Use %ull here.
[llvm/stm8.git] / lib / Transforms / Utils / PromoteMemoryToRegister.cpp
blobc96bbad770075f7567c3bc2fc48f032c29636d3e
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references. It promotes
11 // alloca instructions which only have loads and stores as uses. An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
16 // The algorithm used here is based on:
18 // Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19 // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20 // Programming Languages
21 // POPL '95. ACM, New York, NY, 62-73.
23 // It has been modified to not explicitly use the DJ graph data structure and to
24 // directly compute pruned SSA using per-variable liveness information.
26 //===----------------------------------------------------------------------===//
28 #define DEBUG_TYPE "mem2reg"
29 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
30 #include "llvm/Constants.h"
31 #include "llvm/DerivedTypes.h"
32 #include "llvm/Function.h"
33 #include "llvm/Instructions.h"
34 #include "llvm/IntrinsicInst.h"
35 #include "llvm/Metadata.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/DebugInfo.h"
38 #include "llvm/Analysis/DIBuilder.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Analysis/InstructionSimplify.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/Support/CFG.h"
48 #include <algorithm>
49 #include <map>
50 #include <queue>
51 using namespace llvm;
53 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
54 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
55 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
56 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
58 namespace llvm {
59 template<>
60 struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
61 typedef std::pair<BasicBlock*, unsigned> EltTy;
62 static inline EltTy getEmptyKey() {
63 return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
65 static inline EltTy getTombstoneKey() {
66 return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
68 static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
69 return DenseMapInfo<void*>::getHashValue(Val.first) + Val.second*2;
71 static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
72 return LHS == RHS;
77 /// isAllocaPromotable - Return true if this alloca is legal for promotion.
78 /// This is true if there are only loads and stores to the alloca.
79 ///
80 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
81 // FIXME: If the memory unit is of pointer or integer type, we can permit
82 // assignments to subsections of the memory unit.
84 // Only allow direct and non-volatile loads and stores...
85 for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
86 UI != UE; ++UI) { // Loop over all of the uses of the alloca
87 const User *U = *UI;
88 if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
89 if (LI->isVolatile())
90 return false;
91 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
92 if (SI->getOperand(0) == AI)
93 return false; // Don't allow a store OF the AI, only INTO the AI.
94 if (SI->isVolatile())
95 return false;
96 } else {
97 return false;
101 return true;
104 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
105 /// alloca 'V', if any.
106 static DbgDeclareInst *FindAllocaDbgDeclare(Value *V) {
107 if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), &V, 1))
108 for (Value::use_iterator UI = DebugNode->use_begin(),
109 E = DebugNode->use_end(); UI != E; ++UI)
110 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
111 return DDI;
113 return 0;
116 namespace {
117 struct AllocaInfo;
119 // Data package used by RenamePass()
120 class RenamePassData {
121 public:
122 typedef std::vector<Value *> ValVector;
124 RenamePassData() : BB(NULL), Pred(NULL), Values() {}
125 RenamePassData(BasicBlock *B, BasicBlock *P,
126 const ValVector &V) : BB(B), Pred(P), Values(V) {}
127 BasicBlock *BB;
128 BasicBlock *Pred;
129 ValVector Values;
131 void swap(RenamePassData &RHS) {
132 std::swap(BB, RHS.BB);
133 std::swap(Pred, RHS.Pred);
134 Values.swap(RHS.Values);
138 /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
139 /// load/store instructions in the block that directly load or store an alloca.
141 /// This functionality is important because it avoids scanning large basic
142 /// blocks multiple times when promoting many allocas in the same block.
143 class LargeBlockInfo {
144 /// InstNumbers - For each instruction that we track, keep the index of the
145 /// instruction. The index starts out as the number of the instruction from
146 /// the start of the block.
147 DenseMap<const Instruction *, unsigned> InstNumbers;
148 public:
150 /// isInterestingInstruction - This code only looks at accesses to allocas.
151 static bool isInterestingInstruction(const Instruction *I) {
152 return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
153 (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
156 /// getInstructionIndex - Get or calculate the index of the specified
157 /// instruction.
158 unsigned getInstructionIndex(const Instruction *I) {
159 assert(isInterestingInstruction(I) &&
160 "Not a load/store to/from an alloca?");
162 // If we already have this instruction number, return it.
163 DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
164 if (It != InstNumbers.end()) return It->second;
166 // Scan the whole block to get the instruction. This accumulates
167 // information for every interesting instruction in the block, in order to
168 // avoid gratuitus rescans.
169 const BasicBlock *BB = I->getParent();
170 unsigned InstNo = 0;
171 for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
172 BBI != E; ++BBI)
173 if (isInterestingInstruction(BBI))
174 InstNumbers[BBI] = InstNo++;
175 It = InstNumbers.find(I);
177 assert(It != InstNumbers.end() && "Didn't insert instruction?");
178 return It->second;
181 void deleteValue(const Instruction *I) {
182 InstNumbers.erase(I);
185 void clear() {
186 InstNumbers.clear();
190 struct PromoteMem2Reg {
191 /// Allocas - The alloca instructions being promoted.
193 std::vector<AllocaInst*> Allocas;
194 DominatorTree &DT;
195 DIBuilder *DIB;
197 /// AST - An AliasSetTracker object to update. If null, don't update it.
199 AliasSetTracker *AST;
201 /// AllocaLookup - Reverse mapping of Allocas.
203 DenseMap<AllocaInst*, unsigned> AllocaLookup;
205 /// NewPhiNodes - The PhiNodes we're adding.
207 DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
209 /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
210 /// it corresponds to.
211 DenseMap<PHINode*, unsigned> PhiToAllocaMap;
213 /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
214 /// each alloca that is of pointer type, we keep track of what to copyValue
215 /// to the inserted PHI nodes here.
217 std::vector<Value*> PointerAllocaValues;
219 /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
220 /// intrinsic that describes it, if any, so that we can convert it to a
221 /// dbg.value intrinsic if the alloca gets promoted.
222 SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
224 /// Visited - The set of basic blocks the renamer has already visited.
226 SmallPtrSet<BasicBlock*, 16> Visited;
228 /// BBNumbers - Contains a stable numbering of basic blocks to avoid
229 /// non-determinstic behavior.
230 DenseMap<BasicBlock*, unsigned> BBNumbers;
232 /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
233 DenseMap<DomTreeNode*, unsigned> DomLevels;
235 /// BBNumPreds - Lazily compute the number of predecessors a block has.
236 DenseMap<const BasicBlock*, unsigned> BBNumPreds;
237 public:
238 PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
239 AliasSetTracker *ast)
240 : Allocas(A), DT(dt), DIB(0), AST(ast) {}
241 ~PromoteMem2Reg() {
242 delete DIB;
245 void run();
247 /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
249 bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
250 return DT.dominates(BB1, BB2);
253 private:
254 void RemoveFromAllocasList(unsigned &AllocaIdx) {
255 Allocas[AllocaIdx] = Allocas.back();
256 Allocas.pop_back();
257 --AllocaIdx;
260 unsigned getNumPreds(const BasicBlock *BB) {
261 unsigned &NP = BBNumPreds[BB];
262 if (NP == 0)
263 NP = std::distance(pred_begin(BB), pred_end(BB))+1;
264 return NP-1;
267 void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
268 AllocaInfo &Info);
269 void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
270 const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
271 SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
273 void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
274 LargeBlockInfo &LBI);
275 void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
276 LargeBlockInfo &LBI);
278 void RenamePass(BasicBlock *BB, BasicBlock *Pred,
279 RenamePassData::ValVector &IncVals,
280 std::vector<RenamePassData> &Worklist);
281 bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
284 struct AllocaInfo {
285 SmallVector<BasicBlock*, 32> DefiningBlocks;
286 SmallVector<BasicBlock*, 32> UsingBlocks;
288 StoreInst *OnlyStore;
289 BasicBlock *OnlyBlock;
290 bool OnlyUsedInOneBlock;
292 Value *AllocaPointerVal;
293 DbgDeclareInst *DbgDeclare;
295 void clear() {
296 DefiningBlocks.clear();
297 UsingBlocks.clear();
298 OnlyStore = 0;
299 OnlyBlock = 0;
300 OnlyUsedInOneBlock = true;
301 AllocaPointerVal = 0;
302 DbgDeclare = 0;
305 /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
306 /// ivars.
307 void AnalyzeAlloca(AllocaInst *AI) {
308 clear();
310 // As we scan the uses of the alloca instruction, keep track of stores,
311 // and decide whether all of the loads and stores to the alloca are within
312 // the same basic block.
313 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
314 UI != E;) {
315 Instruction *User = cast<Instruction>(*UI++);
317 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
318 // Remember the basic blocks which define new values for the alloca
319 DefiningBlocks.push_back(SI->getParent());
320 AllocaPointerVal = SI->getOperand(0);
321 OnlyStore = SI;
322 } else {
323 LoadInst *LI = cast<LoadInst>(User);
324 // Otherwise it must be a load instruction, keep track of variable
325 // reads.
326 UsingBlocks.push_back(LI->getParent());
327 AllocaPointerVal = LI;
330 if (OnlyUsedInOneBlock) {
331 if (OnlyBlock == 0)
332 OnlyBlock = User->getParent();
333 else if (OnlyBlock != User->getParent())
334 OnlyUsedInOneBlock = false;
338 DbgDeclare = FindAllocaDbgDeclare(AI);
342 typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
344 struct DomTreeNodeCompare {
345 bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
346 return LHS.second < RHS.second;
349 } // end of anonymous namespace
352 void PromoteMem2Reg::run() {
353 Function &F = *DT.getRoot()->getParent();
355 if (AST) PointerAllocaValues.resize(Allocas.size());
356 AllocaDbgDeclares.resize(Allocas.size());
358 AllocaInfo Info;
359 LargeBlockInfo LBI;
361 for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
362 AllocaInst *AI = Allocas[AllocaNum];
364 assert(isAllocaPromotable(AI) &&
365 "Cannot promote non-promotable alloca!");
366 assert(AI->getParent()->getParent() == &F &&
367 "All allocas should be in the same function, which is same as DF!");
369 if (AI->use_empty()) {
370 // If there are no uses of the alloca, just delete it now.
371 if (AST) AST->deleteValue(AI);
372 AI->eraseFromParent();
374 // Remove the alloca from the Allocas list, since it has been processed
375 RemoveFromAllocasList(AllocaNum);
376 ++NumDeadAlloca;
377 continue;
380 // Calculate the set of read and write-locations for each alloca. This is
381 // analogous to finding the 'uses' and 'definitions' of each variable.
382 Info.AnalyzeAlloca(AI);
384 // If there is only a single store to this value, replace any loads of
385 // it that are directly dominated by the definition with the value stored.
386 if (Info.DefiningBlocks.size() == 1) {
387 RewriteSingleStoreAlloca(AI, Info, LBI);
389 // Finally, after the scan, check to see if the store is all that is left.
390 if (Info.UsingBlocks.empty()) {
391 // Record debuginfo for the store and remove the declaration's debuginfo.
392 if (DbgDeclareInst *DDI = Info.DbgDeclare) {
393 if (!DIB)
394 DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
395 ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
396 DDI->eraseFromParent();
398 // Remove the (now dead) store and alloca.
399 Info.OnlyStore->eraseFromParent();
400 LBI.deleteValue(Info.OnlyStore);
402 if (AST) AST->deleteValue(AI);
403 AI->eraseFromParent();
404 LBI.deleteValue(AI);
406 // The alloca has been processed, move on.
407 RemoveFromAllocasList(AllocaNum);
409 ++NumSingleStore;
410 continue;
414 // If the alloca is only read and written in one basic block, just perform a
415 // linear sweep over the block to eliminate it.
416 if (Info.OnlyUsedInOneBlock) {
417 PromoteSingleBlockAlloca(AI, Info, LBI);
419 // Finally, after the scan, check to see if the stores are all that is
420 // left.
421 if (Info.UsingBlocks.empty()) {
423 // Remove the (now dead) stores and alloca.
424 while (!AI->use_empty()) {
425 StoreInst *SI = cast<StoreInst>(AI->use_back());
426 // Record debuginfo for the store before removing it.
427 if (DbgDeclareInst *DDI = Info.DbgDeclare) {
428 if (!DIB)
429 DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
430 ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
432 SI->eraseFromParent();
433 LBI.deleteValue(SI);
436 if (AST) AST->deleteValue(AI);
437 AI->eraseFromParent();
438 LBI.deleteValue(AI);
440 // The alloca has been processed, move on.
441 RemoveFromAllocasList(AllocaNum);
443 // The alloca's debuginfo can be removed as well.
444 if (DbgDeclareInst *DDI = Info.DbgDeclare)
445 DDI->eraseFromParent();
447 ++NumLocalPromoted;
448 continue;
452 // If we haven't computed dominator tree levels, do so now.
453 if (DomLevels.empty()) {
454 SmallVector<DomTreeNode*, 32> Worklist;
456 DomTreeNode *Root = DT.getRootNode();
457 DomLevels[Root] = 0;
458 Worklist.push_back(Root);
460 while (!Worklist.empty()) {
461 DomTreeNode *Node = Worklist.pop_back_val();
462 unsigned ChildLevel = DomLevels[Node] + 1;
463 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
464 CI != CE; ++CI) {
465 DomLevels[*CI] = ChildLevel;
466 Worklist.push_back(*CI);
471 // If we haven't computed a numbering for the BB's in the function, do so
472 // now.
473 if (BBNumbers.empty()) {
474 unsigned ID = 0;
475 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
476 BBNumbers[I] = ID++;
479 // If we have an AST to keep updated, remember some pointer value that is
480 // stored into the alloca.
481 if (AST)
482 PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
484 // Remember the dbg.declare intrinsic describing this alloca, if any.
485 if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
487 // Keep the reverse mapping of the 'Allocas' array for the rename pass.
488 AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
490 // At this point, we're committed to promoting the alloca using IDF's, and
491 // the standard SSA construction algorithm. Determine which blocks need PHI
492 // nodes and see if we can optimize out some work by avoiding insertion of
493 // dead phi nodes.
494 DetermineInsertionPoint(AI, AllocaNum, Info);
497 if (Allocas.empty())
498 return; // All of the allocas must have been trivial!
500 LBI.clear();
503 // Set the incoming values for the basic block to be null values for all of
504 // the alloca's. We do this in case there is a load of a value that has not
505 // been stored yet. In this case, it will get this null value.
507 RenamePassData::ValVector Values(Allocas.size());
508 for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
509 Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
511 // Walks all basic blocks in the function performing the SSA rename algorithm
512 // and inserting the phi nodes we marked as necessary
514 std::vector<RenamePassData> RenamePassWorkList;
515 RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
516 do {
517 RenamePassData RPD;
518 RPD.swap(RenamePassWorkList.back());
519 RenamePassWorkList.pop_back();
520 // RenamePass may add new worklist entries.
521 RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
522 } while (!RenamePassWorkList.empty());
524 // The renamer uses the Visited set to avoid infinite loops. Clear it now.
525 Visited.clear();
527 // Remove the allocas themselves from the function.
528 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
529 Instruction *A = Allocas[i];
531 // If there are any uses of the alloca instructions left, they must be in
532 // unreachable basic blocks that were not processed by walking the dominator
533 // tree. Just delete the users now.
534 if (!A->use_empty())
535 A->replaceAllUsesWith(UndefValue::get(A->getType()));
536 if (AST) AST->deleteValue(A);
537 A->eraseFromParent();
540 // Remove alloca's dbg.declare instrinsics from the function.
541 for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
542 if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
543 DDI->eraseFromParent();
545 // Loop over all of the PHI nodes and see if there are any that we can get
546 // rid of because they merge all of the same incoming values. This can
547 // happen due to undef values coming into the PHI nodes. This process is
548 // iterative, because eliminating one PHI node can cause others to be removed.
549 bool EliminatedAPHI = true;
550 while (EliminatedAPHI) {
551 EliminatedAPHI = false;
553 for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
554 NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
555 PHINode *PN = I->second;
557 // If this PHI node merges one value and/or undefs, get the value.
558 if (Value *V = SimplifyInstruction(PN, 0, &DT)) {
559 if (AST && PN->getType()->isPointerTy())
560 AST->deleteValue(PN);
561 PN->replaceAllUsesWith(V);
562 PN->eraseFromParent();
563 NewPhiNodes.erase(I++);
564 EliminatedAPHI = true;
565 continue;
567 ++I;
571 // At this point, the renamer has added entries to PHI nodes for all reachable
572 // code. Unfortunately, there may be unreachable blocks which the renamer
573 // hasn't traversed. If this is the case, the PHI nodes may not
574 // have incoming values for all predecessors. Loop over all PHI nodes we have
575 // created, inserting undef values if they are missing any incoming values.
577 for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
578 NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
579 // We want to do this once per basic block. As such, only process a block
580 // when we find the PHI that is the first entry in the block.
581 PHINode *SomePHI = I->second;
582 BasicBlock *BB = SomePHI->getParent();
583 if (&BB->front() != SomePHI)
584 continue;
586 // Only do work here if there the PHI nodes are missing incoming values. We
587 // know that all PHI nodes that were inserted in a block will have the same
588 // number of incoming values, so we can just check any of them.
589 if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
590 continue;
592 // Get the preds for BB.
593 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
595 // Ok, now we know that all of the PHI nodes are missing entries for some
596 // basic blocks. Start by sorting the incoming predecessors for efficient
597 // access.
598 std::sort(Preds.begin(), Preds.end());
600 // Now we loop through all BB's which have entries in SomePHI and remove
601 // them from the Preds list.
602 for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
603 // Do a log(n) search of the Preds list for the entry we want.
604 SmallVector<BasicBlock*, 16>::iterator EntIt =
605 std::lower_bound(Preds.begin(), Preds.end(),
606 SomePHI->getIncomingBlock(i));
607 assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
608 "PHI node has entry for a block which is not a predecessor!");
610 // Remove the entry
611 Preds.erase(EntIt);
614 // At this point, the blocks left in the preds list must have dummy
615 // entries inserted into every PHI nodes for the block. Update all the phi
616 // nodes in this block that we are inserting (there could be phis before
617 // mem2reg runs).
618 unsigned NumBadPreds = SomePHI->getNumIncomingValues();
619 BasicBlock::iterator BBI = BB->begin();
620 while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
621 SomePHI->getNumIncomingValues() == NumBadPreds) {
622 Value *UndefVal = UndefValue::get(SomePHI->getType());
623 for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
624 SomePHI->addIncoming(UndefVal, Preds[pred]);
628 NewPhiNodes.clear();
632 /// ComputeLiveInBlocks - Determine which blocks the value is live in. These
633 /// are blocks which lead to uses. Knowing this allows us to avoid inserting
634 /// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
635 /// would be dead).
636 void PromoteMem2Reg::
637 ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
638 const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
639 SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
641 // To determine liveness, we must iterate through the predecessors of blocks
642 // where the def is live. Blocks are added to the worklist if we need to
643 // check their predecessors. Start with all the using blocks.
644 SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
645 Info.UsingBlocks.end());
647 // If any of the using blocks is also a definition block, check to see if the
648 // definition occurs before or after the use. If it happens before the use,
649 // the value isn't really live-in.
650 for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
651 BasicBlock *BB = LiveInBlockWorklist[i];
652 if (!DefBlocks.count(BB)) continue;
654 // Okay, this is a block that both uses and defines the value. If the first
655 // reference to the alloca is a def (store), then we know it isn't live-in.
656 for (BasicBlock::iterator I = BB->begin(); ; ++I) {
657 if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
658 if (SI->getOperand(1) != AI) continue;
660 // We found a store to the alloca before a load. The alloca is not
661 // actually live-in here.
662 LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
663 LiveInBlockWorklist.pop_back();
664 --i, --e;
665 break;
668 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
669 if (LI->getOperand(0) != AI) continue;
671 // Okay, we found a load before a store to the alloca. It is actually
672 // live into this block.
673 break;
678 // Now that we have a set of blocks where the phi is live-in, recursively add
679 // their predecessors until we find the full region the value is live.
680 while (!LiveInBlockWorklist.empty()) {
681 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
683 // The block really is live in here, insert it into the set. If already in
684 // the set, then it has already been processed.
685 if (!LiveInBlocks.insert(BB))
686 continue;
688 // Since the value is live into BB, it is either defined in a predecessor or
689 // live into it to. Add the preds to the worklist unless they are a
690 // defining block.
691 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
692 BasicBlock *P = *PI;
694 // The value is not live into a predecessor if it defines the value.
695 if (DefBlocks.count(P))
696 continue;
698 // Otherwise it is, add to the worklist.
699 LiveInBlockWorklist.push_back(P);
704 /// DetermineInsertionPoint - At this point, we're committed to promoting the
705 /// alloca using IDF's, and the standard SSA construction algorithm. Determine
706 /// which blocks need phi nodes and see if we can optimize out some work by
707 /// avoiding insertion of dead phi nodes.
708 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
709 AllocaInfo &Info) {
710 // Unique the set of defining blocks for efficient lookup.
711 SmallPtrSet<BasicBlock*, 32> DefBlocks;
712 DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
714 // Determine which blocks the value is live in. These are blocks which lead
715 // to uses.
716 SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
717 ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
719 // Use a priority queue keyed on dominator tree level so that inserted nodes
720 // are handled from the bottom of the dominator tree upwards.
721 typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
722 DomTreeNodeCompare> IDFPriorityQueue;
723 IDFPriorityQueue PQ;
725 for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
726 E = DefBlocks.end(); I != E; ++I) {
727 if (DomTreeNode *Node = DT.getNode(*I))
728 PQ.push(std::make_pair(Node, DomLevels[Node]));
731 SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
732 SmallPtrSet<DomTreeNode*, 32> Visited;
733 SmallVector<DomTreeNode*, 32> Worklist;
734 while (!PQ.empty()) {
735 DomTreeNodePair RootPair = PQ.top();
736 PQ.pop();
737 DomTreeNode *Root = RootPair.first;
738 unsigned RootLevel = RootPair.second;
740 // Walk all dominator tree children of Root, inspecting their CFG edges with
741 // targets elsewhere on the dominator tree. Only targets whose level is at
742 // most Root's level are added to the iterated dominance frontier of the
743 // definition set.
745 Worklist.clear();
746 Worklist.push_back(Root);
748 while (!Worklist.empty()) {
749 DomTreeNode *Node = Worklist.pop_back_val();
750 BasicBlock *BB = Node->getBlock();
752 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
753 ++SI) {
754 DomTreeNode *SuccNode = DT.getNode(*SI);
756 // Quickly skip all CFG edges that are also dominator tree edges instead
757 // of catching them below.
758 if (SuccNode->getIDom() == Node)
759 continue;
761 unsigned SuccLevel = DomLevels[SuccNode];
762 if (SuccLevel > RootLevel)
763 continue;
765 if (!Visited.insert(SuccNode))
766 continue;
768 BasicBlock *SuccBB = SuccNode->getBlock();
769 if (!LiveInBlocks.count(SuccBB))
770 continue;
772 DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
773 if (!DefBlocks.count(SuccBB))
774 PQ.push(std::make_pair(SuccNode, SuccLevel));
777 for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
778 ++CI) {
779 if (!Visited.count(*CI))
780 Worklist.push_back(*CI);
785 if (DFBlocks.size() > 1)
786 std::sort(DFBlocks.begin(), DFBlocks.end());
788 unsigned CurrentVersion = 0;
789 for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
790 QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
793 /// RewriteSingleStoreAlloca - If there is only a single store to this value,
794 /// replace any loads of it that are directly dominated by the definition with
795 /// the value stored.
796 void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
797 AllocaInfo &Info,
798 LargeBlockInfo &LBI) {
799 StoreInst *OnlyStore = Info.OnlyStore;
800 bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
801 BasicBlock *StoreBB = OnlyStore->getParent();
802 int StoreIndex = -1;
804 // Clear out UsingBlocks. We will reconstruct it here if needed.
805 Info.UsingBlocks.clear();
807 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
808 Instruction *UserInst = cast<Instruction>(*UI++);
809 if (!isa<LoadInst>(UserInst)) {
810 assert(UserInst == OnlyStore && "Should only have load/stores");
811 continue;
813 LoadInst *LI = cast<LoadInst>(UserInst);
815 // Okay, if we have a load from the alloca, we want to replace it with the
816 // only value stored to the alloca. We can do this if the value is
817 // dominated by the store. If not, we use the rest of the mem2reg machinery
818 // to insert the phi nodes as needed.
819 if (!StoringGlobalVal) { // Non-instructions are always dominated.
820 if (LI->getParent() == StoreBB) {
821 // If we have a use that is in the same block as the store, compare the
822 // indices of the two instructions to see which one came first. If the
823 // load came before the store, we can't handle it.
824 if (StoreIndex == -1)
825 StoreIndex = LBI.getInstructionIndex(OnlyStore);
827 if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
828 // Can't handle this load, bail out.
829 Info.UsingBlocks.push_back(StoreBB);
830 continue;
833 } else if (LI->getParent() != StoreBB &&
834 !dominates(StoreBB, LI->getParent())) {
835 // If the load and store are in different blocks, use BB dominance to
836 // check their relationships. If the store doesn't dom the use, bail
837 // out.
838 Info.UsingBlocks.push_back(LI->getParent());
839 continue;
843 // Otherwise, we *can* safely rewrite this load.
844 Value *ReplVal = OnlyStore->getOperand(0);
845 // If the replacement value is the load, this must occur in unreachable
846 // code.
847 if (ReplVal == LI)
848 ReplVal = UndefValue::get(LI->getType());
849 LI->replaceAllUsesWith(ReplVal);
850 if (AST && LI->getType()->isPointerTy())
851 AST->deleteValue(LI);
852 LI->eraseFromParent();
853 LBI.deleteValue(LI);
857 namespace {
859 /// StoreIndexSearchPredicate - This is a helper predicate used to search by the
860 /// first element of a pair.
861 struct StoreIndexSearchPredicate {
862 bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
863 const std::pair<unsigned, StoreInst*> &RHS) {
864 return LHS.first < RHS.first;
870 /// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
871 /// block. If this is the case, avoid traversing the CFG and inserting a lot of
872 /// potentially useless PHI nodes by just performing a single linear pass over
873 /// the basic block using the Alloca.
875 /// If we cannot promote this alloca (because it is read before it is written),
876 /// return true. This is necessary in cases where, due to control flow, the
877 /// alloca is potentially undefined on some control flow paths. e.g. code like
878 /// this is potentially correct:
880 /// for (...) { if (c) { A = undef; undef = B; } }
882 /// ... so long as A is not used before undef is set.
884 void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
885 LargeBlockInfo &LBI) {
886 // The trickiest case to handle is when we have large blocks. Because of this,
887 // this code is optimized assuming that large blocks happen. This does not
888 // significantly pessimize the small block case. This uses LargeBlockInfo to
889 // make it efficient to get the index of various operations in the block.
891 // Clear out UsingBlocks. We will reconstruct it here if needed.
892 Info.UsingBlocks.clear();
894 // Walk the use-def list of the alloca, getting the locations of all stores.
895 typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
896 StoresByIndexTy StoresByIndex;
898 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
899 UI != E; ++UI)
900 if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
901 StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
903 // If there are no stores to the alloca, just replace any loads with undef.
904 if (StoresByIndex.empty()) {
905 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
906 if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
907 LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
908 if (AST && LI->getType()->isPointerTy())
909 AST->deleteValue(LI);
910 LBI.deleteValue(LI);
911 LI->eraseFromParent();
913 return;
916 // Sort the stores by their index, making it efficient to do a lookup with a
917 // binary search.
918 std::sort(StoresByIndex.begin(), StoresByIndex.end());
920 // Walk all of the loads from this alloca, replacing them with the nearest
921 // store above them, if any.
922 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
923 LoadInst *LI = dyn_cast<LoadInst>(*UI++);
924 if (!LI) continue;
926 unsigned LoadIdx = LBI.getInstructionIndex(LI);
928 // Find the nearest store that has a lower than this load.
929 StoresByIndexTy::iterator I =
930 std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
931 std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
932 StoreIndexSearchPredicate());
934 // If there is no store before this load, then we can't promote this load.
935 if (I == StoresByIndex.begin()) {
936 // Can't handle this load, bail out.
937 Info.UsingBlocks.push_back(LI->getParent());
938 continue;
941 // Otherwise, there was a store before this load, the load takes its value.
942 --I;
943 LI->replaceAllUsesWith(I->second->getOperand(0));
944 if (AST && LI->getType()->isPointerTy())
945 AST->deleteValue(LI);
946 LI->eraseFromParent();
947 LBI.deleteValue(LI);
951 // QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
952 // Alloca returns true if there wasn't already a phi-node for that variable
954 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
955 unsigned &Version) {
956 // Look up the basic-block in question.
957 PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
959 // If the BB already has a phi node added for the i'th alloca then we're done!
960 if (PN) return false;
962 // Create a PhiNode using the dereferenced type... and add the phi-node to the
963 // BasicBlock.
964 PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
965 Allocas[AllocaNo]->getName() + "." + Twine(Version++),
966 BB->begin());
967 ++NumPHIInsert;
968 PhiToAllocaMap[PN] = AllocaNo;
970 if (AST && PN->getType()->isPointerTy())
971 AST->copyValue(PointerAllocaValues[AllocaNo], PN);
973 return true;
976 // RenamePass - Recursively traverse the CFG of the function, renaming loads and
977 // stores to the allocas which we are promoting. IncomingVals indicates what
978 // value each Alloca contains on exit from the predecessor block Pred.
980 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
981 RenamePassData::ValVector &IncomingVals,
982 std::vector<RenamePassData> &Worklist) {
983 NextIteration:
984 // If we are inserting any phi nodes into this BB, they will already be in the
985 // block.
986 if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
987 // If we have PHI nodes to update, compute the number of edges from Pred to
988 // BB.
989 if (PhiToAllocaMap.count(APN)) {
990 // We want to be able to distinguish between PHI nodes being inserted by
991 // this invocation of mem2reg from those phi nodes that already existed in
992 // the IR before mem2reg was run. We determine that APN is being inserted
993 // because it is missing incoming edges. All other PHI nodes being
994 // inserted by this pass of mem2reg will have the same number of incoming
995 // operands so far. Remember this count.
996 unsigned NewPHINumOperands = APN->getNumOperands();
998 unsigned NumEdges = 0;
999 for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
1000 if (*I == BB)
1001 ++NumEdges;
1002 assert(NumEdges && "Must be at least one edge from Pred to BB!");
1004 // Add entries for all the phis.
1005 BasicBlock::iterator PNI = BB->begin();
1006 do {
1007 unsigned AllocaNo = PhiToAllocaMap[APN];
1009 // Add N incoming values to the PHI node.
1010 for (unsigned i = 0; i != NumEdges; ++i)
1011 APN->addIncoming(IncomingVals[AllocaNo], Pred);
1013 // The currently active variable for this block is now the PHI.
1014 IncomingVals[AllocaNo] = APN;
1016 // Get the next phi node.
1017 ++PNI;
1018 APN = dyn_cast<PHINode>(PNI);
1019 if (APN == 0) break;
1021 // Verify that it is missing entries. If not, it is not being inserted
1022 // by this mem2reg invocation so we want to ignore it.
1023 } while (APN->getNumOperands() == NewPHINumOperands);
1027 // Don't revisit blocks.
1028 if (!Visited.insert(BB)) return;
1030 for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
1031 Instruction *I = II++; // get the instruction, increment iterator
1033 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1034 AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1035 if (!Src) continue;
1037 DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
1038 if (AI == AllocaLookup.end()) continue;
1040 Value *V = IncomingVals[AI->second];
1042 // Anything using the load now uses the current value.
1043 LI->replaceAllUsesWith(V);
1044 if (AST && LI->getType()->isPointerTy())
1045 AST->deleteValue(LI);
1046 BB->getInstList().erase(LI);
1047 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1048 // Delete this instruction and mark the name as the current holder of the
1049 // value
1050 AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1051 if (!Dest) continue;
1053 DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1054 if (ai == AllocaLookup.end())
1055 continue;
1057 // what value were we writing?
1058 IncomingVals[ai->second] = SI->getOperand(0);
1059 // Record debuginfo for the store before removing it.
1060 if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
1061 if (!DIB)
1062 DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
1063 ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1065 BB->getInstList().erase(SI);
1069 // 'Recurse' to our successors.
1070 succ_iterator I = succ_begin(BB), E = succ_end(BB);
1071 if (I == E) return;
1073 // Keep track of the successors so we don't visit the same successor twice
1074 SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
1076 // Handle the first successor without using the worklist.
1077 VisitedSuccs.insert(*I);
1078 Pred = BB;
1079 BB = *I;
1080 ++I;
1082 for (; I != E; ++I)
1083 if (VisitedSuccs.insert(*I))
1084 Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1086 goto NextIteration;
1089 /// PromoteMemToReg - Promote the specified list of alloca instructions into
1090 /// scalar registers, inserting PHI nodes as appropriate. This function does
1091 /// not modify the CFG of the function at all. All allocas must be from the
1092 /// same function.
1094 /// If AST is specified, the specified tracker is updated to reflect changes
1095 /// made to the IR.
1097 void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1098 DominatorTree &DT, AliasSetTracker *AST) {
1099 // If there is nothing to do, bail out...
1100 if (Allocas.empty()) return;
1102 PromoteMem2Reg(Allocas, DT, AST).run();