Add a function for profiling to run at shutdown. Unlike the existing API, this
[llvm/stm8.git] / lib / Analysis / ValueTracking.cpp
bloba8117e6e42e3220d689e47609f8565cd788ea622
1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/GlobalAlias.h"
21 #include "llvm/IntrinsicInst.h"
22 #include "llvm/LLVMContext.h"
23 #include "llvm/Operator.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Support/GetElementPtrTypeIterator.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/PatternMatch.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include <cstring>
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
33 const unsigned MaxDepth = 6;
35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36 /// unknown returns 0). For vector types, returns the element type's bitwidth.
37 static unsigned getBitWidth(const Type *Ty, const TargetData *TD) {
38 if (unsigned BitWidth = Ty->getScalarSizeInBits())
39 return BitWidth;
40 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
41 return TD ? TD->getPointerSizeInBits() : 0;
44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
45 /// known to be either zero or one and return them in the KnownZero/KnownOne
46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit
47 /// processing.
48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
49 /// we cannot optimize based on the assumption that it is zero without changing
50 /// it to be an explicit zero. If we don't change it to zero, other code could
51 /// optimized based on the contradictory assumption that it is non-zero.
52 /// Because instcombine aggressively folds operations with undef args anyway,
53 /// this won't lose us code quality.
54 ///
55 /// This function is defined on values with integer type, values with pointer
56 /// type (but only if TD is non-null), and vectors of integers. In the case
57 /// where V is a vector, the mask, known zero, and known one values are the
58 /// same width as the vector element, and the bit is set only if it is true
59 /// for all of the elements in the vector.
60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
61 APInt &KnownZero, APInt &KnownOne,
62 const TargetData *TD, unsigned Depth) {
63 assert(V && "No Value?");
64 assert(Depth <= MaxDepth && "Limit Search Depth");
65 unsigned BitWidth = Mask.getBitWidth();
66 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
67 && "Not integer or pointer type!");
68 assert((!TD ||
69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
70 (!V->getType()->isIntOrIntVectorTy() ||
71 V->getType()->getScalarSizeInBits() == BitWidth) &&
72 KnownZero.getBitWidth() == BitWidth &&
73 KnownOne.getBitWidth() == BitWidth &&
74 "V, Mask, KnownOne and KnownZero should have same BitWidth");
76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
77 // We know all of the bits for a constant!
78 KnownOne = CI->getValue() & Mask;
79 KnownZero = ~KnownOne & Mask;
80 return;
82 // Null and aggregate-zero are all-zeros.
83 if (isa<ConstantPointerNull>(V) ||
84 isa<ConstantAggregateZero>(V)) {
85 KnownOne.clearAllBits();
86 KnownZero = Mask;
87 return;
89 // Handle a constant vector by taking the intersection of the known bits of
90 // each element.
91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
92 KnownZero.setAllBits(); KnownOne.setAllBits();
93 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
96 TD, Depth);
97 KnownZero &= KnownZero2;
98 KnownOne &= KnownOne2;
100 return;
102 // The address of an aligned GlobalValue has trailing zeros.
103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104 unsigned Align = GV->getAlignment();
105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
106 const Type *ObjectType = GV->getType()->getElementType();
107 // If the object is defined in the current Module, we'll be giving
108 // it the preferred alignment. Otherwise, we have to assume that it
109 // may only have the minimum ABI alignment.
110 if (!GV->isDeclaration() && !GV->mayBeOverridden())
111 Align = TD->getPrefTypeAlignment(ObjectType);
112 else
113 Align = TD->getABITypeAlignment(ObjectType);
115 if (Align > 0)
116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
117 CountTrailingZeros_32(Align));
118 else
119 KnownZero.clearAllBits();
120 KnownOne.clearAllBits();
121 return;
123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124 // the bits of its aliasee.
125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
126 if (GA->mayBeOverridden()) {
127 KnownZero.clearAllBits(); KnownOne.clearAllBits();
128 } else {
129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
130 TD, Depth+1);
132 return;
135 KnownZero.clearAllBits(); KnownOne.clearAllBits(); // Start out not knowing anything.
137 if (Depth == MaxDepth || Mask == 0)
138 return; // Limit search depth.
140 Operator *I = dyn_cast<Operator>(V);
141 if (!I) return;
143 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
144 switch (I->getOpcode()) {
145 default: break;
146 case Instruction::And: {
147 // If either the LHS or the RHS are Zero, the result is zero.
148 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
149 APInt Mask2(Mask & ~KnownZero);
150 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
151 Depth+1);
152 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
153 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
155 // Output known-1 bits are only known if set in both the LHS & RHS.
156 KnownOne &= KnownOne2;
157 // Output known-0 are known to be clear if zero in either the LHS | RHS.
158 KnownZero |= KnownZero2;
159 return;
161 case Instruction::Or: {
162 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
163 APInt Mask2(Mask & ~KnownOne);
164 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
165 Depth+1);
166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
167 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
169 // Output known-0 bits are only known if clear in both the LHS & RHS.
170 KnownZero &= KnownZero2;
171 // Output known-1 are known to be set if set in either the LHS | RHS.
172 KnownOne |= KnownOne2;
173 return;
175 case Instruction::Xor: {
176 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
177 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
178 Depth+1);
179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
180 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
182 // Output known-0 bits are known if clear or set in both the LHS & RHS.
183 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
184 // Output known-1 are known to be set if set in only one of the LHS, RHS.
185 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
186 KnownZero = KnownZeroOut;
187 return;
189 case Instruction::Mul: {
190 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
191 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
192 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
193 Depth+1);
194 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
195 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
197 // If low bits are zero in either operand, output low known-0 bits.
198 // Also compute a conserative estimate for high known-0 bits.
199 // More trickiness is possible, but this is sufficient for the
200 // interesting case of alignment computation.
201 KnownOne.clearAllBits();
202 unsigned TrailZ = KnownZero.countTrailingOnes() +
203 KnownZero2.countTrailingOnes();
204 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
205 KnownZero2.countLeadingOnes(),
206 BitWidth) - BitWidth;
208 TrailZ = std::min(TrailZ, BitWidth);
209 LeadZ = std::min(LeadZ, BitWidth);
210 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
211 APInt::getHighBitsSet(BitWidth, LeadZ);
212 KnownZero &= Mask;
213 return;
215 case Instruction::UDiv: {
216 // For the purposes of computing leading zeros we can conservatively
217 // treat a udiv as a logical right shift by the power of 2 known to
218 // be less than the denominator.
219 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
220 ComputeMaskedBits(I->getOperand(0),
221 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
222 unsigned LeadZ = KnownZero2.countLeadingOnes();
224 KnownOne2.clearAllBits();
225 KnownZero2.clearAllBits();
226 ComputeMaskedBits(I->getOperand(1),
227 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
228 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
229 if (RHSUnknownLeadingOnes != BitWidth)
230 LeadZ = std::min(BitWidth,
231 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
233 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
234 return;
236 case Instruction::Select:
237 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
238 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
239 Depth+1);
240 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
241 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
243 // Only known if known in both the LHS and RHS.
244 KnownOne &= KnownOne2;
245 KnownZero &= KnownZero2;
246 return;
247 case Instruction::FPTrunc:
248 case Instruction::FPExt:
249 case Instruction::FPToUI:
250 case Instruction::FPToSI:
251 case Instruction::SIToFP:
252 case Instruction::UIToFP:
253 return; // Can't work with floating point.
254 case Instruction::PtrToInt:
255 case Instruction::IntToPtr:
256 // We can't handle these if we don't know the pointer size.
257 if (!TD) return;
258 // FALL THROUGH and handle them the same as zext/trunc.
259 case Instruction::ZExt:
260 case Instruction::Trunc: {
261 const Type *SrcTy = I->getOperand(0)->getType();
263 unsigned SrcBitWidth;
264 // Note that we handle pointer operands here because of inttoptr/ptrtoint
265 // which fall through here.
266 if (SrcTy->isPointerTy())
267 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
268 else
269 SrcBitWidth = SrcTy->getScalarSizeInBits();
271 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
272 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
273 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
274 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
275 Depth+1);
276 KnownZero = KnownZero.zextOrTrunc(BitWidth);
277 KnownOne = KnownOne.zextOrTrunc(BitWidth);
278 // Any top bits are known to be zero.
279 if (BitWidth > SrcBitWidth)
280 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
281 return;
283 case Instruction::BitCast: {
284 const Type *SrcTy = I->getOperand(0)->getType();
285 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
286 // TODO: For now, not handling conversions like:
287 // (bitcast i64 %x to <2 x i32>)
288 !I->getType()->isVectorTy()) {
289 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
290 Depth+1);
291 return;
293 break;
295 case Instruction::SExt: {
296 // Compute the bits in the result that are not present in the input.
297 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
299 APInt MaskIn = Mask.trunc(SrcBitWidth);
300 KnownZero = KnownZero.trunc(SrcBitWidth);
301 KnownOne = KnownOne.trunc(SrcBitWidth);
302 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
303 Depth+1);
304 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
305 KnownZero = KnownZero.zext(BitWidth);
306 KnownOne = KnownOne.zext(BitWidth);
308 // If the sign bit of the input is known set or clear, then we know the
309 // top bits of the result.
310 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
311 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
312 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
313 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
314 return;
316 case Instruction::Shl:
317 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
318 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
319 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
320 APInt Mask2(Mask.lshr(ShiftAmt));
321 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
322 Depth+1);
323 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
324 KnownZero <<= ShiftAmt;
325 KnownOne <<= ShiftAmt;
326 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
327 return;
329 break;
330 case Instruction::LShr:
331 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
332 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
333 // Compute the new bits that are at the top now.
334 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
336 // Unsigned shift right.
337 APInt Mask2(Mask.shl(ShiftAmt));
338 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
339 Depth+1);
340 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
341 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
342 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
343 // high bits known zero.
344 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
345 return;
347 break;
348 case Instruction::AShr:
349 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
350 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
351 // Compute the new bits that are at the top now.
352 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
354 // Signed shift right.
355 APInt Mask2(Mask.shl(ShiftAmt));
356 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
357 Depth+1);
358 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
359 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
360 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
362 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
363 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
364 KnownZero |= HighBits;
365 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
366 KnownOne |= HighBits;
367 return;
369 break;
370 case Instruction::Sub: {
371 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
372 // We know that the top bits of C-X are clear if X contains less bits
373 // than C (i.e. no wrap-around can happen). For example, 20-X is
374 // positive if we can prove that X is >= 0 and < 16.
375 if (!CLHS->getValue().isNegative()) {
376 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
377 // NLZ can't be BitWidth with no sign bit
378 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
379 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
380 TD, Depth+1);
382 // If all of the MaskV bits are known to be zero, then we know the
383 // output top bits are zero, because we now know that the output is
384 // from [0-C].
385 if ((KnownZero2 & MaskV) == MaskV) {
386 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
387 // Top bits known zero.
388 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
393 // fall through
394 case Instruction::Add: {
395 // If one of the operands has trailing zeros, then the bits that the
396 // other operand has in those bit positions will be preserved in the
397 // result. For an add, this works with either operand. For a subtract,
398 // this only works if the known zeros are in the right operand.
399 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
400 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
401 BitWidth - Mask.countLeadingZeros());
402 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
403 Depth+1);
404 assert((LHSKnownZero & LHSKnownOne) == 0 &&
405 "Bits known to be one AND zero?");
406 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
408 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
409 Depth+1);
410 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
411 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
413 // Determine which operand has more trailing zeros, and use that
414 // many bits from the other operand.
415 if (LHSKnownZeroOut > RHSKnownZeroOut) {
416 if (I->getOpcode() == Instruction::Add) {
417 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
418 KnownZero |= KnownZero2 & Mask;
419 KnownOne |= KnownOne2 & Mask;
420 } else {
421 // If the known zeros are in the left operand for a subtract,
422 // fall back to the minimum known zeros in both operands.
423 KnownZero |= APInt::getLowBitsSet(BitWidth,
424 std::min(LHSKnownZeroOut,
425 RHSKnownZeroOut));
427 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
428 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
429 KnownZero |= LHSKnownZero & Mask;
430 KnownOne |= LHSKnownOne & Mask;
433 // Are we still trying to solve for the sign bit?
434 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
435 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
436 if (OBO->hasNoSignedWrap()) {
437 if (I->getOpcode() == Instruction::Add) {
438 // Adding two positive numbers can't wrap into negative
439 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
440 KnownZero |= APInt::getSignBit(BitWidth);
441 // and adding two negative numbers can't wrap into positive.
442 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
443 KnownOne |= APInt::getSignBit(BitWidth);
444 } else {
445 // Subtracting a negative number from a positive one can't wrap
446 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
447 KnownZero |= APInt::getSignBit(BitWidth);
448 // neither can subtracting a positive number from a negative one.
449 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
450 KnownOne |= APInt::getSignBit(BitWidth);
455 return;
457 case Instruction::SRem:
458 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
459 APInt RA = Rem->getValue().abs();
460 if (RA.isPowerOf2()) {
461 APInt LowBits = RA - 1;
462 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
463 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
464 Depth+1);
466 // The low bits of the first operand are unchanged by the srem.
467 KnownZero = KnownZero2 & LowBits;
468 KnownOne = KnownOne2 & LowBits;
470 // If the first operand is non-negative or has all low bits zero, then
471 // the upper bits are all zero.
472 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
473 KnownZero |= ~LowBits;
475 // If the first operand is negative and not all low bits are zero, then
476 // the upper bits are all one.
477 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
478 KnownOne |= ~LowBits;
480 KnownZero &= Mask;
481 KnownOne &= Mask;
483 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
487 // The sign bit is the LHS's sign bit, except when the result of the
488 // remainder is zero.
489 if (Mask.isNegative() && KnownZero.isNonNegative()) {
490 APInt Mask2 = APInt::getSignBit(BitWidth);
491 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
492 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
493 Depth+1);
494 // If it's known zero, our sign bit is also zero.
495 if (LHSKnownZero.isNegative())
496 KnownZero |= LHSKnownZero;
499 break;
500 case Instruction::URem: {
501 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
502 APInt RA = Rem->getValue();
503 if (RA.isPowerOf2()) {
504 APInt LowBits = (RA - 1);
505 APInt Mask2 = LowBits & Mask;
506 KnownZero |= ~LowBits & Mask;
507 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
508 Depth+1);
509 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
510 break;
514 // Since the result is less than or equal to either operand, any leading
515 // zero bits in either operand must also exist in the result.
516 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
517 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
518 TD, Depth+1);
519 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
520 TD, Depth+1);
522 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
523 KnownZero2.countLeadingOnes());
524 KnownOne.clearAllBits();
525 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
526 break;
529 case Instruction::Alloca: {
530 AllocaInst *AI = cast<AllocaInst>(V);
531 unsigned Align = AI->getAlignment();
532 if (Align == 0 && TD)
533 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
535 if (Align > 0)
536 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
537 CountTrailingZeros_32(Align));
538 break;
540 case Instruction::GetElementPtr: {
541 // Analyze all of the subscripts of this getelementptr instruction
542 // to determine if we can prove known low zero bits.
543 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
544 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
545 ComputeMaskedBits(I->getOperand(0), LocalMask,
546 LocalKnownZero, LocalKnownOne, TD, Depth+1);
547 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
549 gep_type_iterator GTI = gep_type_begin(I);
550 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
551 Value *Index = I->getOperand(i);
552 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
553 // Handle struct member offset arithmetic.
554 if (!TD) return;
555 const StructLayout *SL = TD->getStructLayout(STy);
556 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
557 uint64_t Offset = SL->getElementOffset(Idx);
558 TrailZ = std::min(TrailZ,
559 CountTrailingZeros_64(Offset));
560 } else {
561 // Handle array index arithmetic.
562 const Type *IndexedTy = GTI.getIndexedType();
563 if (!IndexedTy->isSized()) return;
564 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
565 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
566 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
567 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
568 ComputeMaskedBits(Index, LocalMask,
569 LocalKnownZero, LocalKnownOne, TD, Depth+1);
570 TrailZ = std::min(TrailZ,
571 unsigned(CountTrailingZeros_64(TypeSize) +
572 LocalKnownZero.countTrailingOnes()));
576 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
577 break;
579 case Instruction::PHI: {
580 PHINode *P = cast<PHINode>(I);
581 // Handle the case of a simple two-predecessor recurrence PHI.
582 // There's a lot more that could theoretically be done here, but
583 // this is sufficient to catch some interesting cases.
584 if (P->getNumIncomingValues() == 2) {
585 for (unsigned i = 0; i != 2; ++i) {
586 Value *L = P->getIncomingValue(i);
587 Value *R = P->getIncomingValue(!i);
588 Operator *LU = dyn_cast<Operator>(L);
589 if (!LU)
590 continue;
591 unsigned Opcode = LU->getOpcode();
592 // Check for operations that have the property that if
593 // both their operands have low zero bits, the result
594 // will have low zero bits.
595 if (Opcode == Instruction::Add ||
596 Opcode == Instruction::Sub ||
597 Opcode == Instruction::And ||
598 Opcode == Instruction::Or ||
599 Opcode == Instruction::Mul) {
600 Value *LL = LU->getOperand(0);
601 Value *LR = LU->getOperand(1);
602 // Find a recurrence.
603 if (LL == I)
604 L = LR;
605 else if (LR == I)
606 L = LL;
607 else
608 break;
609 // Ok, we have a PHI of the form L op= R. Check for low
610 // zero bits.
611 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
612 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
613 Mask2 = APInt::getLowBitsSet(BitWidth,
614 KnownZero2.countTrailingOnes());
616 // We need to take the minimum number of known bits
617 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
618 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
620 KnownZero = Mask &
621 APInt::getLowBitsSet(BitWidth,
622 std::min(KnownZero2.countTrailingOnes(),
623 KnownZero3.countTrailingOnes()));
624 break;
629 // Unreachable blocks may have zero-operand PHI nodes.
630 if (P->getNumIncomingValues() == 0)
631 return;
633 // Otherwise take the unions of the known bit sets of the operands,
634 // taking conservative care to avoid excessive recursion.
635 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
636 // Skip if every incoming value references to ourself.
637 if (P->hasConstantValue() == P)
638 break;
640 KnownZero = APInt::getAllOnesValue(BitWidth);
641 KnownOne = APInt::getAllOnesValue(BitWidth);
642 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
643 // Skip direct self references.
644 if (P->getIncomingValue(i) == P) continue;
646 KnownZero2 = APInt(BitWidth, 0);
647 KnownOne2 = APInt(BitWidth, 0);
648 // Recurse, but cap the recursion to one level, because we don't
649 // want to waste time spinning around in loops.
650 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
651 KnownZero2, KnownOne2, TD, MaxDepth-1);
652 KnownZero &= KnownZero2;
653 KnownOne &= KnownOne2;
654 // If all bits have been ruled out, there's no need to check
655 // more operands.
656 if (!KnownZero && !KnownOne)
657 break;
660 break;
662 case Instruction::Call:
663 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
664 switch (II->getIntrinsicID()) {
665 default: break;
666 case Intrinsic::ctpop:
667 case Intrinsic::ctlz:
668 case Intrinsic::cttz: {
669 unsigned LowBits = Log2_32(BitWidth)+1;
670 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
671 break;
675 break;
679 /// ComputeSignBit - Determine whether the sign bit is known to be zero or
680 /// one. Convenience wrapper around ComputeMaskedBits.
681 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
682 const TargetData *TD, unsigned Depth) {
683 unsigned BitWidth = getBitWidth(V->getType(), TD);
684 if (!BitWidth) {
685 KnownZero = false;
686 KnownOne = false;
687 return;
689 APInt ZeroBits(BitWidth, 0);
690 APInt OneBits(BitWidth, 0);
691 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
692 Depth);
693 KnownOne = OneBits[BitWidth - 1];
694 KnownZero = ZeroBits[BitWidth - 1];
697 /// isPowerOfTwo - Return true if the given value is known to have exactly one
698 /// bit set when defined. For vectors return true if every element is known to
699 /// be a power of two when defined. Supports values with integer or pointer
700 /// types and vectors of integers.
701 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) {
702 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
703 return CI->getValue().isPowerOf2();
704 // TODO: Handle vector constants.
706 // 1 << X is clearly a power of two if the one is not shifted off the end. If
707 // it is shifted off the end then the result is undefined.
708 if (match(V, m_Shl(m_One(), m_Value())))
709 return true;
711 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
712 // bottom. If it is shifted off the bottom then the result is undefined.
713 if (match(V, m_LShr(m_SignBit(), m_Value())))
714 return true;
716 // The remaining tests are all recursive, so bail out if we hit the limit.
717 if (Depth++ == MaxDepth)
718 return false;
720 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
721 return isPowerOfTwo(ZI->getOperand(0), TD, Depth);
723 if (SelectInst *SI = dyn_cast<SelectInst>(V))
724 return isPowerOfTwo(SI->getTrueValue(), TD, Depth) &&
725 isPowerOfTwo(SI->getFalseValue(), TD, Depth);
727 // An exact divide or right shift can only shift off zero bits, so the result
728 // is a power of two only if the first operand is a power of two and not
729 // copying a sign bit (sdiv int_min, 2).
730 if (match(V, m_LShr(m_Value(), m_Value())) ||
731 match(V, m_UDiv(m_Value(), m_Value()))) {
732 PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V);
733 if (PEO->isExact())
734 return isPowerOfTwo(PEO->getOperand(0), TD, Depth);
737 return false;
740 /// isKnownNonZero - Return true if the given value is known to be non-zero
741 /// when defined. For vectors return true if every element is known to be
742 /// non-zero when defined. Supports values with integer or pointer type and
743 /// vectors of integers.
744 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
745 if (Constant *C = dyn_cast<Constant>(V)) {
746 if (C->isNullValue())
747 return false;
748 if (isa<ConstantInt>(C))
749 // Must be non-zero due to null test above.
750 return true;
751 // TODO: Handle vectors
752 return false;
755 // The remaining tests are all recursive, so bail out if we hit the limit.
756 if (Depth++ == MaxDepth)
757 return false;
759 unsigned BitWidth = getBitWidth(V->getType(), TD);
761 // X | Y != 0 if X != 0 or Y != 0.
762 Value *X = 0, *Y = 0;
763 if (match(V, m_Or(m_Value(X), m_Value(Y))))
764 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
766 // ext X != 0 if X != 0.
767 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
768 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
770 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
771 // if the lowest bit is shifted off the end.
772 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
773 // shl nuw can't remove any non-zero bits.
774 BinaryOperator *BO = cast<BinaryOperator>(V);
775 if (BO->hasNoUnsignedWrap())
776 return isKnownNonZero(X, TD, Depth);
778 APInt KnownZero(BitWidth, 0);
779 APInt KnownOne(BitWidth, 0);
780 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
781 if (KnownOne[0])
782 return true;
784 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
785 // defined if the sign bit is shifted off the end.
786 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
787 // shr exact can only shift out zero bits.
788 BinaryOperator *BO = cast<BinaryOperator>(V);
789 if (BO->isExact())
790 return isKnownNonZero(X, TD, Depth);
792 bool XKnownNonNegative, XKnownNegative;
793 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
794 if (XKnownNegative)
795 return true;
797 // div exact can only produce a zero if the dividend is zero.
798 else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
799 BinaryOperator *BO = cast<BinaryOperator>(V);
800 if (BO->isExact())
801 return isKnownNonZero(X, TD, Depth);
803 // X + Y.
804 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
805 bool XKnownNonNegative, XKnownNegative;
806 bool YKnownNonNegative, YKnownNegative;
807 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
808 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
810 // If X and Y are both non-negative (as signed values) then their sum is not
811 // zero unless both X and Y are zero.
812 if (XKnownNonNegative && YKnownNonNegative)
813 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
814 return true;
816 // If X and Y are both negative (as signed values) then their sum is not
817 // zero unless both X and Y equal INT_MIN.
818 if (BitWidth && XKnownNegative && YKnownNegative) {
819 APInt KnownZero(BitWidth, 0);
820 APInt KnownOne(BitWidth, 0);
821 APInt Mask = APInt::getSignedMaxValue(BitWidth);
822 // The sign bit of X is set. If some other bit is set then X is not equal
823 // to INT_MIN.
824 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
825 if ((KnownOne & Mask) != 0)
826 return true;
827 // The sign bit of Y is set. If some other bit is set then Y is not equal
828 // to INT_MIN.
829 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
830 if ((KnownOne & Mask) != 0)
831 return true;
834 // The sum of a non-negative number and a power of two is not zero.
835 if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth))
836 return true;
837 if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth))
838 return true;
840 // (C ? X : Y) != 0 if X != 0 and Y != 0.
841 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
842 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
843 isKnownNonZero(SI->getFalseValue(), TD, Depth))
844 return true;
847 if (!BitWidth) return false;
848 APInt KnownZero(BitWidth, 0);
849 APInt KnownOne(BitWidth, 0);
850 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
851 TD, Depth);
852 return KnownOne != 0;
855 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
856 /// this predicate to simplify operations downstream. Mask is known to be zero
857 /// for bits that V cannot have.
859 /// This function is defined on values with integer type, values with pointer
860 /// type (but only if TD is non-null), and vectors of integers. In the case
861 /// where V is a vector, the mask, known zero, and known one values are the
862 /// same width as the vector element, and the bit is set only if it is true
863 /// for all of the elements in the vector.
864 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
865 const TargetData *TD, unsigned Depth) {
866 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
867 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
868 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
869 return (KnownZero & Mask) == Mask;
874 /// ComputeNumSignBits - Return the number of times the sign bit of the
875 /// register is replicated into the other bits. We know that at least 1 bit
876 /// is always equal to the sign bit (itself), but other cases can give us
877 /// information. For example, immediately after an "ashr X, 2", we know that
878 /// the top 3 bits are all equal to each other, so we return 3.
880 /// 'Op' must have a scalar integer type.
882 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
883 unsigned Depth) {
884 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
885 "ComputeNumSignBits requires a TargetData object to operate "
886 "on non-integer values!");
887 const Type *Ty = V->getType();
888 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
889 Ty->getScalarSizeInBits();
890 unsigned Tmp, Tmp2;
891 unsigned FirstAnswer = 1;
893 // Note that ConstantInt is handled by the general ComputeMaskedBits case
894 // below.
896 if (Depth == 6)
897 return 1; // Limit search depth.
899 Operator *U = dyn_cast<Operator>(V);
900 switch (Operator::getOpcode(V)) {
901 default: break;
902 case Instruction::SExt:
903 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
904 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
906 case Instruction::AShr:
907 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
908 // ashr X, C -> adds C sign bits.
909 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
910 Tmp += C->getZExtValue();
911 if (Tmp > TyBits) Tmp = TyBits;
913 // vector ashr X, <C, C, C, C> -> adds C sign bits
914 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
915 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
916 Tmp += CI->getZExtValue();
917 if (Tmp > TyBits) Tmp = TyBits;
920 return Tmp;
921 case Instruction::Shl:
922 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
923 // shl destroys sign bits.
924 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
925 if (C->getZExtValue() >= TyBits || // Bad shift.
926 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
927 return Tmp - C->getZExtValue();
929 break;
930 case Instruction::And:
931 case Instruction::Or:
932 case Instruction::Xor: // NOT is handled here.
933 // Logical binary ops preserve the number of sign bits at the worst.
934 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
935 if (Tmp != 1) {
936 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
937 FirstAnswer = std::min(Tmp, Tmp2);
938 // We computed what we know about the sign bits as our first
939 // answer. Now proceed to the generic code that uses
940 // ComputeMaskedBits, and pick whichever answer is better.
942 break;
944 case Instruction::Select:
945 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
946 if (Tmp == 1) return 1; // Early out.
947 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
948 return std::min(Tmp, Tmp2);
950 case Instruction::Add:
951 // Add can have at most one carry bit. Thus we know that the output
952 // is, at worst, one more bit than the inputs.
953 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
954 if (Tmp == 1) return 1; // Early out.
956 // Special case decrementing a value (ADD X, -1):
957 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
958 if (CRHS->isAllOnesValue()) {
959 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
960 APInt Mask = APInt::getAllOnesValue(TyBits);
961 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
962 Depth+1);
964 // If the input is known to be 0 or 1, the output is 0/-1, which is all
965 // sign bits set.
966 if ((KnownZero | APInt(TyBits, 1)) == Mask)
967 return TyBits;
969 // If we are subtracting one from a positive number, there is no carry
970 // out of the result.
971 if (KnownZero.isNegative())
972 return Tmp;
975 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
976 if (Tmp2 == 1) return 1;
977 return std::min(Tmp, Tmp2)-1;
979 case Instruction::Sub:
980 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
981 if (Tmp2 == 1) return 1;
983 // Handle NEG.
984 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
985 if (CLHS->isNullValue()) {
986 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
987 APInt Mask = APInt::getAllOnesValue(TyBits);
988 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
989 TD, Depth+1);
990 // If the input is known to be 0 or 1, the output is 0/-1, which is all
991 // sign bits set.
992 if ((KnownZero | APInt(TyBits, 1)) == Mask)
993 return TyBits;
995 // If the input is known to be positive (the sign bit is known clear),
996 // the output of the NEG has the same number of sign bits as the input.
997 if (KnownZero.isNegative())
998 return Tmp2;
1000 // Otherwise, we treat this like a SUB.
1003 // Sub can have at most one carry bit. Thus we know that the output
1004 // is, at worst, one more bit than the inputs.
1005 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1006 if (Tmp == 1) return 1; // Early out.
1007 return std::min(Tmp, Tmp2)-1;
1009 case Instruction::PHI: {
1010 PHINode *PN = cast<PHINode>(U);
1011 // Don't analyze large in-degree PHIs.
1012 if (PN->getNumIncomingValues() > 4) break;
1014 // Take the minimum of all incoming values. This can't infinitely loop
1015 // because of our depth threshold.
1016 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1017 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1018 if (Tmp == 1) return Tmp;
1019 Tmp = std::min(Tmp,
1020 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
1022 return Tmp;
1025 case Instruction::Trunc:
1026 // FIXME: it's tricky to do anything useful for this, but it is an important
1027 // case for targets like X86.
1028 break;
1031 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1032 // use this information.
1033 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1034 APInt Mask = APInt::getAllOnesValue(TyBits);
1035 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
1037 if (KnownZero.isNegative()) { // sign bit is 0
1038 Mask = KnownZero;
1039 } else if (KnownOne.isNegative()) { // sign bit is 1;
1040 Mask = KnownOne;
1041 } else {
1042 // Nothing known.
1043 return FirstAnswer;
1046 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1047 // the number of identical bits in the top of the input value.
1048 Mask = ~Mask;
1049 Mask <<= Mask.getBitWidth()-TyBits;
1050 // Return # leading zeros. We use 'min' here in case Val was zero before
1051 // shifting. We don't want to return '64' as for an i32 "0".
1052 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1055 /// ComputeMultiple - This function computes the integer multiple of Base that
1056 /// equals V. If successful, it returns true and returns the multiple in
1057 /// Multiple. If unsuccessful, it returns false. It looks
1058 /// through SExt instructions only if LookThroughSExt is true.
1059 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
1060 bool LookThroughSExt, unsigned Depth) {
1061 const unsigned MaxDepth = 6;
1063 assert(V && "No Value?");
1064 assert(Depth <= MaxDepth && "Limit Search Depth");
1065 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
1067 const Type *T = V->getType();
1069 ConstantInt *CI = dyn_cast<ConstantInt>(V);
1071 if (Base == 0)
1072 return false;
1074 if (Base == 1) {
1075 Multiple = V;
1076 return true;
1079 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1080 Constant *BaseVal = ConstantInt::get(T, Base);
1081 if (CO && CO == BaseVal) {
1082 // Multiple is 1.
1083 Multiple = ConstantInt::get(T, 1);
1084 return true;
1087 if (CI && CI->getZExtValue() % Base == 0) {
1088 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1089 return true;
1092 if (Depth == MaxDepth) return false; // Limit search depth.
1094 Operator *I = dyn_cast<Operator>(V);
1095 if (!I) return false;
1097 switch (I->getOpcode()) {
1098 default: break;
1099 case Instruction::SExt:
1100 if (!LookThroughSExt) return false;
1101 // otherwise fall through to ZExt
1102 case Instruction::ZExt:
1103 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1104 LookThroughSExt, Depth+1);
1105 case Instruction::Shl:
1106 case Instruction::Mul: {
1107 Value *Op0 = I->getOperand(0);
1108 Value *Op1 = I->getOperand(1);
1110 if (I->getOpcode() == Instruction::Shl) {
1111 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1112 if (!Op1CI) return false;
1113 // Turn Op0 << Op1 into Op0 * 2^Op1
1114 APInt Op1Int = Op1CI->getValue();
1115 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
1116 APInt API(Op1Int.getBitWidth(), 0);
1117 API.setBit(BitToSet);
1118 Op1 = ConstantInt::get(V->getContext(), API);
1121 Value *Mul0 = NULL;
1122 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1123 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1124 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1125 if (Op1C->getType()->getPrimitiveSizeInBits() <
1126 MulC->getType()->getPrimitiveSizeInBits())
1127 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1128 if (Op1C->getType()->getPrimitiveSizeInBits() >
1129 MulC->getType()->getPrimitiveSizeInBits())
1130 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1132 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1133 Multiple = ConstantExpr::getMul(MulC, Op1C);
1134 return true;
1137 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1138 if (Mul0CI->getValue() == 1) {
1139 // V == Base * Op1, so return Op1
1140 Multiple = Op1;
1141 return true;
1145 Value *Mul1 = NULL;
1146 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1147 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1148 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1149 if (Op0C->getType()->getPrimitiveSizeInBits() <
1150 MulC->getType()->getPrimitiveSizeInBits())
1151 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1152 if (Op0C->getType()->getPrimitiveSizeInBits() >
1153 MulC->getType()->getPrimitiveSizeInBits())
1154 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1156 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1157 Multiple = ConstantExpr::getMul(MulC, Op0C);
1158 return true;
1161 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1162 if (Mul1CI->getValue() == 1) {
1163 // V == Base * Op0, so return Op0
1164 Multiple = Op0;
1165 return true;
1171 // We could not determine if V is a multiple of Base.
1172 return false;
1175 /// CannotBeNegativeZero - Return true if we can prove that the specified FP
1176 /// value is never equal to -0.0.
1178 /// NOTE: this function will need to be revisited when we support non-default
1179 /// rounding modes!
1181 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1182 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1183 return !CFP->getValueAPF().isNegZero();
1185 if (Depth == 6)
1186 return 1; // Limit search depth.
1188 const Operator *I = dyn_cast<Operator>(V);
1189 if (I == 0) return false;
1191 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
1192 if (I->getOpcode() == Instruction::FAdd &&
1193 isa<ConstantFP>(I->getOperand(1)) &&
1194 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1195 return true;
1197 // sitofp and uitofp turn into +0.0 for zero.
1198 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1199 return true;
1201 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1202 // sqrt(-0.0) = -0.0, no other negative results are possible.
1203 if (II->getIntrinsicID() == Intrinsic::sqrt)
1204 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
1206 if (const CallInst *CI = dyn_cast<CallInst>(I))
1207 if (const Function *F = CI->getCalledFunction()) {
1208 if (F->isDeclaration()) {
1209 // abs(x) != -0.0
1210 if (F->getName() == "abs") return true;
1211 // fabs[lf](x) != -0.0
1212 if (F->getName() == "fabs") return true;
1213 if (F->getName() == "fabsf") return true;
1214 if (F->getName() == "fabsl") return true;
1215 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1216 F->getName() == "sqrtl")
1217 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
1221 return false;
1224 /// isBytewiseValue - If the specified value can be set by repeating the same
1225 /// byte in memory, return the i8 value that it is represented with. This is
1226 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1227 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1228 /// byte store (e.g. i16 0x1234), return null.
1229 Value *llvm::isBytewiseValue(Value *V) {
1230 // All byte-wide stores are splatable, even of arbitrary variables.
1231 if (V->getType()->isIntegerTy(8)) return V;
1233 // Handle 'null' ConstantArrayZero etc.
1234 if (Constant *C = dyn_cast<Constant>(V))
1235 if (C->isNullValue())
1236 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
1238 // Constant float and double values can be handled as integer values if the
1239 // corresponding integer value is "byteable". An important case is 0.0.
1240 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1241 if (CFP->getType()->isFloatTy())
1242 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1243 if (CFP->getType()->isDoubleTy())
1244 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1245 // Don't handle long double formats, which have strange constraints.
1248 // We can handle constant integers that are power of two in size and a
1249 // multiple of 8 bits.
1250 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1251 unsigned Width = CI->getBitWidth();
1252 if (isPowerOf2_32(Width) && Width > 8) {
1253 // We can handle this value if the recursive binary decomposition is the
1254 // same at all levels.
1255 APInt Val = CI->getValue();
1256 APInt Val2;
1257 while (Val.getBitWidth() != 8) {
1258 unsigned NextWidth = Val.getBitWidth()/2;
1259 Val2 = Val.lshr(NextWidth);
1260 Val2 = Val2.trunc(Val.getBitWidth()/2);
1261 Val = Val.trunc(Val.getBitWidth()/2);
1263 // If the top/bottom halves aren't the same, reject it.
1264 if (Val != Val2)
1265 return 0;
1267 return ConstantInt::get(V->getContext(), Val);
1271 // A ConstantArray is splatable if all its members are equal and also
1272 // splatable.
1273 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1274 if (CA->getNumOperands() == 0)
1275 return 0;
1277 Value *Val = isBytewiseValue(CA->getOperand(0));
1278 if (!Val)
1279 return 0;
1281 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
1282 if (CA->getOperand(I-1) != CA->getOperand(I))
1283 return 0;
1285 return Val;
1288 // Conceptually, we could handle things like:
1289 // %a = zext i8 %X to i16
1290 // %b = shl i16 %a, 8
1291 // %c = or i16 %a, %b
1292 // but until there is an example that actually needs this, it doesn't seem
1293 // worth worrying about.
1294 return 0;
1298 // This is the recursive version of BuildSubAggregate. It takes a few different
1299 // arguments. Idxs is the index within the nested struct From that we are
1300 // looking at now (which is of type IndexedType). IdxSkip is the number of
1301 // indices from Idxs that should be left out when inserting into the resulting
1302 // struct. To is the result struct built so far, new insertvalue instructions
1303 // build on that.
1304 static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
1305 SmallVector<unsigned, 10> &Idxs,
1306 unsigned IdxSkip,
1307 Instruction *InsertBefore) {
1308 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
1309 if (STy) {
1310 // Save the original To argument so we can modify it
1311 Value *OrigTo = To;
1312 // General case, the type indexed by Idxs is a struct
1313 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1314 // Process each struct element recursively
1315 Idxs.push_back(i);
1316 Value *PrevTo = To;
1317 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
1318 InsertBefore);
1319 Idxs.pop_back();
1320 if (!To) {
1321 // Couldn't find any inserted value for this index? Cleanup
1322 while (PrevTo != OrigTo) {
1323 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1324 PrevTo = Del->getAggregateOperand();
1325 Del->eraseFromParent();
1327 // Stop processing elements
1328 break;
1331 // If we succesfully found a value for each of our subaggregates
1332 if (To)
1333 return To;
1335 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1336 // the struct's elements had a value that was inserted directly. In the latter
1337 // case, perhaps we can't determine each of the subelements individually, but
1338 // we might be able to find the complete struct somewhere.
1340 // Find the value that is at that particular spot
1341 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
1343 if (!V)
1344 return NULL;
1346 // Insert the value in the new (sub) aggregrate
1347 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
1348 Idxs.end(), "tmp", InsertBefore);
1351 // This helper takes a nested struct and extracts a part of it (which is again a
1352 // struct) into a new value. For example, given the struct:
1353 // { a, { b, { c, d }, e } }
1354 // and the indices "1, 1" this returns
1355 // { c, d }.
1357 // It does this by inserting an insertvalue for each element in the resulting
1358 // struct, as opposed to just inserting a single struct. This will only work if
1359 // each of the elements of the substruct are known (ie, inserted into From by an
1360 // insertvalue instruction somewhere).
1362 // All inserted insertvalue instructions are inserted before InsertBefore
1363 static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
1364 const unsigned *idx_end,
1365 Instruction *InsertBefore) {
1366 assert(InsertBefore && "Must have someplace to insert!");
1367 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
1368 idx_begin,
1369 idx_end);
1370 Value *To = UndefValue::get(IndexedType);
1371 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
1372 unsigned IdxSkip = Idxs.size();
1374 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
1377 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1378 /// the scalar value indexed is already around as a register, for example if it
1379 /// were inserted directly into the aggregrate.
1381 /// If InsertBefore is not null, this function will duplicate (modified)
1382 /// insertvalues when a part of a nested struct is extracted.
1383 Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
1384 const unsigned *idx_end, Instruction *InsertBefore) {
1385 // Nothing to index? Just return V then (this is useful at the end of our
1386 // recursion)
1387 if (idx_begin == idx_end)
1388 return V;
1389 // We have indices, so V should have an indexable type
1390 assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
1391 && "Not looking at a struct or array?");
1392 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
1393 && "Invalid indices for type?");
1394 const CompositeType *PTy = cast<CompositeType>(V->getType());
1396 if (isa<UndefValue>(V))
1397 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
1398 idx_begin,
1399 idx_end));
1400 else if (isa<ConstantAggregateZero>(V))
1401 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
1402 idx_begin,
1403 idx_end));
1404 else if (Constant *C = dyn_cast<Constant>(V)) {
1405 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1406 // Recursively process this constant
1407 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
1408 idx_end, InsertBefore);
1409 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1410 // Loop the indices for the insertvalue instruction in parallel with the
1411 // requested indices
1412 const unsigned *req_idx = idx_begin;
1413 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1414 i != e; ++i, ++req_idx) {
1415 if (req_idx == idx_end) {
1416 if (InsertBefore)
1417 // The requested index identifies a part of a nested aggregate. Handle
1418 // this specially. For example,
1419 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1420 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1421 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1422 // This can be changed into
1423 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1424 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1425 // which allows the unused 0,0 element from the nested struct to be
1426 // removed.
1427 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
1428 else
1429 // We can't handle this without inserting insertvalues
1430 return 0;
1433 // This insert value inserts something else than what we are looking for.
1434 // See if the (aggregrate) value inserted into has the value we are
1435 // looking for, then.
1436 if (*req_idx != *i)
1437 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
1438 InsertBefore);
1440 // If we end up here, the indices of the insertvalue match with those
1441 // requested (though possibly only partially). Now we recursively look at
1442 // the inserted value, passing any remaining indices.
1443 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
1444 InsertBefore);
1445 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1446 // If we're extracting a value from an aggregrate that was extracted from
1447 // something else, we can extract from that something else directly instead.
1448 // However, we will need to chain I's indices with the requested indices.
1450 // Calculate the number of indices required
1451 unsigned size = I->getNumIndices() + (idx_end - idx_begin);
1452 // Allocate some space to put the new indices in
1453 SmallVector<unsigned, 5> Idxs;
1454 Idxs.reserve(size);
1455 // Add indices from the extract value instruction
1456 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1457 i != e; ++i)
1458 Idxs.push_back(*i);
1460 // Add requested indices
1461 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
1462 Idxs.push_back(*i);
1464 assert(Idxs.size() == size
1465 && "Number of indices added not correct?");
1467 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
1468 InsertBefore);
1470 // Otherwise, we don't know (such as, extracting from a function return value
1471 // or load instruction)
1472 return 0;
1475 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1476 /// it can be expressed as a base pointer plus a constant offset. Return the
1477 /// base and offset to the caller.
1478 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1479 const TargetData &TD) {
1480 Operator *PtrOp = dyn_cast<Operator>(Ptr);
1481 if (PtrOp == 0) return Ptr;
1483 // Just look through bitcasts.
1484 if (PtrOp->getOpcode() == Instruction::BitCast)
1485 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1487 // If this is a GEP with constant indices, we can look through it.
1488 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1489 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1491 gep_type_iterator GTI = gep_type_begin(GEP);
1492 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1493 ++I, ++GTI) {
1494 ConstantInt *OpC = cast<ConstantInt>(*I);
1495 if (OpC->isZero()) continue;
1497 // Handle a struct and array indices which add their offset to the pointer.
1498 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
1499 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1500 } else {
1501 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1502 Offset += OpC->getSExtValue()*Size;
1506 // Re-sign extend from the pointer size if needed to get overflow edge cases
1507 // right.
1508 unsigned PtrSize = TD.getPointerSizeInBits();
1509 if (PtrSize < 64)
1510 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1512 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1516 /// GetConstantStringInfo - This function computes the length of a
1517 /// null-terminated C string pointed to by V. If successful, it returns true
1518 /// and returns the string in Str. If unsuccessful, it returns false.
1519 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
1520 uint64_t Offset,
1521 bool StopAtNul) {
1522 // If V is NULL then return false;
1523 if (V == NULL) return false;
1525 // Look through bitcast instructions.
1526 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1527 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1529 // If the value is not a GEP instruction nor a constant expression with a
1530 // GEP instruction, then return false because ConstantArray can't occur
1531 // any other way
1532 const User *GEP = 0;
1533 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1534 GEP = GEPI;
1535 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1536 if (CE->getOpcode() == Instruction::BitCast)
1537 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1538 if (CE->getOpcode() != Instruction::GetElementPtr)
1539 return false;
1540 GEP = CE;
1543 if (GEP) {
1544 // Make sure the GEP has exactly three arguments.
1545 if (GEP->getNumOperands() != 3)
1546 return false;
1548 // Make sure the index-ee is a pointer to array of i8.
1549 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1550 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
1551 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
1552 return false;
1554 // Check to make sure that the first operand of the GEP is an integer and
1555 // has value 0 so that we are sure we're indexing into the initializer.
1556 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
1557 if (FirstIdx == 0 || !FirstIdx->isZero())
1558 return false;
1560 // If the second index isn't a ConstantInt, then this is a variable index
1561 // into the array. If this occurs, we can't say anything meaningful about
1562 // the string.
1563 uint64_t StartIdx = 0;
1564 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1565 StartIdx = CI->getZExtValue();
1566 else
1567 return false;
1568 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
1569 StopAtNul);
1572 // The GEP instruction, constant or instruction, must reference a global
1573 // variable that is a constant and is initialized. The referenced constant
1574 // initializer is the array that we'll use for optimization.
1575 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
1576 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
1577 return false;
1578 const Constant *GlobalInit = GV->getInitializer();
1580 // Handle the ConstantAggregateZero case
1581 if (isa<ConstantAggregateZero>(GlobalInit)) {
1582 // This is a degenerate case. The initializer is constant zero so the
1583 // length of the string must be zero.
1584 Str.clear();
1585 return true;
1588 // Must be a Constant Array
1589 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1590 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
1591 return false;
1593 // Get the number of elements in the array
1594 uint64_t NumElts = Array->getType()->getNumElements();
1596 if (Offset > NumElts)
1597 return false;
1599 // Traverse the constant array from 'Offset' which is the place the GEP refers
1600 // to in the array.
1601 Str.reserve(NumElts-Offset);
1602 for (unsigned i = Offset; i != NumElts; ++i) {
1603 const Constant *Elt = Array->getOperand(i);
1604 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1605 if (!CI) // This array isn't suitable, non-int initializer.
1606 return false;
1607 if (StopAtNul && CI->isZero())
1608 return true; // we found end of string, success!
1609 Str += (char)CI->getZExtValue();
1612 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
1613 return true;
1616 // These next two are very similar to the above, but also look through PHI
1617 // nodes.
1618 // TODO: See if we can integrate these two together.
1620 /// GetStringLengthH - If we can compute the length of the string pointed to by
1621 /// the specified pointer, return 'len+1'. If we can't, return 0.
1622 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1623 // Look through noop bitcast instructions.
1624 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1625 return GetStringLengthH(BCI->getOperand(0), PHIs);
1627 // If this is a PHI node, there are two cases: either we have already seen it
1628 // or we haven't.
1629 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1630 if (!PHIs.insert(PN))
1631 return ~0ULL; // already in the set.
1633 // If it was new, see if all the input strings are the same length.
1634 uint64_t LenSoFar = ~0ULL;
1635 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1636 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1637 if (Len == 0) return 0; // Unknown length -> unknown.
1639 if (Len == ~0ULL) continue;
1641 if (Len != LenSoFar && LenSoFar != ~0ULL)
1642 return 0; // Disagree -> unknown.
1643 LenSoFar = Len;
1646 // Success, all agree.
1647 return LenSoFar;
1650 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1651 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1652 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1653 if (Len1 == 0) return 0;
1654 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1655 if (Len2 == 0) return 0;
1656 if (Len1 == ~0ULL) return Len2;
1657 if (Len2 == ~0ULL) return Len1;
1658 if (Len1 != Len2) return 0;
1659 return Len1;
1662 // If the value is not a GEP instruction nor a constant expression with a
1663 // GEP instruction, then return unknown.
1664 User *GEP = 0;
1665 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1666 GEP = GEPI;
1667 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1668 if (CE->getOpcode() != Instruction::GetElementPtr)
1669 return 0;
1670 GEP = CE;
1671 } else {
1672 return 0;
1675 // Make sure the GEP has exactly three arguments.
1676 if (GEP->getNumOperands() != 3)
1677 return 0;
1679 // Check to make sure that the first operand of the GEP is an integer and
1680 // has value 0 so that we are sure we're indexing into the initializer.
1681 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
1682 if (!Idx->isZero())
1683 return 0;
1684 } else
1685 return 0;
1687 // If the second index isn't a ConstantInt, then this is a variable index
1688 // into the array. If this occurs, we can't say anything meaningful about
1689 // the string.
1690 uint64_t StartIdx = 0;
1691 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1692 StartIdx = CI->getZExtValue();
1693 else
1694 return 0;
1696 // The GEP instruction, constant or instruction, must reference a global
1697 // variable that is a constant and is initialized. The referenced constant
1698 // initializer is the array that we'll use for optimization.
1699 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1700 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1701 GV->mayBeOverridden())
1702 return 0;
1703 Constant *GlobalInit = GV->getInitializer();
1705 // Handle the ConstantAggregateZero case, which is a degenerate case. The
1706 // initializer is constant zero so the length of the string must be zero.
1707 if (isa<ConstantAggregateZero>(GlobalInit))
1708 return 1; // Len = 0 offset by 1.
1710 // Must be a Constant Array
1711 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1712 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
1713 return false;
1715 // Get the number of elements in the array
1716 uint64_t NumElts = Array->getType()->getNumElements();
1718 // Traverse the constant array from StartIdx (derived above) which is
1719 // the place the GEP refers to in the array.
1720 for (unsigned i = StartIdx; i != NumElts; ++i) {
1721 Constant *Elt = Array->getOperand(i);
1722 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1723 if (!CI) // This array isn't suitable, non-int initializer.
1724 return 0;
1725 if (CI->isZero())
1726 return i-StartIdx+1; // We found end of string, success!
1729 return 0; // The array isn't null terminated, conservatively return 'unknown'.
1732 /// GetStringLength - If we can compute the length of the string pointed to by
1733 /// the specified pointer, return 'len+1'. If we can't, return 0.
1734 uint64_t llvm::GetStringLength(Value *V) {
1735 if (!V->getType()->isPointerTy()) return 0;
1737 SmallPtrSet<PHINode*, 32> PHIs;
1738 uint64_t Len = GetStringLengthH(V, PHIs);
1739 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1740 // an empty string as a length.
1741 return Len == ~0ULL ? 1 : Len;
1744 Value *
1745 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
1746 if (!V->getType()->isPointerTy())
1747 return V;
1748 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1749 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1750 V = GEP->getPointerOperand();
1751 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1752 V = cast<Operator>(V)->getOperand(0);
1753 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1754 if (GA->mayBeOverridden())
1755 return V;
1756 V = GA->getAliasee();
1757 } else {
1758 // See if InstructionSimplify knows any relevant tricks.
1759 if (Instruction *I = dyn_cast<Instruction>(V))
1760 // TODO: Aquire a DominatorTree and use it.
1761 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
1762 V = Simplified;
1763 continue;
1766 return V;
1768 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1770 return V;