDeclareInst
*DDI
= Info
.DbgDeclare
) {
394 DIB
= new DIBuilder(*DDI
->getParent()->getParent()->getParent());
395 ConvertDebugDeclareToDebugValue(DDI
, Info
.OnlyStore
, *DIB
);
396 DDI
->eraseFromParent();
398 // Remove the (now dead) store and alloca.
399 Info
.OnlyStore
->eraseFromParent();
400 LBI
.deleteValue(Info
.OnlyStore
);
402 if (AST
) AST
->deleteValue(AI
);
403 AI
->eraseFromParent();
406 // The alloca has been processed, move on.
407 RemoveFromAllocasList(AllocaNum
);
414 // If the alloca is only read and written in one basic block, just perform a
415 // linear sweep over the block to eliminate it.
416 if (Info
.OnlyUsedInOneBlock
) {
417 PromoteSingleBlockAlloca(AI
, Info
, LBI
);
419 // Finally, after the scan, check to see if the stores are all that is
421 if (Info
.UsingBlocks
.empty()) {
423 // Remove the (now dead) stores and alloca.
424 while (!AI
->use_empty()) {
425 StoreInst
*SI
= cast
<StoreInst
>(AI
->use_back());
426 // Record debuginfo for the store before removing it.
427 if (DbgDeclareInst
*DDI
= Info
.DbgDeclare
) {
429 DIB
= new DIBuilder(*SI
->getParent()->getParent()->getParent());
430 ConvertDebugDeclareToDebugValue(DDI
, SI
, *DIB
);
432 SI
->eraseFromParent();
436 if (AST
) AST
->deleteValue(AI
);
437 AI
->eraseFromParent();
440 // The alloca has been processed, move on.
441 RemoveFromAllocasList(AllocaNum
);
443 // The alloca's debuginfo can be removed as well.
444 if (DbgDeclareInst
*DDI
= Info
.DbgDeclare
)
445 DDI
->eraseFromParent();
452 // If we haven't computed dominator tree levels, do so now.
453 if (DomLevels
.empty()) {
454 SmallVector
<DomTreeNode
*, 32> Worklist
;
456 DomTreeNode
*Root
= DT
.getRootNode();
458 Worklist
.push_back(Root
);
460 while (!Worklist
.empty()) {
461 DomTreeNode
*Node
= Worklist
.pop_back_val();
462 unsigned ChildLevel
= DomLevels
[Node
] + 1;
463 for (DomTreeNode::iterator CI
= Node
->begin(), CE
= Node
->end();
465 DomLevels
[*CI
] = ChildLevel
;
466 Worklist
.push_back(*CI
);
471 // If we haven't computed a numbering for the BB's in the function, do so
473 if (BBNumbers
.empty()) {
475 for (Function::iterator I
= F
.begin(), E
= F
.end(); I
!= E
; ++I
)
479 // If we have an AST to keep updated, remember some pointer value that is
480 // stored into the alloca.
482 PointerAllocaValues
[AllocaNum
] = Info
.AllocaPointerVal
;
484 // Remember the dbg.declare intrinsic describing this alloca, if any.
485 if (Info
.DbgDeclare
) AllocaDbgDeclares
[AllocaNum
] = Info
.DbgDeclare
;
487 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
488 AllocaLookup
[Allocas
[AllocaNum
]] = AllocaNum
;
490 // At this point, we're committed to promoting the alloca using IDF's, and
491 // the standard SSA construction algorithm. Determine which blocks need PHI
492 // nodes and see if we can optimize out some work by avoiding insertion of
494 DetermineInsertionPoint(AI
, AllocaNum
, Info
);
498 return; // All of the allocas must have been trivial!
503 // Set the incoming values for the basic block to be null values for all of
504 // the alloca's. We do this in case there is a load of a value that has not
505 // been stored yet. In this case, it will get this null value.
507 RenamePassData::ValVector
Values(Allocas
.size());
508 for (unsigned i
= 0, e
= Allocas
.size(); i
!= e
; ++i
)
509 Values
[i
] = UndefValue::get(Allocas
[i
]->getAllocatedType());
511 // Walks all basic blocks in the function performing the SSA rename algorithm
512 // and inserting the phi nodes we marked as necessary
514 std::vector
<RenamePassData
> RenamePassWorkList
;
515 RenamePassWorkList
.push_back(RenamePassData(F
.begin(), 0, Values
));
518 RPD
.swap(RenamePassWorkList
.back());
519 RenamePassWorkList
.pop_back();
520 // RenamePass may add new worklist entries.
521 RenamePass(RPD
.BB
, RPD
.Pred
, RPD
.Values
, RenamePassWorkList
);
522 } while (!RenamePassWorkList
.empty());
524 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
527 // Remove the allocas themselves from the function.
528 for (unsigned i
= 0, e
= Allocas
.size(); i
!= e
; ++i
) {
529 Instruction
*A
= Allocas
[i
];
531 // If there are any uses of the alloca instructions left, they must be in
532 // unreachable basic blocks that were not processed by walking the dominator
533 // tree. Just delete the users now.
535 A
->replaceAllUsesWith(UndefValue::get(A
->getType()));
536 if (AST
) AST
->deleteValue(A
);
537 A
->eraseFromParent();
540 // Remove alloca's dbg.declare instrinsics from the function.
541 for (unsigned i
= 0, e
= AllocaDbgDeclares
.size(); i
!= e
; ++i
)
542 if (DbgDeclareInst
*DDI
= AllocaDbgDeclares
[i
])
543 DDI
->eraseFromParent();
545 // Loop over all of the PHI nodes and see if there are any that we can get
546 // rid of because they merge all of the same incoming values. This can
547 // happen due to undef values coming into the PHI nodes. This process is
548 // iterative, because eliminating one PHI node can cause others to be removed.
549 bool EliminatedAPHI
= true;
550 while (EliminatedAPHI
) {
551 EliminatedAPHI
= false;
553 for (DenseMap
<std::pair
<BasicBlock
*, unsigned>, PHINode
*>::iterator I
=
554 NewPhiNodes
.begin(), E
= NewPhiNodes
.end(); I
!= E
;) {
555 PHINode
*PN
= I
->second
;
557 // If this PHI node merges one value and/or undefs, get the value.
558 if (Value
*V
= SimplifyInstruction(PN
, 0, &DT
)) {
559 if (AST
&& PN
->getType()->isPointerTy())
560 AST
->deleteValue(PN
);
561 PN
->replaceAllUsesWith(V
);
562 PN
->eraseFromParent();
563 NewPhiNodes
.erase(I
++);
564 EliminatedAPHI
= true;
571 // At this point, the renamer has added entries to PHI nodes for all reachable
572 // code. Unfortunately, there may be unreachable blocks which the renamer
573 // hasn't traversed. If this is the case, the PHI nodes may not
574 // have incoming values for all predecessors. Loop over all PHI nodes we have
575 // created, inserting undef values if they are missing any incoming values.
577 for (DenseMap
<std::pair
<BasicBlock
*, unsigned>, PHINode
*>::iterator I
=
578 NewPhiNodes
.begin(), E
= NewPhiNodes
.end(); I
!= E
; ++I
) {
579 // We want to do this once per basic block. As such, only process a block
580 // when we find the PHI that is the first entry in the block.
581 PHINode
*SomePHI
= I
->second
;
582 BasicBlock
*BB
= SomePHI
->getParent();
583 if (&BB
->front() != SomePHI
)
586 // Only do work here if there the PHI nodes are missing incoming values. We
587 // know that all PHI nodes that were inserted in a block will have the same
588 // number of incoming values, so we can just check any of them.
589 if (SomePHI
->getNumIncomingValues() == getNumPreds(BB
))
592 // Get the preds for BB.
593 SmallVector
<BasicBlock
*, 16> Preds(pred_begin(BB
), pred_end(BB
));
595 // Ok, now we know that all of the PHI nodes are missing entries for some
596 // basic blocks. Start by sorting the incoming predecessors for efficient
598 std::sort(Preds
.begin(), Preds
.end());
600 // Now we loop through all BB's which have entries in SomePHI and remove
601 // them from the Preds list.
602 for (unsigned i
= 0, e
= SomePHI
->getNumIncomingValues(); i
!= e
; ++i
) {
603 // Do a log(n) search of the Preds list for the entry we want.
604 SmallVector
<BasicBlock
*, 16>::iterator EntIt
=
605 std::lower_bound(Preds
.begin(), Preds
.end(),
606 SomePHI
->getIncomingBlock(i
));
607 assert(EntIt
!= Preds
.end() && *EntIt
== SomePHI
->getIncomingBlock(i
)&&
608 "PHI node has entry for a block which is not a predecessor!");
614 // At this point, the blocks left in the preds list must have dummy
615 // entries inserted into every PHI nodes for the block. Update all the phi
616 // nodes in this block that we are inserting (there could be phis before
618 unsigned NumBadPreds
= SomePHI
->getNumIncomingValues();
619 BasicBlock::iterator BBI
= BB
->begin();
620 while ((SomePHI
= dyn_cast
<PHINode
>(BBI
++)) &&
621 SomePHI
->getNumIncomingValues() == NumBadPreds
) {
622 Value
*UndefVal
= UndefValue::get(SomePHI
->getType());
623 for (unsigned pred
= 0, e
= Preds
.size(); pred
!= e
; ++pred
)
624 SomePHI
->addIncoming(UndefVal
, Preds
[pred
]);
632 /// ComputeLiveInBlocks - Determine which blocks the value is live in. These
633 /// are blocks which lead to uses. Knowing this allows us to avoid inserting
634 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
636 void PromoteMem2Reg::
637 ComputeLiveInBlocks(AllocaInst
*AI
, AllocaInfo
&Info
,
638 const SmallPtrSet
<BasicBlock
*, 32> &DefBlocks
,
639 SmallPtrSet
<BasicBlock
*, 32> &LiveInBlocks
) {
641 // To determine liveness, we must iterate through the predecessors of blocks
642 // where the def is live. Blocks are added to the worklist if we need to
643 // check their predecessors. Start with all the using blocks.
644 SmallVector
<BasicBlock
*, 64> LiveInBlockWorklist(Info
.UsingBlocks
.begin(),
645 Info
.UsingBlocks
.end());
647 // If any of the using blocks is also a definition block, check to see if the
648 // definition occurs before or after the use. If it happens before the use,
649 // the value isn't really live-in.
650 for (unsigned i
= 0, e
= LiveInBlockWorklist
.size(); i
!= e
; ++i
) {
651 BasicBlock
*BB
= LiveInBlockWorklist
[i
];
652 if (!DefBlocks
.count(BB
)) continue;
654 // Okay, this is a block that both uses and defines the value. If the first
655 // reference to the alloca is a def (store), then we know it isn't live-in.
656 for (BasicBlock::iterator I
= BB
->begin(); ; ++I
) {
657 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
658 if (SI
->getOperand(1) != AI
) continue;
660 // We found a store to the alloca before a load. The alloca is not
661 // actually live-in here.
662 LiveInBlockWorklist
[i
] = LiveInBlockWorklist
.back();
663 LiveInBlockWorklist
.pop_back();
668 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
669 if (LI
->getOperand(0) != AI
) continue;
671 // Okay, we found a load before a store to the alloca. It is actually
672 // live into this block.
678 // Now that we have a set of blocks where the phi is live-in, recursively add
679 // their predecessors until we find the full region the value is live.
680 while (!LiveInBlockWorklist
.empty()) {
681 BasicBlock
*BB
= LiveInBlockWorklist
.pop_back_val();
683 // The block really is live in here, insert it into the set. If already in
684 // the set, then it has already been processed.
685 if (!LiveInBlocks
.insert(BB
))
688 // Since the value is live into BB, it is either defined in a predecessor or
689 // live into it to. Add the preds to the worklist unless they are a
691 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
) {
694 // The value is not live into a predecessor if it defines the value.
695 if (DefBlocks
.count(P
))
698 // Otherwise it is, add to the worklist.
699 LiveInBlockWorklist
.push_back(P
);
704 /// DetermineInsertionPoint - At this point, we're committed to promoting the
705 /// alloca using IDF's, and the standard SSA construction algorithm. Determine
706 /// which blocks need phi nodes and see if we can optimize out some work by
707 /// avoiding insertion of dead phi nodes.
708 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst
*AI
, unsigned AllocaNum
,
710 // Unique the set of defining blocks for efficient lookup.
711 SmallPtrSet
<BasicBlock
*, 32> DefBlocks
;
712 DefBlocks
.insert(Info
.DefiningBlocks
.begin(), Info
.DefiningBlocks
.end());
714 // Determine which blocks the value is live in. These are blocks which lead
716 SmallPtrSet
<BasicBlock
*, 32> LiveInBlocks
;
717 ComputeLiveInBlocks(AI
, Info
, DefBlocks
, LiveInBlocks
);
719 // Use a priority queue keyed on dominator tree level so that inserted nodes
720 // are handled from the bottom of the dominator tree upwards.
721 typedef std::priority_queue
<DomTreeNodePair
, SmallVector
<DomTreeNodePair
, 32>,
722 DomTreeNodeCompare
> IDFPriorityQueue
;
725 for (SmallPtrSet
<BasicBlock
*, 32>::const_iterator I
= DefBlocks
.begin(),
726 E
= DefBlocks
.end(); I
!= E
; ++I
) {
727 if (DomTreeNode
*Node
= DT
.getNode(*I
))
728 PQ
.push(std::make_pair(Node
, DomLevels
[Node
]));
731 SmallVector
<std::pair
<unsigned, BasicBlock
*>, 32> DFBlocks
;
732 SmallPtrSet
<DomTreeNode
*, 32> Visited
;
733 SmallVector
<DomTreeNode
*, 32> Worklist
;
734 while (!PQ
.empty()) {
735 DomTreeNodePair RootPair
= PQ
.top();
737 DomTreeNode
*Root
= RootPair
.first
;
738 unsigned RootLevel
= RootPair
.second
;
740 // Walk all dominator tree children of Root, inspecting their CFG edges with
741 // targets elsewhere on the dominator tree. Only targets whose level is at
742 // most Root's level are added to the iterated dominance frontier of the
746 Worklist
.push_back(Root
);
748 while (!Worklist
.empty()) {
749 DomTreeNode
*Node
= Worklist
.pop_back_val();
750 BasicBlock
*BB
= Node
->getBlock();
752 for (succ_iterator SI
= succ_begin(BB
), SE
= succ_end(BB
); SI
!= SE
;
754 DomTreeNode
*SuccNode
= DT
.getNode(*SI
);
756 // Quickly skip all CFG edges that are also dominator tree edges instead
757 // of catching them below.
758 if (SuccNode
->getIDom() == Node
)
761 unsigned SuccLevel
= DomLevels
[SuccNode
];
762 if (SuccLevel
> RootLevel
)
765 if (!Visited
.insert(SuccNode
))
768 BasicBlock
*SuccBB
= SuccNode
->getBlock();
769 if (!LiveInBlocks
.count(SuccBB
))
772 DFBlocks
.push_back(std::make_pair(BBNumbers
[SuccBB
], SuccBB
));
773 if (!DefBlocks
.count(SuccBB
))
774 PQ
.push(std::make_pair(SuccNode
, SuccLevel
));
777 for (DomTreeNode::iterator CI
= Node
->begin(), CE
= Node
->end(); CI
!= CE
;
779 if (!Visited
.count(*CI
))
780 Worklist
.push_back(*CI
);
785 if (DFBlocks
.size() > 1)
786 std::sort(DFBlocks
.begin(), DFBlocks
.end());
788 unsigned CurrentVersion
= 0;
789 for (unsigned i
= 0, e
= DFBlocks
.size(); i
!= e
; ++i
)
790 QueuePhiNode(DFBlocks
[i
].second
, AllocaNum
, CurrentVersion
);
793 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
794 /// replace any loads of it that are directly dominated by the definition with
795 /// the value stored.
796 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst
*AI
,
798 LargeBlockInfo
&LBI
) {
799 StoreInst
*OnlyStore
= Info
.OnlyStore
;
800 bool StoringGlobalVal
= !isa
<Instruction
>(OnlyStore
->getOperand(0));
801 BasicBlock
*StoreBB
= OnlyStore
->getParent();
804 // Clear out UsingBlocks. We will reconstruct it here if needed.
805 Info
.UsingBlocks
.clear();
807 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end(); UI
!= E
; ) {
808 Instruction
*UserInst
= cast
<Instruction
>(*UI
++);
809 if (!isa
<LoadInst
>(UserInst
)) {
810 assert(UserInst
== OnlyStore
&& "Should only have load/stores");
813 LoadInst
*LI
= cast
<LoadInst
>(UserInst
);
815 // Okay, if we have a load from the alloca, we want to replace it with the
816 // only value stored to the alloca. We can do this if the value is
817 // dominated by the store. If not, we use the rest of the mem2reg machinery
818 // to insert the phi nodes as needed.
819 if (!StoringGlobalVal
) { // Non-instructions are always dominated.
820 if (LI
->getParent() == StoreBB
) {
821 // If we have a use that is in the same block as the store, compare the
822 // indices of the two instructions to see which one came first. If the
823 // load came before the store, we can't handle it.
824 if (StoreIndex
== -1)
825 StoreIndex
= LBI
.getInstructionIndex(OnlyStore
);
827 if (unsigned(StoreIndex
) > LBI
.getInstructionIndex(LI
)) {
828 // Can't handle this load, bail out.
829 Info
.UsingBlocks
.push_back(StoreBB
);
833 } else if (LI
->getParent() != StoreBB
&&
834 !dominates(StoreBB
, LI
->getParent())) {
835 // If the load and store are in different blocks, use BB dominance to
836 // check their relationships. If the store doesn't dom the use, bail
838 Info
.UsingBlocks
.push_back(LI
->getParent());
843 // Otherwise, we *can* safely rewrite this load.
844 Value
*ReplVal
= OnlyStore
->getOperand(0);
845 // If the replacement value is the load, this must occur in unreachable
848 ReplVal
= UndefValue::get(LI
->getType());
849 LI
->replaceAllUsesWith(ReplVal
);
850 if (AST
&& LI
->getType()->isPointerTy())
851 AST
->deleteValue(LI
);
852 LI
->eraseFromParent();
859 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
860 /// first element of a pair.
861 struct StoreIndexSearchPredicate
{
862 bool operator()(const std::pair
<unsigned, StoreInst
*> &LHS
,
863 const std::pair
<unsigned, StoreInst
*> &RHS
) {
864 return LHS
.first
< RHS
.first
;
870 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
871 /// block. If this is the case, avoid traversing the CFG and inserting a lot of
872 /// potentially useless PHI nodes by just performing a single linear pass over
873 /// the basic block using the Alloca.
875 /// If we cannot promote this alloca (because it is read before it is written),
876 /// return true. This is necessary in cases where, due to control flow, the
877 /// alloca is potentially undefined on some control flow paths. e.g. code like
878 /// this is potentially correct:
880 /// for (...) { if (c) { A = undef; undef = B; } }
882 /// ... so long as A is not used before undef is set.
884 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst
*AI
, AllocaInfo
&Info
,
885 LargeBlockInfo
&LBI
) {
886 // The trickiest case to handle is when we have large blocks. Because of this,
887 // this code is optimized assuming that large blocks happen. This does not
888 // significantly pessimize the small block case. This uses LargeBlockInfo to
889 // make it efficient to get the index of various operations in the block.
891 // Clear out UsingBlocks. We will reconstruct it here if needed.
892 Info
.UsingBlocks
.clear();
894 // Walk the use-def list of the alloca, getting the locations of all stores.
895 typedef SmallVector
<std::pair
<unsigned, StoreInst
*>, 64> StoresByIndexTy
;
896 StoresByIndexTy StoresByIndex
;
898 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end();
900 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(*UI
))
901 StoresByIndex
.push_back(std::make_pair(LBI
.getInstructionIndex(SI
), SI
));
903 // If there are no stores to the alloca, just replace any loads with undef.
904 if (StoresByIndex
.empty()) {
905 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end(); UI
!= E
;)
906 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
++)) {
907 LI
->replaceAllUsesWith(UndefValue::get(LI
->getType()));
908 if (AST
&& LI
->getType()->isPointerTy())
909 AST
->deleteValue(LI
);
911 LI
->eraseFromParent();
916 // Sort the stores by their index, making it efficient to do a lookup with a
918 std::sort(StoresByIndex
.begin(), StoresByIndex
.end());
920 // Walk all of the loads from this alloca, replacing them with the nearest
921 // store above them, if any.
922 for (Value::use_iterator UI
= AI
->use_begin(), E
= AI
->use_end(); UI
!= E
;) {
923 LoadInst
*LI
= dyn_cast
<LoadInst
>(*UI
++);
926 unsigned LoadIdx
= LBI
.getInstructionIndex(LI
);
928 // Find the nearest store that has a lower than this load.
929 StoresByIndexTy::iterator I
=
930 std::lower_bound(StoresByIndex
.begin(), StoresByIndex
.end(),
931 std::pair
<unsigned, StoreInst
*>(LoadIdx
, static_cast<StoreInst
*>(0)),
932 StoreIndexSearchPredicate());
934 // If there is no store before this load, then we can't promote this load.
935 if (I
== StoresByIndex
.begin()) {
936 // Can't handle this load, bail out.
937 Info
.UsingBlocks
.push_back(LI
->getParent());
941 // Otherwise, there was a store before this load, the load takes its value.
943 LI
->replaceAllUsesWith(I
->second
->getOperand(0));
944 if (AST
&& LI
->getType()->isPointerTy())
945 AST
->deleteValue(LI
);
946 LI
->eraseFromParent();
951 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
952 // Alloca returns true if there wasn't already a phi-node for that variable
954 bool PromoteMem2Reg::QueuePhiNode(BasicBlock
*BB
, unsigned AllocaNo
,
956 // Look up the basic-block in question.
957 PHINode
*&PN
= NewPhiNodes
[std::make_pair(BB
, AllocaNo
)];
959 // If the BB already has a phi node added for the i'th alloca then we're done!
960 if (PN
) return false;
962 // Create a PhiNode using the dereferenced type... and add the phi-node to the
964 PN
= PHINode::Create(Allocas
[AllocaNo
]->getAllocatedType(), getNumPreds(BB
),
965 Allocas
[AllocaNo
]->getName() + "." + Twine(Version
++),
968 PhiToAllocaMap
[PN
] = AllocaNo
;
970 if (AST
&& PN
->getType()->isPointerTy())
971 AST
->copyValue(PointerAllocaValues
[AllocaNo
], PN
);
976 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
977 // stores to the allocas which we are promoting. IncomingVals indicates what
978 // value each Alloca contains on exit from the predecessor block Pred.
980 void PromoteMem2Reg::RenamePass(BasicBlock
*BB
, BasicBlock
*Pred
,
981 RenamePassData::ValVector
&IncomingVals
,
982 std::vector
<RenamePassData
> &Worklist
) {
984 // If we are inserting any phi nodes into this BB, they will already be in the
986 if (PHINode
*APN
= dyn_cast
<PHINode
>(BB
->begin())) {
987 // If we have PHI nodes to update, compute the number of edges from Pred to
989 if (PhiToAllocaMap
.count(APN
)) {
990 // We want to be able to distinguish between PHI nodes being inserted by
991 // this invocation of mem2reg from those phi nodes that already existed in
992 // the IR before mem2reg was run. We determine that APN is being inserted
993 // because it is missing incoming edges. All other PHI nodes being
994 // inserted by this pass of mem2reg will have the same number of incoming
995 // operands so far. Remember this count.
996 unsigned NewPHINumOperands
= APN
->getNumOperands();
998 unsigned NumEdges
= 0;
999 for (succ_iterator I
= succ_begin(Pred
), E
= succ_end(Pred
); I
!= E
; ++I
)
1002 assert(NumEdges
&& "Must be at least one edge from Pred to BB!");
1004 // Add entries for all the phis.
1005 BasicBlock::iterator PNI
= BB
->begin();
1007 unsigned AllocaNo
= PhiToAllocaMap
[APN
];
1009 // Add N incoming values to the PHI node.
1010 for (unsigned i
= 0; i
!= NumEdges
; ++i
)
1011 APN
->addIncoming(IncomingVals
[AllocaNo
], Pred
);
1013 // The currently active variable for this block is now the PHI.
1014 IncomingVals
[AllocaNo
] = APN
;
1016 // Get the next phi node.
1018 APN
= dyn_cast
<PHINode
>(PNI
);
1019 if (APN
== 0) break;
1021 // Verify that it is missing entries. If not, it is not being inserted
1022 // by this mem2reg invocation so we want to ignore it.
1023 } while (APN
->getNumOperands() == NewPHINumOperands
);
1027 // Don't revisit blocks.
1028 if (!Visited
.insert(BB
)) return;
1030 for (BasicBlock::iterator II
= BB
->begin(); !isa
<TerminatorInst
>(II
); ) {
1031 Instruction
*I
= II
++; // get the instruction, increment iterator
1033 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
1034 AllocaInst
*Src
= dyn_cast
<AllocaInst
>(LI
->getPointerOperand());
1037 DenseMap
<AllocaInst
*, unsigned>::iterator AI
= AllocaLookup
.find(Src
);
1038 if (AI
== AllocaLookup
.end()) continue;
1040 Value
*V
= IncomingVals
[AI
->second
];
1042 // Anything using the load now uses the current value.
1043 LI
->replaceAllUsesWith(V
);
1044 if (AST
&& LI
->getType()->isPointerTy())
1045 AST
->deleteValue(LI
);
1046 BB
->getInstList().erase(LI
);
1047 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
1048 // Delete this instruction and mark the name as the current holder of the
1050 AllocaInst
*Dest
= dyn_cast
<AllocaInst
>(SI
->getPointerOperand());
1051 if (!Dest
) continue;
1053 DenseMap
<AllocaInst
*, unsigned>::iterator ai
= AllocaLookup
.find(Dest
);
1054 if (ai
== AllocaLookup
.end())
1057 // what value were we writing?
1058 IncomingVals
[ai
->second
] = SI
->getOperand(0);
1059 // Record debuginfo for the store before removing it.
1060 if (DbgDeclareInst
*DDI
= AllocaDbgDeclares
[ai
->second
]) {
1062 DIB
= new DIBuilder(*SI
->getParent()->getParent()->getParent());
1063 ConvertDebugDeclareToDebugValue(DDI
, SI
, *DIB
);
1065 BB
->getInstList().erase(SI
);
1069 // 'Recurse' to our successors.
1070 succ_iterator I
= succ_begin(BB
), E
= succ_end(BB
);
1073 // Keep track of the successors so we don't visit the same successor twice
1074 SmallPtrSet
<BasicBlock
*, 8> VisitedSuccs
;
1076 // Handle the first successor without using the worklist.
1077 VisitedSuccs
.insert(*I
);
1083 if (VisitedSuccs
.insert(*I
))
1084 Worklist
.push_back(RenamePassData(*I
, Pred
, IncomingVals
));
1089 /// PromoteMemToReg - Promote the specified list of alloca instructions into
1090 /// scalar registers, inserting PHI nodes as appropriate. This function does
1091 /// not modify the CFG of the function at all. All allocas must be from the
1094 /// If AST is specified, the specified tracker is updated to reflect changes
1097 void llvm::PromoteMemToReg(const std::vector
<AllocaInst
*> &Allocas
,
1098 DominatorTree
&DT
, AliasSetTracker
*AST
) {
1099 // If there is nothing to do, bail out...
1100 if (Allocas
.empty()) return;
1102 PromoteMem2Reg(Allocas
, DT
, AST
).run();