1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
6 <title>Kaleidoscope: Adding JIT and Optimizer Support
</title>
7 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
8 <meta name=
"author" content=
"Chris Lattner">
9 <meta name=
"author" content=
"Erick Tryzelaar">
10 <link rel=
"stylesheet" href=
"../llvm.css" type=
"text/css">
15 <h1>Kaleidoscope: Adding JIT and Optimizer Support
</h1>
18 <li><a href=
"index.html">Up to Tutorial Index
</a></li>
21 <li><a href=
"#intro">Chapter
4 Introduction
</a></li>
22 <li><a href=
"#trivialconstfold">Trivial Constant Folding
</a></li>
23 <li><a href=
"#optimizerpasses">LLVM Optimization Passes
</a></li>
24 <li><a href=
"#jit">Adding a JIT Compiler
</a></li>
25 <li><a href=
"#code">Full Code Listing
</a></li>
28 <li><a href=
"OCamlLangImpl5.html">Chapter
5</a>: Extending the Language: Control
32 <div class=
"doc_author">
34 Written by
<a href=
"mailto:sabre@nondot.org">Chris Lattner
</a>
35 and
<a href=
"mailto:idadesub@users.sourceforge.net">Erick Tryzelaar
</a>
39 <!-- *********************************************************************** -->
40 <h2><a name=
"intro">Chapter
4 Introduction
</a></h2>
41 <!-- *********************************************************************** -->
45 <p>Welcome to Chapter
4 of the
"<a href="index.html
">Implementing a language
46 with LLVM</a>" tutorial. Chapters
1-
3 described the implementation of a simple
47 language and added support for generating LLVM IR. This chapter describes
48 two new techniques: adding optimizer support to your language, and adding JIT
49 compiler support. These additions will demonstrate how to get nice, efficient code
50 for the Kaleidoscope language.
</p>
54 <!-- *********************************************************************** -->
55 <h2><a name=
"trivialconstfold">Trivial Constant Folding
</a></h2>
56 <!-- *********************************************************************** -->
60 <p><b>Note:
</b> the default
<tt>IRBuilder
</tt> now always includes the constant
61 folding optimisations below.
<p>
64 Our demonstration for Chapter
3 is elegant and easy to extend. Unfortunately,
65 it does not produce wonderful code. For example, when compiling simple code,
66 we don't get obvious optimizations:
</p>
68 <div class=
"doc_code">
70 ready
> <b>def test(x)
1+
2+x;
</b>
71 Read function definition:
72 define double @test(double %x) {
74 %addtmp = fadd double
1.000000e+00,
2.000000e+00
75 %addtmp1 = fadd double %addtmp, %x
81 <p>This code is a very, very literal transcription of the AST built by parsing
82 the input. As such, this transcription lacks optimizations like constant folding
83 (we'd like to get
"<tt>add x, 3.0</tt>" in the example above) as well as other
84 more important optimizations. Constant folding, in particular, is a very common
85 and very important optimization: so much so that many language implementors
86 implement constant folding support in their AST representation.
</p>
88 <p>With LLVM, you don't need this support in the AST. Since all calls to build
89 LLVM IR go through the LLVM builder, it would be nice if the builder itself
90 checked to see if there was a constant folding opportunity when you call it.
91 If so, it could just do the constant fold and return the constant instead of
92 creating an instruction. This is exactly what the
<tt>LLVMFoldingBuilder
</tt>
95 <p>All we did was switch from
<tt>LLVMBuilder
</tt> to
96 <tt>LLVMFoldingBuilder
</tt>. Though we change no other code, we now have all of our
97 instructions implicitly constant folded without us having to do anything
98 about it. For example, the input above now compiles to:
</p>
100 <div class=
"doc_code">
102 ready
> <b>def test(x)
1+
2+x;
</b>
103 Read function definition:
104 define double @test(double %x) {
106 %addtmp = fadd double
3.000000e+00, %x
112 <p>Well, that was easy :). In practice, we recommend always using
113 <tt>LLVMFoldingBuilder
</tt> when generating code like this. It has no
114 "syntactic overhead" for its use (you don't have to uglify your compiler with
115 constant checks everywhere) and it can dramatically reduce the amount of
116 LLVM IR that is generated in some cases (particular for languages with a macro
117 preprocessor or that use a lot of constants).
</p>
119 <p>On the other hand, the
<tt>LLVMFoldingBuilder
</tt> is limited by the fact
120 that it does all of its analysis inline with the code as it is built. If you
121 take a slightly more complex example:
</p>
123 <div class=
"doc_code">
125 ready
> <b>def test(x) (
1+
2+x)*(x+(
1+
2));
</b>
126 ready
> Read function definition:
127 define double @test(double %x) {
129 %addtmp = fadd double
3.000000e+00, %x
130 %addtmp1 = fadd double %x,
3.000000e+00
131 %multmp = fmul double %addtmp, %addtmp1
137 <p>In this case, the LHS and RHS of the multiplication are the same value. We'd
138 really like to see this generate
"<tt>tmp = x+3; result = tmp*tmp;</tt>" instead
139 of computing
"<tt>x*3</tt>" twice.
</p>
141 <p>Unfortunately, no amount of local analysis will be able to detect and correct
142 this. This requires two transformations: reassociation of expressions (to
143 make the add's lexically identical) and Common Subexpression Elimination (CSE)
144 to delete the redundant add instruction. Fortunately, LLVM provides a broad
145 range of optimizations that you can use, in the form of
"passes".
</p>
149 <!-- *********************************************************************** -->
150 <h2><a name=
"optimizerpasses">LLVM Optimization Passes
</a></h2>
151 <!-- *********************************************************************** -->
155 <p>LLVM provides many optimization passes, which do many different sorts of
156 things and have different tradeoffs. Unlike other systems, LLVM doesn't hold
157 to the mistaken notion that one set of optimizations is right for all languages
158 and for all situations. LLVM allows a compiler implementor to make complete
159 decisions about what optimizations to use, in which order, and in what
162 <p>As a concrete example, LLVM supports both
"whole module" passes, which look
163 across as large of body of code as they can (often a whole file, but if run
164 at link time, this can be a substantial portion of the whole program). It also
165 supports and includes
"per-function" passes which just operate on a single
166 function at a time, without looking at other functions. For more information
167 on passes and how they are run, see the
<a href=
"../WritingAnLLVMPass.html">How
168 to Write a Pass
</a> document and the
<a href=
"../Passes.html">List of LLVM
171 <p>For Kaleidoscope, we are currently generating functions on the fly, one at
172 a time, as the user types them in. We aren't shooting for the ultimate
173 optimization experience in this setting, but we also want to catch the easy and
174 quick stuff where possible. As such, we will choose to run a few per-function
175 optimizations as the user types the function in. If we wanted to make a
"static
176 Kaleidoscope compiler", we would use exactly the code we have now, except that
177 we would defer running the optimizer until the entire file has been parsed.
</p>
179 <p>In order to get per-function optimizations going, we need to set up a
180 <a href=
"../WritingAnLLVMPass.html#passmanager">Llvm.PassManager
</a> to hold and
181 organize the LLVM optimizations that we want to run. Once we have that, we can
182 add a set of optimizations to run. The code looks like this:
</p>
184 <div class=
"doc_code">
186 (* Create the JIT. *)
187 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
188 let the_fpm = PassManager.create_function Codegen.the_module in
190 (* Set up the optimizer pipeline. Start with registering info about how the
191 * target lays out data structures. *)
192 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
194 (* Do simple
"peephole" optimizations and bit-twiddling optzn. *)
195 add_instruction_combining the_fpm;
197 (* reassociate expressions. *)
198 add_reassociation the_fpm;
200 (* Eliminate Common SubExpressions. *)
203 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
204 add_cfg_simplification the_fpm;
206 ignore (PassManager.initialize the_fpm);
208 (* Run the main
"interpreter loop" now. *)
209 Toplevel.main_loop the_fpm the_execution_engine stream;
213 <p>The meat of the matter here, is the definition of
"<tt>the_fpm</tt>". It
214 requires a pointer to the
<tt>the_module
</tt> to construct itself. Once it is
215 set up, we use a series of
"add" calls to add a bunch of LLVM passes. The
216 first pass is basically boilerplate, it adds a pass so that later optimizations
217 know how the data structures in the program are laid out. The
218 "<tt>the_execution_engine</tt>" variable is related to the JIT, which we will
219 get to in the next section.
</p>
221 <p>In this case, we choose to add
4 optimization passes. The passes we chose
222 here are a pretty standard set of
"cleanup" optimizations that are useful for
223 a wide variety of code. I won't delve into what they do but, believe me,
224 they are a good starting place :).
</p>
226 <p>Once the
<tt>Llvm.PassManager.
</tt> is set up, we need to make use of it.
227 We do this by running it after our newly created function is constructed (in
228 <tt>Codegen.codegen_func
</tt>), but before it is returned to the client:
</p>
230 <div class=
"doc_code">
232 let codegen_func the_fpm = function
235 let ret_val = codegen_expr body in
237 (* Finish off the function. *)
238 let _ = build_ret ret_val builder in
240 (* Validate the generated code, checking for consistency. *)
241 Llvm_analysis.assert_valid_function the_function;
243 (* Optimize the function. *)
244 let _ = PassManager.run_function the_function the_fpm in
250 <p>As you can see, this is pretty straightforward. The
<tt>the_fpm
</tt>
251 optimizes and updates the LLVM Function* in place, improving (hopefully) its
252 body. With this in place, we can try our test above again:
</p>
254 <div class=
"doc_code">
256 ready
> <b>def test(x) (
1+
2+x)*(x+(
1+
2));
</b>
257 ready
> Read function definition:
258 define double @test(double %x) {
260 %addtmp = fadd double %x,
3.000000e+00
261 %multmp = fmul double %addtmp, %addtmp
267 <p>As expected, we now get our nicely optimized code, saving a floating point
268 add instruction from every execution of this function.
</p>
270 <p>LLVM provides a wide variety of optimizations that can be used in certain
271 circumstances. Some
<a href=
"../Passes.html">documentation about the various
272 passes
</a> is available, but it isn't very complete. Another good source of
273 ideas can come from looking at the passes that
<tt>llvm-gcc
</tt> or
274 <tt>llvm-ld
</tt> run to get started. The
"<tt>opt</tt>" tool allows you to
275 experiment with passes from the command line, so you can see if they do
278 <p>Now that we have reasonable code coming out of our front-end, lets talk about
283 <!-- *********************************************************************** -->
284 <h2><a name=
"jit">Adding a JIT Compiler
</a></h2>
285 <!-- *********************************************************************** -->
289 <p>Code that is available in LLVM IR can have a wide variety of tools
290 applied to it. For example, you can run optimizations on it (as we did above),
291 you can dump it out in textual or binary forms, you can compile the code to an
292 assembly file (.s) for some target, or you can JIT compile it. The nice thing
293 about the LLVM IR representation is that it is the
"common currency" between
294 many different parts of the compiler.
297 <p>In this section, we'll add JIT compiler support to our interpreter. The
298 basic idea that we want for Kaleidoscope is to have the user enter function
299 bodies as they do now, but immediately evaluate the top-level expressions they
300 type in. For example, if they type in
"1 + 2;", we should evaluate and print
301 out
3. If they define a function, they should be able to call it from the
304 <p>In order to do this, we first declare and initialize the JIT. This is done
305 by adding a global variable and a call in
<tt>main
</tt>:
</p>
307 <div class=
"doc_code">
312 <b>(* Create the JIT. *)
313 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
</b>
318 <p>This creates an abstract
"Execution Engine" which can be either a JIT
319 compiler or the LLVM interpreter. LLVM will automatically pick a JIT compiler
320 for you if one is available for your platform, otherwise it will fall back to
323 <p>Once the
<tt>Llvm_executionengine.ExecutionEngine.t
</tt> is created, the JIT
324 is ready to be used. There are a variety of APIs that are useful, but the
325 simplest one is the
"<tt>Llvm_executionengine.ExecutionEngine.run_function</tt>"
326 function. This method JIT compiles the specified LLVM Function and returns a
327 function pointer to the generated machine code. In our case, this means that we
328 can change the code that parses a top-level expression to look like this:
</p>
330 <div class=
"doc_code">
332 (* Evaluate a top-level expression into an anonymous function. *)
333 let e = Parser.parse_toplevel stream in
334 print_endline
"parsed a top-level expr";
335 let the_function = Codegen.codegen_func the_fpm e in
336 dump_value the_function;
338 (* JIT the function, returning a function pointer. *)
339 let result = ExecutionEngine.run_function the_function [||]
340 the_execution_engine in
342 print_string
"Evaluated to ";
343 print_float (GenericValue.as_float Codegen.double_type result);
348 <p>Recall that we compile top-level expressions into a self-contained LLVM
349 function that takes no arguments and returns the computed double. Because the
350 LLVM JIT compiler matches the native platform ABI, this means that you can just
351 cast the result pointer to a function pointer of that type and call it directly.
352 This means, there is no difference between JIT compiled code and native machine
353 code that is statically linked into your application.
</p>
355 <p>With just these two changes, lets see how Kaleidoscope works now!
</p>
357 <div class=
"doc_code">
359 ready
> <b>4+
5;
</b>
360 define double @
""() {
362 ret double
9.000000e+00
365 <em>Evaluated to
9.000000</em>
369 <p>Well this looks like it is basically working. The dump of the function
370 shows the
"no argument function that always returns double" that we synthesize
371 for each top level expression that is typed in. This demonstrates very basic
372 functionality, but can we do more?
</p>
374 <div class=
"doc_code">
376 ready
> <b>def testfunc(x y) x + y*
2;
</b>
377 Read function definition:
378 define double @testfunc(double %x, double %y) {
380 %multmp = fmul double %y,
2.000000e+00
381 %addtmp = fadd double %multmp, %x
385 ready
> <b>testfunc(
4,
10);
</b>
386 define double @
""() {
388 %calltmp = call double @testfunc(double
4.000000e+00, double
1.000000e+01)
392 <em>Evaluated to
24.000000</em>
396 <p>This illustrates that we can now call user code, but there is something a bit
397 subtle going on here. Note that we only invoke the JIT on the anonymous
398 functions that
<em>call testfunc
</em>, but we never invoked it
399 on
<em>testfunc
</em> itself. What actually happened here is that the JIT
400 scanned for all non-JIT'd functions transitively called from the anonymous
401 function and compiled all of them before returning
402 from
<tt>run_function
</tt>.
</p>
404 <p>The JIT provides a number of other more advanced interfaces for things like
405 freeing allocated machine code, rejit'ing functions to update them, etc.
406 However, even with this simple code, we get some surprisingly powerful
407 capabilities - check this out (I removed the dump of the anonymous functions,
408 you should get the idea by now :) :
</p>
410 <div class=
"doc_code">
412 ready
> <b>extern sin(x);
</b>
414 declare double @sin(double)
416 ready
> <b>extern cos(x);
</b>
418 declare double @cos(double)
420 ready
> <b>sin(
1.0);
</b>
421 <em>Evaluated to
0.841471</em>
423 ready
> <b>def foo(x) sin(x)*sin(x) + cos(x)*cos(x);
</b>
424 Read function definition:
425 define double @foo(double %x) {
427 %calltmp = call double @sin(double %x)
428 %multmp = fmul double %calltmp, %calltmp
429 %calltmp2 = call double @cos(double %x)
430 %multmp4 = fmul double %calltmp2, %calltmp2
431 %addtmp = fadd double %multmp, %multmp4
435 ready
> <b>foo(
4.0);
</b>
436 <em>Evaluated to
1.000000</em>
440 <p>Whoa, how does the JIT know about sin and cos? The answer is surprisingly
441 simple: in this example, the JIT started execution of a function and got to a
442 function call. It realized that the function was not yet JIT compiled and
443 invoked the standard set of routines to resolve the function. In this case,
444 there is no body defined for the function, so the JIT ended up calling
445 "<tt>dlsym("sin
")</tt>" on the Kaleidoscope process itself. Since
446 "<tt>sin</tt>" is defined within the JIT's address space, it simply patches up
447 calls in the module to call the libm version of
<tt>sin
</tt> directly.
</p>
449 <p>The LLVM JIT provides a number of interfaces (look in the
450 <tt>llvm_executionengine.mli
</tt> file) for controlling how unknown functions
451 get resolved. It allows you to establish explicit mappings between IR objects
452 and addresses (useful for LLVM global variables that you want to map to static
453 tables, for example), allows you to dynamically decide on the fly based on the
454 function name, and even allows you to have the JIT compile functions lazily the
455 first time they're called.
</p>
457 <p>One interesting application of this is that we can now extend the language
458 by writing arbitrary C code to implement operations. For example, if we add:
461 <div class=
"doc_code">
463 /* putchard - putchar that takes a double and returns
0. */
465 double putchard(double X) {
472 <p>Now we can produce simple output to the console by using things like:
473 "<tt>extern putchard(x); putchard(120);</tt>", which prints a lowercase 'x' on
474 the console (
120 is the ASCII code for 'x'). Similar code could be used to
475 implement file I/O, console input, and many other capabilities in
478 <p>This completes the JIT and optimizer chapter of the Kaleidoscope tutorial. At
479 this point, we can compile a non-Turing-complete programming language, optimize
480 and JIT compile it in a user-driven way. Next up we'll look into
<a
481 href=
"OCamlLangImpl5.html">extending the language with control flow
482 constructs
</a>, tackling some interesting LLVM IR issues along the way.
</p>
486 <!-- *********************************************************************** -->
487 <h2><a name=
"code">Full Code Listing
</a></h2>
488 <!-- *********************************************************************** -->
493 Here is the complete code listing for our running example, enhanced with the
494 LLVM JIT and optimizer. To build this example, use:
497 <div class=
"doc_code">
506 <p>Here is the code:
</p>
510 <dd class=
"doc_code">
512 <{lexer,parser}.ml
>: use_camlp4, pp(camlp4of)
513 <*.{byte,native}
>: g++, use_llvm, use_llvm_analysis
514 <*.{byte,native}
>: use_llvm_executionengine, use_llvm_target
515 <*.{byte,native}
>: use_llvm_scalar_opts, use_bindings
519 <dt>myocamlbuild.ml:
</dt>
520 <dd class=
"doc_code">
522 open Ocamlbuild_plugin;;
524 ocaml_lib ~extern:true
"llvm";;
525 ocaml_lib ~extern:true
"llvm_analysis";;
526 ocaml_lib ~extern:true
"llvm_executionengine";;
527 ocaml_lib ~extern:true
"llvm_target";;
528 ocaml_lib ~extern:true
"llvm_scalar_opts";;
530 flag [
"link";
"ocaml";
"g++"] (S[A
"-cc"; A
"g++"]);;
531 dep [
"link";
"ocaml";
"use_bindings"] [
"bindings.o"];;
536 <dd class=
"doc_code">
538 (*===----------------------------------------------------------------------===
540 *===----------------------------------------------------------------------===*)
542 (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
543 * these others for known things. *)
549 | Ident of string | Number of float
557 <dd class=
"doc_code">
559 (*===----------------------------------------------------------------------===
561 *===----------------------------------------------------------------------===*)
564 (* Skip any whitespace. *)
565 | [
< ' (' ' | '\n' | '\r' | '\t'); stream
>] -
> lex stream
567 (* identifier: [a-zA-Z][a-zA-Z0-
9] *)
568 | [
< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream
>] -
>
569 let buffer = Buffer.create
1 in
570 Buffer.add_char buffer c;
571 lex_ident buffer stream
573 (* number: [
0-
9.]+ *)
574 | [
< ' ('
0' .. '
9' as c); stream
>] -
>
575 let buffer = Buffer.create
1 in
576 Buffer.add_char buffer c;
577 lex_number buffer stream
579 (* Comment until end of line. *)
580 | [
< ' ('#'); stream
>] -
>
583 (* Otherwise, just return the character as its ascii value. *)
584 | [
< 'c; stream
>] -
>
585 [
< 'Token.Kwd c; lex stream
>]
588 | [
< >] -
> [
< >]
590 and lex_number buffer = parser
591 | [
< ' ('
0' .. '
9' | '.' as c); stream
>] -
>
592 Buffer.add_char buffer c;
593 lex_number buffer stream
594 | [
< stream=lex
>] -
>
595 [
< 'Token.Number (float_of_string (Buffer.contents buffer)); stream
>]
597 and lex_ident buffer = parser
598 | [
< ' ('A' .. 'Z' | 'a' .. 'z' | '
0' .. '
9' as c); stream
>] -
>
599 Buffer.add_char buffer c;
600 lex_ident buffer stream
601 | [
< stream=lex
>] -
>
602 match Buffer.contents buffer with
603 |
"def" -
> [
< 'Token.Def; stream
>]
604 |
"extern" -
> [
< 'Token.Extern; stream
>]
605 | id -
> [
< 'Token.Ident id; stream
>]
607 and lex_comment = parser
608 | [
< ' ('\n'); stream=lex
>] -
> stream
609 | [
< 'c; e=lex_comment
>] -
> e
610 | [
< >] -
> [
< >]
615 <dd class=
"doc_code">
617 (*===----------------------------------------------------------------------===
618 * Abstract Syntax Tree (aka Parse Tree)
619 *===----------------------------------------------------------------------===*)
621 (* expr - Base type for all expression nodes. *)
623 (* variant for numeric literals like
"1.0". *)
626 (* variant for referencing a variable, like
"a". *)
629 (* variant for a binary operator. *)
630 | Binary of char * expr * expr
632 (* variant for function calls. *)
633 | Call of string * expr array
635 (* proto - This type represents the
"prototype" for a function, which captures
636 * its name, and its argument names (thus implicitly the number of arguments the
637 * function takes). *)
638 type proto = Prototype of string * string array
640 (* func - This type represents a function definition itself. *)
641 type func = Function of proto * expr
646 <dd class=
"doc_code">
648 (*===---------------------------------------------------------------------===
650 *===---------------------------------------------------------------------===*)
652 (* binop_precedence - This holds the precedence for each binary operator that is
654 let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create
10
656 (* precedence - Get the precedence of the pending binary operator token. *)
657 let precedence c = try Hashtbl.find binop_precedence c with Not_found -
> -
1
663 let rec parse_primary = parser
664 (* numberexpr ::= number *)
665 | [
< 'Token.Number n
>] -
> Ast.Number n
667 (* parenexpr ::= '(' expression ')' *)
668 | [
< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ??
"expected ')'" >] -
> e
672 * ::= identifier '(' argumentexpr ')' *)
673 | [
< 'Token.Ident id; stream
>] -
>
674 let rec parse_args accumulator = parser
675 | [
< e=parse_expr; stream
>] -
>
677 | [
< 'Token.Kwd ','; e=parse_args (e :: accumulator)
>] -
> e
678 | [
< >] -
> e :: accumulator
680 | [
< >] -
> accumulator
682 let rec parse_ident id = parser
684 | [
< 'Token.Kwd '(';
686 'Token.Kwd ')' ??
"expected ')'">] -
>
687 Ast.Call (id, Array.of_list (List.rev args))
689 (* Simple variable ref. *)
690 | [
< >] -
> Ast.Variable id
692 parse_ident id stream
694 | [
< >] -
> raise (Stream.Error
"unknown token when expecting an expression.")
697 * ::= ('+' primary)* *)
698 and parse_bin_rhs expr_prec lhs stream =
699 match Stream.peek stream with
700 (* If this is a binop, find its precedence. *)
701 | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -
>
702 let token_prec = precedence c in
704 (* If this is a binop that binds at least as tightly as the current binop,
705 * consume it, otherwise we are done. *)
706 if token_prec
< expr_prec then lhs else begin
710 (* Parse the primary expression after the binary operator. *)
711 let rhs = parse_primary stream in
713 (* Okay, we know this is a binop. *)
715 match Stream.peek stream with
716 | Some (Token.Kwd c2) -
>
717 (* If BinOp binds less tightly with rhs than the operator after
718 * rhs, let the pending operator take rhs as its lhs. *)
719 let next_prec = precedence c2 in
720 if token_prec
< next_prec
721 then parse_bin_rhs (token_prec +
1) rhs stream
727 let lhs = Ast.Binary (c, lhs, rhs) in
728 parse_bin_rhs expr_prec lhs stream
733 * ::= primary binoprhs *)
734 and parse_expr = parser
735 | [
< lhs=parse_primary; stream
>] -
> parse_bin_rhs
0 lhs stream
738 * ::= id '(' id* ')' *)
739 let parse_prototype =
740 let rec parse_args accumulator = parser
741 | [
< 'Token.Ident id; e=parse_args (id::accumulator)
>] -
> e
742 | [
< >] -
> accumulator
746 | [
< 'Token.Ident id;
747 'Token.Kwd '(' ??
"expected '(' in prototype";
749 'Token.Kwd ')' ??
"expected ')' in prototype" >] -
>
751 Ast.Prototype (id, Array.of_list (List.rev args))
754 raise (Stream.Error
"expected function name in prototype")
756 (* definition ::= 'def' prototype expression *)
757 let parse_definition = parser
758 | [
< 'Token.Def; p=parse_prototype; e=parse_expr
>] -
>
761 (* toplevelexpr ::= expression *)
762 let parse_toplevel = parser
763 | [
< e=parse_expr
>] -
>
764 (* Make an anonymous proto. *)
765 Ast.Function (Ast.Prototype (
"", [||]), e)
767 (* external ::= 'extern' prototype *)
768 let parse_extern = parser
769 | [
< 'Token.Extern; e=parse_prototype
>] -
> e
774 <dd class=
"doc_code">
776 (*===----------------------------------------------------------------------===
778 *===----------------------------------------------------------------------===*)
782 exception Error of string
784 let context = global_context ()
785 let the_module = create_module context
"my cool jit"
786 let builder = builder context
787 let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create
10
788 let double_type = double_type context
790 let rec codegen_expr = function
791 | Ast.Number n -
> const_float double_type n
792 | Ast.Variable name -
>
793 (try Hashtbl.find named_values name with
794 | Not_found -
> raise (Error
"unknown variable name"))
795 | Ast.Binary (op, lhs, rhs) -
>
796 let lhs_val = codegen_expr lhs in
797 let rhs_val = codegen_expr rhs in
800 | '+' -
> build_add lhs_val rhs_val
"addtmp" builder
801 | '-' -
> build_sub lhs_val rhs_val
"subtmp" builder
802 | '*' -
> build_mul lhs_val rhs_val
"multmp" builder
804 (* Convert bool
0/
1 to double
0.0 or
1.0 *)
805 let i = build_fcmp Fcmp.Ult lhs_val rhs_val
"cmptmp" builder in
806 build_uitofp i double_type
"booltmp" builder
807 | _ -
> raise (Error
"invalid binary operator")
809 | Ast.Call (callee, args) -
>
810 (* Look up the name in the module table. *)
812 match lookup_function callee the_module with
813 | Some callee -
> callee
814 | None -
> raise (Error
"unknown function referenced")
816 let params = params callee in
818 (* If argument mismatch error. *)
819 if Array.length params == Array.length args then () else
820 raise (Error
"incorrect # arguments passed");
821 let args = Array.map codegen_expr args in
822 build_call callee args
"calltmp" builder
824 let codegen_proto = function
825 | Ast.Prototype (name, args) -
>
826 (* Make the function type: double(double,double) etc. *)
827 let doubles = Array.make (Array.length args) double_type in
828 let ft = function_type double_type doubles in
830 match lookup_function name the_module with
831 | None -
> declare_function name ft the_module
833 (* If 'f' conflicted, there was already something named 'name'. If it
834 * has a body, don't allow redefinition or reextern. *)
836 (* If 'f' already has a body, reject this. *)
837 if block_begin f
<> At_end f then
838 raise (Error
"redefinition of function");
840 (* If 'f' took a different number of arguments, reject. *)
841 if element_type (type_of f)
<> ft then
842 raise (Error
"redefinition of function with different # args");
846 (* Set names for all arguments. *)
847 Array.iteri (fun i a -
>
850 Hashtbl.add named_values n a;
854 let codegen_func the_fpm = function
855 | Ast.Function (proto, body) -
>
856 Hashtbl.clear named_values;
857 let the_function = codegen_proto proto in
859 (* Create a new basic block to start insertion into. *)
860 let bb = append_block context
"entry" the_function in
861 position_at_end bb builder;
864 let ret_val = codegen_expr body in
866 (* Finish off the function. *)
867 let _ = build_ret ret_val builder in
869 (* Validate the generated code, checking for consistency. *)
870 Llvm_analysis.assert_valid_function the_function;
872 (* Optimize the function. *)
873 let _ = PassManager.run_function the_function the_fpm in
877 delete_function the_function;
882 <dt>toplevel.ml:
</dt>
883 <dd class=
"doc_code">
885 (*===----------------------------------------------------------------------===
886 * Top-Level parsing and JIT Driver
887 *===----------------------------------------------------------------------===*)
890 open Llvm_executionengine
892 (* top ::= definition | external | expression | ';' *)
893 let rec main_loop the_fpm the_execution_engine stream =
894 match Stream.peek stream with
897 (* ignore top-level semicolons. *)
898 | Some (Token.Kwd ';') -
>
900 main_loop the_fpm the_execution_engine stream
906 let e = Parser.parse_definition stream in
907 print_endline
"parsed a function definition.";
908 dump_value (Codegen.codegen_func the_fpm e);
910 let e = Parser.parse_extern stream in
911 print_endline
"parsed an extern.";
912 dump_value (Codegen.codegen_proto e);
914 (* Evaluate a top-level expression into an anonymous function. *)
915 let e = Parser.parse_toplevel stream in
916 print_endline
"parsed a top-level expr";
917 let the_function = Codegen.codegen_func the_fpm e in
918 dump_value the_function;
920 (* JIT the function, returning a function pointer. *)
921 let result = ExecutionEngine.run_function the_function [||]
922 the_execution_engine in
924 print_string
"Evaluated to ";
925 print_float (GenericValue.as_float Codegen.double_type result);
927 with Stream.Error s | Codegen.Error s -
>
928 (* Skip token for error recovery. *)
932 print_string
"ready> "; flush stdout;
933 main_loop the_fpm the_execution_engine stream
938 <dd class=
"doc_code">
940 (*===----------------------------------------------------------------------===
942 *===----------------------------------------------------------------------===*)
945 open Llvm_executionengine
947 open Llvm_scalar_opts
950 ignore (initialize_native_target ());
952 (* Install standard binary operators.
953 *
1 is the lowest precedence. *)
954 Hashtbl.add Parser.binop_precedence '
<'
10;
955 Hashtbl.add Parser.binop_precedence '+'
20;
956 Hashtbl.add Parser.binop_precedence '-'
20;
957 Hashtbl.add Parser.binop_precedence '*'
40; (* highest. *)
959 (* Prime the first token. *)
960 print_string
"ready> "; flush stdout;
961 let stream = Lexer.lex (Stream.of_channel stdin) in
963 (* Create the JIT. *)
964 let the_execution_engine = ExecutionEngine.create Codegen.the_module in
965 let the_fpm = PassManager.create_function Codegen.the_module in
967 (* Set up the optimizer pipeline. Start with registering info about how the
968 * target lays out data structures. *)
969 TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
971 (* Do simple
"peephole" optimizations and bit-twiddling optzn. *)
972 add_instruction_combination the_fpm;
974 (* reassociate expressions. *)
975 add_reassociation the_fpm;
977 (* Eliminate Common SubExpressions. *)
980 (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
981 add_cfg_simplification the_fpm;
983 ignore (PassManager.initialize the_fpm);
985 (* Run the main
"interpreter loop" now. *)
986 Toplevel.main_loop the_fpm the_execution_engine stream;
988 (* Print out all the generated code. *)
989 dump_module Codegen.the_module
997 <dd class=
"doc_code">
999 #include
<stdio.h
>
1001 /* putchard - putchar that takes a double and returns
0. */
1002 extern double putchard(double X) {
1010 <a href=
"OCamlLangImpl5.html">Next: Extending the language: control flow
</a>
1013 <!-- *********************************************************************** -->
1016 <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
1017 src=
"http://jigsaw.w3.org/css-validator/images/vcss" alt=
"Valid CSS!"></a>
1018 <a href=
"http://validator.w3.org/check/referer"><img
1019 src=
"http://www.w3.org/Icons/valid-html401" alt=
"Valid HTML 4.01!"></a>
1021 <a href=
"mailto:sabre@nondot.org">Chris Lattner
</a><br>
1022 <a href=
"mailto:idadesub@users.sourceforge.net">Erick Tryzelaar
</a><br>
1023 <a href=
"http://llvm.org/">The LLVM Compiler Infrastructure
</a><br>
1024 Last modified: $Date$