Add a function for profiling to run at shutdown. Unlike the existing API, this
[llvm/stm8.git] / lib / CodeGen / VirtRegRewriter.cpp
blob67be1b0842df35a38b19cc92e39f08e1e361e994
1 //===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #define DEBUG_TYPE "virtregrewriter"
11 #include "VirtRegRewriter.h"
12 #include "VirtRegMap.h"
13 #include "llvm/Function.h"
14 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetLowering.h"
24 #include "llvm/ADT/DepthFirstIterator.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/Statistic.h"
27 using namespace llvm;
29 STATISTIC(NumDSE , "Number of dead stores elided");
30 STATISTIC(NumDSS , "Number of dead spill slots removed");
31 STATISTIC(NumCommutes, "Number of instructions commuted");
32 STATISTIC(NumDRM , "Number of re-materializable defs elided");
33 STATISTIC(NumStores , "Number of stores added");
34 STATISTIC(NumPSpills , "Number of physical register spills");
35 STATISTIC(NumOmitted , "Number of reloads omited");
36 STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
37 STATISTIC(NumCopified, "Number of available reloads turned into copies");
38 STATISTIC(NumReMats , "Number of re-materialization");
39 STATISTIC(NumLoads , "Number of loads added");
40 STATISTIC(NumReused , "Number of values reused");
41 STATISTIC(NumDCE , "Number of copies elided");
42 STATISTIC(NumSUnfold , "Number of stores unfolded");
43 STATISTIC(NumModRefUnfold, "Number of modref unfolded");
45 namespace {
46 enum RewriterName { local, trivial };
49 static cl::opt<RewriterName>
50 RewriterOpt("rewriter",
51 cl::desc("Rewriter to use (default=local)"),
52 cl::Prefix,
53 cl::values(clEnumVal(local, "local rewriter"),
54 clEnumVal(trivial, "trivial rewriter"),
55 clEnumValEnd),
56 cl::init(local));
58 static cl::opt<bool>
59 ScheduleSpills("schedule-spills",
60 cl::desc("Schedule spill code"),
61 cl::init(false));
63 VirtRegRewriter::~VirtRegRewriter() {}
65 /// substitutePhysReg - Replace virtual register in MachineOperand with a
66 /// physical register. Do the right thing with the sub-register index.
67 /// Note that operands may be added, so the MO reference is no longer valid.
68 static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
69 const TargetRegisterInfo &TRI) {
70 if (MO.getSubReg()) {
71 MO.substPhysReg(Reg, TRI);
73 // Any kill flags apply to the full virtual register, so they also apply to
74 // the full physical register.
75 // We assume that partial defs have already been decorated with a super-reg
76 // <imp-def> operand by LiveIntervals.
77 MachineInstr &MI = *MO.getParent();
78 if (MO.isUse() && !MO.isUndef() &&
79 (MO.isKill() || MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
80 MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
81 } else {
82 MO.setReg(Reg);
86 namespace {
88 /// This class is intended for use with the new spilling framework only. It
89 /// rewrites vreg def/uses to use the assigned preg, but does not insert any
90 /// spill code.
91 struct TrivialRewriter : public VirtRegRewriter {
93 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
94 LiveIntervals* LIs) {
95 DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
96 DEBUG(dbgs() << "********** Function: "
97 << MF.getFunction()->getName() << '\n');
98 DEBUG(dbgs() << "**** Machine Instrs"
99 << "(NOTE! Does not include spills and reloads!) ****\n");
100 DEBUG(MF.dump());
102 MachineRegisterInfo *mri = &MF.getRegInfo();
103 const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
105 bool changed = false;
107 for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
108 liItr != liEnd; ++liItr) {
110 const LiveInterval *li = liItr->second;
111 unsigned reg = li->reg;
113 if (TargetRegisterInfo::isPhysicalRegister(reg)) {
114 if (!li->empty())
115 mri->setPhysRegUsed(reg);
117 else {
118 if (!VRM.hasPhys(reg))
119 continue;
120 unsigned pReg = VRM.getPhys(reg);
121 mri->setPhysRegUsed(pReg);
122 // Copy the register use-list before traversing it.
123 SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
124 for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
125 E = mri->reg_end(); I != E; ++I)
126 reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
127 for (unsigned N=0; N != reglist.size(); ++N)
128 substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
129 pReg, *tri);
130 changed |= !reglist.empty();
134 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
135 DEBUG(MF.dump());
137 return changed;
144 // ************************************************************************ //
146 namespace {
148 /// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
149 /// from top down, keep track of which spill slots or remat are available in
150 /// each register.
152 /// Note that not all physregs are created equal here. In particular, some
153 /// physregs are reloads that we are allowed to clobber or ignore at any time.
154 /// Other physregs are values that the register allocated program is using
155 /// that we cannot CHANGE, but we can read if we like. We keep track of this
156 /// on a per-stack-slot / remat id basis as the low bit in the value of the
157 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
158 /// this bit and addAvailable sets it if.
159 class AvailableSpills {
160 const TargetRegisterInfo *TRI;
161 const TargetInstrInfo *TII;
163 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
164 // or remat'ed virtual register values that are still available, due to
165 // being loaded or stored to, but not invalidated yet.
166 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
168 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
169 // indicating which stack slot values are currently held by a physreg. This
170 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
171 // physreg is modified.
172 std::multimap<unsigned, int> PhysRegsAvailable;
174 void disallowClobberPhysRegOnly(unsigned PhysReg);
176 void ClobberPhysRegOnly(unsigned PhysReg);
177 public:
178 AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
179 : TRI(tri), TII(tii) {
182 /// clear - Reset the state.
183 void clear() {
184 SpillSlotsOrReMatsAvailable.clear();
185 PhysRegsAvailable.clear();
188 const TargetRegisterInfo *getRegInfo() const { return TRI; }
190 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
191 /// available in a physical register, return that PhysReg, otherwise
192 /// return 0.
193 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
194 std::map<int, unsigned>::const_iterator I =
195 SpillSlotsOrReMatsAvailable.find(Slot);
196 if (I != SpillSlotsOrReMatsAvailable.end()) {
197 return I->second >> 1; // Remove the CanClobber bit.
199 return 0;
202 /// addAvailable - Mark that the specified stack slot / remat is available
203 /// in the specified physreg. If CanClobber is true, the physreg can be
204 /// modified at any time without changing the semantics of the program.
205 void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
206 // If this stack slot is thought to be available in some other physreg,
207 // remove its record.
208 ModifyStackSlotOrReMat(SlotOrReMat);
210 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
211 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
212 (unsigned)CanClobber;
214 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
215 DEBUG(dbgs() << "Remembering RM#"
216 << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1);
217 else
218 DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
219 DEBUG(dbgs() << " in physreg " << TRI->getName(Reg)
220 << (CanClobber ? " canclobber" : "") << "\n");
223 /// canClobberPhysRegForSS - Return true if the spiller is allowed to change
224 /// the value of the specified stackslot register if it desires. The
225 /// specified stack slot must be available in a physreg for this query to
226 /// make sense.
227 bool canClobberPhysRegForSS(int SlotOrReMat) const {
228 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
229 "Value not available!");
230 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
233 /// canClobberPhysReg - Return true if the spiller is allowed to clobber the
234 /// physical register where values for some stack slot(s) might be
235 /// available.
236 bool canClobberPhysReg(unsigned PhysReg) const {
237 std::multimap<unsigned, int>::const_iterator I =
238 PhysRegsAvailable.lower_bound(PhysReg);
239 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
240 int SlotOrReMat = I->second;
241 I++;
242 if (!canClobberPhysRegForSS(SlotOrReMat))
243 return false;
245 return true;
248 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
249 /// stackslot register. The register is still available but is no longer
250 /// allowed to be modifed.
251 void disallowClobberPhysReg(unsigned PhysReg);
253 /// ClobberPhysReg - This is called when the specified physreg changes
254 /// value. We use this to invalidate any info about stuff that lives in
255 /// it and any of its aliases.
256 void ClobberPhysReg(unsigned PhysReg);
258 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
259 /// slot changes. This removes information about which register the
260 /// previous value for this slot lives in (as the previous value is dead
261 /// now).
262 void ModifyStackSlotOrReMat(int SlotOrReMat);
264 /// ClobberSharingStackSlots - When a register mapped to a stack slot changes,
265 /// other stack slots sharing the same register are no longer valid.
266 void ClobberSharingStackSlots(int StackSlot);
268 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
269 /// into the specified MBB. Add available physical registers as potential
270 /// live-in's. If they are reused in the MBB, they will be added to the
271 /// live-in set to make register scavenger and post-allocation scheduler.
272 void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
273 std::vector<MachineOperand*> &KillOps);
278 // ************************************************************************ //
280 // Given a location where a reload of a spilled register or a remat of
281 // a constant is to be inserted, attempt to find a safe location to
282 // insert the load at an earlier point in the basic-block, to hide
283 // latency of the load and to avoid address-generation interlock
284 // issues.
285 static MachineBasicBlock::iterator
286 ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
287 MachineBasicBlock::iterator const Begin,
288 unsigned PhysReg,
289 const TargetRegisterInfo *TRI,
290 bool DoReMat,
291 int SSorRMId,
292 const TargetInstrInfo *TII,
293 const MachineFunction &MF)
295 if (!ScheduleSpills)
296 return InsertLoc;
298 // Spill backscheduling is of primary interest to addresses, so
299 // don't do anything if the register isn't in the register class
300 // used for pointers.
302 const TargetLowering *TL = MF.getTarget().getTargetLowering();
304 if (!TL->isTypeLegal(TL->getPointerTy()))
305 // Believe it or not, this is true on 16-bit targets like PIC16.
306 return InsertLoc;
308 const TargetRegisterClass *ptrRegClass =
309 TL->getRegClassFor(TL->getPointerTy());
310 if (!ptrRegClass->contains(PhysReg))
311 return InsertLoc;
313 // Scan upwards through the preceding instructions. If an instruction doesn't
314 // reference the stack slot or the register we're loading, we can
315 // backschedule the reload up past it.
316 MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
317 while (NewInsertLoc != Begin) {
318 MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
319 for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
320 MachineOperand &Op = Prev->getOperand(i);
321 if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
322 goto stop;
324 if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
325 Prev->findRegisterDefOperand(PhysReg))
326 goto stop;
327 for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
328 if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
329 Prev->findRegisterDefOperand(*Alias))
330 goto stop;
331 NewInsertLoc = Prev;
333 stop:;
335 // If we made it to the beginning of the block, turn around and move back
336 // down just past any existing reloads. They're likely to be reloads/remats
337 // for instructions earlier than what our current reload/remat is for, so
338 // they should be scheduled earlier.
339 if (NewInsertLoc == Begin) {
340 int FrameIdx;
341 while (InsertLoc != NewInsertLoc &&
342 (TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
343 TII->isTriviallyReMaterializable(NewInsertLoc)))
344 ++NewInsertLoc;
347 return NewInsertLoc;
350 namespace {
352 // ReusedOp - For each reused operand, we keep track of a bit of information,
353 // in case we need to rollback upon processing a new operand. See comments
354 // below.
355 struct ReusedOp {
356 // The MachineInstr operand that reused an available value.
357 unsigned Operand;
359 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
360 unsigned StackSlotOrReMat;
362 // PhysRegReused - The physical register the value was available in.
363 unsigned PhysRegReused;
365 // AssignedPhysReg - The physreg that was assigned for use by the reload.
366 unsigned AssignedPhysReg;
368 // VirtReg - The virtual register itself.
369 unsigned VirtReg;
371 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
372 unsigned vreg)
373 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
374 AssignedPhysReg(apr), VirtReg(vreg) {}
377 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
378 /// is reused instead of reloaded.
379 class ReuseInfo {
380 MachineInstr &MI;
381 std::vector<ReusedOp> Reuses;
382 BitVector PhysRegsClobbered;
383 public:
384 ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
385 PhysRegsClobbered.resize(tri->getNumRegs());
388 bool hasReuses() const {
389 return !Reuses.empty();
392 /// addReuse - If we choose to reuse a virtual register that is already
393 /// available instead of reloading it, remember that we did so.
394 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
395 unsigned PhysRegReused, unsigned AssignedPhysReg,
396 unsigned VirtReg) {
397 // If the reload is to the assigned register anyway, no undo will be
398 // required.
399 if (PhysRegReused == AssignedPhysReg) return;
401 // Otherwise, remember this.
402 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
403 AssignedPhysReg, VirtReg));
406 void markClobbered(unsigned PhysReg) {
407 PhysRegsClobbered.set(PhysReg);
410 bool isClobbered(unsigned PhysReg) const {
411 return PhysRegsClobbered.test(PhysReg);
414 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
415 /// is some other operand that is using the specified register, either pick
416 /// a new register to use, or evict the previous reload and use this reg.
417 unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
418 MachineFunction &MF, MachineInstr *MI,
419 AvailableSpills &Spills,
420 std::vector<MachineInstr*> &MaybeDeadStores,
421 SmallSet<unsigned, 8> &Rejected,
422 BitVector &RegKills,
423 std::vector<MachineOperand*> &KillOps,
424 VirtRegMap &VRM);
426 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
427 /// 'Rejected' set to remember which registers have been considered and
428 /// rejected for the reload. This avoids infinite looping in case like
429 /// this:
430 /// t1 := op t2, t3
431 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
432 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
433 /// t1 <- desires r1
434 /// sees r1 is taken by t2, tries t2's reload register r0
435 /// sees r0 is taken by t3, tries t3's reload register r1
436 /// sees r1 is taken by t2, tries t2's reload register r0 ...
437 unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
438 AvailableSpills &Spills,
439 std::vector<MachineInstr*> &MaybeDeadStores,
440 BitVector &RegKills,
441 std::vector<MachineOperand*> &KillOps,
442 VirtRegMap &VRM) {
443 SmallSet<unsigned, 8> Rejected;
444 MachineFunction &MF = *MI->getParent()->getParent();
445 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
446 return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
447 Rejected, RegKills, KillOps, VRM);
453 // ****************** //
454 // Utility Functions //
455 // ****************** //
457 /// findSinglePredSuccessor - Return via reference a vector of machine basic
458 /// blocks each of which is a successor of the specified BB and has no other
459 /// predecessor.
460 static void findSinglePredSuccessor(MachineBasicBlock *MBB,
461 SmallVectorImpl<MachineBasicBlock *> &Succs){
462 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
463 SE = MBB->succ_end(); SI != SE; ++SI) {
464 MachineBasicBlock *SuccMBB = *SI;
465 if (SuccMBB->pred_size() == 1)
466 Succs.push_back(SuccMBB);
470 /// ResurrectConfirmedKill - Helper for ResurrectKill. This register is killed
471 /// but not re-defined and it's being reused. Remove the kill flag for the
472 /// register and unset the kill's marker and last kill operand.
473 static void ResurrectConfirmedKill(unsigned Reg, const TargetRegisterInfo* TRI,
474 BitVector &RegKills,
475 std::vector<MachineOperand*> &KillOps) {
476 DEBUG(dbgs() << "Resurrect " << TRI->getName(Reg) << "\n");
478 MachineOperand *KillOp = KillOps[Reg];
479 KillOp->setIsKill(false);
480 // KillOps[Reg] might be a def of a super-register.
481 unsigned KReg = KillOp->getReg();
482 if (!RegKills[KReg])
483 return;
485 assert(KillOps[KReg]->getParent() == KillOp->getParent() &&
486 "invalid superreg kill flags");
487 KillOps[KReg] = NULL;
488 RegKills.reset(KReg);
490 // If it's a def of a super-register. Its other sub-regsters are no
491 // longer killed as well.
492 for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
493 DEBUG(dbgs() << " Resurrect subreg " << TRI->getName(*SR) << "\n");
495 assert(KillOps[*SR]->getParent() == KillOp->getParent() &&
496 "invalid subreg kill flags");
497 KillOps[*SR] = NULL;
498 RegKills.reset(*SR);
502 /// ResurrectKill - Invalidate kill info associated with a previous MI. An
503 /// optimization may have decided that it's safe to reuse a previously killed
504 /// register. If we fail to erase the invalid kill flags, then the register
505 /// scavenger may later clobber the register used by this MI. Note that this
506 /// must be done even if this MI is being deleted! Consider:
508 /// USE $r1 (vreg1) <kill>
509 /// ...
510 /// $r1(vreg3) = COPY $r1 (vreg2)
512 /// RegAlloc has smartly assigned all three vregs to the same physreg. Initially
513 /// vreg1's only use is a kill. The rewriter doesn't know it should be live
514 /// until it rewrites vreg2. At that points it sees that the copy is dead and
515 /// deletes it. However, deleting the copy implicitly forwards liveness of $r1
516 /// (it's copy coalescing). We must resurrect $r1 by removing the kill flag at
517 /// vreg1 before deleting the copy.
518 static void ResurrectKill(MachineInstr &MI, unsigned Reg,
519 const TargetRegisterInfo* TRI, BitVector &RegKills,
520 std::vector<MachineOperand*> &KillOps) {
521 if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
522 ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
523 return;
525 // No previous kill for this reg. Check for subreg kills as well.
526 // d4 =
527 // store d4, fi#0
528 // ...
529 // = s8<kill>
530 // ...
531 // = d4 <avoiding reload>
532 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
533 unsigned SReg = *SR;
534 if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI)
535 ResurrectConfirmedKill(SReg, TRI, RegKills, KillOps);
539 /// InvalidateKills - MI is going to be deleted. If any of its operands are
540 /// marked kill, then invalidate the information.
541 static void InvalidateKills(MachineInstr &MI,
542 const TargetRegisterInfo* TRI,
543 BitVector &RegKills,
544 std::vector<MachineOperand*> &KillOps,
545 SmallVector<unsigned, 2> *KillRegs = NULL) {
546 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
547 MachineOperand &MO = MI.getOperand(i);
548 if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
549 continue;
550 unsigned Reg = MO.getReg();
551 if (TargetRegisterInfo::isVirtualRegister(Reg))
552 continue;
553 if (KillRegs)
554 KillRegs->push_back(Reg);
555 assert(Reg < KillOps.size());
556 if (KillOps[Reg] == &MO) {
557 // This operand was the kill, now no longer.
558 KillOps[Reg] = NULL;
559 RegKills.reset(Reg);
560 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
561 if (RegKills[*SR]) {
562 assert(KillOps[*SR] == &MO && "bad subreg kill flags");
563 KillOps[*SR] = NULL;
564 RegKills.reset(*SR);
568 else {
569 // This operand may have reused a previously killed reg. Keep it live in
570 // case it continues to be used after erasing this instruction.
571 ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
576 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
577 /// (since its spill instruction is removed), mark it isDead. Also checks if
578 /// the def MI has other definition operands that are not dead. Returns it by
579 /// reference.
580 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
581 MachineInstr &NewDef, unsigned Reg,
582 bool &HasLiveDef,
583 const TargetRegisterInfo *TRI) {
584 // Due to remat, it's possible this reg isn't being reused. That is,
585 // the def of this reg (by prev MI) is now dead.
586 MachineInstr *DefMI = I;
587 MachineOperand *DefOp = NULL;
588 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
589 MachineOperand &MO = DefMI->getOperand(i);
590 if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
591 continue;
592 if (MO.getReg() == Reg)
593 DefOp = &MO;
594 else if (!MO.isDead())
595 HasLiveDef = true;
597 if (!DefOp)
598 return false;
600 bool FoundUse = false, Done = false;
601 MachineBasicBlock::iterator E = &NewDef;
602 ++I; ++E;
603 for (; !Done && I != E; ++I) {
604 MachineInstr *NMI = I;
605 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
606 MachineOperand &MO = NMI->getOperand(j);
607 if (!MO.isReg() || MO.getReg() == 0 ||
608 (MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
609 continue;
610 if (MO.isUse())
611 FoundUse = true;
612 Done = true; // Stop after scanning all the operands of this MI.
615 if (!FoundUse) {
616 // Def is dead!
617 DefOp->setIsDead();
618 return true;
620 return false;
623 /// UpdateKills - Track and update kill info. If a MI reads a register that is
624 /// marked kill, then it must be due to register reuse. Transfer the kill info
625 /// over.
626 static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
627 BitVector &RegKills,
628 std::vector<MachineOperand*> &KillOps) {
629 // These do not affect kill info at all.
630 if (MI.isDebugValue())
631 return;
632 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
633 MachineOperand &MO = MI.getOperand(i);
634 if (!MO.isReg() || !MO.isUse() || MO.isUndef())
635 continue;
636 unsigned Reg = MO.getReg();
637 if (Reg == 0)
638 continue;
640 // This operand may have reused a previously killed reg. Keep it live.
641 ResurrectKill(MI, Reg, TRI, RegKills, KillOps);
643 if (MO.isKill()) {
644 RegKills.set(Reg);
645 KillOps[Reg] = &MO;
646 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
647 RegKills.set(*SR);
648 KillOps[*SR] = &MO;
653 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
654 const MachineOperand &MO = MI.getOperand(i);
655 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
656 continue;
657 unsigned Reg = MO.getReg();
658 RegKills.reset(Reg);
659 KillOps[Reg] = NULL;
660 // It also defines (or partially define) aliases.
661 for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
662 RegKills.reset(*SR);
663 KillOps[*SR] = NULL;
665 for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
666 RegKills.reset(*SR);
667 KillOps[*SR] = NULL;
672 /// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
674 static void ReMaterialize(MachineBasicBlock &MBB,
675 MachineBasicBlock::iterator &MII,
676 unsigned DestReg, unsigned Reg,
677 const TargetInstrInfo *TII,
678 const TargetRegisterInfo *TRI,
679 VirtRegMap &VRM) {
680 MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
681 #ifndef NDEBUG
682 const TargetInstrDesc &TID = ReMatDefMI->getDesc();
683 assert(TID.getNumDefs() == 1 &&
684 "Don't know how to remat instructions that define > 1 values!");
685 #endif
686 TII->reMaterialize(MBB, MII, DestReg, 0, ReMatDefMI, *TRI);
687 MachineInstr *NewMI = prior(MII);
688 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
689 MachineOperand &MO = NewMI->getOperand(i);
690 if (!MO.isReg() || MO.getReg() == 0)
691 continue;
692 unsigned VirtReg = MO.getReg();
693 if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
694 continue;
695 assert(MO.isUse());
696 unsigned Phys = VRM.getPhys(VirtReg);
697 assert(Phys && "Virtual register is not assigned a register?");
698 substitutePhysReg(MO, Phys, *TRI);
700 ++NumReMats;
703 /// findSuperReg - Find the SubReg's super-register of given register class
704 /// where its SubIdx sub-register is SubReg.
705 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
706 unsigned SubIdx, const TargetRegisterInfo *TRI) {
707 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
708 I != E; ++I) {
709 unsigned Reg = *I;
710 if (TRI->getSubReg(Reg, SubIdx) == SubReg)
711 return Reg;
713 return 0;
716 // ******************************** //
717 // Available Spills Implementation //
718 // ******************************** //
720 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
721 /// stackslot register. The register is still available but is no longer
722 /// allowed to be modifed.
723 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
724 std::multimap<unsigned, int>::iterator I =
725 PhysRegsAvailable.lower_bound(PhysReg);
726 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
727 int SlotOrReMat = I->second;
728 I++;
729 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
730 "Bidirectional map mismatch!");
731 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
732 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
733 << " copied, it is available for use but can no longer be modified\n");
737 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
738 /// stackslot register and its aliases. The register and its aliases may
739 /// still available but is no longer allowed to be modifed.
740 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
741 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
742 disallowClobberPhysRegOnly(*AS);
743 disallowClobberPhysRegOnly(PhysReg);
746 /// ClobberPhysRegOnly - This is called when the specified physreg changes
747 /// value. We use this to invalidate any info about stuff we thing lives in it.
748 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
749 std::multimap<unsigned, int>::iterator I =
750 PhysRegsAvailable.lower_bound(PhysReg);
751 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
752 int SlotOrReMat = I->second;
753 PhysRegsAvailable.erase(I++);
754 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
755 "Bidirectional map mismatch!");
756 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
757 DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
758 << " clobbered, invalidating ");
759 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
760 DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
761 else
762 DEBUG(dbgs() << "SS#" << SlotOrReMat << "\n");
766 /// ClobberPhysReg - This is called when the specified physreg changes
767 /// value. We use this to invalidate any info about stuff we thing lives in
768 /// it and any of its aliases.
769 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
770 for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
771 ClobberPhysRegOnly(*AS);
772 ClobberPhysRegOnly(PhysReg);
775 /// AddAvailableRegsToLiveIn - Availability information is being kept coming
776 /// into the specified MBB. Add available physical registers as potential
777 /// live-in's. If they are reused in the MBB, they will be added to the
778 /// live-in set to make register scavenger and post-allocation scheduler.
779 void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
780 BitVector &RegKills,
781 std::vector<MachineOperand*> &KillOps) {
782 std::set<unsigned> NotAvailable;
783 for (std::multimap<unsigned, int>::iterator
784 I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
785 I != E; ++I) {
786 unsigned Reg = I->first;
787 const TargetRegisterClass* RC = TRI->getMinimalPhysRegClass(Reg);
788 // FIXME: A temporary workaround. We can't reuse available value if it's
789 // not safe to move the def of the virtual register's class. e.g.
790 // X86::RFP* register classes. Do not add it as a live-in.
791 if (!TII->isSafeToMoveRegClassDefs(RC))
792 // This is no longer available.
793 NotAvailable.insert(Reg);
794 else {
795 MBB.addLiveIn(Reg);
796 if (RegKills[Reg])
797 ResurrectConfirmedKill(Reg, TRI, RegKills, KillOps);
800 // Skip over the same register.
801 std::multimap<unsigned, int>::iterator NI = llvm::next(I);
802 while (NI != E && NI->first == Reg) {
803 ++I;
804 ++NI;
808 for (std::set<unsigned>::iterator I = NotAvailable.begin(),
809 E = NotAvailable.end(); I != E; ++I) {
810 ClobberPhysReg(*I);
811 for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
812 *SubRegs; ++SubRegs)
813 ClobberPhysReg(*SubRegs);
817 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
818 /// slot changes. This removes information about which register the previous
819 /// value for this slot lives in (as the previous value is dead now).
820 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
821 std::map<int, unsigned>::iterator It =
822 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
823 if (It == SpillSlotsOrReMatsAvailable.end()) return;
824 unsigned Reg = It->second >> 1;
825 SpillSlotsOrReMatsAvailable.erase(It);
827 // This register may hold the value of multiple stack slots, only remove this
828 // stack slot from the set of values the register contains.
829 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
830 for (; ; ++I) {
831 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
832 "Map inverse broken!");
833 if (I->second == SlotOrReMat) break;
835 PhysRegsAvailable.erase(I);
838 void AvailableSpills::ClobberSharingStackSlots(int StackSlot) {
839 std::map<int, unsigned>::iterator It =
840 SpillSlotsOrReMatsAvailable.find(StackSlot);
841 if (It == SpillSlotsOrReMatsAvailable.end()) return;
842 unsigned Reg = It->second >> 1;
844 // Erase entries in PhysRegsAvailable for other stack slots.
845 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
846 while (I != PhysRegsAvailable.end() && I->first == Reg) {
847 std::multimap<unsigned, int>::iterator NextI = llvm::next(I);
848 if (I->second != StackSlot) {
849 DEBUG(dbgs() << "Clobbered sharing SS#" << I->second << " in "
850 << PrintReg(Reg, TRI) << '\n');
851 SpillSlotsOrReMatsAvailable.erase(I->second);
852 PhysRegsAvailable.erase(I);
854 I = NextI;
858 // ************************** //
859 // Reuse Info Implementation //
860 // ************************** //
862 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
863 /// is some other operand that is using the specified register, either pick
864 /// a new register to use, or evict the previous reload and use this reg.
865 unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
866 unsigned PhysReg,
867 MachineFunction &MF,
868 MachineInstr *MI, AvailableSpills &Spills,
869 std::vector<MachineInstr*> &MaybeDeadStores,
870 SmallSet<unsigned, 8> &Rejected,
871 BitVector &RegKills,
872 std::vector<MachineOperand*> &KillOps,
873 VirtRegMap &VRM) {
874 const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
875 const TargetRegisterInfo *TRI = Spills.getRegInfo();
877 if (Reuses.empty()) return PhysReg; // This is most often empty.
879 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
880 ReusedOp &Op = Reuses[ro];
881 // If we find some other reuse that was supposed to use this register
882 // exactly for its reload, we can change this reload to use ITS reload
883 // register. That is, unless its reload register has already been
884 // considered and subsequently rejected because it has also been reused
885 // by another operand.
886 if (Op.PhysRegReused == PhysReg &&
887 Rejected.count(Op.AssignedPhysReg) == 0 &&
888 RC->contains(Op.AssignedPhysReg)) {
889 // Yup, use the reload register that we didn't use before.
890 unsigned NewReg = Op.AssignedPhysReg;
891 Rejected.insert(PhysReg);
892 return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores,
893 Rejected, RegKills, KillOps, VRM);
894 } else {
895 // Otherwise, we might also have a problem if a previously reused
896 // value aliases the new register. If so, codegen the previous reload
897 // and use this one.
898 unsigned PRRU = Op.PhysRegReused;
899 if (TRI->regsOverlap(PRRU, PhysReg)) {
900 // Okay, we found out that an alias of a reused register
901 // was used. This isn't good because it means we have
902 // to undo a previous reuse.
903 MachineBasicBlock *MBB = MI->getParent();
904 const TargetRegisterClass *AliasRC =
905 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
907 // Copy Op out of the vector and remove it, we're going to insert an
908 // explicit load for it.
909 ReusedOp NewOp = Op;
910 Reuses.erase(Reuses.begin()+ro);
912 // MI may be using only a sub-register of PhysRegUsed.
913 unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
914 unsigned SubIdx = 0;
915 assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
916 "A reuse cannot be a virtual register");
917 if (PRRU != RealPhysRegUsed) {
918 // What was the sub-register index?
919 SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
920 assert(SubIdx &&
921 "Operand physreg is not a sub-register of PhysRegUsed");
924 // Ok, we're going to try to reload the assigned physreg into the
925 // slot that we were supposed to in the first place. However, that
926 // register could hold a reuse. Check to see if it conflicts or
927 // would prefer us to use a different register.
928 unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
929 MF, MI, Spills, MaybeDeadStores,
930 Rejected, RegKills, KillOps, VRM);
932 bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
933 int SSorRMId = DoReMat
934 ? VRM.getReMatId(NewOp.VirtReg) : (int) NewOp.StackSlotOrReMat;
936 // Back-schedule reloads and remats.
937 MachineBasicBlock::iterator InsertLoc =
938 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
939 DoReMat, SSorRMId, TII, MF);
941 if (DoReMat) {
942 ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
943 TRI, VRM);
944 } else {
945 TII->loadRegFromStackSlot(*MBB, InsertLoc, NewPhysReg,
946 NewOp.StackSlotOrReMat, AliasRC, TRI);
947 MachineInstr *LoadMI = prior(InsertLoc);
948 VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
949 // Any stores to this stack slot are not dead anymore.
950 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
951 ++NumLoads;
953 Spills.ClobberPhysReg(NewPhysReg);
954 Spills.ClobberPhysReg(NewOp.PhysRegReused);
956 unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
957 MI->getOperand(NewOp.Operand).setReg(RReg);
958 MI->getOperand(NewOp.Operand).setSubReg(0);
960 Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
961 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
962 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
964 DEBUG(dbgs() << "Reuse undone!\n");
965 --NumReused;
967 // Finally, PhysReg is now available, go ahead and use it.
968 return PhysReg;
972 return PhysReg;
975 // ************************************************************************ //
977 /// FoldsStackSlotModRef - Return true if the specified MI folds the specified
978 /// stack slot mod/ref. It also checks if it's possible to unfold the
979 /// instruction by having it define a specified physical register instead.
980 static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
981 const TargetInstrInfo *TII,
982 const TargetRegisterInfo *TRI,
983 VirtRegMap &VRM) {
984 if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
985 return false;
987 bool Found = false;
988 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
989 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
990 unsigned VirtReg = I->second.first;
991 VirtRegMap::ModRef MR = I->second.second;
992 if (MR & VirtRegMap::isModRef)
993 if (VRM.getStackSlot(VirtReg) == SS) {
994 Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
995 break;
998 if (!Found)
999 return false;
1001 // Does the instruction uses a register that overlaps the scratch register?
1002 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1003 MachineOperand &MO = MI.getOperand(i);
1004 if (!MO.isReg() || MO.getReg() == 0)
1005 continue;
1006 unsigned Reg = MO.getReg();
1007 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1008 if (!VRM.hasPhys(Reg))
1009 continue;
1010 Reg = VRM.getPhys(Reg);
1012 if (TRI->regsOverlap(PhysReg, Reg))
1013 return false;
1015 return true;
1018 /// FindFreeRegister - Find a free register of a given register class by looking
1019 /// at (at most) the last two machine instructions.
1020 static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
1021 MachineBasicBlock &MBB,
1022 const TargetRegisterClass *RC,
1023 const TargetRegisterInfo *TRI,
1024 BitVector &AllocatableRegs) {
1025 BitVector Defs(TRI->getNumRegs());
1026 BitVector Uses(TRI->getNumRegs());
1027 SmallVector<unsigned, 4> LocalUses;
1028 SmallVector<unsigned, 4> Kills;
1030 // Take a look at 2 instructions at most.
1031 unsigned Count = 0;
1032 while (Count < 2) {
1033 if (MII == MBB.begin())
1034 break;
1035 MachineInstr *PrevMI = prior(MII);
1036 MII = PrevMI;
1038 if (PrevMI->isDebugValue())
1039 continue; // Skip over dbg_value instructions.
1040 ++Count;
1042 for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
1043 MachineOperand &MO = PrevMI->getOperand(i);
1044 if (!MO.isReg() || MO.getReg() == 0)
1045 continue;
1046 unsigned Reg = MO.getReg();
1047 if (MO.isDef()) {
1048 Defs.set(Reg);
1049 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1050 Defs.set(*AS);
1051 } else {
1052 LocalUses.push_back(Reg);
1053 if (MO.isKill() && AllocatableRegs[Reg])
1054 Kills.push_back(Reg);
1058 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
1059 unsigned Kill = Kills[i];
1060 if (!Defs[Kill] && !Uses[Kill] &&
1061 RC->contains(Kill))
1062 return Kill;
1064 for (unsigned i = 0, e = LocalUses.size(); i != e; ++i) {
1065 unsigned Reg = LocalUses[i];
1066 Uses.set(Reg);
1067 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
1068 Uses.set(*AS);
1072 return 0;
1075 static
1076 void AssignPhysToVirtReg(MachineInstr *MI, unsigned VirtReg, unsigned PhysReg,
1077 const TargetRegisterInfo &TRI) {
1078 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1079 MachineOperand &MO = MI->getOperand(i);
1080 if (MO.isReg() && MO.getReg() == VirtReg)
1081 substitutePhysReg(MO, PhysReg, TRI);
1085 namespace {
1087 struct RefSorter {
1088 bool operator()(const std::pair<MachineInstr*, int> &A,
1089 const std::pair<MachineInstr*, int> &B) {
1090 return A.second < B.second;
1094 // ***************************** //
1095 // Local Spiller Implementation //
1096 // ***************************** //
1098 class LocalRewriter : public VirtRegRewriter {
1099 MachineRegisterInfo *MRI;
1100 const TargetRegisterInfo *TRI;
1101 const TargetInstrInfo *TII;
1102 VirtRegMap *VRM;
1103 LiveIntervals *LIs;
1104 BitVector AllocatableRegs;
1105 DenseMap<MachineInstr*, unsigned> DistanceMap;
1106 DenseMap<int, SmallVector<MachineInstr*,4> > Slot2DbgValues;
1108 MachineBasicBlock *MBB; // Basic block currently being processed.
1110 public:
1112 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
1113 LiveIntervals* LIs);
1115 private:
1116 void EraseInstr(MachineInstr *MI) {
1117 VRM->RemoveMachineInstrFromMaps(MI);
1118 LIs->RemoveMachineInstrFromMaps(MI);
1119 MI->eraseFromParent();
1122 bool OptimizeByUnfold2(unsigned VirtReg, int SS,
1123 MachineBasicBlock::iterator &MII,
1124 std::vector<MachineInstr*> &MaybeDeadStores,
1125 AvailableSpills &Spills,
1126 BitVector &RegKills,
1127 std::vector<MachineOperand*> &KillOps);
1129 bool OptimizeByUnfold(MachineBasicBlock::iterator &MII,
1130 std::vector<MachineInstr*> &MaybeDeadStores,
1131 AvailableSpills &Spills,
1132 BitVector &RegKills,
1133 std::vector<MachineOperand*> &KillOps);
1135 bool CommuteToFoldReload(MachineBasicBlock::iterator &MII,
1136 unsigned VirtReg, unsigned SrcReg, int SS,
1137 AvailableSpills &Spills,
1138 BitVector &RegKills,
1139 std::vector<MachineOperand*> &KillOps,
1140 const TargetRegisterInfo *TRI);
1142 void SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
1143 int Idx, unsigned PhysReg, int StackSlot,
1144 const TargetRegisterClass *RC,
1145 bool isAvailable, MachineInstr *&LastStore,
1146 AvailableSpills &Spills,
1147 SmallSet<MachineInstr*, 4> &ReMatDefs,
1148 BitVector &RegKills,
1149 std::vector<MachineOperand*> &KillOps);
1151 void TransferDeadness(unsigned Reg, BitVector &RegKills,
1152 std::vector<MachineOperand*> &KillOps);
1154 bool InsertEmergencySpills(MachineInstr *MI);
1156 bool InsertRestores(MachineInstr *MI,
1157 AvailableSpills &Spills,
1158 BitVector &RegKills,
1159 std::vector<MachineOperand*> &KillOps);
1161 bool InsertSpills(MachineInstr *MI);
1163 void ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
1164 std::vector<MachineInstr*> &MaybeDeadStores,
1165 BitVector &RegKills,
1166 ReuseInfo &ReusedOperands,
1167 std::vector<MachineOperand*> &KillOps);
1169 void RewriteMBB(LiveIntervals *LIs,
1170 AvailableSpills &Spills, BitVector &RegKills,
1171 std::vector<MachineOperand*> &KillOps);
1175 bool LocalRewriter::runOnMachineFunction(MachineFunction &MF, VirtRegMap &vrm,
1176 LiveIntervals* lis) {
1177 MRI = &MF.getRegInfo();
1178 TRI = MF.getTarget().getRegisterInfo();
1179 TII = MF.getTarget().getInstrInfo();
1180 VRM = &vrm;
1181 LIs = lis;
1182 AllocatableRegs = TRI->getAllocatableSet(MF);
1183 DEBUG(dbgs() << "\n**** Local spiller rewriting function '"
1184 << MF.getFunction()->getName() << "':\n");
1185 DEBUG(dbgs() << "**** Machine Instrs (NOTE! Does not include spills and"
1186 " reloads!) ****\n");
1187 DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
1189 // Spills - Keep track of which spilled values are available in physregs
1190 // so that we can choose to reuse the physregs instead of emitting
1191 // reloads. This is usually refreshed per basic block.
1192 AvailableSpills Spills(TRI, TII);
1194 // Keep track of kill information.
1195 BitVector RegKills(TRI->getNumRegs());
1196 std::vector<MachineOperand*> KillOps;
1197 KillOps.resize(TRI->getNumRegs(), NULL);
1199 // SingleEntrySuccs - Successor blocks which have a single predecessor.
1200 SmallVector<MachineBasicBlock*, 4> SinglePredSuccs;
1201 SmallPtrSet<MachineBasicBlock*,16> EarlyVisited;
1203 // Traverse the basic blocks depth first.
1204 MachineBasicBlock *Entry = MF.begin();
1205 SmallPtrSet<MachineBasicBlock*,16> Visited;
1206 for (df_ext_iterator<MachineBasicBlock*,
1207 SmallPtrSet<MachineBasicBlock*,16> >
1208 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
1209 DFI != E; ++DFI) {
1210 MBB = *DFI;
1211 if (!EarlyVisited.count(MBB))
1212 RewriteMBB(LIs, Spills, RegKills, KillOps);
1214 // If this MBB is the only predecessor of a successor. Keep the
1215 // availability information and visit it next.
1216 do {
1217 // Keep visiting single predecessor successor as long as possible.
1218 SinglePredSuccs.clear();
1219 findSinglePredSuccessor(MBB, SinglePredSuccs);
1220 if (SinglePredSuccs.empty())
1221 MBB = 0;
1222 else {
1223 // FIXME: More than one successors, each of which has MBB has
1224 // the only predecessor.
1225 MBB = SinglePredSuccs[0];
1226 if (!Visited.count(MBB) && EarlyVisited.insert(MBB)) {
1227 Spills.AddAvailableRegsToLiveIn(*MBB, RegKills, KillOps);
1228 RewriteMBB(LIs, Spills, RegKills, KillOps);
1231 } while (MBB);
1233 // Clear the availability info.
1234 Spills.clear();
1237 DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
1238 DEBUG(MF.print(dbgs(), LIs->getSlotIndexes()));
1240 // Mark unused spill slots.
1241 MachineFrameInfo *MFI = MF.getFrameInfo();
1242 int SS = VRM->getLowSpillSlot();
1243 if (SS != VirtRegMap::NO_STACK_SLOT) {
1244 for (int e = VRM->getHighSpillSlot(); SS <= e; ++SS) {
1245 SmallVector<MachineInstr*, 4> &DbgValues = Slot2DbgValues[SS];
1246 if (!VRM->isSpillSlotUsed(SS)) {
1247 MFI->RemoveStackObject(SS);
1248 for (unsigned j = 0, ee = DbgValues.size(); j != ee; ++j) {
1249 MachineInstr *DVMI = DbgValues[j];
1250 DEBUG(dbgs() << "Removing debug info referencing FI#" << SS << '\n');
1251 EraseInstr(DVMI);
1253 ++NumDSS;
1255 DbgValues.clear();
1258 Slot2DbgValues.clear();
1260 return true;
1263 /// OptimizeByUnfold2 - Unfold a series of load / store folding instructions if
1264 /// a scratch register is available.
1265 /// xorq %r12<kill>, %r13
1266 /// addq %rax, -184(%rbp)
1267 /// addq %r13, -184(%rbp)
1268 /// ==>
1269 /// xorq %r12<kill>, %r13
1270 /// movq -184(%rbp), %r12
1271 /// addq %rax, %r12
1272 /// addq %r13, %r12
1273 /// movq %r12, -184(%rbp)
1274 bool LocalRewriter::
1275 OptimizeByUnfold2(unsigned VirtReg, int SS,
1276 MachineBasicBlock::iterator &MII,
1277 std::vector<MachineInstr*> &MaybeDeadStores,
1278 AvailableSpills &Spills,
1279 BitVector &RegKills,
1280 std::vector<MachineOperand*> &KillOps) {
1282 MachineBasicBlock::iterator NextMII = llvm::next(MII);
1283 // Skip over dbg_value instructions.
1284 while (NextMII != MBB->end() && NextMII->isDebugValue())
1285 NextMII = llvm::next(NextMII);
1286 if (NextMII == MBB->end())
1287 return false;
1289 if (TII->getOpcodeAfterMemoryUnfold(MII->getOpcode(), true, true) == 0)
1290 return false;
1292 // Now let's see if the last couple of instructions happens to have freed up
1293 // a register.
1294 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1295 unsigned PhysReg = FindFreeRegister(MII, *MBB, RC, TRI, AllocatableRegs);
1296 if (!PhysReg)
1297 return false;
1299 MachineFunction &MF = *MBB->getParent();
1300 TRI = MF.getTarget().getRegisterInfo();
1301 MachineInstr &MI = *MII;
1302 if (!FoldsStackSlotModRef(MI, SS, PhysReg, TII, TRI, *VRM))
1303 return false;
1305 // If the next instruction also folds the same SS modref and can be unfoled,
1306 // then it's worthwhile to issue a load from SS into the free register and
1307 // then unfold these instructions.
1308 if (!FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM))
1309 return false;
1311 // Back-schedule reloads and remats.
1312 ComputeReloadLoc(MII, MBB->begin(), PhysReg, TRI, false, SS, TII, MF);
1314 // Load from SS to the spare physical register.
1315 TII->loadRegFromStackSlot(*MBB, MII, PhysReg, SS, RC, TRI);
1316 // This invalidates Phys.
1317 Spills.ClobberPhysReg(PhysReg);
1318 // Remember it's available.
1319 Spills.addAvailable(SS, PhysReg);
1320 MaybeDeadStores[SS] = NULL;
1322 // Unfold current MI.
1323 SmallVector<MachineInstr*, 4> NewMIs;
1324 if (!TII->unfoldMemoryOperand(MF, &MI, VirtReg, false, false, NewMIs))
1325 llvm_unreachable("Unable unfold the load / store folding instruction!");
1326 assert(NewMIs.size() == 1);
1327 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1328 VRM->transferRestorePts(&MI, NewMIs[0]);
1329 MII = MBB->insert(MII, NewMIs[0]);
1330 InvalidateKills(MI, TRI, RegKills, KillOps);
1331 EraseInstr(&MI);
1332 ++NumModRefUnfold;
1334 // Unfold next instructions that fold the same SS.
1335 do {
1336 MachineInstr &NextMI = *NextMII;
1337 NextMII = llvm::next(NextMII);
1338 NewMIs.clear();
1339 if (!TII->unfoldMemoryOperand(MF, &NextMI, VirtReg, false, false, NewMIs))
1340 llvm_unreachable("Unable unfold the load / store folding instruction!");
1341 assert(NewMIs.size() == 1);
1342 AssignPhysToVirtReg(NewMIs[0], VirtReg, PhysReg, *TRI);
1343 VRM->transferRestorePts(&NextMI, NewMIs[0]);
1344 MBB->insert(NextMII, NewMIs[0]);
1345 InvalidateKills(NextMI, TRI, RegKills, KillOps);
1346 EraseInstr(&NextMI);
1347 ++NumModRefUnfold;
1348 // Skip over dbg_value instructions.
1349 while (NextMII != MBB->end() && NextMII->isDebugValue())
1350 NextMII = llvm::next(NextMII);
1351 if (NextMII == MBB->end())
1352 break;
1353 } while (FoldsStackSlotModRef(*NextMII, SS, PhysReg, TII, TRI, *VRM));
1355 // Store the value back into SS.
1356 TII->storeRegToStackSlot(*MBB, NextMII, PhysReg, true, SS, RC, TRI);
1357 MachineInstr *StoreMI = prior(NextMII);
1358 VRM->addSpillSlotUse(SS, StoreMI);
1359 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1361 return true;
1364 /// OptimizeByUnfold - Turn a store folding instruction into a load folding
1365 /// instruction. e.g.
1366 /// xorl %edi, %eax
1367 /// movl %eax, -32(%ebp)
1368 /// movl -36(%ebp), %eax
1369 /// orl %eax, -32(%ebp)
1370 /// ==>
1371 /// xorl %edi, %eax
1372 /// orl -36(%ebp), %eax
1373 /// mov %eax, -32(%ebp)
1374 /// This enables unfolding optimization for a subsequent instruction which will
1375 /// also eliminate the newly introduced store instruction.
1376 bool LocalRewriter::
1377 OptimizeByUnfold(MachineBasicBlock::iterator &MII,
1378 std::vector<MachineInstr*> &MaybeDeadStores,
1379 AvailableSpills &Spills,
1380 BitVector &RegKills,
1381 std::vector<MachineOperand*> &KillOps) {
1382 MachineFunction &MF = *MBB->getParent();
1383 MachineInstr &MI = *MII;
1384 unsigned UnfoldedOpc = 0;
1385 unsigned UnfoldPR = 0;
1386 unsigned UnfoldVR = 0;
1387 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
1388 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
1389 for (tie(I, End) = VRM->getFoldedVirts(&MI); I != End; ) {
1390 // Only transform a MI that folds a single register.
1391 if (UnfoldedOpc)
1392 return false;
1393 UnfoldVR = I->second.first;
1394 VirtRegMap::ModRef MR = I->second.second;
1395 // MI2VirtMap be can updated which invalidate the iterator.
1396 // Increment the iterator first.
1397 ++I;
1398 if (VRM->isAssignedReg(UnfoldVR))
1399 continue;
1400 // If this reference is not a use, any previous store is now dead.
1401 // Otherwise, the store to this stack slot is not dead anymore.
1402 FoldedSS = VRM->getStackSlot(UnfoldVR);
1403 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
1404 if (DeadStore && (MR & VirtRegMap::isModRef)) {
1405 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
1406 if (!PhysReg || !DeadStore->readsRegister(PhysReg))
1407 continue;
1408 UnfoldPR = PhysReg;
1409 UnfoldedOpc = TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1410 false, true);
1414 if (!UnfoldedOpc) {
1415 if (!UnfoldVR)
1416 return false;
1418 // Look for other unfolding opportunities.
1419 return OptimizeByUnfold2(UnfoldVR, FoldedSS, MII, MaybeDeadStores, Spills,
1420 RegKills, KillOps);
1423 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1424 MachineOperand &MO = MI.getOperand(i);
1425 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse())
1426 continue;
1427 unsigned VirtReg = MO.getReg();
1428 if (TargetRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
1429 continue;
1430 if (VRM->isAssignedReg(VirtReg)) {
1431 unsigned PhysReg = VRM->getPhys(VirtReg);
1432 if (PhysReg && TRI->regsOverlap(PhysReg, UnfoldPR))
1433 return false;
1434 } else if (VRM->isReMaterialized(VirtReg))
1435 continue;
1436 int SS = VRM->getStackSlot(VirtReg);
1437 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1438 if (PhysReg) {
1439 if (TRI->regsOverlap(PhysReg, UnfoldPR))
1440 return false;
1441 continue;
1443 if (VRM->hasPhys(VirtReg)) {
1444 PhysReg = VRM->getPhys(VirtReg);
1445 if (!TRI->regsOverlap(PhysReg, UnfoldPR))
1446 continue;
1449 // Ok, we'll need to reload the value into a register which makes
1450 // it impossible to perform the store unfolding optimization later.
1451 // Let's see if it is possible to fold the load if the store is
1452 // unfolded. This allows us to perform the store unfolding
1453 // optimization.
1454 SmallVector<MachineInstr*, 4> NewMIs;
1455 if (TII->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
1456 assert(NewMIs.size() == 1);
1457 MachineInstr *NewMI = NewMIs.back();
1458 MBB->insert(MII, NewMI);
1459 NewMIs.clear();
1460 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg, false);
1461 assert(Idx != -1);
1462 SmallVector<unsigned, 1> Ops;
1463 Ops.push_back(Idx);
1464 MachineInstr *FoldedMI = TII->foldMemoryOperand(NewMI, Ops, SS);
1465 NewMI->eraseFromParent();
1466 if (FoldedMI) {
1467 VRM->addSpillSlotUse(SS, FoldedMI);
1468 if (!VRM->hasPhys(UnfoldVR))
1469 VRM->assignVirt2Phys(UnfoldVR, UnfoldPR);
1470 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1471 MII = FoldedMI;
1472 InvalidateKills(MI, TRI, RegKills, KillOps);
1473 EraseInstr(&MI);
1474 return true;
1479 return false;
1482 /// CommuteChangesDestination - We are looking for r0 = op r1, r2 and
1483 /// where SrcReg is r1 and it is tied to r0. Return true if after
1484 /// commuting this instruction it will be r0 = op r2, r1.
1485 static bool CommuteChangesDestination(MachineInstr *DefMI,
1486 const TargetInstrDesc &TID,
1487 unsigned SrcReg,
1488 const TargetInstrInfo *TII,
1489 unsigned &DstIdx) {
1490 if (TID.getNumDefs() != 1 && TID.getNumOperands() != 3)
1491 return false;
1492 if (!DefMI->getOperand(1).isReg() ||
1493 DefMI->getOperand(1).getReg() != SrcReg)
1494 return false;
1495 unsigned DefIdx;
1496 if (!DefMI->isRegTiedToDefOperand(1, &DefIdx) || DefIdx != 0)
1497 return false;
1498 unsigned SrcIdx1, SrcIdx2;
1499 if (!TII->findCommutedOpIndices(DefMI, SrcIdx1, SrcIdx2))
1500 return false;
1501 if (SrcIdx1 == 1 && SrcIdx2 == 2) {
1502 DstIdx = 2;
1503 return true;
1505 return false;
1508 /// CommuteToFoldReload -
1509 /// Look for
1510 /// r1 = load fi#1
1511 /// r1 = op r1, r2<kill>
1512 /// store r1, fi#1
1514 /// If op is commutable and r2 is killed, then we can xform these to
1515 /// r2 = op r2, fi#1
1516 /// store r2, fi#1
1517 bool LocalRewriter::
1518 CommuteToFoldReload(MachineBasicBlock::iterator &MII,
1519 unsigned VirtReg, unsigned SrcReg, int SS,
1520 AvailableSpills &Spills,
1521 BitVector &RegKills,
1522 std::vector<MachineOperand*> &KillOps,
1523 const TargetRegisterInfo *TRI) {
1524 if (MII == MBB->begin() || !MII->killsRegister(SrcReg))
1525 return false;
1527 MachineInstr &MI = *MII;
1528 MachineBasicBlock::iterator DefMII = prior(MII);
1529 MachineInstr *DefMI = DefMII;
1530 const TargetInstrDesc &TID = DefMI->getDesc();
1531 unsigned NewDstIdx;
1532 if (DefMII != MBB->begin() &&
1533 TID.isCommutable() &&
1534 CommuteChangesDestination(DefMI, TID, SrcReg, TII, NewDstIdx)) {
1535 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
1536 unsigned NewReg = NewDstMO.getReg();
1537 if (!NewDstMO.isKill() || TRI->regsOverlap(NewReg, SrcReg))
1538 return false;
1539 MachineInstr *ReloadMI = prior(DefMII);
1540 int FrameIdx;
1541 unsigned DestReg = TII->isLoadFromStackSlot(ReloadMI, FrameIdx);
1542 if (DestReg != SrcReg || FrameIdx != SS)
1543 return false;
1544 int UseIdx = DefMI->findRegisterUseOperandIdx(DestReg, false);
1545 if (UseIdx == -1)
1546 return false;
1547 unsigned DefIdx;
1548 if (!MI.isRegTiedToDefOperand(UseIdx, &DefIdx))
1549 return false;
1550 assert(DefMI->getOperand(DefIdx).isReg() &&
1551 DefMI->getOperand(DefIdx).getReg() == SrcReg);
1553 // Now commute def instruction.
1554 MachineInstr *CommutedMI = TII->commuteInstruction(DefMI, true);
1555 if (!CommutedMI)
1556 return false;
1557 MBB->insert(MII, CommutedMI);
1558 SmallVector<unsigned, 1> Ops;
1559 Ops.push_back(NewDstIdx);
1560 MachineInstr *FoldedMI = TII->foldMemoryOperand(CommutedMI, Ops, SS);
1561 // Not needed since foldMemoryOperand returns new MI.
1562 CommutedMI->eraseFromParent();
1563 if (!FoldedMI)
1564 return false;
1566 VRM->addSpillSlotUse(SS, FoldedMI);
1567 VRM->virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
1568 // Insert new def MI and spill MI.
1569 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1570 TII->storeRegToStackSlot(*MBB, &MI, NewReg, true, SS, RC, TRI);
1571 MII = prior(MII);
1572 MachineInstr *StoreMI = MII;
1573 VRM->addSpillSlotUse(SS, StoreMI);
1574 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1575 MII = FoldedMI; // Update MII to backtrack.
1577 // Delete all 3 old instructions.
1578 InvalidateKills(*ReloadMI, TRI, RegKills, KillOps);
1579 EraseInstr(ReloadMI);
1580 InvalidateKills(*DefMI, TRI, RegKills, KillOps);
1581 EraseInstr(DefMI);
1582 InvalidateKills(MI, TRI, RegKills, KillOps);
1583 EraseInstr(&MI);
1585 // If NewReg was previously holding value of some SS, it's now clobbered.
1586 // This has to be done now because it's a physical register. When this
1587 // instruction is re-visited, it's ignored.
1588 Spills.ClobberPhysReg(NewReg);
1590 ++NumCommutes;
1591 return true;
1594 return false;
1597 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
1598 /// the last store to the same slot is now dead. If so, remove the last store.
1599 void LocalRewriter::
1600 SpillRegToStackSlot(MachineBasicBlock::iterator &MII,
1601 int Idx, unsigned PhysReg, int StackSlot,
1602 const TargetRegisterClass *RC,
1603 bool isAvailable, MachineInstr *&LastStore,
1604 AvailableSpills &Spills,
1605 SmallSet<MachineInstr*, 4> &ReMatDefs,
1606 BitVector &RegKills,
1607 std::vector<MachineOperand*> &KillOps) {
1609 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1610 TII->storeRegToStackSlot(*MBB, llvm::next(MII), PhysReg, true, StackSlot, RC,
1611 TRI);
1612 MachineInstr *StoreMI = prior(oldNextMII);
1613 VRM->addSpillSlotUse(StackSlot, StoreMI);
1614 DEBUG(dbgs() << "Store:\t" << *StoreMI);
1616 // If there is a dead store to this stack slot, nuke it now.
1617 if (LastStore) {
1618 DEBUG(dbgs() << "Removed dead store:\t" << *LastStore);
1619 ++NumDSE;
1620 SmallVector<unsigned, 2> KillRegs;
1621 InvalidateKills(*LastStore, TRI, RegKills, KillOps, &KillRegs);
1622 MachineBasicBlock::iterator PrevMII = LastStore;
1623 bool CheckDef = PrevMII != MBB->begin();
1624 if (CheckDef)
1625 --PrevMII;
1626 EraseInstr(LastStore);
1627 if (CheckDef) {
1628 // Look at defs of killed registers on the store. Mark the defs
1629 // as dead since the store has been deleted and they aren't
1630 // being reused.
1631 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
1632 bool HasOtherDef = false;
1633 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef, TRI)) {
1634 MachineInstr *DeadDef = PrevMII;
1635 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
1636 // FIXME: This assumes a remat def does not have side effects.
1637 EraseInstr(DeadDef);
1638 ++NumDRM;
1645 // Allow for multi-instruction spill sequences, as on PPC Altivec. Presume
1646 // the last of multiple instructions is the actual store.
1647 LastStore = prior(oldNextMII);
1649 // If the stack slot value was previously available in some other
1650 // register, change it now. Otherwise, make the register available,
1651 // in PhysReg.
1652 Spills.ModifyStackSlotOrReMat(StackSlot);
1653 Spills.ClobberPhysReg(PhysReg);
1654 Spills.addAvailable(StackSlot, PhysReg, isAvailable);
1655 ++NumStores;
1658 /// isSafeToDelete - Return true if this instruction doesn't produce any side
1659 /// effect and all of its defs are dead.
1660 static bool isSafeToDelete(MachineInstr &MI) {
1661 const TargetInstrDesc &TID = MI.getDesc();
1662 if (TID.mayLoad() || TID.mayStore() || TID.isTerminator() ||
1663 TID.isCall() || TID.isBarrier() || TID.isReturn() ||
1664 MI.isLabel() || MI.isDebugValue() ||
1665 MI.hasUnmodeledSideEffects())
1666 return false;
1668 // Technically speaking inline asm without side effects and no defs can still
1669 // be deleted. But there is so much bad inline asm code out there, we should
1670 // let them be.
1671 if (MI.isInlineAsm())
1672 return false;
1674 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1675 MachineOperand &MO = MI.getOperand(i);
1676 if (!MO.isReg() || !MO.getReg())
1677 continue;
1678 if (MO.isDef() && !MO.isDead())
1679 return false;
1680 if (MO.isUse() && MO.isKill())
1681 // FIXME: We can't remove kill markers or else the scavenger will assert.
1682 // An alternative is to add a ADD pseudo instruction to replace kill
1683 // markers.
1684 return false;
1686 return true;
1689 /// TransferDeadness - A identity copy definition is dead and it's being
1690 /// removed. Find the last def or use and mark it as dead / kill.
1691 void LocalRewriter::
1692 TransferDeadness(unsigned Reg, BitVector &RegKills,
1693 std::vector<MachineOperand*> &KillOps) {
1694 SmallPtrSet<MachineInstr*, 4> Seens;
1695 SmallVector<std::pair<MachineInstr*, int>,8> Refs;
1696 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
1697 RE = MRI->reg_end(); RI != RE; ++RI) {
1698 MachineInstr *UDMI = &*RI;
1699 if (UDMI->isDebugValue() || UDMI->getParent() != MBB)
1700 continue;
1701 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
1702 if (DI == DistanceMap.end())
1703 continue;
1704 if (Seens.insert(UDMI))
1705 Refs.push_back(std::make_pair(UDMI, DI->second));
1708 if (Refs.empty())
1709 return;
1710 std::sort(Refs.begin(), Refs.end(), RefSorter());
1712 while (!Refs.empty()) {
1713 MachineInstr *LastUDMI = Refs.back().first;
1714 Refs.pop_back();
1716 MachineOperand *LastUD = NULL;
1717 for (unsigned i = 0, e = LastUDMI->getNumOperands(); i != e; ++i) {
1718 MachineOperand &MO = LastUDMI->getOperand(i);
1719 if (!MO.isReg() || MO.getReg() != Reg)
1720 continue;
1721 if (!LastUD || (LastUD->isUse() && MO.isDef()))
1722 LastUD = &MO;
1723 if (LastUDMI->isRegTiedToDefOperand(i))
1724 break;
1726 if (LastUD->isDef()) {
1727 // If the instruction has no side effect, delete it and propagate
1728 // backward further. Otherwise, mark is dead and we are done.
1729 if (!isSafeToDelete(*LastUDMI)) {
1730 LastUD->setIsDead();
1731 break;
1733 EraseInstr(LastUDMI);
1734 } else {
1735 LastUD->setIsKill();
1736 RegKills.set(Reg);
1737 KillOps[Reg] = LastUD;
1738 break;
1743 /// InsertEmergencySpills - Insert emergency spills before MI if requested by
1744 /// VRM. Return true if spills were inserted.
1745 bool LocalRewriter::InsertEmergencySpills(MachineInstr *MI) {
1746 if (!VRM->hasEmergencySpills(MI))
1747 return false;
1748 MachineBasicBlock::iterator MII = MI;
1749 SmallSet<int, 4> UsedSS;
1750 std::vector<unsigned> &EmSpills = VRM->getEmergencySpills(MI);
1751 for (unsigned i = 0, e = EmSpills.size(); i != e; ++i) {
1752 unsigned PhysReg = EmSpills[i];
1753 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysReg);
1754 assert(RC && "Unable to determine register class!");
1755 int SS = VRM->getEmergencySpillSlot(RC);
1756 if (UsedSS.count(SS))
1757 llvm_unreachable("Need to spill more than one physical registers!");
1758 UsedSS.insert(SS);
1759 TII->storeRegToStackSlot(*MBB, MII, PhysReg, true, SS, RC, TRI);
1760 MachineInstr *StoreMI = prior(MII);
1761 VRM->addSpillSlotUse(SS, StoreMI);
1763 // Back-schedule reloads and remats.
1764 MachineBasicBlock::iterator InsertLoc =
1765 ComputeReloadLoc(llvm::next(MII), MBB->begin(), PhysReg, TRI, false, SS,
1766 TII, *MBB->getParent());
1768 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SS, RC, TRI);
1770 MachineInstr *LoadMI = prior(InsertLoc);
1771 VRM->addSpillSlotUse(SS, LoadMI);
1772 ++NumPSpills;
1773 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
1775 return true;
1778 /// InsertRestores - Restore registers before MI is requested by VRM. Return
1779 /// true is any instructions were inserted.
1780 bool LocalRewriter::InsertRestores(MachineInstr *MI,
1781 AvailableSpills &Spills,
1782 BitVector &RegKills,
1783 std::vector<MachineOperand*> &KillOps) {
1784 if (!VRM->isRestorePt(MI))
1785 return false;
1786 MachineBasicBlock::iterator MII = MI;
1787 std::vector<unsigned> &RestoreRegs = VRM->getRestorePtRestores(MI);
1788 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
1789 unsigned VirtReg = RestoreRegs[e-i-1]; // Reverse order.
1790 if (!VRM->getPreSplitReg(VirtReg))
1791 continue; // Split interval spilled again.
1792 unsigned Phys = VRM->getPhys(VirtReg);
1793 MRI->setPhysRegUsed(Phys);
1795 // Check if the value being restored if available. If so, it must be
1796 // from a predecessor BB that fallthrough into this BB. We do not
1797 // expect:
1798 // BB1:
1799 // r1 = load fi#1
1800 // ...
1801 // = r1<kill>
1802 // ... # r1 not clobbered
1803 // ...
1804 // = load fi#1
1805 bool DoReMat = VRM->isReMaterialized(VirtReg);
1806 int SSorRMId = DoReMat
1807 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
1808 unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1809 if (InReg == Phys) {
1810 // If the value is already available in the expected register, save
1811 // a reload / remat.
1812 if (SSorRMId)
1813 DEBUG(dbgs() << "Reusing RM#"
1814 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1815 else
1816 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1817 DEBUG(dbgs() << " from physreg "
1818 << TRI->getName(InReg) << " for " << PrintReg(VirtReg)
1819 <<" instead of reloading into physreg "
1820 << TRI->getName(Phys) << '\n');
1822 // Reusing a physreg may resurrect it. But we expect ProcessUses to update
1823 // the kill flags for the current instruction after processing it.
1825 ++NumOmitted;
1826 continue;
1827 } else if (InReg && InReg != Phys) {
1828 if (SSorRMId)
1829 DEBUG(dbgs() << "Reusing RM#"
1830 << SSorRMId-VirtRegMap::MAX_STACK_SLOT-1);
1831 else
1832 DEBUG(dbgs() << "Reusing SS#" << SSorRMId);
1833 DEBUG(dbgs() << " from physreg "
1834 << TRI->getName(InReg) << " for " << PrintReg(VirtReg)
1835 <<" by copying it into physreg "
1836 << TRI->getName(Phys) << '\n');
1838 // If the reloaded / remat value is available in another register,
1839 // copy it to the desired register.
1841 // Back-schedule reloads and remats.
1842 MachineBasicBlock::iterator InsertLoc =
1843 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
1844 *MBB->getParent());
1845 MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI->getDebugLoc(),
1846 TII->get(TargetOpcode::COPY), Phys)
1847 .addReg(InReg, RegState::Kill);
1849 // This invalidates Phys.
1850 Spills.ClobberPhysReg(Phys);
1851 // Remember it's available.
1852 Spills.addAvailable(SSorRMId, Phys);
1854 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
1855 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
1857 DEBUG(dbgs() << '\t' << *CopyMI);
1858 ++NumCopified;
1859 continue;
1862 // Back-schedule reloads and remats.
1863 MachineBasicBlock::iterator InsertLoc =
1864 ComputeReloadLoc(MII, MBB->begin(), Phys, TRI, DoReMat, SSorRMId, TII,
1865 *MBB->getParent());
1867 if (VRM->isReMaterialized(VirtReg)) {
1868 ReMaterialize(*MBB, InsertLoc, Phys, VirtReg, TII, TRI, *VRM);
1869 } else {
1870 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
1871 TII->loadRegFromStackSlot(*MBB, InsertLoc, Phys, SSorRMId, RC, TRI);
1872 MachineInstr *LoadMI = prior(InsertLoc);
1873 VRM->addSpillSlotUse(SSorRMId, LoadMI);
1874 ++NumLoads;
1875 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
1878 // This invalidates Phys.
1879 Spills.ClobberPhysReg(Phys);
1880 // Remember it's available.
1881 Spills.addAvailable(SSorRMId, Phys);
1883 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
1884 DEBUG(dbgs() << '\t' << *prior(MII));
1886 return true;
1889 /// InsertSpills - Insert spills after MI if requested by VRM. Return
1890 /// true if spills were inserted.
1891 bool LocalRewriter::InsertSpills(MachineInstr *MI) {
1892 if (!VRM->isSpillPt(MI))
1893 return false;
1894 MachineBasicBlock::iterator MII = MI;
1895 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1896 VRM->getSpillPtSpills(MI);
1897 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1898 unsigned VirtReg = SpillRegs[i].first;
1899 bool isKill = SpillRegs[i].second;
1900 if (!VRM->getPreSplitReg(VirtReg))
1901 continue; // Split interval spilled again.
1902 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
1903 unsigned Phys = VRM->getPhys(VirtReg);
1904 int StackSlot = VRM->getStackSlot(VirtReg);
1905 MachineBasicBlock::iterator oldNextMII = llvm::next(MII);
1906 TII->storeRegToStackSlot(*MBB, llvm::next(MII), Phys, isKill, StackSlot,
1907 RC, TRI);
1908 MachineInstr *StoreMI = prior(oldNextMII);
1909 VRM->addSpillSlotUse(StackSlot, StoreMI);
1910 DEBUG(dbgs() << "Store:\t" << *StoreMI);
1911 VRM->virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1913 return true;
1917 /// ProcessUses - Process all of MI's spilled operands and all available
1918 /// operands.
1919 void LocalRewriter::ProcessUses(MachineInstr &MI, AvailableSpills &Spills,
1920 std::vector<MachineInstr*> &MaybeDeadStores,
1921 BitVector &RegKills,
1922 ReuseInfo &ReusedOperands,
1923 std::vector<MachineOperand*> &KillOps) {
1924 // Clear kill info.
1925 SmallSet<unsigned, 2> KilledMIRegs;
1926 SmallVector<unsigned, 4> VirtUseOps;
1927 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1928 MachineOperand &MO = MI.getOperand(i);
1929 if (!MO.isReg() || MO.getReg() == 0)
1930 continue; // Ignore non-register operands.
1932 unsigned VirtReg = MO.getReg();
1934 if (TargetRegisterInfo::isPhysicalRegister(VirtReg)) {
1935 // Ignore physregs for spilling, but remember that it is used by this
1936 // function.
1937 MRI->setPhysRegUsed(VirtReg);
1938 continue;
1941 // We want to process implicit virtual register uses first.
1942 if (MO.isImplicit())
1943 // If the virtual register is implicitly defined, emit a implicit_def
1944 // before so scavenger knows it's "defined".
1945 // FIXME: This is a horrible hack done the by register allocator to
1946 // remat a definition with virtual register operand.
1947 VirtUseOps.insert(VirtUseOps.begin(), i);
1948 else
1949 VirtUseOps.push_back(i);
1951 // A partial def causes problems because the same operand both reads and
1952 // writes the register. This rewriter is designed to rewrite uses and defs
1953 // separately, so a partial def would already have been rewritten to a
1954 // physreg by the time we get to processing defs.
1955 // Add an implicit use operand to model the partial def.
1956 if (MO.isDef() && MO.getSubReg() && MI.readsVirtualRegister(VirtReg) &&
1957 MI.findRegisterUseOperandIdx(VirtReg) == -1) {
1958 VirtUseOps.insert(VirtUseOps.begin(), MI.getNumOperands());
1959 MI.addOperand(MachineOperand::CreateReg(VirtReg,
1960 false, // isDef
1961 true)); // isImplicit
1962 DEBUG(dbgs() << "Partial redef: " << MI);
1966 // Process all of the spilled uses and all non spilled reg references.
1967 SmallVector<int, 2> PotentialDeadStoreSlots;
1968 KilledMIRegs.clear();
1969 for (unsigned j = 0, e = VirtUseOps.size(); j != e; ++j) {
1970 unsigned i = VirtUseOps[j];
1971 unsigned VirtReg = MI.getOperand(i).getReg();
1972 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
1973 "Not a virtual register?");
1975 unsigned SubIdx = MI.getOperand(i).getSubReg();
1976 if (VRM->isAssignedReg(VirtReg)) {
1977 // This virtual register was assigned a physreg!
1978 unsigned Phys = VRM->getPhys(VirtReg);
1979 MRI->setPhysRegUsed(Phys);
1980 if (MI.getOperand(i).isDef())
1981 ReusedOperands.markClobbered(Phys);
1982 substitutePhysReg(MI.getOperand(i), Phys, *TRI);
1983 if (VRM->isImplicitlyDefined(VirtReg))
1984 // FIXME: Is this needed?
1985 BuildMI(*MBB, &MI, MI.getDebugLoc(),
1986 TII->get(TargetOpcode::IMPLICIT_DEF), Phys);
1987 continue;
1990 // This virtual register is now known to be a spilled value.
1991 if (!MI.getOperand(i).isUse())
1992 continue; // Handle defs in the loop below (handle use&def here though)
1994 bool AvoidReload = MI.getOperand(i).isUndef();
1995 // Check if it is defined by an implicit def. It should not be spilled.
1996 // Note, this is for correctness reason. e.g.
1997 // 8 %reg1024<def> = IMPLICIT_DEF
1998 // 12 %reg1024<def> = INSERT_SUBREG %reg1024<kill>, %reg1025, 2
1999 // The live range [12, 14) are not part of the r1024 live interval since
2000 // it's defined by an implicit def. It will not conflicts with live
2001 // interval of r1025. Now suppose both registers are spilled, you can
2002 // easily see a situation where both registers are reloaded before
2003 // the INSERT_SUBREG and both target registers that would overlap.
2004 bool DoReMat = VRM->isReMaterialized(VirtReg);
2005 int SSorRMId = DoReMat
2006 ? VRM->getReMatId(VirtReg) : VRM->getStackSlot(VirtReg);
2007 int ReuseSlot = SSorRMId;
2009 // Check to see if this stack slot is available.
2010 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
2012 // If this is a sub-register use, make sure the reuse register is in the
2013 // right register class. For example, for x86 not all of the 32-bit
2014 // registers have accessible sub-registers.
2015 // Similarly so for EXTRACT_SUBREG. Consider this:
2016 // EDI = op
2017 // MOV32_mr fi#1, EDI
2018 // ...
2019 // = EXTRACT_SUBREG fi#1
2020 // fi#1 is available in EDI, but it cannot be reused because it's not in
2021 // the right register file.
2022 if (PhysReg && !AvoidReload && SubIdx) {
2023 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
2024 if (!RC->contains(PhysReg))
2025 PhysReg = 0;
2028 if (PhysReg && !AvoidReload) {
2029 // This spilled operand might be part of a two-address operand. If this
2030 // is the case, then changing it will necessarily require changing the
2031 // def part of the instruction as well. However, in some cases, we
2032 // aren't allowed to modify the reused register. If none of these cases
2033 // apply, reuse it.
2034 bool CanReuse = true;
2035 bool isTied = MI.isRegTiedToDefOperand(i);
2036 if (isTied) {
2037 // Okay, we have a two address operand. We can reuse this physreg as
2038 // long as we are allowed to clobber the value and there isn't an
2039 // earlier def that has already clobbered the physreg.
2040 CanReuse = !ReusedOperands.isClobbered(PhysReg) &&
2041 Spills.canClobberPhysReg(PhysReg);
2043 // If this is an asm, and a PhysReg alias is used elsewhere as an
2044 // earlyclobber operand, we can't also use it as an input.
2045 if (MI.isInlineAsm()) {
2046 for (unsigned k = 0, e = MI.getNumOperands(); k != e; ++k) {
2047 MachineOperand &MOk = MI.getOperand(k);
2048 if (MOk.isReg() && MOk.isEarlyClobber() &&
2049 TRI->regsOverlap(MOk.getReg(), PhysReg)) {
2050 CanReuse = false;
2051 DEBUG(dbgs() << "Not reusing physreg " << TRI->getName(PhysReg)
2052 << " for " << PrintReg(VirtReg) << ": " << MOk
2053 << '\n');
2054 break;
2059 if (CanReuse) {
2060 // If this stack slot value is already available, reuse it!
2061 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
2062 DEBUG(dbgs() << "Reusing RM#"
2063 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
2064 else
2065 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
2066 DEBUG(dbgs() << " from physreg "
2067 << TRI->getName(PhysReg) << " for " << PrintReg(VirtReg)
2068 << " instead of reloading into "
2069 << PrintReg(VRM->getPhys(VirtReg), TRI) << '\n');
2070 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2071 MI.getOperand(i).setReg(RReg);
2072 MI.getOperand(i).setSubReg(0);
2074 // Reusing a physreg may resurrect it. But we expect ProcessUses to
2075 // update the kill flags for the current instr after processing it.
2077 // The only technical detail we have is that we don't know that
2078 // PhysReg won't be clobbered by a reloaded stack slot that occurs
2079 // later in the instruction. In particular, consider 'op V1, V2'.
2080 // If V1 is available in physreg R0, we would choose to reuse it
2081 // here, instead of reloading it into the register the allocator
2082 // indicated (say R1). However, V2 might have to be reloaded
2083 // later, and it might indicate that it needs to live in R0. When
2084 // this occurs, we need to have information available that
2085 // indicates it is safe to use R1 for the reload instead of R0.
2087 // To further complicate matters, we might conflict with an alias,
2088 // or R0 and R1 might not be compatible with each other. In this
2089 // case, we actually insert a reload for V1 in R1, ensuring that
2090 // we can get at R0 or its alias.
2091 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
2092 VRM->getPhys(VirtReg), VirtReg);
2093 if (isTied)
2094 // Only mark it clobbered if this is a use&def operand.
2095 ReusedOperands.markClobbered(PhysReg);
2096 ++NumReused;
2098 if (MI.getOperand(i).isKill() &&
2099 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
2101 // The store of this spilled value is potentially dead, but we
2102 // won't know for certain until we've confirmed that the re-use
2103 // above is valid, which means waiting until the other operands
2104 // are processed. For now we just track the spill slot, we'll
2105 // remove it after the other operands are processed if valid.
2107 PotentialDeadStoreSlots.push_back(ReuseSlot);
2110 // Mark is isKill if it's there no other uses of the same virtual
2111 // register and it's not a two-address operand. IsKill will be
2112 // unset if reg is reused.
2113 if (!isTied && KilledMIRegs.count(VirtReg) == 0) {
2114 MI.getOperand(i).setIsKill();
2115 KilledMIRegs.insert(VirtReg);
2117 continue;
2118 } // CanReuse
2120 // Otherwise we have a situation where we have a two-address instruction
2121 // whose mod/ref operand needs to be reloaded. This reload is already
2122 // available in some register "PhysReg", but if we used PhysReg as the
2123 // operand to our 2-addr instruction, the instruction would modify
2124 // PhysReg. This isn't cool if something later uses PhysReg and expects
2125 // to get its initial value.
2127 // To avoid this problem, and to avoid doing a load right after a store,
2128 // we emit a copy from PhysReg into the designated register for this
2129 // operand.
2131 // This case also applies to an earlyclobber'd PhysReg.
2132 unsigned DesignatedReg = VRM->getPhys(VirtReg);
2133 assert(DesignatedReg && "Must map virtreg to physreg!");
2135 // Note that, if we reused a register for a previous operand, the
2136 // register we want to reload into might not actually be
2137 // available. If this occurs, use the register indicated by the
2138 // reuser.
2139 if (ReusedOperands.hasReuses())
2140 DesignatedReg = ReusedOperands.
2141 GetRegForReload(VirtReg, DesignatedReg, &MI, Spills,
2142 MaybeDeadStores, RegKills, KillOps, *VRM);
2144 // If the mapped designated register is actually the physreg we have
2145 // incoming, we don't need to inserted a dead copy.
2146 if (DesignatedReg == PhysReg) {
2147 // If this stack slot value is already available, reuse it!
2148 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
2149 DEBUG(dbgs() << "Reusing RM#"
2150 << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1);
2151 else
2152 DEBUG(dbgs() << "Reusing SS#" << ReuseSlot);
2153 DEBUG(dbgs() << " from physreg " << TRI->getName(PhysReg)
2154 << " for " << PrintReg(VirtReg)
2155 << " instead of reloading into same physreg.\n");
2156 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2157 MI.getOperand(i).setReg(RReg);
2158 MI.getOperand(i).setSubReg(0);
2159 ReusedOperands.markClobbered(RReg);
2160 ++NumReused;
2161 continue;
2164 MRI->setPhysRegUsed(DesignatedReg);
2165 ReusedOperands.markClobbered(DesignatedReg);
2167 // Back-schedule reloads and remats.
2168 MachineBasicBlock::iterator InsertLoc =
2169 ComputeReloadLoc(&MI, MBB->begin(), PhysReg, TRI, DoReMat,
2170 SSorRMId, TII, *MBB->getParent());
2171 MachineInstr *CopyMI = BuildMI(*MBB, InsertLoc, MI.getDebugLoc(),
2172 TII->get(TargetOpcode::COPY),
2173 DesignatedReg).addReg(PhysReg);
2174 CopyMI->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2175 UpdateKills(*CopyMI, TRI, RegKills, KillOps);
2177 // This invalidates DesignatedReg.
2178 Spills.ClobberPhysReg(DesignatedReg);
2180 Spills.addAvailable(ReuseSlot, DesignatedReg);
2181 unsigned RReg =
2182 SubIdx ? TRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
2183 MI.getOperand(i).setReg(RReg);
2184 MI.getOperand(i).setSubReg(0);
2185 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
2186 ++NumReused;
2187 continue;
2188 } // if (PhysReg)
2190 // Otherwise, reload it and remember that we have it.
2191 PhysReg = VRM->getPhys(VirtReg);
2192 assert(PhysReg && "Must map virtreg to physreg!");
2194 // Note that, if we reused a register for a previous operand, the
2195 // register we want to reload into might not actually be
2196 // available. If this occurs, use the register indicated by the
2197 // reuser.
2198 if (ReusedOperands.hasReuses())
2199 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2200 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2202 MRI->setPhysRegUsed(PhysReg);
2203 ReusedOperands.markClobbered(PhysReg);
2204 if (AvoidReload)
2205 ++NumAvoided;
2206 else {
2207 // Back-schedule reloads and remats.
2208 MachineBasicBlock::iterator InsertLoc =
2209 ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI, DoReMat,
2210 SSorRMId, TII, *MBB->getParent());
2212 if (DoReMat) {
2213 ReMaterialize(*MBB, InsertLoc, PhysReg, VirtReg, TII, TRI, *VRM);
2214 } else {
2215 const TargetRegisterClass* RC = MRI->getRegClass(VirtReg);
2216 TII->loadRegFromStackSlot(*MBB, InsertLoc, PhysReg, SSorRMId, RC,TRI);
2217 MachineInstr *LoadMI = prior(InsertLoc);
2218 VRM->addSpillSlotUse(SSorRMId, LoadMI);
2219 ++NumLoads;
2220 DistanceMap.insert(std::make_pair(LoadMI, DistanceMap.size()));
2222 // This invalidates PhysReg.
2223 Spills.ClobberPhysReg(PhysReg);
2225 // Any stores to this stack slot are not dead anymore.
2226 if (!DoReMat)
2227 MaybeDeadStores[SSorRMId] = NULL;
2228 Spills.addAvailable(SSorRMId, PhysReg);
2229 // Assumes this is the last use. IsKill will be unset if reg is reused
2230 // unless it's a two-address operand.
2231 if (!MI.isRegTiedToDefOperand(i) &&
2232 KilledMIRegs.count(VirtReg) == 0) {
2233 MI.getOperand(i).setIsKill();
2234 KilledMIRegs.insert(VirtReg);
2237 UpdateKills(*prior(InsertLoc), TRI, RegKills, KillOps);
2238 DEBUG(dbgs() << '\t' << *prior(InsertLoc));
2240 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2241 MI.getOperand(i).setReg(RReg);
2242 MI.getOperand(i).setSubReg(0);
2245 // Ok - now we can remove stores that have been confirmed dead.
2246 for (unsigned j = 0, e = PotentialDeadStoreSlots.size(); j != e; ++j) {
2247 // This was the last use and the spilled value is still available
2248 // for reuse. That means the spill was unnecessary!
2249 int PDSSlot = PotentialDeadStoreSlots[j];
2250 MachineInstr* DeadStore = MaybeDeadStores[PDSSlot];
2251 if (DeadStore) {
2252 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2253 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2254 EraseInstr(DeadStore);
2255 MaybeDeadStores[PDSSlot] = NULL;
2256 ++NumDSE;
2261 /// rewriteMBB - Keep track of which spills are available even after the
2262 /// register allocator is done with them. If possible, avoid reloading vregs.
2263 void
2264 LocalRewriter::RewriteMBB(LiveIntervals *LIs,
2265 AvailableSpills &Spills, BitVector &RegKills,
2266 std::vector<MachineOperand*> &KillOps) {
2268 DEBUG(dbgs() << "\n**** Local spiller rewriting MBB '"
2269 << MBB->getName() << "':\n");
2271 MachineFunction &MF = *MBB->getParent();
2273 // MaybeDeadStores - When we need to write a value back into a stack slot,
2274 // keep track of the inserted store. If the stack slot value is never read
2275 // (because the value was used from some available register, for example), and
2276 // subsequently stored to, the original store is dead. This map keeps track
2277 // of inserted stores that are not used. If we see a subsequent store to the
2278 // same stack slot, the original store is deleted.
2279 std::vector<MachineInstr*> MaybeDeadStores;
2280 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
2282 // ReMatDefs - These are rematerializable def MIs which are not deleted.
2283 SmallSet<MachineInstr*, 4> ReMatDefs;
2285 // Keep track of the registers we have already spilled in case there are
2286 // multiple defs of the same register in MI.
2287 SmallSet<unsigned, 8> SpilledMIRegs;
2289 RegKills.reset();
2290 KillOps.clear();
2291 KillOps.resize(TRI->getNumRegs(), NULL);
2293 DistanceMap.clear();
2294 for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
2295 MII != E; ) {
2296 MachineBasicBlock::iterator NextMII = llvm::next(MII);
2298 if (OptimizeByUnfold(MII, MaybeDeadStores, Spills, RegKills, KillOps))
2299 NextMII = llvm::next(MII);
2301 if (InsertEmergencySpills(MII))
2302 NextMII = llvm::next(MII);
2304 InsertRestores(MII, Spills, RegKills, KillOps);
2306 if (InsertSpills(MII))
2307 NextMII = llvm::next(MII);
2309 bool Erased = false;
2310 bool BackTracked = false;
2311 MachineInstr &MI = *MII;
2313 // Remember DbgValue's which reference stack slots.
2314 if (MI.isDebugValue() && MI.getOperand(0).isFI())
2315 Slot2DbgValues[MI.getOperand(0).getIndex()].push_back(&MI);
2317 /// ReusedOperands - Keep track of operand reuse in case we need to undo
2318 /// reuse.
2319 ReuseInfo ReusedOperands(MI, TRI);
2321 ProcessUses(MI, Spills, MaybeDeadStores, RegKills, ReusedOperands, KillOps);
2323 DEBUG(dbgs() << '\t' << MI);
2326 // If we have folded references to memory operands, make sure we clear all
2327 // physical registers that may contain the value of the spilled virtual
2328 // register
2330 // Copy the folded virts to a small vector, we may change MI2VirtMap.
2331 SmallVector<std::pair<unsigned, VirtRegMap::ModRef>, 4> FoldedVirts;
2332 // C++0x FTW!
2333 for (std::pair<VirtRegMap::MI2VirtMapTy::const_iterator,
2334 VirtRegMap::MI2VirtMapTy::const_iterator> FVRange =
2335 VRM->getFoldedVirts(&MI);
2336 FVRange.first != FVRange.second; ++FVRange.first)
2337 FoldedVirts.push_back(FVRange.first->second);
2339 SmallSet<int, 2> FoldedSS;
2340 for (unsigned FVI = 0, FVE = FoldedVirts.size(); FVI != FVE; ++FVI) {
2341 unsigned VirtReg = FoldedVirts[FVI].first;
2342 VirtRegMap::ModRef MR = FoldedVirts[FVI].second;
2343 DEBUG(dbgs() << "Folded " << PrintReg(VirtReg) << " MR: " << MR);
2345 int SS = VRM->getStackSlot(VirtReg);
2346 if (SS == VirtRegMap::NO_STACK_SLOT)
2347 continue;
2348 FoldedSS.insert(SS);
2349 DEBUG(dbgs() << " - StackSlot: " << SS << "\n");
2351 // If this folded instruction is just a use, check to see if it's a
2352 // straight load from the virt reg slot.
2353 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
2354 int FrameIdx;
2355 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
2356 if (DestReg && FrameIdx == SS) {
2357 // If this spill slot is available, turn it into a copy (or nothing)
2358 // instead of leaving it as a load!
2359 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
2360 DEBUG(dbgs() << "Promoted Load To Copy: " << MI);
2361 if (DestReg != InReg) {
2362 MachineOperand *DefMO = MI.findRegisterDefOperand(DestReg);
2363 MachineInstr *CopyMI = BuildMI(*MBB, &MI, MI.getDebugLoc(),
2364 TII->get(TargetOpcode::COPY))
2365 .addReg(DestReg, RegState::Define, DefMO->getSubReg())
2366 .addReg(InReg, RegState::Kill);
2367 // Revisit the copy so we make sure to notice the effects of the
2368 // operation on the destreg (either needing to RA it if it's
2369 // virtual or needing to clobber any values if it's physical).
2370 NextMII = CopyMI;
2371 NextMII->setAsmPrinterFlag(MachineInstr::ReloadReuse);
2372 BackTracked = true;
2373 } else {
2374 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2375 // InvalidateKills resurrects any prior kill of the copy's source
2376 // allowing the source reg to be reused in place of the copy.
2377 Spills.disallowClobberPhysReg(InReg);
2380 InvalidateKills(MI, TRI, RegKills, KillOps);
2381 EraseInstr(&MI);
2382 Erased = true;
2383 goto ProcessNextInst;
2385 } else {
2386 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2387 SmallVector<MachineInstr*, 4> NewMIs;
2388 if (PhysReg &&
2389 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)){
2390 MBB->insert(MII, NewMIs[0]);
2391 InvalidateKills(MI, TRI, RegKills, KillOps);
2392 EraseInstr(&MI);
2393 Erased = true;
2394 --NextMII; // backtrack to the unfolded instruction.
2395 BackTracked = true;
2396 goto ProcessNextInst;
2401 // If this reference is not a use, any previous store is now dead.
2402 // Otherwise, the store to this stack slot is not dead anymore.
2403 MachineInstr* DeadStore = MaybeDeadStores[SS];
2404 if (DeadStore) {
2405 bool isDead = !(MR & VirtRegMap::isRef);
2406 MachineInstr *NewStore = NULL;
2407 if (MR & VirtRegMap::isModRef) {
2408 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
2409 SmallVector<MachineInstr*, 4> NewMIs;
2410 // We can reuse this physreg as long as we are allowed to clobber
2411 // the value and there isn't an earlier def that has already clobbered
2412 // the physreg.
2413 if (PhysReg &&
2414 !ReusedOperands.isClobbered(PhysReg) &&
2415 Spills.canClobberPhysReg(PhysReg) &&
2416 !TII->isStoreToStackSlot(&MI, SS)) { // Not profitable!
2417 MachineOperand *KillOpnd =
2418 DeadStore->findRegisterUseOperand(PhysReg, true);
2419 // Note, if the store is storing a sub-register, it's possible the
2420 // super-register is needed below.
2421 if (KillOpnd && !KillOpnd->getSubReg() &&
2422 TII->unfoldMemoryOperand(MF, &MI, PhysReg, false, true,NewMIs)){
2423 MBB->insert(MII, NewMIs[0]);
2424 NewStore = NewMIs[1];
2425 MBB->insert(MII, NewStore);
2426 VRM->addSpillSlotUse(SS, NewStore);
2427 InvalidateKills(MI, TRI, RegKills, KillOps);
2428 EraseInstr(&MI);
2429 Erased = true;
2430 --NextMII;
2431 --NextMII; // backtrack to the unfolded instruction.
2432 BackTracked = true;
2433 isDead = true;
2434 ++NumSUnfold;
2439 if (isDead) { // Previous store is dead.
2440 // If we get here, the store is dead, nuke it now.
2441 DEBUG(dbgs() << "Removed dead store:\t" << *DeadStore);
2442 InvalidateKills(*DeadStore, TRI, RegKills, KillOps);
2443 EraseInstr(DeadStore);
2444 if (!NewStore)
2445 ++NumDSE;
2448 MaybeDeadStores[SS] = NULL;
2449 if (NewStore) {
2450 // Treat this store as a spill merged into a copy. That makes the
2451 // stack slot value available.
2452 VRM->virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
2453 goto ProcessNextInst;
2457 // If the spill slot value is available, and this is a new definition of
2458 // the value, the value is not available anymore.
2459 if (MR & VirtRegMap::isMod) {
2460 // Notice that the value in this stack slot has been modified.
2461 Spills.ModifyStackSlotOrReMat(SS);
2463 // If this is *just* a mod of the value, check to see if this is just a
2464 // store to the spill slot (i.e. the spill got merged into the copy). If
2465 // so, realize that the vreg is available now, and add the store to the
2466 // MaybeDeadStore info.
2467 int StackSlot;
2468 if (!(MR & VirtRegMap::isRef)) {
2469 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
2470 assert(TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
2471 "Src hasn't been allocated yet?");
2473 if (CommuteToFoldReload(MII, VirtReg, SrcReg, StackSlot,
2474 Spills, RegKills, KillOps, TRI)) {
2475 NextMII = llvm::next(MII);
2476 BackTracked = true;
2477 goto ProcessNextInst;
2480 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
2481 // this as a potentially dead store in case there is a subsequent
2482 // store into the stack slot without a read from it.
2483 MaybeDeadStores[StackSlot] = &MI;
2485 // If the stack slot value was previously available in some other
2486 // register, change it now. Otherwise, make the register
2487 // available in PhysReg.
2488 Spills.addAvailable(StackSlot, SrcReg, MI.killsRegister(SrcReg));
2494 // Process all of the spilled defs.
2495 SpilledMIRegs.clear();
2496 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2497 MachineOperand &MO = MI.getOperand(i);
2498 if (!(MO.isReg() && MO.getReg() && MO.isDef()))
2499 continue;
2501 unsigned VirtReg = MO.getReg();
2502 if (!TargetRegisterInfo::isVirtualRegister(VirtReg)) {
2503 // Check to see if this is a noop copy. If so, eliminate the
2504 // instruction before considering the dest reg to be changed.
2505 // Also check if it's copying from an "undef", if so, we can't
2506 // eliminate this or else the undef marker is lost and it will
2507 // confuses the scavenger. This is extremely rare.
2508 if (MI.isIdentityCopy() && !MI.getOperand(1).isUndef() &&
2509 MI.getNumOperands() == 2) {
2510 ++NumDCE;
2511 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2512 SmallVector<unsigned, 2> KillRegs;
2513 InvalidateKills(MI, TRI, RegKills, KillOps, &KillRegs);
2514 if (MO.isDead() && !KillRegs.empty()) {
2515 // Source register or an implicit super/sub-register use is killed.
2516 assert(TRI->regsOverlap(KillRegs[0], MI.getOperand(0).getReg()));
2517 // Last def is now dead.
2518 TransferDeadness(MI.getOperand(1).getReg(), RegKills, KillOps);
2520 EraseInstr(&MI);
2521 Erased = true;
2522 Spills.disallowClobberPhysReg(VirtReg);
2523 goto ProcessNextInst;
2526 // If it's not a no-op copy, it clobbers the value in the destreg.
2527 Spills.ClobberPhysReg(VirtReg);
2528 ReusedOperands.markClobbered(VirtReg);
2530 // Check to see if this instruction is a load from a stack slot into
2531 // a register. If so, this provides the stack slot value in the reg.
2532 int FrameIdx;
2533 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
2534 assert(DestReg == VirtReg && "Unknown load situation!");
2536 // If it is a folded reference, then it's not safe to clobber.
2537 bool Folded = FoldedSS.count(FrameIdx);
2538 // Otherwise, if it wasn't available, remember that it is now!
2539 Spills.addAvailable(FrameIdx, DestReg, !Folded);
2540 goto ProcessNextInst;
2543 continue;
2546 unsigned SubIdx = MO.getSubReg();
2547 bool DoReMat = VRM->isReMaterialized(VirtReg);
2548 if (DoReMat)
2549 ReMatDefs.insert(&MI);
2551 // The only vregs left are stack slot definitions.
2552 int StackSlot = VRM->getStackSlot(VirtReg);
2553 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
2555 // If this def is part of a two-address operand, make sure to execute
2556 // the store from the correct physical register.
2557 unsigned PhysReg;
2558 unsigned TiedOp;
2559 if (MI.isRegTiedToUseOperand(i, &TiedOp)) {
2560 PhysReg = MI.getOperand(TiedOp).getReg();
2561 if (SubIdx) {
2562 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, TRI);
2563 assert(SuperReg && TRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
2564 "Can't find corresponding super-register!");
2565 PhysReg = SuperReg;
2567 } else {
2568 PhysReg = VRM->getPhys(VirtReg);
2569 if (ReusedOperands.isClobbered(PhysReg)) {
2570 // Another def has taken the assigned physreg. It must have been a
2571 // use&def which got it due to reuse. Undo the reuse!
2572 PhysReg = ReusedOperands.GetRegForReload(VirtReg, PhysReg, &MI,
2573 Spills, MaybeDeadStores, RegKills, KillOps, *VRM);
2577 // If StackSlot is available in a register that also holds other stack
2578 // slots, clobber those stack slots now.
2579 Spills.ClobberSharingStackSlots(StackSlot);
2581 assert(PhysReg && "VR not assigned a physical register?");
2582 MRI->setPhysRegUsed(PhysReg);
2583 unsigned RReg = SubIdx ? TRI->getSubReg(PhysReg, SubIdx) : PhysReg;
2584 ReusedOperands.markClobbered(RReg);
2585 MI.getOperand(i).setReg(RReg);
2586 MI.getOperand(i).setSubReg(0);
2588 if (!MO.isDead() && SpilledMIRegs.insert(VirtReg)) {
2589 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
2590 SpillRegToStackSlot(MII, -1, PhysReg, StackSlot, RC, true,
2591 LastStore, Spills, ReMatDefs, RegKills, KillOps);
2592 NextMII = llvm::next(MII);
2594 // Check to see if this is a noop copy. If so, eliminate the
2595 // instruction before considering the dest reg to be changed.
2596 if (MI.isIdentityCopy()) {
2597 ++NumDCE;
2598 DEBUG(dbgs() << "Removing now-noop copy: " << MI);
2599 InvalidateKills(MI, TRI, RegKills, KillOps);
2600 EraseInstr(&MI);
2601 Erased = true;
2602 UpdateKills(*LastStore, TRI, RegKills, KillOps);
2603 goto ProcessNextInst;
2607 ProcessNextInst:
2608 // Delete dead instructions without side effects.
2609 if (!Erased && !BackTracked && isSafeToDelete(MI)) {
2610 InvalidateKills(MI, TRI, RegKills, KillOps);
2611 EraseInstr(&MI);
2612 Erased = true;
2614 if (!Erased)
2615 DistanceMap.insert(std::make_pair(&MI, DistanceMap.size()));
2616 if (!Erased && !BackTracked) {
2617 for (MachineBasicBlock::iterator II = &MI; II != NextMII; ++II)
2618 UpdateKills(*II, TRI, RegKills, KillOps);
2620 MII = NextMII;
2625 llvm::VirtRegRewriter* llvm::createVirtRegRewriter() {
2626 switch (RewriterOpt) {
2627 default: llvm_unreachable("Unreachable!");
2628 case local:
2629 return new LocalRewriter();
2630 case trivial:
2631 return new TrivialRewriter();