1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveDebugVariables.h"
16 #include "LiveRangeEdit.h"
17 #include "VirtRegMap.h"
18 #include "VirtRegRewriter.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Function.h"
22 #include "llvm/CodeGen/CalcSpillWeights.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/RegAllocRegistry.h"
30 #include "llvm/CodeGen/RegisterCoalescer.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/ADT/EquivalenceClasses.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
50 STATISTIC(NumIters
, "Number of iterations performed");
51 STATISTIC(NumBacktracks
, "Number of times we had to backtrack");
52 STATISTIC(NumCoalesce
, "Number of copies coalesced");
53 STATISTIC(NumDowngrade
, "Number of registers downgraded");
56 NewHeuristic("new-spilling-heuristic",
57 cl::desc("Use new spilling heuristic"),
58 cl::init(false), cl::Hidden
);
61 PreSplitIntervals("pre-alloc-split",
62 cl::desc("Pre-register allocation live interval splitting"),
63 cl::init(false), cl::Hidden
);
66 TrivCoalesceEnds("trivial-coalesce-ends",
67 cl::desc("Attempt trivial coalescing of interval ends"),
68 cl::init(false), cl::Hidden
);
70 static RegisterRegAlloc
71 linearscanRegAlloc("linearscan", "linear scan register allocator",
72 createLinearScanRegisterAllocator
);
75 // When we allocate a register, add it to a fixed-size queue of
76 // registers to skip in subsequent allocations. This trades a small
77 // amount of register pressure and increased spills for flexibility in
78 // the post-pass scheduler.
80 // Note that in a the number of registers used for reloading spills
81 // will be one greater than the value of this option.
83 // One big limitation of this is that it doesn't differentiate between
84 // different register classes. So on x86-64, if there is xmm register
85 // pressure, it can caused fewer GPRs to be held in the queue.
86 static cl::opt
<unsigned>
87 NumRecentlyUsedRegs("linearscan-skip-count",
88 cl::desc("Number of registers for linearscan to remember"
93 struct RALinScan
: public MachineFunctionPass
{
95 RALinScan() : MachineFunctionPass(ID
) {
96 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
97 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
98 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
99 initializeRegisterCoalescerAnalysisGroup(
100 *PassRegistry::getPassRegistry());
101 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
102 initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
103 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
104 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
105 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
106 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
107 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
109 // Initialize the queue to record recently-used registers.
110 if (NumRecentlyUsedRegs
> 0)
111 RecentRegs
.resize(NumRecentlyUsedRegs
, 0);
112 RecentNext
= RecentRegs
.begin();
115 typedef std::pair
<LiveInterval
*, LiveInterval::iterator
> IntervalPtr
;
116 typedef SmallVector
<IntervalPtr
, 32> IntervalPtrs
;
118 /// RelatedRegClasses - This structure is built the first time a function is
119 /// compiled, and keeps track of which register classes have registers that
120 /// belong to multiple classes or have aliases that are in other classes.
121 EquivalenceClasses
<const TargetRegisterClass
*> RelatedRegClasses
;
122 DenseMap
<unsigned, const TargetRegisterClass
*> OneClassForEachPhysReg
;
124 // NextReloadMap - For each register in the map, it maps to the another
125 // register which is defined by a reload from the same stack slot and
126 // both reloads are in the same basic block.
127 DenseMap
<unsigned, unsigned> NextReloadMap
;
129 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
130 // un-favored for allocation.
131 SmallSet
<unsigned, 8> DowngradedRegs
;
133 // DowngradeMap - A map from virtual registers to physical registers being
134 // downgraded for the virtual registers.
135 DenseMap
<unsigned, unsigned> DowngradeMap
;
137 MachineFunction
* mf_
;
138 MachineRegisterInfo
* mri_
;
139 const TargetMachine
* tm_
;
140 const TargetRegisterInfo
* tri_
;
141 const TargetInstrInfo
* tii_
;
142 BitVector allocatableRegs_
;
143 BitVector reservedRegs_
;
145 MachineLoopInfo
*loopInfo
;
147 /// handled_ - Intervals are added to the handled_ set in the order of their
148 /// start value. This is uses for backtracking.
149 std::vector
<LiveInterval
*> handled_
;
151 /// fixed_ - Intervals that correspond to machine registers.
155 /// active_ - Intervals that are currently being processed, and which have a
156 /// live range active for the current point.
157 IntervalPtrs active_
;
159 /// inactive_ - Intervals that are currently being processed, but which have
160 /// a hold at the current point.
161 IntervalPtrs inactive_
;
163 typedef std::priority_queue
<LiveInterval
*,
164 SmallVector
<LiveInterval
*, 64>,
165 greater_ptr
<LiveInterval
> > IntervalHeap
;
166 IntervalHeap unhandled_
;
168 /// regUse_ - Tracks register usage.
169 SmallVector
<unsigned, 32> regUse_
;
170 SmallVector
<unsigned, 32> regUseBackUp_
;
172 /// vrm_ - Tracks register assignments.
175 std::auto_ptr
<VirtRegRewriter
> rewriter_
;
177 std::auto_ptr
<Spiller
> spiller_
;
179 // The queue of recently-used registers.
180 SmallVector
<unsigned, 4> RecentRegs
;
181 SmallVector
<unsigned, 4>::iterator RecentNext
;
183 // Record that we just picked this register.
184 void recordRecentlyUsed(unsigned reg
) {
185 assert(reg
!= 0 && "Recently used register is NOREG!");
186 if (!RecentRegs
.empty()) {
188 if (RecentNext
== RecentRegs
.end())
189 RecentNext
= RecentRegs
.begin();
194 virtual const char* getPassName() const {
195 return "Linear Scan Register Allocator";
198 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
199 AU
.setPreservesCFG();
200 AU
.addRequired
<AliasAnalysis
>();
201 AU
.addPreserved
<AliasAnalysis
>();
202 AU
.addRequired
<LiveIntervals
>();
203 AU
.addPreserved
<SlotIndexes
>();
205 AU
.addRequiredID(StrongPHIEliminationID
);
206 // Make sure PassManager knows which analyses to make available
207 // to coalescing and which analyses coalescing invalidates.
208 AU
.addRequiredTransitive
<RegisterCoalescer
>();
209 AU
.addRequired
<CalculateSpillWeights
>();
210 if (PreSplitIntervals
)
211 AU
.addRequiredID(PreAllocSplittingID
);
212 AU
.addRequiredID(LiveStacksID
);
213 AU
.addPreservedID(LiveStacksID
);
214 AU
.addRequired
<MachineLoopInfo
>();
215 AU
.addPreserved
<MachineLoopInfo
>();
216 AU
.addRequired
<VirtRegMap
>();
217 AU
.addPreserved
<VirtRegMap
>();
218 AU
.addRequired
<LiveDebugVariables
>();
219 AU
.addPreserved
<LiveDebugVariables
>();
220 AU
.addRequiredID(MachineDominatorsID
);
221 AU
.addPreservedID(MachineDominatorsID
);
222 MachineFunctionPass::getAnalysisUsage(AU
);
225 /// runOnMachineFunction - register allocate the whole function
226 bool runOnMachineFunction(MachineFunction
&);
228 // Determine if we skip this register due to its being recently used.
229 bool isRecentlyUsed(unsigned reg
) const {
230 return std::find(RecentRegs
.begin(), RecentRegs
.end(), reg
) !=
235 /// linearScan - the linear scan algorithm
238 /// initIntervalSets - initialize the interval sets.
240 void initIntervalSets();
242 /// processActiveIntervals - expire old intervals and move non-overlapping
243 /// ones to the inactive list.
244 void processActiveIntervals(SlotIndex CurPoint
);
246 /// processInactiveIntervals - expire old intervals and move overlapping
247 /// ones to the active list.
248 void processInactiveIntervals(SlotIndex CurPoint
);
250 /// hasNextReloadInterval - Return the next liveinterval that's being
251 /// defined by a reload from the same SS as the specified one.
252 LiveInterval
*hasNextReloadInterval(LiveInterval
*cur
);
254 /// DowngradeRegister - Downgrade a register for allocation.
255 void DowngradeRegister(LiveInterval
*li
, unsigned Reg
);
257 /// UpgradeRegister - Upgrade a register for allocation.
258 void UpgradeRegister(unsigned Reg
);
260 /// assignRegOrStackSlotAtInterval - assign a register if one
261 /// is available, or spill.
262 void assignRegOrStackSlotAtInterval(LiveInterval
* cur
);
264 void updateSpillWeights(std::vector
<float> &Weights
,
265 unsigned reg
, float weight
,
266 const TargetRegisterClass
*RC
);
268 /// findIntervalsToSpill - Determine the intervals to spill for the
269 /// specified interval. It's passed the physical registers whose spill
270 /// weight is the lowest among all the registers whose live intervals
271 /// conflict with the interval.
272 void findIntervalsToSpill(LiveInterval
*cur
,
273 std::vector
<std::pair
<unsigned,float> > &Candidates
,
275 SmallVector
<LiveInterval
*, 8> &SpillIntervals
);
277 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
278 /// try to allocate the definition to the same register as the source,
279 /// if the register is not defined during the life time of the interval.
280 /// This eliminates a copy, and is used to coalesce copies which were not
281 /// coalesced away before allocation either due to dest and src being in
282 /// different register classes or because the coalescer was overly
284 unsigned attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
);
287 /// Register usage / availability tracking helpers.
291 regUse_
.resize(tri_
->getNumRegs(), 0);
292 regUseBackUp_
.resize(tri_
->getNumRegs(), 0);
295 void finalizeRegUses() {
297 // Verify all the registers are "freed".
299 for (unsigned i
= 0, e
= tri_
->getNumRegs(); i
!= e
; ++i
) {
300 if (regUse_
[i
] != 0) {
301 dbgs() << tri_
->getName(i
) << " is still in use!\n";
309 regUseBackUp_
.clear();
312 void addRegUse(unsigned physReg
) {
313 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
314 "should be physical register!");
316 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
)
320 void delRegUse(unsigned physReg
) {
321 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
322 "should be physical register!");
323 assert(regUse_
[physReg
] != 0);
325 for (const unsigned* as
= tri_
->getAliasSet(physReg
); *as
; ++as
) {
326 assert(regUse_
[*as
] != 0);
331 bool isRegAvail(unsigned physReg
) const {
332 assert(TargetRegisterInfo::isPhysicalRegister(physReg
) &&
333 "should be physical register!");
334 return regUse_
[physReg
] == 0;
337 void backUpRegUses() {
338 regUseBackUp_
= regUse_
;
341 void restoreRegUses() {
342 regUse_
= regUseBackUp_
;
346 /// Register handling helpers.
349 /// getFreePhysReg - return a free physical register for this virtual
350 /// register interval if we have one, otherwise return 0.
351 unsigned getFreePhysReg(LiveInterval
* cur
);
352 unsigned getFreePhysReg(LiveInterval
* cur
,
353 const TargetRegisterClass
*RC
,
354 unsigned MaxInactiveCount
,
355 SmallVector
<unsigned, 256> &inactiveCounts
,
358 /// getFirstNonReservedPhysReg - return the first non-reserved physical
359 /// register in the register class.
360 unsigned getFirstNonReservedPhysReg(const TargetRegisterClass
*RC
) {
361 TargetRegisterClass::iterator aoe
= RC
->allocation_order_end(*mf_
);
362 TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
);
363 while (i
!= aoe
&& reservedRegs_
.test(*i
))
365 assert(i
!= aoe
&& "All registers reserved?!");
369 void ComputeRelatedRegClasses();
371 template <typename ItTy
>
372 void printIntervals(const char* const str
, ItTy i
, ItTy e
) const {
375 dbgs() << str
<< " intervals:\n";
377 for (; i
!= e
; ++i
) {
378 dbgs() << '\t' << *i
->first
<< " -> ";
380 unsigned reg
= i
->first
->reg
;
381 if (TargetRegisterInfo::isVirtualRegister(reg
))
382 reg
= vrm_
->getPhys(reg
);
384 dbgs() << tri_
->getName(reg
) << '\n';
389 char RALinScan::ID
= 0;
392 INITIALIZE_PASS_BEGIN(RALinScan
, "linearscan-regalloc",
393 "Linear Scan Register Allocator", false, false)
394 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
395 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination
)
396 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights
)
397 INITIALIZE_PASS_DEPENDENCY(PreAllocSplitting
)
398 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
399 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
400 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
401 INITIALIZE_AG_DEPENDENCY(RegisterCoalescer
)
402 INITIALIZE_AG_DEPENDENCY(AliasAnalysis
)
403 INITIALIZE_PASS_END(RALinScan
, "linearscan-regalloc",
404 "Linear Scan Register Allocator", false, false)
406 void RALinScan::ComputeRelatedRegClasses() {
407 // First pass, add all reg classes to the union, and determine at least one
408 // reg class that each register is in.
409 bool HasAliases
= false;
410 for (TargetRegisterInfo::regclass_iterator RCI
= tri_
->regclass_begin(),
411 E
= tri_
->regclass_end(); RCI
!= E
; ++RCI
) {
412 RelatedRegClasses
.insert(*RCI
);
413 for (TargetRegisterClass::iterator I
= (*RCI
)->begin(), E
= (*RCI
)->end();
415 HasAliases
= HasAliases
|| *tri_
->getAliasSet(*I
) != 0;
417 const TargetRegisterClass
*&PRC
= OneClassForEachPhysReg
[*I
];
419 // Already processed this register. Just make sure we know that
420 // multiple register classes share a register.
421 RelatedRegClasses
.unionSets(PRC
, *RCI
);
428 // Second pass, now that we know conservatively what register classes each reg
429 // belongs to, add info about aliases. We don't need to do this for targets
430 // without register aliases.
432 for (DenseMap
<unsigned, const TargetRegisterClass
*>::iterator
433 I
= OneClassForEachPhysReg
.begin(), E
= OneClassForEachPhysReg
.end();
435 for (const unsigned *AS
= tri_
->getAliasSet(I
->first
); *AS
; ++AS
) {
436 const TargetRegisterClass
*AliasClass
=
437 OneClassForEachPhysReg
.lookup(*AS
);
439 RelatedRegClasses
.unionSets(I
->second
, AliasClass
);
443 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
444 /// allocate the definition the same register as the source register if the
445 /// register is not defined during live time of the interval. If the interval is
446 /// killed by a copy, try to use the destination register. This eliminates a
447 /// copy. This is used to coalesce copies which were not coalesced away before
448 /// allocation either due to dest and src being in different register classes or
449 /// because the coalescer was overly conservative.
450 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval
&cur
, unsigned Reg
) {
451 unsigned Preference
= vrm_
->getRegAllocPref(cur
.reg
);
452 if ((Preference
&& Preference
== Reg
) || !cur
.containsOneValue())
455 // We cannot handle complicated live ranges. Simple linear stuff only.
456 if (cur
.ranges
.size() != 1)
459 const LiveRange
&range
= cur
.ranges
.front();
461 VNInfo
*vni
= range
.valno
;
462 if (vni
->isUnused() || !vni
->def
.isValid())
467 MachineInstr
*CopyMI
;
468 if ((CopyMI
= li_
->getInstructionFromIndex(vni
->def
)) && CopyMI
->isCopy())
469 // Defined by a copy, try to extend SrcReg forward
470 CandReg
= CopyMI
->getOperand(1).getReg();
471 else if (TrivCoalesceEnds
&&
472 (CopyMI
= li_
->getInstructionFromIndex(range
.end
.getBaseIndex())) &&
473 CopyMI
->isCopy() && cur
.reg
== CopyMI
->getOperand(1).getReg())
474 // Only used by a copy, try to extend DstReg backwards
475 CandReg
= CopyMI
->getOperand(0).getReg();
479 // If the target of the copy is a sub-register then don't coalesce.
480 if(CopyMI
->getOperand(0).getSubReg())
484 if (TargetRegisterInfo::isVirtualRegister(CandReg
)) {
485 if (!vrm_
->isAssignedReg(CandReg
))
487 CandReg
= vrm_
->getPhys(CandReg
);
492 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
.reg
);
493 if (!RC
->contains(CandReg
))
496 if (li_
->conflictsWithPhysReg(cur
, *vrm_
, CandReg
))
500 DEBUG(dbgs() << "Coalescing: " << cur
<< " -> " << tri_
->getName(CandReg
)
502 vrm_
->clearVirt(cur
.reg
);
503 vrm_
->assignVirt2Phys(cur
.reg
, CandReg
);
509 bool RALinScan::runOnMachineFunction(MachineFunction
&fn
) {
511 mri_
= &fn
.getRegInfo();
512 tm_
= &fn
.getTarget();
513 tri_
= tm_
->getRegisterInfo();
514 tii_
= tm_
->getInstrInfo();
515 allocatableRegs_
= tri_
->getAllocatableSet(fn
);
516 reservedRegs_
= tri_
->getReservedRegs(fn
);
517 li_
= &getAnalysis
<LiveIntervals
>();
518 loopInfo
= &getAnalysis
<MachineLoopInfo
>();
520 // We don't run the coalescer here because we have no reason to
521 // interact with it. If the coalescer requires interaction, it
522 // won't do anything. If it doesn't require interaction, we assume
523 // it was run as a separate pass.
525 // If this is the first function compiled, compute the related reg classes.
526 if (RelatedRegClasses
.empty())
527 ComputeRelatedRegClasses();
529 // Also resize register usage trackers.
532 vrm_
= &getAnalysis
<VirtRegMap
>();
533 if (!rewriter_
.get()) rewriter_
.reset(createVirtRegRewriter());
535 spiller_
.reset(createSpiller(*this, *mf_
, *vrm_
));
541 // Rewrite spill code and update the PhysRegsUsed set.
542 rewriter_
->runOnMachineFunction(*mf_
, *vrm_
, li_
);
544 // Write out new DBG_VALUE instructions.
545 getAnalysis
<LiveDebugVariables
>().emitDebugValues(vrm_
);
547 assert(unhandled_
.empty() && "Unhandled live intervals remain!");
555 NextReloadMap
.clear();
556 DowngradedRegs
.clear();
557 DowngradeMap
.clear();
563 /// initIntervalSets - initialize the interval sets.
565 void RALinScan::initIntervalSets()
567 assert(unhandled_
.empty() && fixed_
.empty() &&
568 active_
.empty() && inactive_
.empty() &&
569 "interval sets should be empty on initialization");
571 handled_
.reserve(li_
->getNumIntervals());
573 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
574 if (TargetRegisterInfo::isPhysicalRegister(i
->second
->reg
)) {
575 if (!i
->second
->empty() && allocatableRegs_
.test(i
->second
->reg
)) {
576 mri_
->setPhysRegUsed(i
->second
->reg
);
577 fixed_
.push_back(std::make_pair(i
->second
, i
->second
->begin()));
580 if (i
->second
->empty()) {
581 assignRegOrStackSlotAtInterval(i
->second
);
584 unhandled_
.push(i
->second
);
589 void RALinScan::linearScan() {
590 // linear scan algorithm
592 dbgs() << "********** LINEAR SCAN **********\n"
593 << "********** Function: "
594 << mf_
->getFunction()->getName() << '\n';
595 printIntervals("fixed", fixed_
.begin(), fixed_
.end());
598 while (!unhandled_
.empty()) {
599 // pick the interval with the earliest start point
600 LiveInterval
* cur
= unhandled_
.top();
603 DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur
<< '\n');
605 assert(!cur
->empty() && "Empty interval in unhandled set.");
607 processActiveIntervals(cur
->beginIndex());
608 processInactiveIntervals(cur
->beginIndex());
610 assert(TargetRegisterInfo::isVirtualRegister(cur
->reg
) &&
611 "Can only allocate virtual registers!");
613 // Allocating a virtual register. try to find a free
614 // physical register or spill an interval (possibly this one) in order to
616 assignRegOrStackSlotAtInterval(cur
);
619 printIntervals("active", active_
.begin(), active_
.end());
620 printIntervals("inactive", inactive_
.begin(), inactive_
.end());
624 // Expire any remaining active intervals
625 while (!active_
.empty()) {
626 IntervalPtr
&IP
= active_
.back();
627 unsigned reg
= IP
.first
->reg
;
628 DEBUG(dbgs() << "\tinterval " << *IP
.first
<< " expired\n");
629 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
630 "Can only allocate virtual registers!");
631 reg
= vrm_
->getPhys(reg
);
636 // Expire any remaining inactive intervals
638 for (IntervalPtrs::reverse_iterator
639 i
= inactive_
.rbegin(); i
!= inactive_
.rend(); ++i
)
640 dbgs() << "\tinterval " << *i
->first
<< " expired\n";
644 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
645 MachineFunction::iterator EntryMBB
= mf_
->begin();
646 SmallVector
<MachineBasicBlock
*, 8> LiveInMBBs
;
647 for (LiveIntervals::iterator i
= li_
->begin(), e
= li_
->end(); i
!= e
; ++i
) {
648 LiveInterval
&cur
= *i
->second
;
650 bool isPhys
= TargetRegisterInfo::isPhysicalRegister(cur
.reg
);
653 else if (vrm_
->isAssignedReg(cur
.reg
))
654 Reg
= attemptTrivialCoalescing(cur
, vrm_
->getPhys(cur
.reg
));
657 // Ignore splited live intervals.
658 if (!isPhys
&& vrm_
->getPreSplitReg(cur
.reg
))
661 for (LiveInterval::Ranges::const_iterator I
= cur
.begin(), E
= cur
.end();
663 const LiveRange
&LR
= *I
;
664 if (li_
->findLiveInMBBs(LR
.start
, LR
.end
, LiveInMBBs
)) {
665 for (unsigned i
= 0, e
= LiveInMBBs
.size(); i
!= e
; ++i
)
666 if (LiveInMBBs
[i
] != EntryMBB
) {
667 assert(TargetRegisterInfo::isPhysicalRegister(Reg
) &&
668 "Adding a virtual register to livein set?");
669 LiveInMBBs
[i
]->addLiveIn(Reg
);
676 DEBUG(dbgs() << *vrm_
);
678 // Look for physical registers that end up not being allocated even though
679 // register allocator had to spill other registers in its register class.
680 if (!vrm_
->FindUnusedRegisters(li_
))
684 /// processActiveIntervals - expire old intervals and move non-overlapping ones
685 /// to the inactive list.
686 void RALinScan::processActiveIntervals(SlotIndex CurPoint
)
688 DEBUG(dbgs() << "\tprocessing active intervals:\n");
690 for (unsigned i
= 0, e
= active_
.size(); i
!= e
; ++i
) {
691 LiveInterval
*Interval
= active_
[i
].first
;
692 LiveInterval::iterator IntervalPos
= active_
[i
].second
;
693 unsigned reg
= Interval
->reg
;
695 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
697 if (IntervalPos
== Interval
->end()) { // Remove expired intervals.
698 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " expired\n");
699 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
700 "Can only allocate virtual registers!");
701 reg
= vrm_
->getPhys(reg
);
704 // Pop off the end of the list.
705 active_
[i
] = active_
.back();
709 } else if (IntervalPos
->start
> CurPoint
) {
710 // Move inactive intervals to inactive list.
711 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " inactive\n");
712 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
713 "Can only allocate virtual registers!");
714 reg
= vrm_
->getPhys(reg
);
717 inactive_
.push_back(std::make_pair(Interval
, IntervalPos
));
719 // Pop off the end of the list.
720 active_
[i
] = active_
.back();
724 // Otherwise, just update the iterator position.
725 active_
[i
].second
= IntervalPos
;
730 /// processInactiveIntervals - expire old intervals and move overlapping
731 /// ones to the active list.
732 void RALinScan::processInactiveIntervals(SlotIndex CurPoint
)
734 DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
736 for (unsigned i
= 0, e
= inactive_
.size(); i
!= e
; ++i
) {
737 LiveInterval
*Interval
= inactive_
[i
].first
;
738 LiveInterval::iterator IntervalPos
= inactive_
[i
].second
;
739 unsigned reg
= Interval
->reg
;
741 IntervalPos
= Interval
->advanceTo(IntervalPos
, CurPoint
);
743 if (IntervalPos
== Interval
->end()) { // remove expired intervals.
744 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " expired\n");
746 // Pop off the end of the list.
747 inactive_
[i
] = inactive_
.back();
748 inactive_
.pop_back();
750 } else if (IntervalPos
->start
<= CurPoint
) {
751 // move re-activated intervals in active list
752 DEBUG(dbgs() << "\t\tinterval " << *Interval
<< " active\n");
753 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
754 "Can only allocate virtual registers!");
755 reg
= vrm_
->getPhys(reg
);
758 active_
.push_back(std::make_pair(Interval
, IntervalPos
));
760 // Pop off the end of the list.
761 inactive_
[i
] = inactive_
.back();
762 inactive_
.pop_back();
765 // Otherwise, just update the iterator position.
766 inactive_
[i
].second
= IntervalPos
;
771 /// updateSpillWeights - updates the spill weights of the specifed physical
772 /// register and its weight.
773 void RALinScan::updateSpillWeights(std::vector
<float> &Weights
,
774 unsigned reg
, float weight
,
775 const TargetRegisterClass
*RC
) {
776 SmallSet
<unsigned, 4> Processed
;
777 SmallSet
<unsigned, 4> SuperAdded
;
778 SmallVector
<unsigned, 4> Supers
;
779 Weights
[reg
] += weight
;
780 Processed
.insert(reg
);
781 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
) {
782 Weights
[*as
] += weight
;
783 Processed
.insert(*as
);
784 if (tri_
->isSubRegister(*as
, reg
) &&
785 SuperAdded
.insert(*as
) &&
787 Supers
.push_back(*as
);
791 // If the alias is a super-register, and the super-register is in the
792 // register class we are trying to allocate. Then add the weight to all
793 // sub-registers of the super-register even if they are not aliases.
794 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
795 // bl should get the same spill weight otherwise it will be choosen
796 // as a spill candidate since spilling bh doesn't make ebx available.
797 for (unsigned i
= 0, e
= Supers
.size(); i
!= e
; ++i
) {
798 for (const unsigned *sr
= tri_
->getSubRegisters(Supers
[i
]); *sr
; ++sr
)
799 if (!Processed
.count(*sr
))
800 Weights
[*sr
] += weight
;
805 RALinScan::IntervalPtrs::iterator
806 FindIntervalInVector(RALinScan::IntervalPtrs
&IP
, LiveInterval
*LI
) {
807 for (RALinScan::IntervalPtrs::iterator I
= IP
.begin(), E
= IP
.end();
809 if (I
->first
== LI
) return I
;
813 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs
&V
,
815 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
816 RALinScan::IntervalPtr
&IP
= V
[i
];
817 LiveInterval::iterator I
= std::upper_bound(IP
.first
->begin(),
819 if (I
!= IP
.first
->begin()) --I
;
824 /// getConflictWeight - Return the number of conflicts between cur
825 /// live interval and defs and uses of Reg weighted by loop depthes.
827 float getConflictWeight(LiveInterval
*cur
, unsigned Reg
, LiveIntervals
*li_
,
828 MachineRegisterInfo
*mri_
,
829 MachineLoopInfo
*loopInfo
) {
831 for (MachineRegisterInfo::reg_iterator I
= mri_
->reg_begin(Reg
),
832 E
= mri_
->reg_end(); I
!= E
; ++I
) {
833 MachineInstr
*MI
= &*I
;
834 if (cur
->liveAt(li_
->getInstructionIndex(MI
))) {
835 unsigned loopDepth
= loopInfo
->getLoopDepth(MI
->getParent());
836 Conflicts
+= std::pow(10.0f
, (float)loopDepth
);
842 /// findIntervalsToSpill - Determine the intervals to spill for the
843 /// specified interval. It's passed the physical registers whose spill
844 /// weight is the lowest among all the registers whose live intervals
845 /// conflict with the interval.
846 void RALinScan::findIntervalsToSpill(LiveInterval
*cur
,
847 std::vector
<std::pair
<unsigned,float> > &Candidates
,
849 SmallVector
<LiveInterval
*, 8> &SpillIntervals
) {
850 // We have figured out the *best* register to spill. But there are other
851 // registers that are pretty good as well (spill weight within 3%). Spill
852 // the one that has fewest defs and uses that conflict with cur.
853 float Conflicts
[3] = { 0.0f
, 0.0f
, 0.0f
};
854 SmallVector
<LiveInterval
*, 8> SLIs
[3];
857 dbgs() << "\tConsidering " << NumCands
<< " candidates: ";
858 for (unsigned i
= 0; i
!= NumCands
; ++i
)
859 dbgs() << tri_
->getName(Candidates
[i
].first
) << " ";
863 // Calculate the number of conflicts of each candidate.
864 for (IntervalPtrs::iterator i
= active_
.begin(); i
!= active_
.end(); ++i
) {
865 unsigned Reg
= i
->first
->reg
;
866 unsigned PhysReg
= vrm_
->getPhys(Reg
);
867 if (!cur
->overlapsFrom(*i
->first
, i
->second
))
869 for (unsigned j
= 0; j
< NumCands
; ++j
) {
870 unsigned Candidate
= Candidates
[j
].first
;
871 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
873 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
874 SLIs
[j
].push_back(i
->first
);
879 for (IntervalPtrs::iterator i
= inactive_
.begin(); i
!= inactive_
.end(); ++i
){
880 unsigned Reg
= i
->first
->reg
;
881 unsigned PhysReg
= vrm_
->getPhys(Reg
);
882 if (!cur
->overlapsFrom(*i
->first
, i
->second
-1))
884 for (unsigned j
= 0; j
< NumCands
; ++j
) {
885 unsigned Candidate
= Candidates
[j
].first
;
886 if (tri_
->regsOverlap(PhysReg
, Candidate
)) {
888 Conflicts
[j
] += getConflictWeight(cur
, Reg
, li_
, mri_
, loopInfo
);
889 SLIs
[j
].push_back(i
->first
);
894 // Which is the best candidate?
895 unsigned BestCandidate
= 0;
896 float MinConflicts
= Conflicts
[0];
897 for (unsigned i
= 1; i
!= NumCands
; ++i
) {
898 if (Conflicts
[i
] < MinConflicts
) {
900 MinConflicts
= Conflicts
[i
];
904 std::copy(SLIs
[BestCandidate
].begin(), SLIs
[BestCandidate
].end(),
905 std::back_inserter(SpillIntervals
));
909 struct WeightCompare
{
911 const RALinScan
&Allocator
;
914 WeightCompare(const RALinScan
&Alloc
) : Allocator(Alloc
) {}
916 typedef std::pair
<unsigned, float> RegWeightPair
;
917 bool operator()(const RegWeightPair
&LHS
, const RegWeightPair
&RHS
) const {
918 return LHS
.second
< RHS
.second
&& !Allocator
.isRecentlyUsed(LHS
.first
);
923 static bool weightsAreClose(float w1
, float w2
) {
927 float diff
= w1
- w2
;
928 if (diff
<= 0.02f
) // Within 0.02f
930 return (diff
/ w2
) <= 0.05f
; // Within 5%.
933 LiveInterval
*RALinScan::hasNextReloadInterval(LiveInterval
*cur
) {
934 DenseMap
<unsigned, unsigned>::iterator I
= NextReloadMap
.find(cur
->reg
);
935 if (I
== NextReloadMap
.end())
937 return &li_
->getInterval(I
->second
);
940 void RALinScan::DowngradeRegister(LiveInterval
*li
, unsigned Reg
) {
941 for (const unsigned *AS
= tri_
->getOverlaps(Reg
); *AS
; ++AS
) {
942 bool isNew
= DowngradedRegs
.insert(*AS
);
943 (void)isNew
; // Silence compiler warning.
944 assert(isNew
&& "Multiple reloads holding the same register?");
945 DowngradeMap
.insert(std::make_pair(li
->reg
, *AS
));
950 void RALinScan::UpgradeRegister(unsigned Reg
) {
952 DowngradedRegs
.erase(Reg
);
953 for (const unsigned *AS
= tri_
->getAliasSet(Reg
); *AS
; ++AS
)
954 DowngradedRegs
.erase(*AS
);
960 bool operator()(LiveInterval
* A
, LiveInterval
* B
) {
961 return A
->beginIndex() < B
->beginIndex();
966 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
968 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval
* cur
) {
969 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
970 DEBUG(dbgs() << "\tallocating current interval from "
971 << RC
->getName() << ": ");
973 // This is an implicitly defined live interval, just assign any register.
975 unsigned physReg
= vrm_
->getRegAllocPref(cur
->reg
);
977 physReg
= getFirstNonReservedPhysReg(RC
);
978 DEBUG(dbgs() << tri_
->getName(physReg
) << '\n');
979 // Note the register is not really in use.
980 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
986 std::vector
<std::pair
<unsigned, float> > SpillWeightsToAdd
;
987 SlotIndex StartPosition
= cur
->beginIndex();
988 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
990 // If start of this live interval is defined by a move instruction and its
991 // source is assigned a physical register that is compatible with the target
992 // register class, then we should try to assign it the same register.
993 // This can happen when the move is from a larger register class to a smaller
994 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
995 if (!vrm_
->getRegAllocPref(cur
->reg
) && cur
->hasAtLeastOneValue()) {
996 VNInfo
*vni
= cur
->begin()->valno
;
997 if (!vni
->isUnused() && vni
->def
.isValid()) {
998 MachineInstr
*CopyMI
= li_
->getInstructionFromIndex(vni
->def
);
999 if (CopyMI
&& CopyMI
->isCopy()) {
1000 unsigned DstSubReg
= CopyMI
->getOperand(0).getSubReg();
1001 unsigned SrcReg
= CopyMI
->getOperand(1).getReg();
1002 unsigned SrcSubReg
= CopyMI
->getOperand(1).getSubReg();
1004 if (TargetRegisterInfo::isPhysicalRegister(SrcReg
))
1006 else if (vrm_
->isAssignedReg(SrcReg
))
1007 Reg
= vrm_
->getPhys(SrcReg
);
1010 Reg
= tri_
->getSubReg(Reg
, SrcSubReg
);
1012 Reg
= tri_
->getMatchingSuperReg(Reg
, DstSubReg
, RC
);
1013 if (Reg
&& allocatableRegs_
[Reg
] && RC
->contains(Reg
))
1014 mri_
->setRegAllocationHint(cur
->reg
, 0, Reg
);
1020 // For every interval in inactive we overlap with, mark the
1021 // register as not free and update spill weights.
1022 for (IntervalPtrs::const_iterator i
= inactive_
.begin(),
1023 e
= inactive_
.end(); i
!= e
; ++i
) {
1024 unsigned Reg
= i
->first
->reg
;
1025 assert(TargetRegisterInfo::isVirtualRegister(Reg
) &&
1026 "Can only allocate virtual registers!");
1027 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(Reg
);
1028 // If this is not in a related reg class to the register we're allocating,
1030 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
1031 cur
->overlapsFrom(*i
->first
, i
->second
-1)) {
1032 Reg
= vrm_
->getPhys(Reg
);
1034 SpillWeightsToAdd
.push_back(std::make_pair(Reg
, i
->first
->weight
));
1038 // Speculatively check to see if we can get a register right now. If not,
1039 // we know we won't be able to by adding more constraints. If so, we can
1040 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
1041 // is very bad (it contains all callee clobbered registers for any functions
1042 // with a call), so we want to avoid doing that if possible.
1043 unsigned physReg
= getFreePhysReg(cur
);
1044 unsigned BestPhysReg
= physReg
;
1046 // We got a register. However, if it's in the fixed_ list, we might
1047 // conflict with it. Check to see if we conflict with it or any of its
1049 SmallSet
<unsigned, 8> RegAliases
;
1050 for (const unsigned *AS
= tri_
->getAliasSet(physReg
); *AS
; ++AS
)
1051 RegAliases
.insert(*AS
);
1053 bool ConflictsWithFixed
= false;
1054 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1055 IntervalPtr
&IP
= fixed_
[i
];
1056 if (physReg
== IP
.first
->reg
|| RegAliases
.count(IP
.first
->reg
)) {
1057 // Okay, this reg is on the fixed list. Check to see if we actually
1059 LiveInterval
*I
= IP
.first
;
1060 if (I
->endIndex() > StartPosition
) {
1061 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
1063 if (II
!= I
->begin() && II
->start
> StartPosition
)
1065 if (cur
->overlapsFrom(*I
, II
)) {
1066 ConflictsWithFixed
= true;
1073 // Okay, the register picked by our speculative getFreePhysReg call turned
1074 // out to be in use. Actually add all of the conflicting fixed registers to
1075 // regUse_ so we can do an accurate query.
1076 if (ConflictsWithFixed
) {
1077 // For every interval in fixed we overlap with, mark the register as not
1078 // free and update spill weights.
1079 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1080 IntervalPtr
&IP
= fixed_
[i
];
1081 LiveInterval
*I
= IP
.first
;
1083 const TargetRegisterClass
*RegRC
= OneClassForEachPhysReg
[I
->reg
];
1084 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
&&
1085 I
->endIndex() > StartPosition
) {
1086 LiveInterval::iterator II
= I
->advanceTo(IP
.second
, StartPosition
);
1088 if (II
!= I
->begin() && II
->start
> StartPosition
)
1090 if (cur
->overlapsFrom(*I
, II
)) {
1091 unsigned reg
= I
->reg
;
1093 SpillWeightsToAdd
.push_back(std::make_pair(reg
, I
->weight
));
1098 // Using the newly updated regUse_ object, which includes conflicts in the
1099 // future, see if there are any registers available.
1100 physReg
= getFreePhysReg(cur
);
1104 // Restore the physical register tracker, removing information about the
1108 // If we find a free register, we are done: assign this virtual to
1109 // the free physical register and add this interval to the active
1112 DEBUG(dbgs() << tri_
->getName(physReg
) << '\n');
1113 assert(RC
->contains(physReg
) && "Invalid candidate");
1114 vrm_
->assignVirt2Phys(cur
->reg
, physReg
);
1116 active_
.push_back(std::make_pair(cur
, cur
->begin()));
1117 handled_
.push_back(cur
);
1119 // "Upgrade" the physical register since it has been allocated.
1120 UpgradeRegister(physReg
);
1121 if (LiveInterval
*NextReloadLI
= hasNextReloadInterval(cur
)) {
1122 // "Downgrade" physReg to try to keep physReg from being allocated until
1123 // the next reload from the same SS is allocated.
1124 mri_
->setRegAllocationHint(NextReloadLI
->reg
, 0, physReg
);
1125 DowngradeRegister(cur
, physReg
);
1129 DEBUG(dbgs() << "no free registers\n");
1131 // Compile the spill weights into an array that is better for scanning.
1132 std::vector
<float> SpillWeights(tri_
->getNumRegs(), 0.0f
);
1133 for (std::vector
<std::pair
<unsigned, float> >::iterator
1134 I
= SpillWeightsToAdd
.begin(), E
= SpillWeightsToAdd
.end(); I
!= E
; ++I
)
1135 updateSpillWeights(SpillWeights
, I
->first
, I
->second
, RC
);
1137 // for each interval in active, update spill weights.
1138 for (IntervalPtrs::const_iterator i
= active_
.begin(), e
= active_
.end();
1140 unsigned reg
= i
->first
->reg
;
1141 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1142 "Can only allocate virtual registers!");
1143 reg
= vrm_
->getPhys(reg
);
1144 updateSpillWeights(SpillWeights
, reg
, i
->first
->weight
, RC
);
1147 DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur
<< ":\n");
1149 // Find a register to spill.
1150 float minWeight
= HUGE_VALF
;
1151 unsigned minReg
= 0;
1154 std::vector
<std::pair
<unsigned,float> > RegsWeights
;
1155 if (!minReg
|| SpillWeights
[minReg
] == HUGE_VALF
)
1156 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1157 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1159 float regWeight
= SpillWeights
[reg
];
1160 // Don't even consider reserved regs.
1161 if (reservedRegs_
.test(reg
))
1163 // Skip recently allocated registers and reserved registers.
1164 if (minWeight
> regWeight
&& !isRecentlyUsed(reg
))
1166 RegsWeights
.push_back(std::make_pair(reg
, regWeight
));
1169 // If we didn't find a register that is spillable, try aliases?
1171 for (TargetRegisterClass::iterator i
= RC
->allocation_order_begin(*mf_
),
1172 e
= RC
->allocation_order_end(*mf_
); i
!= e
; ++i
) {
1174 if (reservedRegs_
.test(reg
))
1176 // No need to worry about if the alias register size < regsize of RC.
1177 // We are going to spill all registers that alias it anyway.
1178 for (const unsigned* as
= tri_
->getAliasSet(reg
); *as
; ++as
)
1179 RegsWeights
.push_back(std::make_pair(*as
, SpillWeights
[*as
]));
1183 // Sort all potential spill candidates by weight.
1184 std::sort(RegsWeights
.begin(), RegsWeights
.end(), WeightCompare(*this));
1185 minReg
= RegsWeights
[0].first
;
1186 minWeight
= RegsWeights
[0].second
;
1187 if (minWeight
== HUGE_VALF
) {
1188 // All registers must have inf weight. Just grab one!
1189 minReg
= BestPhysReg
? BestPhysReg
: getFirstNonReservedPhysReg(RC
);
1190 if (cur
->weight
== HUGE_VALF
||
1191 li_
->getApproximateInstructionCount(*cur
) == 0) {
1192 // Spill a physical register around defs and uses.
1193 if (li_
->spillPhysRegAroundRegDefsUses(*cur
, minReg
, *vrm_
)) {
1194 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1195 // in fixed_. Reset them.
1196 for (unsigned i
= 0, e
= fixed_
.size(); i
!= e
; ++i
) {
1197 IntervalPtr
&IP
= fixed_
[i
];
1198 LiveInterval
*I
= IP
.first
;
1199 if (I
->reg
== minReg
|| tri_
->isSubRegister(minReg
, I
->reg
))
1200 IP
.second
= I
->advanceTo(I
->begin(), StartPosition
);
1203 DowngradedRegs
.clear();
1204 assignRegOrStackSlotAtInterval(cur
);
1206 assert(false && "Ran out of registers during register allocation!");
1207 report_fatal_error("Ran out of registers during register allocation!");
1213 // Find up to 3 registers to consider as spill candidates.
1214 unsigned LastCandidate
= RegsWeights
.size() >= 3 ? 3 : 1;
1215 while (LastCandidate
> 1) {
1216 if (weightsAreClose(RegsWeights
[LastCandidate
-1].second
, minWeight
))
1222 dbgs() << "\t\tregister(s) with min weight(s): ";
1224 for (unsigned i
= 0; i
!= LastCandidate
; ++i
)
1225 dbgs() << tri_
->getName(RegsWeights
[i
].first
)
1226 << " (" << RegsWeights
[i
].second
<< ")\n";
1229 // If the current has the minimum weight, we need to spill it and
1230 // add any added intervals back to unhandled, and restart
1232 if (cur
->weight
!= HUGE_VALF
&& cur
->weight
<= minWeight
) {
1233 DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur
<< '\n');
1234 SmallVector
<LiveInterval
*, 8> added
;
1235 LiveRangeEdit
LRE(*cur
, added
);
1236 spiller_
->spill(LRE
);
1238 std::sort(added
.begin(), added
.end(), LISorter());
1240 return; // Early exit if all spills were folded.
1242 // Merge added with unhandled. Note that we have already sorted
1243 // intervals returned by addIntervalsForSpills by their starting
1245 // This also update the NextReloadMap. That is, it adds mapping from a
1246 // register defined by a reload from SS to the next reload from SS in the
1247 // same basic block.
1248 MachineBasicBlock
*LastReloadMBB
= 0;
1249 LiveInterval
*LastReload
= 0;
1250 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1251 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1252 LiveInterval
*ReloadLi
= added
[i
];
1253 if (ReloadLi
->weight
== HUGE_VALF
&&
1254 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1255 SlotIndex ReloadIdx
= ReloadLi
->beginIndex();
1256 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1257 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1258 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1259 // Last reload of same SS is in the same MBB. We want to try to
1260 // allocate both reloads the same register and make sure the reg
1261 // isn't clobbered in between if at all possible.
1262 assert(LastReload
->beginIndex() < ReloadIdx
);
1263 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1265 LastReloadMBB
= ReloadMBB
;
1266 LastReload
= ReloadLi
;
1267 LastReloadSS
= ReloadSS
;
1269 unhandled_
.push(ReloadLi
);
1276 // Push the current interval back to unhandled since we are going
1277 // to re-run at least this iteration. Since we didn't modify it it
1278 // should go back right in the front of the list
1279 unhandled_
.push(cur
);
1281 assert(TargetRegisterInfo::isPhysicalRegister(minReg
) &&
1282 "did not choose a register to spill?");
1284 // We spill all intervals aliasing the register with
1285 // minimum weight, rollback to the interval with the earliest
1286 // start point and let the linear scan algorithm run again
1287 SmallVector
<LiveInterval
*, 8> spillIs
;
1289 // Determine which intervals have to be spilled.
1290 findIntervalsToSpill(cur
, RegsWeights
, LastCandidate
, spillIs
);
1292 // Set of spilled vregs (used later to rollback properly)
1293 SmallSet
<unsigned, 8> spilled
;
1295 // The earliest start of a Spilled interval indicates up to where
1296 // in handled we need to roll back
1297 assert(!spillIs
.empty() && "No spill intervals?");
1298 SlotIndex earliestStart
= spillIs
[0]->beginIndex();
1300 // Spill live intervals of virtual regs mapped to the physical register we
1301 // want to clear (and its aliases). We only spill those that overlap with the
1302 // current interval as the rest do not affect its allocation. we also keep
1303 // track of the earliest start of all spilled live intervals since this will
1304 // mark our rollback point.
1305 SmallVector
<LiveInterval
*, 8> added
;
1306 while (!spillIs
.empty()) {
1307 LiveInterval
*sli
= spillIs
.back();
1309 DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli
<< '\n');
1310 if (sli
->beginIndex() < earliestStart
)
1311 earliestStart
= sli
->beginIndex();
1312 LiveRangeEdit
LRE(*sli
, added
, 0, &spillIs
);
1313 spiller_
->spill(LRE
);
1314 spilled
.insert(sli
->reg
);
1317 // Include any added intervals in earliestStart.
1318 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1319 SlotIndex SI
= added
[i
]->beginIndex();
1320 if (SI
< earliestStart
)
1324 DEBUG(dbgs() << "\t\trolling back to: " << earliestStart
<< '\n');
1326 // Scan handled in reverse order up to the earliest start of a
1327 // spilled live interval and undo each one, restoring the state of
1329 while (!handled_
.empty()) {
1330 LiveInterval
* i
= handled_
.back();
1331 // If this interval starts before t we are done.
1332 if (!i
->empty() && i
->beginIndex() < earliestStart
)
1334 DEBUG(dbgs() << "\t\t\tundo changes for: " << *i
<< '\n');
1335 handled_
.pop_back();
1337 // When undoing a live interval allocation we must know if it is active or
1338 // inactive to properly update regUse_ and the VirtRegMap.
1339 IntervalPtrs::iterator it
;
1340 if ((it
= FindIntervalInVector(active_
, i
)) != active_
.end()) {
1342 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1343 if (!spilled
.count(i
->reg
))
1345 delRegUse(vrm_
->getPhys(i
->reg
));
1346 vrm_
->clearVirt(i
->reg
);
1347 } else if ((it
= FindIntervalInVector(inactive_
, i
)) != inactive_
.end()) {
1348 inactive_
.erase(it
);
1349 assert(!TargetRegisterInfo::isPhysicalRegister(i
->reg
));
1350 if (!spilled
.count(i
->reg
))
1352 vrm_
->clearVirt(i
->reg
);
1354 assert(TargetRegisterInfo::isVirtualRegister(i
->reg
) &&
1355 "Can only allocate virtual registers!");
1356 vrm_
->clearVirt(i
->reg
);
1360 DenseMap
<unsigned, unsigned>::iterator ii
= DowngradeMap
.find(i
->reg
);
1361 if (ii
== DowngradeMap
.end())
1362 // It interval has a preference, it must be defined by a copy. Clear the
1363 // preference now since the source interval allocation may have been
1365 mri_
->setRegAllocationHint(i
->reg
, 0, 0);
1367 UpgradeRegister(ii
->second
);
1371 // Rewind the iterators in the active, inactive, and fixed lists back to the
1372 // point we reverted to.
1373 RevertVectorIteratorsTo(active_
, earliestStart
);
1374 RevertVectorIteratorsTo(inactive_
, earliestStart
);
1375 RevertVectorIteratorsTo(fixed_
, earliestStart
);
1377 // Scan the rest and undo each interval that expired after t and
1378 // insert it in active (the next iteration of the algorithm will
1379 // put it in inactive if required)
1380 for (unsigned i
= 0, e
= handled_
.size(); i
!= e
; ++i
) {
1381 LiveInterval
*HI
= handled_
[i
];
1382 if (!HI
->expiredAt(earliestStart
) &&
1383 HI
->expiredAt(cur
->beginIndex())) {
1384 DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI
<< '\n');
1385 active_
.push_back(std::make_pair(HI
, HI
->begin()));
1386 assert(!TargetRegisterInfo::isPhysicalRegister(HI
->reg
));
1387 addRegUse(vrm_
->getPhys(HI
->reg
));
1391 // Merge added with unhandled.
1392 // This also update the NextReloadMap. That is, it adds mapping from a
1393 // register defined by a reload from SS to the next reload from SS in the
1394 // same basic block.
1395 MachineBasicBlock
*LastReloadMBB
= 0;
1396 LiveInterval
*LastReload
= 0;
1397 int LastReloadSS
= VirtRegMap::NO_STACK_SLOT
;
1398 std::sort(added
.begin(), added
.end(), LISorter());
1399 for (unsigned i
= 0, e
= added
.size(); i
!= e
; ++i
) {
1400 LiveInterval
*ReloadLi
= added
[i
];
1401 if (ReloadLi
->weight
== HUGE_VALF
&&
1402 li_
->getApproximateInstructionCount(*ReloadLi
) == 0) {
1403 SlotIndex ReloadIdx
= ReloadLi
->beginIndex();
1404 MachineBasicBlock
*ReloadMBB
= li_
->getMBBFromIndex(ReloadIdx
);
1405 int ReloadSS
= vrm_
->getStackSlot(ReloadLi
->reg
);
1406 if (LastReloadMBB
== ReloadMBB
&& LastReloadSS
== ReloadSS
) {
1407 // Last reload of same SS is in the same MBB. We want to try to
1408 // allocate both reloads the same register and make sure the reg
1409 // isn't clobbered in between if at all possible.
1410 assert(LastReload
->beginIndex() < ReloadIdx
);
1411 NextReloadMap
.insert(std::make_pair(LastReload
->reg
, ReloadLi
->reg
));
1413 LastReloadMBB
= ReloadMBB
;
1414 LastReload
= ReloadLi
;
1415 LastReloadSS
= ReloadSS
;
1417 unhandled_
.push(ReloadLi
);
1421 unsigned RALinScan::getFreePhysReg(LiveInterval
* cur
,
1422 const TargetRegisterClass
*RC
,
1423 unsigned MaxInactiveCount
,
1424 SmallVector
<unsigned, 256> &inactiveCounts
,
1426 unsigned FreeReg
= 0;
1427 unsigned FreeRegInactiveCount
= 0;
1429 std::pair
<unsigned, unsigned> Hint
= mri_
->getRegAllocationHint(cur
->reg
);
1430 // Resolve second part of the hint (if possible) given the current allocation.
1431 unsigned physReg
= Hint
.second
;
1432 if (TargetRegisterInfo::isVirtualRegister(physReg
) && vrm_
->hasPhys(physReg
))
1433 physReg
= vrm_
->getPhys(physReg
);
1435 TargetRegisterClass::iterator I
, E
;
1436 tie(I
, E
) = tri_
->getAllocationOrder(RC
, Hint
.first
, physReg
, *mf_
);
1437 assert(I
!= E
&& "No allocatable register in this register class!");
1439 // Scan for the first available register.
1440 for (; I
!= E
; ++I
) {
1442 // Ignore "downgraded" registers.
1443 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1445 // Skip reserved registers.
1446 if (reservedRegs_
.test(Reg
))
1448 // Skip recently allocated registers.
1449 if (isRegAvail(Reg
) && !isRecentlyUsed(Reg
)) {
1451 if (FreeReg
< inactiveCounts
.size())
1452 FreeRegInactiveCount
= inactiveCounts
[FreeReg
];
1454 FreeRegInactiveCount
= 0;
1459 // If there are no free regs, or if this reg has the max inactive count,
1460 // return this register.
1461 if (FreeReg
== 0 || FreeRegInactiveCount
== MaxInactiveCount
) {
1462 // Remember what register we picked so we can skip it next time.
1463 if (FreeReg
!= 0) recordRecentlyUsed(FreeReg
);
1467 // Continue scanning the registers, looking for the one with the highest
1468 // inactive count. Alkis found that this reduced register pressure very
1469 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1471 for (; I
!= E
; ++I
) {
1473 // Ignore "downgraded" registers.
1474 if (SkipDGRegs
&& DowngradedRegs
.count(Reg
))
1476 // Skip reserved registers.
1477 if (reservedRegs_
.test(Reg
))
1479 if (isRegAvail(Reg
) && Reg
< inactiveCounts
.size() &&
1480 FreeRegInactiveCount
< inactiveCounts
[Reg
] && !isRecentlyUsed(Reg
)) {
1482 FreeRegInactiveCount
= inactiveCounts
[Reg
];
1483 if (FreeRegInactiveCount
== MaxInactiveCount
)
1484 break; // We found the one with the max inactive count.
1488 // Remember what register we picked so we can skip it next time.
1489 recordRecentlyUsed(FreeReg
);
1494 /// getFreePhysReg - return a free physical register for this virtual register
1495 /// interval if we have one, otherwise return 0.
1496 unsigned RALinScan::getFreePhysReg(LiveInterval
*cur
) {
1497 SmallVector
<unsigned, 256> inactiveCounts
;
1498 unsigned MaxInactiveCount
= 0;
1500 const TargetRegisterClass
*RC
= mri_
->getRegClass(cur
->reg
);
1501 const TargetRegisterClass
*RCLeader
= RelatedRegClasses
.getLeaderValue(RC
);
1503 for (IntervalPtrs::iterator i
= inactive_
.begin(), e
= inactive_
.end();
1505 unsigned reg
= i
->first
->reg
;
1506 assert(TargetRegisterInfo::isVirtualRegister(reg
) &&
1507 "Can only allocate virtual registers!");
1509 // If this is not in a related reg class to the register we're allocating,
1511 const TargetRegisterClass
*RegRC
= mri_
->getRegClass(reg
);
1512 if (RelatedRegClasses
.getLeaderValue(RegRC
) == RCLeader
) {
1513 reg
= vrm_
->getPhys(reg
);
1514 if (inactiveCounts
.size() <= reg
)
1515 inactiveCounts
.resize(reg
+1);
1516 ++inactiveCounts
[reg
];
1517 MaxInactiveCount
= std::max(MaxInactiveCount
, inactiveCounts
[reg
]);
1521 // If copy coalescer has assigned a "preferred" register, check if it's
1523 unsigned Preference
= vrm_
->getRegAllocPref(cur
->reg
);
1525 DEBUG(dbgs() << "(preferred: " << tri_
->getName(Preference
) << ") ");
1526 if (isRegAvail(Preference
) &&
1527 RC
->contains(Preference
))
1531 if (!DowngradedRegs
.empty()) {
1532 unsigned FreeReg
= getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
,
1537 return getFreePhysReg(cur
, RC
, MaxInactiveCount
, inactiveCounts
, false);
1540 FunctionPass
* llvm::createLinearScanRegisterAllocator() {
1541 return new RALinScan();