Add a function for profiling to run at shutdown. Unlike the existing API, this
[llvm/stm8.git] / lib / CodeGen / RegAllocLinearScan.cpp
blobef78949c54e852cb9d178ec3017f0227295fc9f0
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "regalloc"
15 #include "LiveDebugVariables.h"
16 #include "LiveRangeEdit.h"
17 #include "VirtRegMap.h"
18 #include "VirtRegRewriter.h"
19 #include "Spiller.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Function.h"
22 #include "llvm/CodeGen/CalcSpillWeights.h"
23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/RegAllocRegistry.h"
30 #include "llvm/CodeGen/RegisterCoalescer.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetOptions.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/ADT/EquivalenceClasses.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/STLExtras.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <set>
44 #include <queue>
45 #include <memory>
46 #include <cmath>
48 using namespace llvm;
50 STATISTIC(NumIters , "Number of iterations performed");
51 STATISTIC(NumBacktracks, "Number of times we had to backtrack");
52 STATISTIC(NumCoalesce, "Number of copies coalesced");
53 STATISTIC(NumDowngrade, "Number of registers downgraded");
55 static cl::opt<bool>
56 NewHeuristic("new-spilling-heuristic",
57 cl::desc("Use new spilling heuristic"),
58 cl::init(false), cl::Hidden);
60 static cl::opt<bool>
61 PreSplitIntervals("pre-alloc-split",
62 cl::desc("Pre-register allocation live interval splitting"),
63 cl::init(false), cl::Hidden);
65 static cl::opt<bool>
66 TrivCoalesceEnds("trivial-coalesce-ends",
67 cl::desc("Attempt trivial coalescing of interval ends"),
68 cl::init(false), cl::Hidden);
70 static RegisterRegAlloc
71 linearscanRegAlloc("linearscan", "linear scan register allocator",
72 createLinearScanRegisterAllocator);
74 namespace {
75 // When we allocate a register, add it to a fixed-size queue of
76 // registers to skip in subsequent allocations. This trades a small
77 // amount of register pressure and increased spills for flexibility in
78 // the post-pass scheduler.
80 // Note that in a the number of registers used for reloading spills
81 // will be one greater than the value of this option.
83 // One big limitation of this is that it doesn't differentiate between
84 // different register classes. So on x86-64, if there is xmm register
85 // pressure, it can caused fewer GPRs to be held in the queue.
86 static cl::opt<unsigned>
87 NumRecentlyUsedRegs("linearscan-skip-count",
88 cl::desc("Number of registers for linearscan to remember"
89 "to skip."),
90 cl::init(0),
91 cl::Hidden);
93 struct RALinScan : public MachineFunctionPass {
94 static char ID;
95 RALinScan() : MachineFunctionPass(ID) {
96 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
97 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
98 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
99 initializeRegisterCoalescerAnalysisGroup(
100 *PassRegistry::getPassRegistry());
101 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
102 initializePreAllocSplittingPass(*PassRegistry::getPassRegistry());
103 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
104 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
105 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
106 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
107 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
109 // Initialize the queue to record recently-used registers.
110 if (NumRecentlyUsedRegs > 0)
111 RecentRegs.resize(NumRecentlyUsedRegs, 0);
112 RecentNext = RecentRegs.begin();
115 typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr;
116 typedef SmallVector<IntervalPtr, 32> IntervalPtrs;
117 private:
118 /// RelatedRegClasses - This structure is built the first time a function is
119 /// compiled, and keeps track of which register classes have registers that
120 /// belong to multiple classes or have aliases that are in other classes.
121 EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses;
122 DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg;
124 // NextReloadMap - For each register in the map, it maps to the another
125 // register which is defined by a reload from the same stack slot and
126 // both reloads are in the same basic block.
127 DenseMap<unsigned, unsigned> NextReloadMap;
129 // DowngradedRegs - A set of registers which are being "downgraded", i.e.
130 // un-favored for allocation.
131 SmallSet<unsigned, 8> DowngradedRegs;
133 // DowngradeMap - A map from virtual registers to physical registers being
134 // downgraded for the virtual registers.
135 DenseMap<unsigned, unsigned> DowngradeMap;
137 MachineFunction* mf_;
138 MachineRegisterInfo* mri_;
139 const TargetMachine* tm_;
140 const TargetRegisterInfo* tri_;
141 const TargetInstrInfo* tii_;
142 BitVector allocatableRegs_;
143 BitVector reservedRegs_;
144 LiveIntervals* li_;
145 MachineLoopInfo *loopInfo;
147 /// handled_ - Intervals are added to the handled_ set in the order of their
148 /// start value. This is uses for backtracking.
149 std::vector<LiveInterval*> handled_;
151 /// fixed_ - Intervals that correspond to machine registers.
153 IntervalPtrs fixed_;
155 /// active_ - Intervals that are currently being processed, and which have a
156 /// live range active for the current point.
157 IntervalPtrs active_;
159 /// inactive_ - Intervals that are currently being processed, but which have
160 /// a hold at the current point.
161 IntervalPtrs inactive_;
163 typedef std::priority_queue<LiveInterval*,
164 SmallVector<LiveInterval*, 64>,
165 greater_ptr<LiveInterval> > IntervalHeap;
166 IntervalHeap unhandled_;
168 /// regUse_ - Tracks register usage.
169 SmallVector<unsigned, 32> regUse_;
170 SmallVector<unsigned, 32> regUseBackUp_;
172 /// vrm_ - Tracks register assignments.
173 VirtRegMap* vrm_;
175 std::auto_ptr<VirtRegRewriter> rewriter_;
177 std::auto_ptr<Spiller> spiller_;
179 // The queue of recently-used registers.
180 SmallVector<unsigned, 4> RecentRegs;
181 SmallVector<unsigned, 4>::iterator RecentNext;
183 // Record that we just picked this register.
184 void recordRecentlyUsed(unsigned reg) {
185 assert(reg != 0 && "Recently used register is NOREG!");
186 if (!RecentRegs.empty()) {
187 *RecentNext++ = reg;
188 if (RecentNext == RecentRegs.end())
189 RecentNext = RecentRegs.begin();
193 public:
194 virtual const char* getPassName() const {
195 return "Linear Scan Register Allocator";
198 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
199 AU.setPreservesCFG();
200 AU.addRequired<AliasAnalysis>();
201 AU.addPreserved<AliasAnalysis>();
202 AU.addRequired<LiveIntervals>();
203 AU.addPreserved<SlotIndexes>();
204 if (StrongPHIElim)
205 AU.addRequiredID(StrongPHIEliminationID);
206 // Make sure PassManager knows which analyses to make available
207 // to coalescing and which analyses coalescing invalidates.
208 AU.addRequiredTransitive<RegisterCoalescer>();
209 AU.addRequired<CalculateSpillWeights>();
210 if (PreSplitIntervals)
211 AU.addRequiredID(PreAllocSplittingID);
212 AU.addRequiredID(LiveStacksID);
213 AU.addPreservedID(LiveStacksID);
214 AU.addRequired<MachineLoopInfo>();
215 AU.addPreserved<MachineLoopInfo>();
216 AU.addRequired<VirtRegMap>();
217 AU.addPreserved<VirtRegMap>();
218 AU.addRequired<LiveDebugVariables>();
219 AU.addPreserved<LiveDebugVariables>();
220 AU.addRequiredID(MachineDominatorsID);
221 AU.addPreservedID(MachineDominatorsID);
222 MachineFunctionPass::getAnalysisUsage(AU);
225 /// runOnMachineFunction - register allocate the whole function
226 bool runOnMachineFunction(MachineFunction&);
228 // Determine if we skip this register due to its being recently used.
229 bool isRecentlyUsed(unsigned reg) const {
230 return std::find(RecentRegs.begin(), RecentRegs.end(), reg) !=
231 RecentRegs.end();
234 private:
235 /// linearScan - the linear scan algorithm
236 void linearScan();
238 /// initIntervalSets - initialize the interval sets.
240 void initIntervalSets();
242 /// processActiveIntervals - expire old intervals and move non-overlapping
243 /// ones to the inactive list.
244 void processActiveIntervals(SlotIndex CurPoint);
246 /// processInactiveIntervals - expire old intervals and move overlapping
247 /// ones to the active list.
248 void processInactiveIntervals(SlotIndex CurPoint);
250 /// hasNextReloadInterval - Return the next liveinterval that's being
251 /// defined by a reload from the same SS as the specified one.
252 LiveInterval *hasNextReloadInterval(LiveInterval *cur);
254 /// DowngradeRegister - Downgrade a register for allocation.
255 void DowngradeRegister(LiveInterval *li, unsigned Reg);
257 /// UpgradeRegister - Upgrade a register for allocation.
258 void UpgradeRegister(unsigned Reg);
260 /// assignRegOrStackSlotAtInterval - assign a register if one
261 /// is available, or spill.
262 void assignRegOrStackSlotAtInterval(LiveInterval* cur);
264 void updateSpillWeights(std::vector<float> &Weights,
265 unsigned reg, float weight,
266 const TargetRegisterClass *RC);
268 /// findIntervalsToSpill - Determine the intervals to spill for the
269 /// specified interval. It's passed the physical registers whose spill
270 /// weight is the lowest among all the registers whose live intervals
271 /// conflict with the interval.
272 void findIntervalsToSpill(LiveInterval *cur,
273 std::vector<std::pair<unsigned,float> > &Candidates,
274 unsigned NumCands,
275 SmallVector<LiveInterval*, 8> &SpillIntervals);
277 /// attemptTrivialCoalescing - If a simple interval is defined by a copy,
278 /// try to allocate the definition to the same register as the source,
279 /// if the register is not defined during the life time of the interval.
280 /// This eliminates a copy, and is used to coalesce copies which were not
281 /// coalesced away before allocation either due to dest and src being in
282 /// different register classes or because the coalescer was overly
283 /// conservative.
284 unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg);
287 /// Register usage / availability tracking helpers.
290 void initRegUses() {
291 regUse_.resize(tri_->getNumRegs(), 0);
292 regUseBackUp_.resize(tri_->getNumRegs(), 0);
295 void finalizeRegUses() {
296 #ifndef NDEBUG
297 // Verify all the registers are "freed".
298 bool Error = false;
299 for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) {
300 if (regUse_[i] != 0) {
301 dbgs() << tri_->getName(i) << " is still in use!\n";
302 Error = true;
305 if (Error)
306 llvm_unreachable(0);
307 #endif
308 regUse_.clear();
309 regUseBackUp_.clear();
312 void addRegUse(unsigned physReg) {
313 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
314 "should be physical register!");
315 ++regUse_[physReg];
316 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as)
317 ++regUse_[*as];
320 void delRegUse(unsigned physReg) {
321 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
322 "should be physical register!");
323 assert(regUse_[physReg] != 0);
324 --regUse_[physReg];
325 for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) {
326 assert(regUse_[*as] != 0);
327 --regUse_[*as];
331 bool isRegAvail(unsigned physReg) const {
332 assert(TargetRegisterInfo::isPhysicalRegister(physReg) &&
333 "should be physical register!");
334 return regUse_[physReg] == 0;
337 void backUpRegUses() {
338 regUseBackUp_ = regUse_;
341 void restoreRegUses() {
342 regUse_ = regUseBackUp_;
346 /// Register handling helpers.
349 /// getFreePhysReg - return a free physical register for this virtual
350 /// register interval if we have one, otherwise return 0.
351 unsigned getFreePhysReg(LiveInterval* cur);
352 unsigned getFreePhysReg(LiveInterval* cur,
353 const TargetRegisterClass *RC,
354 unsigned MaxInactiveCount,
355 SmallVector<unsigned, 256> &inactiveCounts,
356 bool SkipDGRegs);
358 /// getFirstNonReservedPhysReg - return the first non-reserved physical
359 /// register in the register class.
360 unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) {
361 TargetRegisterClass::iterator aoe = RC->allocation_order_end(*mf_);
362 TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_);
363 while (i != aoe && reservedRegs_.test(*i))
364 ++i;
365 assert(i != aoe && "All registers reserved?!");
366 return *i;
369 void ComputeRelatedRegClasses();
371 template <typename ItTy>
372 void printIntervals(const char* const str, ItTy i, ItTy e) const {
373 DEBUG({
374 if (str)
375 dbgs() << str << " intervals:\n";
377 for (; i != e; ++i) {
378 dbgs() << '\t' << *i->first << " -> ";
380 unsigned reg = i->first->reg;
381 if (TargetRegisterInfo::isVirtualRegister(reg))
382 reg = vrm_->getPhys(reg);
384 dbgs() << tri_->getName(reg) << '\n';
389 char RALinScan::ID = 0;
392 INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc",
393 "Linear Scan Register Allocator", false, false)
394 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
395 INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
396 INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
397 INITIALIZE_PASS_DEPENDENCY(PreAllocSplitting)
398 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
399 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
400 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
401 INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
402 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
403 INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc",
404 "Linear Scan Register Allocator", false, false)
406 void RALinScan::ComputeRelatedRegClasses() {
407 // First pass, add all reg classes to the union, and determine at least one
408 // reg class that each register is in.
409 bool HasAliases = false;
410 for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(),
411 E = tri_->regclass_end(); RCI != E; ++RCI) {
412 RelatedRegClasses.insert(*RCI);
413 for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end();
414 I != E; ++I) {
415 HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0;
417 const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I];
418 if (PRC) {
419 // Already processed this register. Just make sure we know that
420 // multiple register classes share a register.
421 RelatedRegClasses.unionSets(PRC, *RCI);
422 } else {
423 PRC = *RCI;
428 // Second pass, now that we know conservatively what register classes each reg
429 // belongs to, add info about aliases. We don't need to do this for targets
430 // without register aliases.
431 if (HasAliases)
432 for (DenseMap<unsigned, const TargetRegisterClass*>::iterator
433 I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end();
434 I != E; ++I)
435 for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) {
436 const TargetRegisterClass *AliasClass =
437 OneClassForEachPhysReg.lookup(*AS);
438 if (AliasClass)
439 RelatedRegClasses.unionSets(I->second, AliasClass);
443 /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try
444 /// allocate the definition the same register as the source register if the
445 /// register is not defined during live time of the interval. If the interval is
446 /// killed by a copy, try to use the destination register. This eliminates a
447 /// copy. This is used to coalesce copies which were not coalesced away before
448 /// allocation either due to dest and src being in different register classes or
449 /// because the coalescer was overly conservative.
450 unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) {
451 unsigned Preference = vrm_->getRegAllocPref(cur.reg);
452 if ((Preference && Preference == Reg) || !cur.containsOneValue())
453 return Reg;
455 // We cannot handle complicated live ranges. Simple linear stuff only.
456 if (cur.ranges.size() != 1)
457 return Reg;
459 const LiveRange &range = cur.ranges.front();
461 VNInfo *vni = range.valno;
462 if (vni->isUnused() || !vni->def.isValid())
463 return Reg;
465 unsigned CandReg;
467 MachineInstr *CopyMI;
468 if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy())
469 // Defined by a copy, try to extend SrcReg forward
470 CandReg = CopyMI->getOperand(1).getReg();
471 else if (TrivCoalesceEnds &&
472 (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) &&
473 CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg())
474 // Only used by a copy, try to extend DstReg backwards
475 CandReg = CopyMI->getOperand(0).getReg();
476 else
477 return Reg;
479 // If the target of the copy is a sub-register then don't coalesce.
480 if(CopyMI->getOperand(0).getSubReg())
481 return Reg;
484 if (TargetRegisterInfo::isVirtualRegister(CandReg)) {
485 if (!vrm_->isAssignedReg(CandReg))
486 return Reg;
487 CandReg = vrm_->getPhys(CandReg);
489 if (Reg == CandReg)
490 return Reg;
492 const TargetRegisterClass *RC = mri_->getRegClass(cur.reg);
493 if (!RC->contains(CandReg))
494 return Reg;
496 if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg))
497 return Reg;
499 // Try to coalesce.
500 DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg)
501 << '\n');
502 vrm_->clearVirt(cur.reg);
503 vrm_->assignVirt2Phys(cur.reg, CandReg);
505 ++NumCoalesce;
506 return CandReg;
509 bool RALinScan::runOnMachineFunction(MachineFunction &fn) {
510 mf_ = &fn;
511 mri_ = &fn.getRegInfo();
512 tm_ = &fn.getTarget();
513 tri_ = tm_->getRegisterInfo();
514 tii_ = tm_->getInstrInfo();
515 allocatableRegs_ = tri_->getAllocatableSet(fn);
516 reservedRegs_ = tri_->getReservedRegs(fn);
517 li_ = &getAnalysis<LiveIntervals>();
518 loopInfo = &getAnalysis<MachineLoopInfo>();
520 // We don't run the coalescer here because we have no reason to
521 // interact with it. If the coalescer requires interaction, it
522 // won't do anything. If it doesn't require interaction, we assume
523 // it was run as a separate pass.
525 // If this is the first function compiled, compute the related reg classes.
526 if (RelatedRegClasses.empty())
527 ComputeRelatedRegClasses();
529 // Also resize register usage trackers.
530 initRegUses();
532 vrm_ = &getAnalysis<VirtRegMap>();
533 if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter());
535 spiller_.reset(createSpiller(*this, *mf_, *vrm_));
537 initIntervalSets();
539 linearScan();
541 // Rewrite spill code and update the PhysRegsUsed set.
542 rewriter_->runOnMachineFunction(*mf_, *vrm_, li_);
544 // Write out new DBG_VALUE instructions.
545 getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_);
547 assert(unhandled_.empty() && "Unhandled live intervals remain!");
549 finalizeRegUses();
551 fixed_.clear();
552 active_.clear();
553 inactive_.clear();
554 handled_.clear();
555 NextReloadMap.clear();
556 DowngradedRegs.clear();
557 DowngradeMap.clear();
558 spiller_.reset(0);
560 return true;
563 /// initIntervalSets - initialize the interval sets.
565 void RALinScan::initIntervalSets()
567 assert(unhandled_.empty() && fixed_.empty() &&
568 active_.empty() && inactive_.empty() &&
569 "interval sets should be empty on initialization");
571 handled_.reserve(li_->getNumIntervals());
573 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
574 if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) {
575 if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) {
576 mri_->setPhysRegUsed(i->second->reg);
577 fixed_.push_back(std::make_pair(i->second, i->second->begin()));
579 } else {
580 if (i->second->empty()) {
581 assignRegOrStackSlotAtInterval(i->second);
583 else
584 unhandled_.push(i->second);
589 void RALinScan::linearScan() {
590 // linear scan algorithm
591 DEBUG({
592 dbgs() << "********** LINEAR SCAN **********\n"
593 << "********** Function: "
594 << mf_->getFunction()->getName() << '\n';
595 printIntervals("fixed", fixed_.begin(), fixed_.end());
598 while (!unhandled_.empty()) {
599 // pick the interval with the earliest start point
600 LiveInterval* cur = unhandled_.top();
601 unhandled_.pop();
602 ++NumIters;
603 DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n');
605 assert(!cur->empty() && "Empty interval in unhandled set.");
607 processActiveIntervals(cur->beginIndex());
608 processInactiveIntervals(cur->beginIndex());
610 assert(TargetRegisterInfo::isVirtualRegister(cur->reg) &&
611 "Can only allocate virtual registers!");
613 // Allocating a virtual register. try to find a free
614 // physical register or spill an interval (possibly this one) in order to
615 // assign it one.
616 assignRegOrStackSlotAtInterval(cur);
618 DEBUG({
619 printIntervals("active", active_.begin(), active_.end());
620 printIntervals("inactive", inactive_.begin(), inactive_.end());
624 // Expire any remaining active intervals
625 while (!active_.empty()) {
626 IntervalPtr &IP = active_.back();
627 unsigned reg = IP.first->reg;
628 DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n");
629 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
630 "Can only allocate virtual registers!");
631 reg = vrm_->getPhys(reg);
632 delRegUse(reg);
633 active_.pop_back();
636 // Expire any remaining inactive intervals
637 DEBUG({
638 for (IntervalPtrs::reverse_iterator
639 i = inactive_.rbegin(); i != inactive_.rend(); ++i)
640 dbgs() << "\tinterval " << *i->first << " expired\n";
642 inactive_.clear();
644 // Add live-ins to every BB except for entry. Also perform trivial coalescing.
645 MachineFunction::iterator EntryMBB = mf_->begin();
646 SmallVector<MachineBasicBlock*, 8> LiveInMBBs;
647 for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) {
648 LiveInterval &cur = *i->second;
649 unsigned Reg = 0;
650 bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg);
651 if (isPhys)
652 Reg = cur.reg;
653 else if (vrm_->isAssignedReg(cur.reg))
654 Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg));
655 if (!Reg)
656 continue;
657 // Ignore splited live intervals.
658 if (!isPhys && vrm_->getPreSplitReg(cur.reg))
659 continue;
661 for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end();
662 I != E; ++I) {
663 const LiveRange &LR = *I;
664 if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) {
665 for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i)
666 if (LiveInMBBs[i] != EntryMBB) {
667 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
668 "Adding a virtual register to livein set?");
669 LiveInMBBs[i]->addLiveIn(Reg);
671 LiveInMBBs.clear();
676 DEBUG(dbgs() << *vrm_);
678 // Look for physical registers that end up not being allocated even though
679 // register allocator had to spill other registers in its register class.
680 if (!vrm_->FindUnusedRegisters(li_))
681 return;
684 /// processActiveIntervals - expire old intervals and move non-overlapping ones
685 /// to the inactive list.
686 void RALinScan::processActiveIntervals(SlotIndex CurPoint)
688 DEBUG(dbgs() << "\tprocessing active intervals:\n");
690 for (unsigned i = 0, e = active_.size(); i != e; ++i) {
691 LiveInterval *Interval = active_[i].first;
692 LiveInterval::iterator IntervalPos = active_[i].second;
693 unsigned reg = Interval->reg;
695 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
697 if (IntervalPos == Interval->end()) { // Remove expired intervals.
698 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
699 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
700 "Can only allocate virtual registers!");
701 reg = vrm_->getPhys(reg);
702 delRegUse(reg);
704 // Pop off the end of the list.
705 active_[i] = active_.back();
706 active_.pop_back();
707 --i; --e;
709 } else if (IntervalPos->start > CurPoint) {
710 // Move inactive intervals to inactive list.
711 DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n");
712 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
713 "Can only allocate virtual registers!");
714 reg = vrm_->getPhys(reg);
715 delRegUse(reg);
716 // add to inactive.
717 inactive_.push_back(std::make_pair(Interval, IntervalPos));
719 // Pop off the end of the list.
720 active_[i] = active_.back();
721 active_.pop_back();
722 --i; --e;
723 } else {
724 // Otherwise, just update the iterator position.
725 active_[i].second = IntervalPos;
730 /// processInactiveIntervals - expire old intervals and move overlapping
731 /// ones to the active list.
732 void RALinScan::processInactiveIntervals(SlotIndex CurPoint)
734 DEBUG(dbgs() << "\tprocessing inactive intervals:\n");
736 for (unsigned i = 0, e = inactive_.size(); i != e; ++i) {
737 LiveInterval *Interval = inactive_[i].first;
738 LiveInterval::iterator IntervalPos = inactive_[i].second;
739 unsigned reg = Interval->reg;
741 IntervalPos = Interval->advanceTo(IntervalPos, CurPoint);
743 if (IntervalPos == Interval->end()) { // remove expired intervals.
744 DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n");
746 // Pop off the end of the list.
747 inactive_[i] = inactive_.back();
748 inactive_.pop_back();
749 --i; --e;
750 } else if (IntervalPos->start <= CurPoint) {
751 // move re-activated intervals in active list
752 DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n");
753 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
754 "Can only allocate virtual registers!");
755 reg = vrm_->getPhys(reg);
756 addRegUse(reg);
757 // add to active
758 active_.push_back(std::make_pair(Interval, IntervalPos));
760 // Pop off the end of the list.
761 inactive_[i] = inactive_.back();
762 inactive_.pop_back();
763 --i; --e;
764 } else {
765 // Otherwise, just update the iterator position.
766 inactive_[i].second = IntervalPos;
771 /// updateSpillWeights - updates the spill weights of the specifed physical
772 /// register and its weight.
773 void RALinScan::updateSpillWeights(std::vector<float> &Weights,
774 unsigned reg, float weight,
775 const TargetRegisterClass *RC) {
776 SmallSet<unsigned, 4> Processed;
777 SmallSet<unsigned, 4> SuperAdded;
778 SmallVector<unsigned, 4> Supers;
779 Weights[reg] += weight;
780 Processed.insert(reg);
781 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) {
782 Weights[*as] += weight;
783 Processed.insert(*as);
784 if (tri_->isSubRegister(*as, reg) &&
785 SuperAdded.insert(*as) &&
786 RC->contains(*as)) {
787 Supers.push_back(*as);
791 // If the alias is a super-register, and the super-register is in the
792 // register class we are trying to allocate. Then add the weight to all
793 // sub-registers of the super-register even if they are not aliases.
794 // e.g. allocating for GR32, bh is not used, updating bl spill weight.
795 // bl should get the same spill weight otherwise it will be choosen
796 // as a spill candidate since spilling bh doesn't make ebx available.
797 for (unsigned i = 0, e = Supers.size(); i != e; ++i) {
798 for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr)
799 if (!Processed.count(*sr))
800 Weights[*sr] += weight;
804 static
805 RALinScan::IntervalPtrs::iterator
806 FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) {
807 for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end();
808 I != E; ++I)
809 if (I->first == LI) return I;
810 return IP.end();
813 static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V,
814 SlotIndex Point){
815 for (unsigned i = 0, e = V.size(); i != e; ++i) {
816 RALinScan::IntervalPtr &IP = V[i];
817 LiveInterval::iterator I = std::upper_bound(IP.first->begin(),
818 IP.second, Point);
819 if (I != IP.first->begin()) --I;
820 IP.second = I;
824 /// getConflictWeight - Return the number of conflicts between cur
825 /// live interval and defs and uses of Reg weighted by loop depthes.
826 static
827 float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_,
828 MachineRegisterInfo *mri_,
829 MachineLoopInfo *loopInfo) {
830 float Conflicts = 0;
831 for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg),
832 E = mri_->reg_end(); I != E; ++I) {
833 MachineInstr *MI = &*I;
834 if (cur->liveAt(li_->getInstructionIndex(MI))) {
835 unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent());
836 Conflicts += std::pow(10.0f, (float)loopDepth);
839 return Conflicts;
842 /// findIntervalsToSpill - Determine the intervals to spill for the
843 /// specified interval. It's passed the physical registers whose spill
844 /// weight is the lowest among all the registers whose live intervals
845 /// conflict with the interval.
846 void RALinScan::findIntervalsToSpill(LiveInterval *cur,
847 std::vector<std::pair<unsigned,float> > &Candidates,
848 unsigned NumCands,
849 SmallVector<LiveInterval*, 8> &SpillIntervals) {
850 // We have figured out the *best* register to spill. But there are other
851 // registers that are pretty good as well (spill weight within 3%). Spill
852 // the one that has fewest defs and uses that conflict with cur.
853 float Conflicts[3] = { 0.0f, 0.0f, 0.0f };
854 SmallVector<LiveInterval*, 8> SLIs[3];
856 DEBUG({
857 dbgs() << "\tConsidering " << NumCands << " candidates: ";
858 for (unsigned i = 0; i != NumCands; ++i)
859 dbgs() << tri_->getName(Candidates[i].first) << " ";
860 dbgs() << "\n";
863 // Calculate the number of conflicts of each candidate.
864 for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) {
865 unsigned Reg = i->first->reg;
866 unsigned PhysReg = vrm_->getPhys(Reg);
867 if (!cur->overlapsFrom(*i->first, i->second))
868 continue;
869 for (unsigned j = 0; j < NumCands; ++j) {
870 unsigned Candidate = Candidates[j].first;
871 if (tri_->regsOverlap(PhysReg, Candidate)) {
872 if (NumCands > 1)
873 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
874 SLIs[j].push_back(i->first);
879 for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){
880 unsigned Reg = i->first->reg;
881 unsigned PhysReg = vrm_->getPhys(Reg);
882 if (!cur->overlapsFrom(*i->first, i->second-1))
883 continue;
884 for (unsigned j = 0; j < NumCands; ++j) {
885 unsigned Candidate = Candidates[j].first;
886 if (tri_->regsOverlap(PhysReg, Candidate)) {
887 if (NumCands > 1)
888 Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo);
889 SLIs[j].push_back(i->first);
894 // Which is the best candidate?
895 unsigned BestCandidate = 0;
896 float MinConflicts = Conflicts[0];
897 for (unsigned i = 1; i != NumCands; ++i) {
898 if (Conflicts[i] < MinConflicts) {
899 BestCandidate = i;
900 MinConflicts = Conflicts[i];
904 std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(),
905 std::back_inserter(SpillIntervals));
908 namespace {
909 struct WeightCompare {
910 private:
911 const RALinScan &Allocator;
913 public:
914 WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}
916 typedef std::pair<unsigned, float> RegWeightPair;
917 bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const {
918 return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first);
923 static bool weightsAreClose(float w1, float w2) {
924 if (!NewHeuristic)
925 return false;
927 float diff = w1 - w2;
928 if (diff <= 0.02f) // Within 0.02f
929 return true;
930 return (diff / w2) <= 0.05f; // Within 5%.
933 LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) {
934 DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg);
935 if (I == NextReloadMap.end())
936 return 0;
937 return &li_->getInterval(I->second);
940 void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
941 for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) {
942 bool isNew = DowngradedRegs.insert(*AS);
943 (void)isNew; // Silence compiler warning.
944 assert(isNew && "Multiple reloads holding the same register?");
945 DowngradeMap.insert(std::make_pair(li->reg, *AS));
947 ++NumDowngrade;
950 void RALinScan::UpgradeRegister(unsigned Reg) {
951 if (Reg) {
952 DowngradedRegs.erase(Reg);
953 for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS)
954 DowngradedRegs.erase(*AS);
958 namespace {
959 struct LISorter {
960 bool operator()(LiveInterval* A, LiveInterval* B) {
961 return A->beginIndex() < B->beginIndex();
966 /// assignRegOrStackSlotAtInterval - assign a register if one is available, or
967 /// spill.
968 void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) {
969 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
970 DEBUG(dbgs() << "\tallocating current interval from "
971 << RC->getName() << ": ");
973 // This is an implicitly defined live interval, just assign any register.
974 if (cur->empty()) {
975 unsigned physReg = vrm_->getRegAllocPref(cur->reg);
976 if (!physReg)
977 physReg = getFirstNonReservedPhysReg(RC);
978 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
979 // Note the register is not really in use.
980 vrm_->assignVirt2Phys(cur->reg, physReg);
981 return;
984 backUpRegUses();
986 std::vector<std::pair<unsigned, float> > SpillWeightsToAdd;
987 SlotIndex StartPosition = cur->beginIndex();
988 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
990 // If start of this live interval is defined by a move instruction and its
991 // source is assigned a physical register that is compatible with the target
992 // register class, then we should try to assign it the same register.
993 // This can happen when the move is from a larger register class to a smaller
994 // one, e.g. X86::mov32to32_. These move instructions are not coalescable.
995 if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) {
996 VNInfo *vni = cur->begin()->valno;
997 if (!vni->isUnused() && vni->def.isValid()) {
998 MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def);
999 if (CopyMI && CopyMI->isCopy()) {
1000 unsigned DstSubReg = CopyMI->getOperand(0).getSubReg();
1001 unsigned SrcReg = CopyMI->getOperand(1).getReg();
1002 unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg();
1003 unsigned Reg = 0;
1004 if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
1005 Reg = SrcReg;
1006 else if (vrm_->isAssignedReg(SrcReg))
1007 Reg = vrm_->getPhys(SrcReg);
1008 if (Reg) {
1009 if (SrcSubReg)
1010 Reg = tri_->getSubReg(Reg, SrcSubReg);
1011 if (DstSubReg)
1012 Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC);
1013 if (Reg && allocatableRegs_[Reg] && RC->contains(Reg))
1014 mri_->setRegAllocationHint(cur->reg, 0, Reg);
1020 // For every interval in inactive we overlap with, mark the
1021 // register as not free and update spill weights.
1022 for (IntervalPtrs::const_iterator i = inactive_.begin(),
1023 e = inactive_.end(); i != e; ++i) {
1024 unsigned Reg = i->first->reg;
1025 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
1026 "Can only allocate virtual registers!");
1027 const TargetRegisterClass *RegRC = mri_->getRegClass(Reg);
1028 // If this is not in a related reg class to the register we're allocating,
1029 // don't check it.
1030 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1031 cur->overlapsFrom(*i->first, i->second-1)) {
1032 Reg = vrm_->getPhys(Reg);
1033 addRegUse(Reg);
1034 SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight));
1038 // Speculatively check to see if we can get a register right now. If not,
1039 // we know we won't be able to by adding more constraints. If so, we can
1040 // check to see if it is valid. Doing an exhaustive search of the fixed_ list
1041 // is very bad (it contains all callee clobbered registers for any functions
1042 // with a call), so we want to avoid doing that if possible.
1043 unsigned physReg = getFreePhysReg(cur);
1044 unsigned BestPhysReg = physReg;
1045 if (physReg) {
1046 // We got a register. However, if it's in the fixed_ list, we might
1047 // conflict with it. Check to see if we conflict with it or any of its
1048 // aliases.
1049 SmallSet<unsigned, 8> RegAliases;
1050 for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS)
1051 RegAliases.insert(*AS);
1053 bool ConflictsWithFixed = false;
1054 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1055 IntervalPtr &IP = fixed_[i];
1056 if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) {
1057 // Okay, this reg is on the fixed list. Check to see if we actually
1058 // conflict.
1059 LiveInterval *I = IP.first;
1060 if (I->endIndex() > StartPosition) {
1061 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1062 IP.second = II;
1063 if (II != I->begin() && II->start > StartPosition)
1064 --II;
1065 if (cur->overlapsFrom(*I, II)) {
1066 ConflictsWithFixed = true;
1067 break;
1073 // Okay, the register picked by our speculative getFreePhysReg call turned
1074 // out to be in use. Actually add all of the conflicting fixed registers to
1075 // regUse_ so we can do an accurate query.
1076 if (ConflictsWithFixed) {
1077 // For every interval in fixed we overlap with, mark the register as not
1078 // free and update spill weights.
1079 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1080 IntervalPtr &IP = fixed_[i];
1081 LiveInterval *I = IP.first;
1083 const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg];
1084 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&
1085 I->endIndex() > StartPosition) {
1086 LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition);
1087 IP.second = II;
1088 if (II != I->begin() && II->start > StartPosition)
1089 --II;
1090 if (cur->overlapsFrom(*I, II)) {
1091 unsigned reg = I->reg;
1092 addRegUse(reg);
1093 SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight));
1098 // Using the newly updated regUse_ object, which includes conflicts in the
1099 // future, see if there are any registers available.
1100 physReg = getFreePhysReg(cur);
1104 // Restore the physical register tracker, removing information about the
1105 // future.
1106 restoreRegUses();
1108 // If we find a free register, we are done: assign this virtual to
1109 // the free physical register and add this interval to the active
1110 // list.
1111 if (physReg) {
1112 DEBUG(dbgs() << tri_->getName(physReg) << '\n');
1113 assert(RC->contains(physReg) && "Invalid candidate");
1114 vrm_->assignVirt2Phys(cur->reg, physReg);
1115 addRegUse(physReg);
1116 active_.push_back(std::make_pair(cur, cur->begin()));
1117 handled_.push_back(cur);
1119 // "Upgrade" the physical register since it has been allocated.
1120 UpgradeRegister(physReg);
1121 if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) {
1122 // "Downgrade" physReg to try to keep physReg from being allocated until
1123 // the next reload from the same SS is allocated.
1124 mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg);
1125 DowngradeRegister(cur, physReg);
1127 return;
1129 DEBUG(dbgs() << "no free registers\n");
1131 // Compile the spill weights into an array that is better for scanning.
1132 std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f);
1133 for (std::vector<std::pair<unsigned, float> >::iterator
1134 I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I)
1135 updateSpillWeights(SpillWeights, I->first, I->second, RC);
1137 // for each interval in active, update spill weights.
1138 for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end();
1139 i != e; ++i) {
1140 unsigned reg = i->first->reg;
1141 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1142 "Can only allocate virtual registers!");
1143 reg = vrm_->getPhys(reg);
1144 updateSpillWeights(SpillWeights, reg, i->first->weight, RC);
1147 DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n");
1149 // Find a register to spill.
1150 float minWeight = HUGE_VALF;
1151 unsigned minReg = 0;
1153 bool Found = false;
1154 std::vector<std::pair<unsigned,float> > RegsWeights;
1155 if (!minReg || SpillWeights[minReg] == HUGE_VALF)
1156 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1157 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1158 unsigned reg = *i;
1159 float regWeight = SpillWeights[reg];
1160 // Don't even consider reserved regs.
1161 if (reservedRegs_.test(reg))
1162 continue;
1163 // Skip recently allocated registers and reserved registers.
1164 if (minWeight > regWeight && !isRecentlyUsed(reg))
1165 Found = true;
1166 RegsWeights.push_back(std::make_pair(reg, regWeight));
1169 // If we didn't find a register that is spillable, try aliases?
1170 if (!Found) {
1171 for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_),
1172 e = RC->allocation_order_end(*mf_); i != e; ++i) {
1173 unsigned reg = *i;
1174 if (reservedRegs_.test(reg))
1175 continue;
1176 // No need to worry about if the alias register size < regsize of RC.
1177 // We are going to spill all registers that alias it anyway.
1178 for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as)
1179 RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as]));
1183 // Sort all potential spill candidates by weight.
1184 std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this));
1185 minReg = RegsWeights[0].first;
1186 minWeight = RegsWeights[0].second;
1187 if (minWeight == HUGE_VALF) {
1188 // All registers must have inf weight. Just grab one!
1189 minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC);
1190 if (cur->weight == HUGE_VALF ||
1191 li_->getApproximateInstructionCount(*cur) == 0) {
1192 // Spill a physical register around defs and uses.
1193 if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) {
1194 // spillPhysRegAroundRegDefsUses may have invalidated iterator stored
1195 // in fixed_. Reset them.
1196 for (unsigned i = 0, e = fixed_.size(); i != e; ++i) {
1197 IntervalPtr &IP = fixed_[i];
1198 LiveInterval *I = IP.first;
1199 if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg))
1200 IP.second = I->advanceTo(I->begin(), StartPosition);
1203 DowngradedRegs.clear();
1204 assignRegOrStackSlotAtInterval(cur);
1205 } else {
1206 assert(false && "Ran out of registers during register allocation!");
1207 report_fatal_error("Ran out of registers during register allocation!");
1209 return;
1213 // Find up to 3 registers to consider as spill candidates.
1214 unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1;
1215 while (LastCandidate > 1) {
1216 if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight))
1217 break;
1218 --LastCandidate;
1221 DEBUG({
1222 dbgs() << "\t\tregister(s) with min weight(s): ";
1224 for (unsigned i = 0; i != LastCandidate; ++i)
1225 dbgs() << tri_->getName(RegsWeights[i].first)
1226 << " (" << RegsWeights[i].second << ")\n";
1229 // If the current has the minimum weight, we need to spill it and
1230 // add any added intervals back to unhandled, and restart
1231 // linearscan.
1232 if (cur->weight != HUGE_VALF && cur->weight <= minWeight) {
1233 DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n');
1234 SmallVector<LiveInterval*, 8> added;
1235 LiveRangeEdit LRE(*cur, added);
1236 spiller_->spill(LRE);
1238 std::sort(added.begin(), added.end(), LISorter());
1239 if (added.empty())
1240 return; // Early exit if all spills were folded.
1242 // Merge added with unhandled. Note that we have already sorted
1243 // intervals returned by addIntervalsForSpills by their starting
1244 // point.
1245 // This also update the NextReloadMap. That is, it adds mapping from a
1246 // register defined by a reload from SS to the next reload from SS in the
1247 // same basic block.
1248 MachineBasicBlock *LastReloadMBB = 0;
1249 LiveInterval *LastReload = 0;
1250 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1251 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1252 LiveInterval *ReloadLi = added[i];
1253 if (ReloadLi->weight == HUGE_VALF &&
1254 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1255 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1256 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1257 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1258 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1259 // Last reload of same SS is in the same MBB. We want to try to
1260 // allocate both reloads the same register and make sure the reg
1261 // isn't clobbered in between if at all possible.
1262 assert(LastReload->beginIndex() < ReloadIdx);
1263 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1265 LastReloadMBB = ReloadMBB;
1266 LastReload = ReloadLi;
1267 LastReloadSS = ReloadSS;
1269 unhandled_.push(ReloadLi);
1271 return;
1274 ++NumBacktracks;
1276 // Push the current interval back to unhandled since we are going
1277 // to re-run at least this iteration. Since we didn't modify it it
1278 // should go back right in the front of the list
1279 unhandled_.push(cur);
1281 assert(TargetRegisterInfo::isPhysicalRegister(minReg) &&
1282 "did not choose a register to spill?");
1284 // We spill all intervals aliasing the register with
1285 // minimum weight, rollback to the interval with the earliest
1286 // start point and let the linear scan algorithm run again
1287 SmallVector<LiveInterval*, 8> spillIs;
1289 // Determine which intervals have to be spilled.
1290 findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs);
1292 // Set of spilled vregs (used later to rollback properly)
1293 SmallSet<unsigned, 8> spilled;
1295 // The earliest start of a Spilled interval indicates up to where
1296 // in handled we need to roll back
1297 assert(!spillIs.empty() && "No spill intervals?");
1298 SlotIndex earliestStart = spillIs[0]->beginIndex();
1300 // Spill live intervals of virtual regs mapped to the physical register we
1301 // want to clear (and its aliases). We only spill those that overlap with the
1302 // current interval as the rest do not affect its allocation. we also keep
1303 // track of the earliest start of all spilled live intervals since this will
1304 // mark our rollback point.
1305 SmallVector<LiveInterval*, 8> added;
1306 while (!spillIs.empty()) {
1307 LiveInterval *sli = spillIs.back();
1308 spillIs.pop_back();
1309 DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n');
1310 if (sli->beginIndex() < earliestStart)
1311 earliestStart = sli->beginIndex();
1312 LiveRangeEdit LRE(*sli, added, 0, &spillIs);
1313 spiller_->spill(LRE);
1314 spilled.insert(sli->reg);
1317 // Include any added intervals in earliestStart.
1318 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1319 SlotIndex SI = added[i]->beginIndex();
1320 if (SI < earliestStart)
1321 earliestStart = SI;
1324 DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n');
1326 // Scan handled in reverse order up to the earliest start of a
1327 // spilled live interval and undo each one, restoring the state of
1328 // unhandled.
1329 while (!handled_.empty()) {
1330 LiveInterval* i = handled_.back();
1331 // If this interval starts before t we are done.
1332 if (!i->empty() && i->beginIndex() < earliestStart)
1333 break;
1334 DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n');
1335 handled_.pop_back();
1337 // When undoing a live interval allocation we must know if it is active or
1338 // inactive to properly update regUse_ and the VirtRegMap.
1339 IntervalPtrs::iterator it;
1340 if ((it = FindIntervalInVector(active_, i)) != active_.end()) {
1341 active_.erase(it);
1342 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1343 if (!spilled.count(i->reg))
1344 unhandled_.push(i);
1345 delRegUse(vrm_->getPhys(i->reg));
1346 vrm_->clearVirt(i->reg);
1347 } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) {
1348 inactive_.erase(it);
1349 assert(!TargetRegisterInfo::isPhysicalRegister(i->reg));
1350 if (!spilled.count(i->reg))
1351 unhandled_.push(i);
1352 vrm_->clearVirt(i->reg);
1353 } else {
1354 assert(TargetRegisterInfo::isVirtualRegister(i->reg) &&
1355 "Can only allocate virtual registers!");
1356 vrm_->clearVirt(i->reg);
1357 unhandled_.push(i);
1360 DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg);
1361 if (ii == DowngradeMap.end())
1362 // It interval has a preference, it must be defined by a copy. Clear the
1363 // preference now since the source interval allocation may have been
1364 // undone as well.
1365 mri_->setRegAllocationHint(i->reg, 0, 0);
1366 else {
1367 UpgradeRegister(ii->second);
1371 // Rewind the iterators in the active, inactive, and fixed lists back to the
1372 // point we reverted to.
1373 RevertVectorIteratorsTo(active_, earliestStart);
1374 RevertVectorIteratorsTo(inactive_, earliestStart);
1375 RevertVectorIteratorsTo(fixed_, earliestStart);
1377 // Scan the rest and undo each interval that expired after t and
1378 // insert it in active (the next iteration of the algorithm will
1379 // put it in inactive if required)
1380 for (unsigned i = 0, e = handled_.size(); i != e; ++i) {
1381 LiveInterval *HI = handled_[i];
1382 if (!HI->expiredAt(earliestStart) &&
1383 HI->expiredAt(cur->beginIndex())) {
1384 DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n');
1385 active_.push_back(std::make_pair(HI, HI->begin()));
1386 assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg));
1387 addRegUse(vrm_->getPhys(HI->reg));
1391 // Merge added with unhandled.
1392 // This also update the NextReloadMap. That is, it adds mapping from a
1393 // register defined by a reload from SS to the next reload from SS in the
1394 // same basic block.
1395 MachineBasicBlock *LastReloadMBB = 0;
1396 LiveInterval *LastReload = 0;
1397 int LastReloadSS = VirtRegMap::NO_STACK_SLOT;
1398 std::sort(added.begin(), added.end(), LISorter());
1399 for (unsigned i = 0, e = added.size(); i != e; ++i) {
1400 LiveInterval *ReloadLi = added[i];
1401 if (ReloadLi->weight == HUGE_VALF &&
1402 li_->getApproximateInstructionCount(*ReloadLi) == 0) {
1403 SlotIndex ReloadIdx = ReloadLi->beginIndex();
1404 MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx);
1405 int ReloadSS = vrm_->getStackSlot(ReloadLi->reg);
1406 if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) {
1407 // Last reload of same SS is in the same MBB. We want to try to
1408 // allocate both reloads the same register and make sure the reg
1409 // isn't clobbered in between if at all possible.
1410 assert(LastReload->beginIndex() < ReloadIdx);
1411 NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg));
1413 LastReloadMBB = ReloadMBB;
1414 LastReload = ReloadLi;
1415 LastReloadSS = ReloadSS;
1417 unhandled_.push(ReloadLi);
1421 unsigned RALinScan::getFreePhysReg(LiveInterval* cur,
1422 const TargetRegisterClass *RC,
1423 unsigned MaxInactiveCount,
1424 SmallVector<unsigned, 256> &inactiveCounts,
1425 bool SkipDGRegs) {
1426 unsigned FreeReg = 0;
1427 unsigned FreeRegInactiveCount = 0;
1429 std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg);
1430 // Resolve second part of the hint (if possible) given the current allocation.
1431 unsigned physReg = Hint.second;
1432 if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg))
1433 physReg = vrm_->getPhys(physReg);
1435 TargetRegisterClass::iterator I, E;
1436 tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_);
1437 assert(I != E && "No allocatable register in this register class!");
1439 // Scan for the first available register.
1440 for (; I != E; ++I) {
1441 unsigned Reg = *I;
1442 // Ignore "downgraded" registers.
1443 if (SkipDGRegs && DowngradedRegs.count(Reg))
1444 continue;
1445 // Skip reserved registers.
1446 if (reservedRegs_.test(Reg))
1447 continue;
1448 // Skip recently allocated registers.
1449 if (isRegAvail(Reg) && !isRecentlyUsed(Reg)) {
1450 FreeReg = Reg;
1451 if (FreeReg < inactiveCounts.size())
1452 FreeRegInactiveCount = inactiveCounts[FreeReg];
1453 else
1454 FreeRegInactiveCount = 0;
1455 break;
1459 // If there are no free regs, or if this reg has the max inactive count,
1460 // return this register.
1461 if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) {
1462 // Remember what register we picked so we can skip it next time.
1463 if (FreeReg != 0) recordRecentlyUsed(FreeReg);
1464 return FreeReg;
1467 // Continue scanning the registers, looking for the one with the highest
1468 // inactive count. Alkis found that this reduced register pressure very
1469 // slightly on X86 (in rev 1.94 of this file), though this should probably be
1470 // reevaluated now.
1471 for (; I != E; ++I) {
1472 unsigned Reg = *I;
1473 // Ignore "downgraded" registers.
1474 if (SkipDGRegs && DowngradedRegs.count(Reg))
1475 continue;
1476 // Skip reserved registers.
1477 if (reservedRegs_.test(Reg))
1478 continue;
1479 if (isRegAvail(Reg) && Reg < inactiveCounts.size() &&
1480 FreeRegInactiveCount < inactiveCounts[Reg] && !isRecentlyUsed(Reg)) {
1481 FreeReg = Reg;
1482 FreeRegInactiveCount = inactiveCounts[Reg];
1483 if (FreeRegInactiveCount == MaxInactiveCount)
1484 break; // We found the one with the max inactive count.
1488 // Remember what register we picked so we can skip it next time.
1489 recordRecentlyUsed(FreeReg);
1491 return FreeReg;
1494 /// getFreePhysReg - return a free physical register for this virtual register
1495 /// interval if we have one, otherwise return 0.
1496 unsigned RALinScan::getFreePhysReg(LiveInterval *cur) {
1497 SmallVector<unsigned, 256> inactiveCounts;
1498 unsigned MaxInactiveCount = 0;
1500 const TargetRegisterClass *RC = mri_->getRegClass(cur->reg);
1501 const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC);
1503 for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end();
1504 i != e; ++i) {
1505 unsigned reg = i->first->reg;
1506 assert(TargetRegisterInfo::isVirtualRegister(reg) &&
1507 "Can only allocate virtual registers!");
1509 // If this is not in a related reg class to the register we're allocating,
1510 // don't check it.
1511 const TargetRegisterClass *RegRC = mri_->getRegClass(reg);
1512 if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) {
1513 reg = vrm_->getPhys(reg);
1514 if (inactiveCounts.size() <= reg)
1515 inactiveCounts.resize(reg+1);
1516 ++inactiveCounts[reg];
1517 MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]);
1521 // If copy coalescer has assigned a "preferred" register, check if it's
1522 // available first.
1523 unsigned Preference = vrm_->getRegAllocPref(cur->reg);
1524 if (Preference) {
1525 DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") ");
1526 if (isRegAvail(Preference) &&
1527 RC->contains(Preference))
1528 return Preference;
1531 if (!DowngradedRegs.empty()) {
1532 unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts,
1533 true);
1534 if (FreeReg)
1535 return FreeReg;
1537 return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false);
1540 FunctionPass* llvm::createLinearScanRegisterAllocator() {
1541 return new RALinScan();