Remove duplicated test.
[llvm/stm8.git] / lib / AsmParser / LLParser.cpp
blob81e0747266f10df4a990d7c04bdca007b5f5bfa9
1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the parser class for .ll files.
12 //===----------------------------------------------------------------------===//
14 #include "LLParser.h"
15 #include "llvm/AutoUpgrade.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/InlineAsm.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Module.h"
22 #include "llvm/Operator.h"
23 #include "llvm/ValueSymbolTable.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 using namespace llvm;
29 /// Run: module ::= toplevelentity*
30 bool LLParser::Run() {
31 // Prime the lexer.
32 Lex.Lex();
34 return ParseTopLevelEntities() ||
35 ValidateEndOfModule();
38 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
39 /// module.
40 bool LLParser::ValidateEndOfModule() {
41 // Handle any instruction metadata forward references.
42 if (!ForwardRefInstMetadata.empty()) {
43 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
44 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
45 I != E; ++I) {
46 Instruction *Inst = I->first;
47 const std::vector<MDRef> &MDList = I->second;
49 for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
50 unsigned SlotNo = MDList[i].MDSlot;
52 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
53 return Error(MDList[i].Loc, "use of undefined metadata '!" +
54 Twine(SlotNo) + "'");
55 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
58 ForwardRefInstMetadata.clear();
62 // Update auto-upgraded malloc calls to "malloc".
63 // FIXME: Remove in LLVM 3.0.
64 if (MallocF) {
65 MallocF->setName("malloc");
66 // If setName() does not set the name to "malloc", then there is already a
67 // declaration of "malloc". In that case, iterate over all calls to MallocF
68 // and get them to call the declared "malloc" instead.
69 if (MallocF->getName() != "malloc") {
70 Constant *RealMallocF = M->getFunction("malloc");
71 if (RealMallocF->getType() != MallocF->getType())
72 RealMallocF = ConstantExpr::getBitCast(RealMallocF, MallocF->getType());
73 MallocF->replaceAllUsesWith(RealMallocF);
74 MallocF->eraseFromParent();
75 MallocF = NULL;
80 // If there are entries in ForwardRefBlockAddresses at this point, they are
81 // references after the function was defined. Resolve those now.
82 while (!ForwardRefBlockAddresses.empty()) {
83 // Okay, we are referencing an already-parsed function, resolve them now.
84 Function *TheFn = 0;
85 const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
86 if (Fn.Kind == ValID::t_GlobalName)
87 TheFn = M->getFunction(Fn.StrVal);
88 else if (Fn.UIntVal < NumberedVals.size())
89 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
91 if (TheFn == 0)
92 return Error(Fn.Loc, "unknown function referenced by blockaddress");
94 // Resolve all these references.
95 if (ResolveForwardRefBlockAddresses(TheFn,
96 ForwardRefBlockAddresses.begin()->second,
97 0))
98 return true;
100 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
104 if (!ForwardRefTypes.empty())
105 return Error(ForwardRefTypes.begin()->second.second,
106 "use of undefined type named '" +
107 ForwardRefTypes.begin()->first + "'");
108 if (!ForwardRefTypeIDs.empty())
109 return Error(ForwardRefTypeIDs.begin()->second.second,
110 "use of undefined type '%" +
111 Twine(ForwardRefTypeIDs.begin()->first) + "'");
113 if (!ForwardRefVals.empty())
114 return Error(ForwardRefVals.begin()->second.second,
115 "use of undefined value '@" + ForwardRefVals.begin()->first +
116 "'");
118 if (!ForwardRefValIDs.empty())
119 return Error(ForwardRefValIDs.begin()->second.second,
120 "use of undefined value '@" +
121 Twine(ForwardRefValIDs.begin()->first) + "'");
123 if (!ForwardRefMDNodes.empty())
124 return Error(ForwardRefMDNodes.begin()->second.second,
125 "use of undefined metadata '!" +
126 Twine(ForwardRefMDNodes.begin()->first) + "'");
129 // Look for intrinsic functions and CallInst that need to be upgraded
130 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
131 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
133 // Check debug info intrinsics.
134 CheckDebugInfoIntrinsics(M);
135 return false;
138 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
139 std::vector<std::pair<ValID, GlobalValue*> > &Refs,
140 PerFunctionState *PFS) {
141 // Loop over all the references, resolving them.
142 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
143 BasicBlock *Res;
144 if (PFS) {
145 if (Refs[i].first.Kind == ValID::t_LocalName)
146 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
147 else
148 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
149 } else if (Refs[i].first.Kind == ValID::t_LocalID) {
150 return Error(Refs[i].first.Loc,
151 "cannot take address of numeric label after the function is defined");
152 } else {
153 Res = dyn_cast_or_null<BasicBlock>(
154 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
157 if (Res == 0)
158 return Error(Refs[i].first.Loc,
159 "referenced value is not a basic block");
161 // Get the BlockAddress for this and update references to use it.
162 BlockAddress *BA = BlockAddress::get(TheFn, Res);
163 Refs[i].second->replaceAllUsesWith(BA);
164 Refs[i].second->eraseFromParent();
166 return false;
170 //===----------------------------------------------------------------------===//
171 // Top-Level Entities
172 //===----------------------------------------------------------------------===//
174 bool LLParser::ParseTopLevelEntities() {
175 while (1) {
176 switch (Lex.getKind()) {
177 default: return TokError("expected top-level entity");
178 case lltok::Eof: return false;
179 //case lltok::kw_define:
180 case lltok::kw_declare: if (ParseDeclare()) return true; break;
181 case lltok::kw_define: if (ParseDefine()) return true; break;
182 case lltok::kw_module: if (ParseModuleAsm()) return true; break;
183 case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
184 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
185 case lltok::kw_type: if (ParseUnnamedType()) return true; break;
186 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
187 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
188 case lltok::LocalVar: if (ParseNamedType()) return true; break;
189 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break;
190 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
191 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break;
192 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
194 // The Global variable production with no name can have many different
195 // optional leading prefixes, the production is:
196 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
197 // OptionalAddrSpace OptionalUnNammedAddr
198 // ('constant'|'global') ...
199 case lltok::kw_private: // OptionalLinkage
200 case lltok::kw_linker_private: // OptionalLinkage
201 case lltok::kw_linker_private_weak: // OptionalLinkage
202 case lltok::kw_linker_private_weak_def_auto: // OptionalLinkage
203 case lltok::kw_internal: // OptionalLinkage
204 case lltok::kw_weak: // OptionalLinkage
205 case lltok::kw_weak_odr: // OptionalLinkage
206 case lltok::kw_linkonce: // OptionalLinkage
207 case lltok::kw_linkonce_odr: // OptionalLinkage
208 case lltok::kw_appending: // OptionalLinkage
209 case lltok::kw_dllexport: // OptionalLinkage
210 case lltok::kw_common: // OptionalLinkage
211 case lltok::kw_dllimport: // OptionalLinkage
212 case lltok::kw_extern_weak: // OptionalLinkage
213 case lltok::kw_external: { // OptionalLinkage
214 unsigned Linkage, Visibility;
215 if (ParseOptionalLinkage(Linkage) ||
216 ParseOptionalVisibility(Visibility) ||
217 ParseGlobal("", SMLoc(), Linkage, true, Visibility))
218 return true;
219 break;
221 case lltok::kw_default: // OptionalVisibility
222 case lltok::kw_hidden: // OptionalVisibility
223 case lltok::kw_protected: { // OptionalVisibility
224 unsigned Visibility;
225 if (ParseOptionalVisibility(Visibility) ||
226 ParseGlobal("", SMLoc(), 0, false, Visibility))
227 return true;
228 break;
231 case lltok::kw_thread_local: // OptionalThreadLocal
232 case lltok::kw_addrspace: // OptionalAddrSpace
233 case lltok::kw_constant: // GlobalType
234 case lltok::kw_global: // GlobalType
235 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
236 break;
242 /// toplevelentity
243 /// ::= 'module' 'asm' STRINGCONSTANT
244 bool LLParser::ParseModuleAsm() {
245 assert(Lex.getKind() == lltok::kw_module);
246 Lex.Lex();
248 std::string AsmStr;
249 if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
250 ParseStringConstant(AsmStr)) return true;
252 M->appendModuleInlineAsm(AsmStr);
253 return false;
256 /// toplevelentity
257 /// ::= 'target' 'triple' '=' STRINGCONSTANT
258 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT
259 bool LLParser::ParseTargetDefinition() {
260 assert(Lex.getKind() == lltok::kw_target);
261 std::string Str;
262 switch (Lex.Lex()) {
263 default: return TokError("unknown target property");
264 case lltok::kw_triple:
265 Lex.Lex();
266 if (ParseToken(lltok::equal, "expected '=' after target triple") ||
267 ParseStringConstant(Str))
268 return true;
269 M->setTargetTriple(Str);
270 return false;
271 case lltok::kw_datalayout:
272 Lex.Lex();
273 if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
274 ParseStringConstant(Str))
275 return true;
276 M->setDataLayout(Str);
277 return false;
281 /// toplevelentity
282 /// ::= 'deplibs' '=' '[' ']'
283 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
284 bool LLParser::ParseDepLibs() {
285 assert(Lex.getKind() == lltok::kw_deplibs);
286 Lex.Lex();
287 if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
288 ParseToken(lltok::lsquare, "expected '=' after deplibs"))
289 return true;
291 if (EatIfPresent(lltok::rsquare))
292 return false;
294 std::string Str;
295 if (ParseStringConstant(Str)) return true;
296 M->addLibrary(Str);
298 while (EatIfPresent(lltok::comma)) {
299 if (ParseStringConstant(Str)) return true;
300 M->addLibrary(Str);
303 return ParseToken(lltok::rsquare, "expected ']' at end of list");
306 /// ParseUnnamedType:
307 /// ::= 'type' type
308 /// ::= LocalVarID '=' 'type' type
309 bool LLParser::ParseUnnamedType() {
310 unsigned TypeID = NumberedTypes.size();
312 // Handle the LocalVarID form.
313 if (Lex.getKind() == lltok::LocalVarID) {
314 if (Lex.getUIntVal() != TypeID)
315 return Error(Lex.getLoc(), "type expected to be numbered '%" +
316 Twine(TypeID) + "'");
317 Lex.Lex(); // eat LocalVarID;
319 if (ParseToken(lltok::equal, "expected '=' after name"))
320 return true;
323 LocTy TypeLoc = Lex.getLoc();
324 if (ParseToken(lltok::kw_type, "expected 'type' after '='")) return true;
326 PATypeHolder Ty(Type::getVoidTy(Context));
327 if (ParseType(Ty)) return true;
329 // See if this type was previously referenced.
330 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
331 FI = ForwardRefTypeIDs.find(TypeID);
332 if (FI != ForwardRefTypeIDs.end()) {
333 if (FI->second.first.get() == Ty)
334 return Error(TypeLoc, "self referential type is invalid");
336 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
337 Ty = FI->second.first.get();
338 ForwardRefTypeIDs.erase(FI);
341 NumberedTypes.push_back(Ty);
343 return false;
346 /// toplevelentity
347 /// ::= LocalVar '=' 'type' type
348 bool LLParser::ParseNamedType() {
349 std::string Name = Lex.getStrVal();
350 LocTy NameLoc = Lex.getLoc();
351 Lex.Lex(); // eat LocalVar.
353 PATypeHolder Ty(Type::getVoidTy(Context));
355 if (ParseToken(lltok::equal, "expected '=' after name") ||
356 ParseToken(lltok::kw_type, "expected 'type' after name") ||
357 ParseType(Ty))
358 return true;
360 // Set the type name, checking for conflicts as we do so.
361 bool AlreadyExists = M->addTypeName(Name, Ty);
362 if (!AlreadyExists) return false;
364 // See if this type is a forward reference. We need to eagerly resolve
365 // types to allow recursive type redefinitions below.
366 std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
367 FI = ForwardRefTypes.find(Name);
368 if (FI != ForwardRefTypes.end()) {
369 if (FI->second.first.get() == Ty)
370 return Error(NameLoc, "self referential type is invalid");
372 cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
373 Ty = FI->second.first.get();
374 ForwardRefTypes.erase(FI);
377 // Inserting a name that is already defined, get the existing name.
378 const Type *Existing = M->getTypeByName(Name);
379 assert(Existing && "Conflict but no matching type?!");
381 // Otherwise, this is an attempt to redefine a type. That's okay if
382 // the redefinition is identical to the original.
383 // FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
384 if (Existing == Ty) return false;
386 // Any other kind of (non-equivalent) redefinition is an error.
387 return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
388 Ty->getDescription() + "'");
392 /// toplevelentity
393 /// ::= 'declare' FunctionHeader
394 bool LLParser::ParseDeclare() {
395 assert(Lex.getKind() == lltok::kw_declare);
396 Lex.Lex();
398 Function *F;
399 return ParseFunctionHeader(F, false);
402 /// toplevelentity
403 /// ::= 'define' FunctionHeader '{' ...
404 bool LLParser::ParseDefine() {
405 assert(Lex.getKind() == lltok::kw_define);
406 Lex.Lex();
408 Function *F;
409 return ParseFunctionHeader(F, true) ||
410 ParseFunctionBody(*F);
413 /// ParseGlobalType
414 /// ::= 'constant'
415 /// ::= 'global'
416 bool LLParser::ParseGlobalType(bool &IsConstant) {
417 if (Lex.getKind() == lltok::kw_constant)
418 IsConstant = true;
419 else if (Lex.getKind() == lltok::kw_global)
420 IsConstant = false;
421 else {
422 IsConstant = false;
423 return TokError("expected 'global' or 'constant'");
425 Lex.Lex();
426 return false;
429 /// ParseUnnamedGlobal:
430 /// OptionalVisibility ALIAS ...
431 /// OptionalLinkage OptionalVisibility ... -> global variable
432 /// GlobalID '=' OptionalVisibility ALIAS ...
433 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable
434 bool LLParser::ParseUnnamedGlobal() {
435 unsigned VarID = NumberedVals.size();
436 std::string Name;
437 LocTy NameLoc = Lex.getLoc();
439 // Handle the GlobalID form.
440 if (Lex.getKind() == lltok::GlobalID) {
441 if (Lex.getUIntVal() != VarID)
442 return Error(Lex.getLoc(), "variable expected to be numbered '%" +
443 Twine(VarID) + "'");
444 Lex.Lex(); // eat GlobalID;
446 if (ParseToken(lltok::equal, "expected '=' after name"))
447 return true;
450 bool HasLinkage;
451 unsigned Linkage, Visibility;
452 if (ParseOptionalLinkage(Linkage, HasLinkage) ||
453 ParseOptionalVisibility(Visibility))
454 return true;
456 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
457 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
458 return ParseAlias(Name, NameLoc, Visibility);
461 /// ParseNamedGlobal:
462 /// GlobalVar '=' OptionalVisibility ALIAS ...
463 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
464 bool LLParser::ParseNamedGlobal() {
465 assert(Lex.getKind() == lltok::GlobalVar);
466 LocTy NameLoc = Lex.getLoc();
467 std::string Name = Lex.getStrVal();
468 Lex.Lex();
470 bool HasLinkage;
471 unsigned Linkage, Visibility;
472 if (ParseToken(lltok::equal, "expected '=' in global variable") ||
473 ParseOptionalLinkage(Linkage, HasLinkage) ||
474 ParseOptionalVisibility(Visibility))
475 return true;
477 if (HasLinkage || Lex.getKind() != lltok::kw_alias)
478 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
479 return ParseAlias(Name, NameLoc, Visibility);
482 // MDString:
483 // ::= '!' STRINGCONSTANT
484 bool LLParser::ParseMDString(MDString *&Result) {
485 std::string Str;
486 if (ParseStringConstant(Str)) return true;
487 Result = MDString::get(Context, Str);
488 return false;
491 // MDNode:
492 // ::= '!' MDNodeNumber
494 /// This version of ParseMDNodeID returns the slot number and null in the case
495 /// of a forward reference.
496 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
497 // !{ ..., !42, ... }
498 if (ParseUInt32(SlotNo)) return true;
500 // Check existing MDNode.
501 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
502 Result = NumberedMetadata[SlotNo];
503 else
504 Result = 0;
505 return false;
508 bool LLParser::ParseMDNodeID(MDNode *&Result) {
509 // !{ ..., !42, ... }
510 unsigned MID = 0;
511 if (ParseMDNodeID(Result, MID)) return true;
513 // If not a forward reference, just return it now.
514 if (Result) return false;
516 // Otherwise, create MDNode forward reference.
517 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
518 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
520 if (NumberedMetadata.size() <= MID)
521 NumberedMetadata.resize(MID+1);
522 NumberedMetadata[MID] = FwdNode;
523 Result = FwdNode;
524 return false;
527 /// ParseNamedMetadata:
528 /// !foo = !{ !1, !2 }
529 bool LLParser::ParseNamedMetadata() {
530 assert(Lex.getKind() == lltok::MetadataVar);
531 std::string Name = Lex.getStrVal();
532 Lex.Lex();
534 if (ParseToken(lltok::equal, "expected '=' here") ||
535 ParseToken(lltok::exclaim, "Expected '!' here") ||
536 ParseToken(lltok::lbrace, "Expected '{' here"))
537 return true;
539 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
540 if (Lex.getKind() != lltok::rbrace)
541 do {
542 if (ParseToken(lltok::exclaim, "Expected '!' here"))
543 return true;
545 MDNode *N = 0;
546 if (ParseMDNodeID(N)) return true;
547 NMD->addOperand(N);
548 } while (EatIfPresent(lltok::comma));
550 if (ParseToken(lltok::rbrace, "expected end of metadata node"))
551 return true;
553 return false;
556 /// ParseStandaloneMetadata:
557 /// !42 = !{...}
558 bool LLParser::ParseStandaloneMetadata() {
559 assert(Lex.getKind() == lltok::exclaim);
560 Lex.Lex();
561 unsigned MetadataID = 0;
563 LocTy TyLoc;
564 PATypeHolder Ty(Type::getVoidTy(Context));
565 SmallVector<Value *, 16> Elts;
566 if (ParseUInt32(MetadataID) ||
567 ParseToken(lltok::equal, "expected '=' here") ||
568 ParseType(Ty, TyLoc) ||
569 ParseToken(lltok::exclaim, "Expected '!' here") ||
570 ParseToken(lltok::lbrace, "Expected '{' here") ||
571 ParseMDNodeVector(Elts, NULL) ||
572 ParseToken(lltok::rbrace, "expected end of metadata node"))
573 return true;
575 MDNode *Init = MDNode::get(Context, Elts);
577 // See if this was forward referenced, if so, handle it.
578 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
579 FI = ForwardRefMDNodes.find(MetadataID);
580 if (FI != ForwardRefMDNodes.end()) {
581 MDNode *Temp = FI->second.first;
582 Temp->replaceAllUsesWith(Init);
583 MDNode::deleteTemporary(Temp);
584 ForwardRefMDNodes.erase(FI);
586 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
587 } else {
588 if (MetadataID >= NumberedMetadata.size())
589 NumberedMetadata.resize(MetadataID+1);
591 if (NumberedMetadata[MetadataID] != 0)
592 return TokError("Metadata id is already used");
593 NumberedMetadata[MetadataID] = Init;
596 return false;
599 /// ParseAlias:
600 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
601 /// Aliasee
602 /// ::= TypeAndValue
603 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
604 /// ::= 'getelementptr' 'inbounds'? '(' ... ')'
606 /// Everything through visibility has already been parsed.
608 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
609 unsigned Visibility) {
610 assert(Lex.getKind() == lltok::kw_alias);
611 Lex.Lex();
612 unsigned Linkage;
613 LocTy LinkageLoc = Lex.getLoc();
614 if (ParseOptionalLinkage(Linkage))
615 return true;
617 if (Linkage != GlobalValue::ExternalLinkage &&
618 Linkage != GlobalValue::WeakAnyLinkage &&
619 Linkage != GlobalValue::WeakODRLinkage &&
620 Linkage != GlobalValue::InternalLinkage &&
621 Linkage != GlobalValue::PrivateLinkage &&
622 Linkage != GlobalValue::LinkerPrivateLinkage &&
623 Linkage != GlobalValue::LinkerPrivateWeakLinkage &&
624 Linkage != GlobalValue::LinkerPrivateWeakDefAutoLinkage)
625 return Error(LinkageLoc, "invalid linkage type for alias");
627 Constant *Aliasee;
628 LocTy AliaseeLoc = Lex.getLoc();
629 if (Lex.getKind() != lltok::kw_bitcast &&
630 Lex.getKind() != lltok::kw_getelementptr) {
631 if (ParseGlobalTypeAndValue(Aliasee)) return true;
632 } else {
633 // The bitcast dest type is not present, it is implied by the dest type.
634 ValID ID;
635 if (ParseValID(ID)) return true;
636 if (ID.Kind != ValID::t_Constant)
637 return Error(AliaseeLoc, "invalid aliasee");
638 Aliasee = ID.ConstantVal;
641 if (!Aliasee->getType()->isPointerTy())
642 return Error(AliaseeLoc, "alias must have pointer type");
644 // Okay, create the alias but do not insert it into the module yet.
645 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
646 (GlobalValue::LinkageTypes)Linkage, Name,
647 Aliasee);
648 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
650 // See if this value already exists in the symbol table. If so, it is either
651 // a redefinition or a definition of a forward reference.
652 if (GlobalValue *Val = M->getNamedValue(Name)) {
653 // See if this was a redefinition. If so, there is no entry in
654 // ForwardRefVals.
655 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
656 I = ForwardRefVals.find(Name);
657 if (I == ForwardRefVals.end())
658 return Error(NameLoc, "redefinition of global named '@" + Name + "'");
660 // Otherwise, this was a definition of forward ref. Verify that types
661 // agree.
662 if (Val->getType() != GA->getType())
663 return Error(NameLoc,
664 "forward reference and definition of alias have different types");
666 // If they agree, just RAUW the old value with the alias and remove the
667 // forward ref info.
668 Val->replaceAllUsesWith(GA);
669 Val->eraseFromParent();
670 ForwardRefVals.erase(I);
673 // Insert into the module, we know its name won't collide now.
674 M->getAliasList().push_back(GA);
675 assert(GA->getName() == Name && "Should not be a name conflict!");
677 return false;
680 /// ParseGlobal
681 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
682 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
683 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
684 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
686 /// Everything through visibility has been parsed already.
688 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
689 unsigned Linkage, bool HasLinkage,
690 unsigned Visibility) {
691 unsigned AddrSpace;
692 bool ThreadLocal, IsConstant, UnnamedAddr;
693 LocTy UnnamedAddrLoc;
694 LocTy TyLoc;
696 PATypeHolder Ty(Type::getVoidTy(Context));
697 if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
698 ParseOptionalAddrSpace(AddrSpace) ||
699 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
700 &UnnamedAddrLoc) ||
701 ParseGlobalType(IsConstant) ||
702 ParseType(Ty, TyLoc))
703 return true;
705 // If the linkage is specified and is external, then no initializer is
706 // present.
707 Constant *Init = 0;
708 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
709 Linkage != GlobalValue::ExternalWeakLinkage &&
710 Linkage != GlobalValue::ExternalLinkage)) {
711 if (ParseGlobalValue(Ty, Init))
712 return true;
715 if (Ty->isFunctionTy() || Ty->isLabelTy())
716 return Error(TyLoc, "invalid type for global variable");
718 GlobalVariable *GV = 0;
720 // See if the global was forward referenced, if so, use the global.
721 if (!Name.empty()) {
722 if (GlobalValue *GVal = M->getNamedValue(Name)) {
723 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
724 return Error(NameLoc, "redefinition of global '@" + Name + "'");
725 GV = cast<GlobalVariable>(GVal);
727 } else {
728 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
729 I = ForwardRefValIDs.find(NumberedVals.size());
730 if (I != ForwardRefValIDs.end()) {
731 GV = cast<GlobalVariable>(I->second.first);
732 ForwardRefValIDs.erase(I);
736 if (GV == 0) {
737 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
738 Name, 0, false, AddrSpace);
739 } else {
740 if (GV->getType()->getElementType() != Ty)
741 return Error(TyLoc,
742 "forward reference and definition of global have different types");
744 // Move the forward-reference to the correct spot in the module.
745 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
748 if (Name.empty())
749 NumberedVals.push_back(GV);
751 // Set the parsed properties on the global.
752 if (Init)
753 GV->setInitializer(Init);
754 GV->setConstant(IsConstant);
755 GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
756 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
757 GV->setThreadLocal(ThreadLocal);
758 GV->setUnnamedAddr(UnnamedAddr);
760 // Parse attributes on the global.
761 while (Lex.getKind() == lltok::comma) {
762 Lex.Lex();
764 if (Lex.getKind() == lltok::kw_section) {
765 Lex.Lex();
766 GV->setSection(Lex.getStrVal());
767 if (ParseToken(lltok::StringConstant, "expected global section string"))
768 return true;
769 } else if (Lex.getKind() == lltok::kw_align) {
770 unsigned Alignment;
771 if (ParseOptionalAlignment(Alignment)) return true;
772 GV->setAlignment(Alignment);
773 } else {
774 TokError("unknown global variable property!");
778 return false;
782 //===----------------------------------------------------------------------===//
783 // GlobalValue Reference/Resolution Routines.
784 //===----------------------------------------------------------------------===//
786 /// GetGlobalVal - Get a value with the specified name or ID, creating a
787 /// forward reference record if needed. This can return null if the value
788 /// exists but does not have the right type.
789 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
790 LocTy Loc) {
791 const PointerType *PTy = dyn_cast<PointerType>(Ty);
792 if (PTy == 0) {
793 Error(Loc, "global variable reference must have pointer type");
794 return 0;
797 // Look this name up in the normal function symbol table.
798 GlobalValue *Val =
799 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
801 // If this is a forward reference for the value, see if we already created a
802 // forward ref record.
803 if (Val == 0) {
804 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
805 I = ForwardRefVals.find(Name);
806 if (I != ForwardRefVals.end())
807 Val = I->second.first;
810 // If we have the value in the symbol table or fwd-ref table, return it.
811 if (Val) {
812 if (Val->getType() == Ty) return Val;
813 Error(Loc, "'@" + Name + "' defined with type '" +
814 Val->getType()->getDescription() + "'");
815 return 0;
818 // Otherwise, create a new forward reference for this value and remember it.
819 GlobalValue *FwdVal;
820 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
821 // Function types can return opaque but functions can't.
822 if (FT->getReturnType()->isOpaqueTy()) {
823 Error(Loc, "function may not return opaque type");
824 return 0;
827 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
828 } else {
829 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
830 GlobalValue::ExternalWeakLinkage, 0, Name);
833 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
834 return FwdVal;
837 GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
838 const PointerType *PTy = dyn_cast<PointerType>(Ty);
839 if (PTy == 0) {
840 Error(Loc, "global variable reference must have pointer type");
841 return 0;
844 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
846 // If this is a forward reference for the value, see if we already created a
847 // forward ref record.
848 if (Val == 0) {
849 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
850 I = ForwardRefValIDs.find(ID);
851 if (I != ForwardRefValIDs.end())
852 Val = I->second.first;
855 // If we have the value in the symbol table or fwd-ref table, return it.
856 if (Val) {
857 if (Val->getType() == Ty) return Val;
858 Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
859 Val->getType()->getDescription() + "'");
860 return 0;
863 // Otherwise, create a new forward reference for this value and remember it.
864 GlobalValue *FwdVal;
865 if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
866 // Function types can return opaque but functions can't.
867 if (FT->getReturnType()->isOpaqueTy()) {
868 Error(Loc, "function may not return opaque type");
869 return 0;
871 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
872 } else {
873 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
874 GlobalValue::ExternalWeakLinkage, 0, "");
877 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
878 return FwdVal;
882 //===----------------------------------------------------------------------===//
883 // Helper Routines.
884 //===----------------------------------------------------------------------===//
886 /// ParseToken - If the current token has the specified kind, eat it and return
887 /// success. Otherwise, emit the specified error and return failure.
888 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
889 if (Lex.getKind() != T)
890 return TokError(ErrMsg);
891 Lex.Lex();
892 return false;
895 /// ParseStringConstant
896 /// ::= StringConstant
897 bool LLParser::ParseStringConstant(std::string &Result) {
898 if (Lex.getKind() != lltok::StringConstant)
899 return TokError("expected string constant");
900 Result = Lex.getStrVal();
901 Lex.Lex();
902 return false;
905 /// ParseUInt32
906 /// ::= uint32
907 bool LLParser::ParseUInt32(unsigned &Val) {
908 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
909 return TokError("expected integer");
910 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
911 if (Val64 != unsigned(Val64))
912 return TokError("expected 32-bit integer (too large)");
913 Val = Val64;
914 Lex.Lex();
915 return false;
919 /// ParseOptionalAddrSpace
920 /// := /*empty*/
921 /// := 'addrspace' '(' uint32 ')'
922 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
923 AddrSpace = 0;
924 if (!EatIfPresent(lltok::kw_addrspace))
925 return false;
926 return ParseToken(lltok::lparen, "expected '(' in address space") ||
927 ParseUInt32(AddrSpace) ||
928 ParseToken(lltok::rparen, "expected ')' in address space");
931 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
932 /// indicates what kind of attribute list this is: 0: function arg, 1: result,
933 /// 2: function attr.
934 /// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
935 bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
936 Attrs = Attribute::None;
937 LocTy AttrLoc = Lex.getLoc();
939 while (1) {
940 switch (Lex.getKind()) {
941 case lltok::kw_sext:
942 case lltok::kw_zext:
943 // Treat these as signext/zeroext if they occur in the argument list after
944 // the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
945 // value, as in "call i8 @foo(i8 sext (" then it is part of a constant
946 // expr.
947 // FIXME: REMOVE THIS IN LLVM 3.0
948 if (AttrKind == 3) {
949 if (Lex.getKind() == lltok::kw_sext)
950 Attrs |= Attribute::SExt;
951 else
952 Attrs |= Attribute::ZExt;
953 break;
955 // FALL THROUGH.
956 default: // End of attributes.
957 if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
958 return Error(AttrLoc, "invalid use of function-only attribute");
960 if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
961 return Error(AttrLoc, "invalid use of parameter-only attribute");
963 return false;
964 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
965 case lltok::kw_signext: Attrs |= Attribute::SExt; break;
966 case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
967 case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
968 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
969 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
970 case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
971 case lltok::kw_nest: Attrs |= Attribute::Nest; break;
973 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
974 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
975 case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break;
976 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
977 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
978 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
979 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break;
980 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
981 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
982 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
983 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
984 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
985 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
986 case lltok::kw_naked: Attrs |= Attribute::Naked; break;
987 case lltok::kw_hotpatch: Attrs |= Attribute::Hotpatch; break;
989 case lltok::kw_alignstack: {
990 unsigned Alignment;
991 if (ParseOptionalStackAlignment(Alignment))
992 return true;
993 Attrs |= Attribute::constructStackAlignmentFromInt(Alignment);
994 continue;
997 case lltok::kw_align: {
998 unsigned Alignment;
999 if (ParseOptionalAlignment(Alignment))
1000 return true;
1001 Attrs |= Attribute::constructAlignmentFromInt(Alignment);
1002 continue;
1006 Lex.Lex();
1010 /// ParseOptionalLinkage
1011 /// ::= /*empty*/
1012 /// ::= 'private'
1013 /// ::= 'linker_private'
1014 /// ::= 'linker_private_weak'
1015 /// ::= 'linker_private_weak_def_auto'
1016 /// ::= 'internal'
1017 /// ::= 'weak'
1018 /// ::= 'weak_odr'
1019 /// ::= 'linkonce'
1020 /// ::= 'linkonce_odr'
1021 /// ::= 'available_externally'
1022 /// ::= 'appending'
1023 /// ::= 'dllexport'
1024 /// ::= 'common'
1025 /// ::= 'dllimport'
1026 /// ::= 'extern_weak'
1027 /// ::= 'external'
1028 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1029 HasLinkage = false;
1030 switch (Lex.getKind()) {
1031 default: Res=GlobalValue::ExternalLinkage; return false;
1032 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
1033 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1034 case lltok::kw_linker_private_weak:
1035 Res = GlobalValue::LinkerPrivateWeakLinkage;
1036 break;
1037 case lltok::kw_linker_private_weak_def_auto:
1038 Res = GlobalValue::LinkerPrivateWeakDefAutoLinkage;
1039 break;
1040 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
1041 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
1042 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
1043 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
1044 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
1045 case lltok::kw_available_externally:
1046 Res = GlobalValue::AvailableExternallyLinkage;
1047 break;
1048 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
1049 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
1050 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
1051 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
1052 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
1053 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
1055 Lex.Lex();
1056 HasLinkage = true;
1057 return false;
1060 /// ParseOptionalVisibility
1061 /// ::= /*empty*/
1062 /// ::= 'default'
1063 /// ::= 'hidden'
1064 /// ::= 'protected'
1066 bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1067 switch (Lex.getKind()) {
1068 default: Res = GlobalValue::DefaultVisibility; return false;
1069 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
1070 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
1071 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1073 Lex.Lex();
1074 return false;
1077 /// ParseOptionalCallingConv
1078 /// ::= /*empty*/
1079 /// ::= 'ccc'
1080 /// ::= 'fastcc'
1081 /// ::= 'coldcc'
1082 /// ::= 'x86_stdcallcc'
1083 /// ::= 'x86_fastcallcc'
1084 /// ::= 'x86_thiscallcc'
1085 /// ::= 'arm_apcscc'
1086 /// ::= 'arm_aapcscc'
1087 /// ::= 'arm_aapcs_vfpcc'
1088 /// ::= 'msp430_intrcc'
1089 /// ::= 'ptx_kernel'
1090 /// ::= 'ptx_device'
1091 /// ::= 'cc' UINT
1093 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1094 switch (Lex.getKind()) {
1095 default: CC = CallingConv::C; return false;
1096 case lltok::kw_ccc: CC = CallingConv::C; break;
1097 case lltok::kw_fastcc: CC = CallingConv::Fast; break;
1098 case lltok::kw_coldcc: CC = CallingConv::Cold; break;
1099 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
1100 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1101 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1102 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
1103 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
1104 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1105 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
1106 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
1107 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
1108 case lltok::kw_cc: {
1109 unsigned ArbitraryCC;
1110 Lex.Lex();
1111 if (ParseUInt32(ArbitraryCC)) {
1112 return true;
1113 } else
1114 CC = static_cast<CallingConv::ID>(ArbitraryCC);
1115 return false;
1117 break;
1120 Lex.Lex();
1121 return false;
1124 /// ParseInstructionMetadata
1125 /// ::= !dbg !42 (',' !dbg !57)*
1126 bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1127 PerFunctionState *PFS) {
1128 do {
1129 if (Lex.getKind() != lltok::MetadataVar)
1130 return TokError("expected metadata after comma");
1132 std::string Name = Lex.getStrVal();
1133 unsigned MDK = M->getMDKindID(Name.c_str());
1134 Lex.Lex();
1136 MDNode *Node;
1137 SMLoc Loc = Lex.getLoc();
1139 if (ParseToken(lltok::exclaim, "expected '!' here"))
1140 return true;
1142 // This code is similar to that of ParseMetadataValue, however it needs to
1143 // have special-case code for a forward reference; see the comments on
1144 // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1145 // at the top level here.
1146 if (Lex.getKind() == lltok::lbrace) {
1147 ValID ID;
1148 if (ParseMetadataListValue(ID, PFS))
1149 return true;
1150 assert(ID.Kind == ValID::t_MDNode);
1151 Inst->setMetadata(MDK, ID.MDNodeVal);
1152 } else {
1153 unsigned NodeID = 0;
1154 if (ParseMDNodeID(Node, NodeID))
1155 return true;
1156 if (Node) {
1157 // If we got the node, add it to the instruction.
1158 Inst->setMetadata(MDK, Node);
1159 } else {
1160 MDRef R = { Loc, MDK, NodeID };
1161 // Otherwise, remember that this should be resolved later.
1162 ForwardRefInstMetadata[Inst].push_back(R);
1166 // If this is the end of the list, we're done.
1167 } while (EatIfPresent(lltok::comma));
1168 return false;
1171 /// ParseOptionalAlignment
1172 /// ::= /* empty */
1173 /// ::= 'align' 4
1174 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1175 Alignment = 0;
1176 if (!EatIfPresent(lltok::kw_align))
1177 return false;
1178 LocTy AlignLoc = Lex.getLoc();
1179 if (ParseUInt32(Alignment)) return true;
1180 if (!isPowerOf2_32(Alignment))
1181 return Error(AlignLoc, "alignment is not a power of two");
1182 if (Alignment > Value::MaximumAlignment)
1183 return Error(AlignLoc, "huge alignments are not supported yet");
1184 return false;
1187 /// ParseOptionalCommaAlign
1188 /// ::=
1189 /// ::= ',' align 4
1191 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1192 /// end.
1193 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1194 bool &AteExtraComma) {
1195 AteExtraComma = false;
1196 while (EatIfPresent(lltok::comma)) {
1197 // Metadata at the end is an early exit.
1198 if (Lex.getKind() == lltok::MetadataVar) {
1199 AteExtraComma = true;
1200 return false;
1203 if (Lex.getKind() != lltok::kw_align)
1204 return Error(Lex.getLoc(), "expected metadata or 'align'");
1206 if (ParseOptionalAlignment(Alignment)) return true;
1209 return false;
1212 /// ParseOptionalStackAlignment
1213 /// ::= /* empty */
1214 /// ::= 'alignstack' '(' 4 ')'
1215 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1216 Alignment = 0;
1217 if (!EatIfPresent(lltok::kw_alignstack))
1218 return false;
1219 LocTy ParenLoc = Lex.getLoc();
1220 if (!EatIfPresent(lltok::lparen))
1221 return Error(ParenLoc, "expected '('");
1222 LocTy AlignLoc = Lex.getLoc();
1223 if (ParseUInt32(Alignment)) return true;
1224 ParenLoc = Lex.getLoc();
1225 if (!EatIfPresent(lltok::rparen))
1226 return Error(ParenLoc, "expected ')'");
1227 if (!isPowerOf2_32(Alignment))
1228 return Error(AlignLoc, "stack alignment is not a power of two");
1229 return false;
1232 /// ParseIndexList - This parses the index list for an insert/extractvalue
1233 /// instruction. This sets AteExtraComma in the case where we eat an extra
1234 /// comma at the end of the line and find that it is followed by metadata.
1235 /// Clients that don't allow metadata can call the version of this function that
1236 /// only takes one argument.
1238 /// ParseIndexList
1239 /// ::= (',' uint32)+
1241 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1242 bool &AteExtraComma) {
1243 AteExtraComma = false;
1245 if (Lex.getKind() != lltok::comma)
1246 return TokError("expected ',' as start of index list");
1248 while (EatIfPresent(lltok::comma)) {
1249 if (Lex.getKind() == lltok::MetadataVar) {
1250 AteExtraComma = true;
1251 return false;
1253 unsigned Idx = 0;
1254 if (ParseUInt32(Idx)) return true;
1255 Indices.push_back(Idx);
1258 return false;
1261 //===----------------------------------------------------------------------===//
1262 // Type Parsing.
1263 //===----------------------------------------------------------------------===//
1265 /// ParseType - Parse and resolve a full type.
1266 bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
1267 LocTy TypeLoc = Lex.getLoc();
1268 if (ParseTypeRec(Result)) return true;
1270 // Verify no unresolved uprefs.
1271 if (!UpRefs.empty())
1272 return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
1274 if (!AllowVoid && Result.get()->isVoidTy())
1275 return Error(TypeLoc, "void type only allowed for function results");
1277 return false;
1280 /// HandleUpRefs - Every time we finish a new layer of types, this function is
1281 /// called. It loops through the UpRefs vector, which is a list of the
1282 /// currently active types. For each type, if the up-reference is contained in
1283 /// the newly completed type, we decrement the level count. When the level
1284 /// count reaches zero, the up-referenced type is the type that is passed in:
1285 /// thus we can complete the cycle.
1287 PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
1288 // If Ty isn't abstract, or if there are no up-references in it, then there is
1289 // nothing to resolve here.
1290 if (!ty->isAbstract() || UpRefs.empty()) return ty;
1292 PATypeHolder Ty(ty);
1293 #if 0
1294 dbgs() << "Type '" << Ty->getDescription()
1295 << "' newly formed. Resolving upreferences.\n"
1296 << UpRefs.size() << " upreferences active!\n";
1297 #endif
1299 // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
1300 // to zero), we resolve them all together before we resolve them to Ty. At
1301 // the end of the loop, if there is anything to resolve to Ty, it will be in
1302 // this variable.
1303 OpaqueType *TypeToResolve = 0;
1305 for (unsigned i = 0; i != UpRefs.size(); ++i) {
1306 // Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
1307 bool ContainsType =
1308 std::find(Ty->subtype_begin(), Ty->subtype_end(),
1309 UpRefs[i].LastContainedTy) != Ty->subtype_end();
1311 #if 0
1312 dbgs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
1313 << UpRefs[i].LastContainedTy->getDescription() << ") = "
1314 << (ContainsType ? "true" : "false")
1315 << " level=" << UpRefs[i].NestingLevel << "\n";
1316 #endif
1317 if (!ContainsType)
1318 continue;
1320 // Decrement level of upreference
1321 unsigned Level = --UpRefs[i].NestingLevel;
1322 UpRefs[i].LastContainedTy = Ty;
1324 // If the Up-reference has a non-zero level, it shouldn't be resolved yet.
1325 if (Level != 0)
1326 continue;
1328 #if 0
1329 dbgs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
1330 #endif
1331 if (!TypeToResolve)
1332 TypeToResolve = UpRefs[i].UpRefTy;
1333 else
1334 UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
1335 UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
1336 --i; // Do not skip the next element.
1339 if (TypeToResolve)
1340 TypeToResolve->refineAbstractTypeTo(Ty);
1342 return Ty;
1346 /// ParseTypeRec - The recursive function used to process the internal
1347 /// implementation details of types.
1348 bool LLParser::ParseTypeRec(PATypeHolder &Result) {
1349 switch (Lex.getKind()) {
1350 default:
1351 return TokError("expected type");
1352 case lltok::Type:
1353 // TypeRec ::= 'float' | 'void' (etc)
1354 Result = Lex.getTyVal();
1355 Lex.Lex();
1356 break;
1357 case lltok::kw_opaque:
1358 // TypeRec ::= 'opaque'
1359 Result = OpaqueType::get(Context);
1360 Lex.Lex();
1361 break;
1362 case lltok::lbrace:
1363 // TypeRec ::= '{' ... '}'
1364 if (ParseStructType(Result, false))
1365 return true;
1366 break;
1367 case lltok::lsquare:
1368 // TypeRec ::= '[' ... ']'
1369 Lex.Lex(); // eat the lsquare.
1370 if (ParseArrayVectorType(Result, false))
1371 return true;
1372 break;
1373 case lltok::less: // Either vector or packed struct.
1374 // TypeRec ::= '<' ... '>'
1375 Lex.Lex();
1376 if (Lex.getKind() == lltok::lbrace) {
1377 if (ParseStructType(Result, true) ||
1378 ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1379 return true;
1380 } else if (ParseArrayVectorType(Result, true))
1381 return true;
1382 break;
1383 case lltok::LocalVar:
1384 case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
1385 // TypeRec ::= %foo
1386 if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
1387 Result = T;
1388 } else {
1389 Result = OpaqueType::get(Context);
1390 ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
1391 std::make_pair(Result,
1392 Lex.getLoc())));
1393 M->addTypeName(Lex.getStrVal(), Result.get());
1395 Lex.Lex();
1396 break;
1398 case lltok::LocalVarID:
1399 // TypeRec ::= %4
1400 if (Lex.getUIntVal() < NumberedTypes.size())
1401 Result = NumberedTypes[Lex.getUIntVal()];
1402 else {
1403 std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
1404 I = ForwardRefTypeIDs.find(Lex.getUIntVal());
1405 if (I != ForwardRefTypeIDs.end())
1406 Result = I->second.first;
1407 else {
1408 Result = OpaqueType::get(Context);
1409 ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
1410 std::make_pair(Result,
1411 Lex.getLoc())));
1414 Lex.Lex();
1415 break;
1416 case lltok::backslash: {
1417 // TypeRec ::= '\' 4
1418 Lex.Lex();
1419 unsigned Val;
1420 if (ParseUInt32(Val)) return true;
1421 OpaqueType *OT = OpaqueType::get(Context); //Use temporary placeholder.
1422 UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
1423 Result = OT;
1424 break;
1428 // Parse the type suffixes.
1429 while (1) {
1430 switch (Lex.getKind()) {
1431 // End of type.
1432 default: return false;
1434 // TypeRec ::= TypeRec '*'
1435 case lltok::star:
1436 if (Result.get()->isLabelTy())
1437 return TokError("basic block pointers are invalid");
1438 if (Result.get()->isVoidTy())
1439 return TokError("pointers to void are invalid; use i8* instead");
1440 if (!PointerType::isValidElementType(Result.get()))
1441 return TokError("pointer to this type is invalid");
1442 Result = HandleUpRefs(PointerType::getUnqual(Result.get()));
1443 Lex.Lex();
1444 break;
1446 // TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
1447 case lltok::kw_addrspace: {
1448 if (Result.get()->isLabelTy())
1449 return TokError("basic block pointers are invalid");
1450 if (Result.get()->isVoidTy())
1451 return TokError("pointers to void are invalid; use i8* instead");
1452 if (!PointerType::isValidElementType(Result.get()))
1453 return TokError("pointer to this type is invalid");
1454 unsigned AddrSpace;
1455 if (ParseOptionalAddrSpace(AddrSpace) ||
1456 ParseToken(lltok::star, "expected '*' in address space"))
1457 return true;
1459 Result = HandleUpRefs(PointerType::get(Result.get(), AddrSpace));
1460 break;
1463 /// Types '(' ArgTypeListI ')' OptFuncAttrs
1464 case lltok::lparen:
1465 if (ParseFunctionType(Result))
1466 return true;
1467 break;
1472 /// ParseParameterList
1473 /// ::= '(' ')'
1474 /// ::= '(' Arg (',' Arg)* ')'
1475 /// Arg
1476 /// ::= Type OptionalAttributes Value OptionalAttributes
1477 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1478 PerFunctionState &PFS) {
1479 if (ParseToken(lltok::lparen, "expected '(' in call"))
1480 return true;
1482 while (Lex.getKind() != lltok::rparen) {
1483 // If this isn't the first argument, we need a comma.
1484 if (!ArgList.empty() &&
1485 ParseToken(lltok::comma, "expected ',' in argument list"))
1486 return true;
1488 // Parse the argument.
1489 LocTy ArgLoc;
1490 PATypeHolder ArgTy(Type::getVoidTy(Context));
1491 unsigned ArgAttrs1 = Attribute::None;
1492 unsigned ArgAttrs2 = Attribute::None;
1493 Value *V;
1494 if (ParseType(ArgTy, ArgLoc))
1495 return true;
1497 // Otherwise, handle normal operands.
1498 if (ParseOptionalAttrs(ArgAttrs1, 0) ||
1499 ParseValue(ArgTy, V, PFS) ||
1500 // FIXME: Should not allow attributes after the argument, remove this
1501 // in LLVM 3.0.
1502 ParseOptionalAttrs(ArgAttrs2, 3))
1503 return true;
1504 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1507 Lex.Lex(); // Lex the ')'.
1508 return false;
1513 /// ParseArgumentList - Parse the argument list for a function type or function
1514 /// prototype. If 'inType' is true then we are parsing a FunctionType.
1515 /// ::= '(' ArgTypeListI ')'
1516 /// ArgTypeListI
1517 /// ::= /*empty*/
1518 /// ::= '...'
1519 /// ::= ArgTypeList ',' '...'
1520 /// ::= ArgType (',' ArgType)*
1522 bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
1523 bool &isVarArg, bool inType) {
1524 isVarArg = false;
1525 assert(Lex.getKind() == lltok::lparen);
1526 Lex.Lex(); // eat the (.
1528 if (Lex.getKind() == lltok::rparen) {
1529 // empty
1530 } else if (Lex.getKind() == lltok::dotdotdot) {
1531 isVarArg = true;
1532 Lex.Lex();
1533 } else {
1534 LocTy TypeLoc = Lex.getLoc();
1535 PATypeHolder ArgTy(Type::getVoidTy(Context));
1536 unsigned Attrs;
1537 std::string Name;
1539 // If we're parsing a type, use ParseTypeRec, because we allow recursive
1540 // types (such as a function returning a pointer to itself). If parsing a
1541 // function prototype, we require fully resolved types.
1542 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1543 ParseOptionalAttrs(Attrs, 0)) return true;
1545 if (ArgTy->isVoidTy())
1546 return Error(TypeLoc, "argument can not have void type");
1548 if (Lex.getKind() == lltok::LocalVar ||
1549 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1550 Name = Lex.getStrVal();
1551 Lex.Lex();
1554 if (!FunctionType::isValidArgumentType(ArgTy))
1555 return Error(TypeLoc, "invalid type for function argument");
1557 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1559 while (EatIfPresent(lltok::comma)) {
1560 // Handle ... at end of arg list.
1561 if (EatIfPresent(lltok::dotdotdot)) {
1562 isVarArg = true;
1563 break;
1566 // Otherwise must be an argument type.
1567 TypeLoc = Lex.getLoc();
1568 if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
1569 ParseOptionalAttrs(Attrs, 0)) return true;
1571 if (ArgTy->isVoidTy())
1572 return Error(TypeLoc, "argument can not have void type");
1574 if (Lex.getKind() == lltok::LocalVar ||
1575 Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
1576 Name = Lex.getStrVal();
1577 Lex.Lex();
1578 } else {
1579 Name = "";
1582 if (!ArgTy->isFirstClassType() && !ArgTy->isOpaqueTy())
1583 return Error(TypeLoc, "invalid type for function argument");
1585 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1589 return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1592 /// ParseFunctionType
1593 /// ::= Type ArgumentList OptionalAttrs
1594 bool LLParser::ParseFunctionType(PATypeHolder &Result) {
1595 assert(Lex.getKind() == lltok::lparen);
1597 if (!FunctionType::isValidReturnType(Result))
1598 return TokError("invalid function return type");
1600 std::vector<ArgInfo> ArgList;
1601 bool isVarArg;
1602 unsigned Attrs;
1603 if (ParseArgumentList(ArgList, isVarArg, true) ||
1604 // FIXME: Allow, but ignore attributes on function types!
1605 // FIXME: Remove in LLVM 3.0
1606 ParseOptionalAttrs(Attrs, 2))
1607 return true;
1609 // Reject names on the arguments lists.
1610 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1611 if (!ArgList[i].Name.empty())
1612 return Error(ArgList[i].Loc, "argument name invalid in function type");
1613 if (!ArgList[i].Attrs != 0) {
1614 // Allow but ignore attributes on function types; this permits
1615 // auto-upgrade.
1616 // FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
1620 std::vector<const Type*> ArgListTy;
1621 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1622 ArgListTy.push_back(ArgList[i].Type);
1624 Result = HandleUpRefs(FunctionType::get(Result.get(),
1625 ArgListTy, isVarArg));
1626 return false;
1629 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
1630 /// TypeRec
1631 /// ::= '{' '}'
1632 /// ::= '{' TypeRec (',' TypeRec)* '}'
1633 /// ::= '<' '{' '}' '>'
1634 /// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
1635 bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
1636 assert(Lex.getKind() == lltok::lbrace);
1637 Lex.Lex(); // Consume the '{'
1639 if (EatIfPresent(lltok::rbrace)) {
1640 Result = StructType::get(Context, Packed);
1641 return false;
1644 std::vector<PATypeHolder> ParamsList;
1645 LocTy EltTyLoc = Lex.getLoc();
1646 if (ParseTypeRec(Result)) return true;
1647 ParamsList.push_back(Result);
1649 if (Result->isVoidTy())
1650 return Error(EltTyLoc, "struct element can not have void type");
1651 if (!StructType::isValidElementType(Result))
1652 return Error(EltTyLoc, "invalid element type for struct");
1654 while (EatIfPresent(lltok::comma)) {
1655 EltTyLoc = Lex.getLoc();
1656 if (ParseTypeRec(Result)) return true;
1658 if (Result->isVoidTy())
1659 return Error(EltTyLoc, "struct element can not have void type");
1660 if (!StructType::isValidElementType(Result))
1661 return Error(EltTyLoc, "invalid element type for struct");
1663 ParamsList.push_back(Result);
1666 if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
1667 return true;
1669 std::vector<const Type*> ParamsListTy;
1670 for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
1671 ParamsListTy.push_back(ParamsList[i].get());
1672 Result = HandleUpRefs(StructType::get(Context, ParamsListTy, Packed));
1673 return false;
1676 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
1677 /// token has already been consumed.
1678 /// TypeRec
1679 /// ::= '[' APSINTVAL 'x' Types ']'
1680 /// ::= '<' APSINTVAL 'x' Types '>'
1681 bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
1682 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1683 Lex.getAPSIntVal().getBitWidth() > 64)
1684 return TokError("expected number in address space");
1686 LocTy SizeLoc = Lex.getLoc();
1687 uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1688 Lex.Lex();
1690 if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1691 return true;
1693 LocTy TypeLoc = Lex.getLoc();
1694 PATypeHolder EltTy(Type::getVoidTy(Context));
1695 if (ParseTypeRec(EltTy)) return true;
1697 if (EltTy->isVoidTy())
1698 return Error(TypeLoc, "array and vector element type cannot be void");
1700 if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1701 "expected end of sequential type"))
1702 return true;
1704 if (isVector) {
1705 if (Size == 0)
1706 return Error(SizeLoc, "zero element vector is illegal");
1707 if ((unsigned)Size != Size)
1708 return Error(SizeLoc, "size too large for vector");
1709 if (!VectorType::isValidElementType(EltTy))
1710 return Error(TypeLoc, "vector element type must be fp or integer");
1711 Result = VectorType::get(EltTy, unsigned(Size));
1712 } else {
1713 if (!ArrayType::isValidElementType(EltTy))
1714 return Error(TypeLoc, "invalid array element type");
1715 Result = HandleUpRefs(ArrayType::get(EltTy, Size));
1717 return false;
1720 //===----------------------------------------------------------------------===//
1721 // Function Semantic Analysis.
1722 //===----------------------------------------------------------------------===//
1724 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1725 int functionNumber)
1726 : P(p), F(f), FunctionNumber(functionNumber) {
1728 // Insert unnamed arguments into the NumberedVals list.
1729 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1730 AI != E; ++AI)
1731 if (!AI->hasName())
1732 NumberedVals.push_back(AI);
1735 LLParser::PerFunctionState::~PerFunctionState() {
1736 // If there were any forward referenced non-basicblock values, delete them.
1737 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1738 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1739 if (!isa<BasicBlock>(I->second.first)) {
1740 I->second.first->replaceAllUsesWith(
1741 UndefValue::get(I->second.first->getType()));
1742 delete I->second.first;
1743 I->second.first = 0;
1746 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1747 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1748 if (!isa<BasicBlock>(I->second.first)) {
1749 I->second.first->replaceAllUsesWith(
1750 UndefValue::get(I->second.first->getType()));
1751 delete I->second.first;
1752 I->second.first = 0;
1756 bool LLParser::PerFunctionState::FinishFunction() {
1757 // Check to see if someone took the address of labels in this block.
1758 if (!P.ForwardRefBlockAddresses.empty()) {
1759 ValID FunctionID;
1760 if (!F.getName().empty()) {
1761 FunctionID.Kind = ValID::t_GlobalName;
1762 FunctionID.StrVal = F.getName();
1763 } else {
1764 FunctionID.Kind = ValID::t_GlobalID;
1765 FunctionID.UIntVal = FunctionNumber;
1768 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1769 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1770 if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1771 // Resolve all these references.
1772 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1773 return true;
1775 P.ForwardRefBlockAddresses.erase(FRBAI);
1779 if (!ForwardRefVals.empty())
1780 return P.Error(ForwardRefVals.begin()->second.second,
1781 "use of undefined value '%" + ForwardRefVals.begin()->first +
1782 "'");
1783 if (!ForwardRefValIDs.empty())
1784 return P.Error(ForwardRefValIDs.begin()->second.second,
1785 "use of undefined value '%" +
1786 Twine(ForwardRefValIDs.begin()->first) + "'");
1787 return false;
1791 /// GetVal - Get a value with the specified name or ID, creating a
1792 /// forward reference record if needed. This can return null if the value
1793 /// exists but does not have the right type.
1794 Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1795 const Type *Ty, LocTy Loc) {
1796 // Look this name up in the normal function symbol table.
1797 Value *Val = F.getValueSymbolTable().lookup(Name);
1799 // If this is a forward reference for the value, see if we already created a
1800 // forward ref record.
1801 if (Val == 0) {
1802 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1803 I = ForwardRefVals.find(Name);
1804 if (I != ForwardRefVals.end())
1805 Val = I->second.first;
1808 // If we have the value in the symbol table or fwd-ref table, return it.
1809 if (Val) {
1810 if (Val->getType() == Ty) return Val;
1811 if (Ty->isLabelTy())
1812 P.Error(Loc, "'%" + Name + "' is not a basic block");
1813 else
1814 P.Error(Loc, "'%" + Name + "' defined with type '" +
1815 Val->getType()->getDescription() + "'");
1816 return 0;
1819 // Don't make placeholders with invalid type.
1820 if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1821 P.Error(Loc, "invalid use of a non-first-class type");
1822 return 0;
1825 // Otherwise, create a new forward reference for this value and remember it.
1826 Value *FwdVal;
1827 if (Ty->isLabelTy())
1828 FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1829 else
1830 FwdVal = new Argument(Ty, Name);
1832 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1833 return FwdVal;
1836 Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
1837 LocTy Loc) {
1838 // Look this name up in the normal function symbol table.
1839 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1841 // If this is a forward reference for the value, see if we already created a
1842 // forward ref record.
1843 if (Val == 0) {
1844 std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1845 I = ForwardRefValIDs.find(ID);
1846 if (I != ForwardRefValIDs.end())
1847 Val = I->second.first;
1850 // If we have the value in the symbol table or fwd-ref table, return it.
1851 if (Val) {
1852 if (Val->getType() == Ty) return Val;
1853 if (Ty->isLabelTy())
1854 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1855 else
1856 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1857 Val->getType()->getDescription() + "'");
1858 return 0;
1861 if (!Ty->isFirstClassType() && !Ty->isOpaqueTy() && !Ty->isLabelTy()) {
1862 P.Error(Loc, "invalid use of a non-first-class type");
1863 return 0;
1866 // Otherwise, create a new forward reference for this value and remember it.
1867 Value *FwdVal;
1868 if (Ty->isLabelTy())
1869 FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1870 else
1871 FwdVal = new Argument(Ty);
1873 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1874 return FwdVal;
1877 /// SetInstName - After an instruction is parsed and inserted into its
1878 /// basic block, this installs its name.
1879 bool LLParser::PerFunctionState::SetInstName(int NameID,
1880 const std::string &NameStr,
1881 LocTy NameLoc, Instruction *Inst) {
1882 // If this instruction has void type, it cannot have a name or ID specified.
1883 if (Inst->getType()->isVoidTy()) {
1884 if (NameID != -1 || !NameStr.empty())
1885 return P.Error(NameLoc, "instructions returning void cannot have a name");
1886 return false;
1889 // If this was a numbered instruction, verify that the instruction is the
1890 // expected value and resolve any forward references.
1891 if (NameStr.empty()) {
1892 // If neither a name nor an ID was specified, just use the next ID.
1893 if (NameID == -1)
1894 NameID = NumberedVals.size();
1896 if (unsigned(NameID) != NumberedVals.size())
1897 return P.Error(NameLoc, "instruction expected to be numbered '%" +
1898 Twine(NumberedVals.size()) + "'");
1900 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1901 ForwardRefValIDs.find(NameID);
1902 if (FI != ForwardRefValIDs.end()) {
1903 if (FI->second.first->getType() != Inst->getType())
1904 return P.Error(NameLoc, "instruction forward referenced with type '" +
1905 FI->second.first->getType()->getDescription() + "'");
1906 FI->second.first->replaceAllUsesWith(Inst);
1907 delete FI->second.first;
1908 ForwardRefValIDs.erase(FI);
1911 NumberedVals.push_back(Inst);
1912 return false;
1915 // Otherwise, the instruction had a name. Resolve forward refs and set it.
1916 std::map<std::string, std::pair<Value*, LocTy> >::iterator
1917 FI = ForwardRefVals.find(NameStr);
1918 if (FI != ForwardRefVals.end()) {
1919 if (FI->second.first->getType() != Inst->getType())
1920 return P.Error(NameLoc, "instruction forward referenced with type '" +
1921 FI->second.first->getType()->getDescription() + "'");
1922 FI->second.first->replaceAllUsesWith(Inst);
1923 delete FI->second.first;
1924 ForwardRefVals.erase(FI);
1927 // Set the name on the instruction.
1928 Inst->setName(NameStr);
1930 if (Inst->getName() != NameStr)
1931 return P.Error(NameLoc, "multiple definition of local value named '" +
1932 NameStr + "'");
1933 return false;
1936 /// GetBB - Get a basic block with the specified name or ID, creating a
1937 /// forward reference record if needed.
1938 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1939 LocTy Loc) {
1940 return cast_or_null<BasicBlock>(GetVal(Name,
1941 Type::getLabelTy(F.getContext()), Loc));
1944 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1945 return cast_or_null<BasicBlock>(GetVal(ID,
1946 Type::getLabelTy(F.getContext()), Loc));
1949 /// DefineBB - Define the specified basic block, which is either named or
1950 /// unnamed. If there is an error, this returns null otherwise it returns
1951 /// the block being defined.
1952 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1953 LocTy Loc) {
1954 BasicBlock *BB;
1955 if (Name.empty())
1956 BB = GetBB(NumberedVals.size(), Loc);
1957 else
1958 BB = GetBB(Name, Loc);
1959 if (BB == 0) return 0; // Already diagnosed error.
1961 // Move the block to the end of the function. Forward ref'd blocks are
1962 // inserted wherever they happen to be referenced.
1963 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1965 // Remove the block from forward ref sets.
1966 if (Name.empty()) {
1967 ForwardRefValIDs.erase(NumberedVals.size());
1968 NumberedVals.push_back(BB);
1969 } else {
1970 // BB forward references are already in the function symbol table.
1971 ForwardRefVals.erase(Name);
1974 return BB;
1977 //===----------------------------------------------------------------------===//
1978 // Constants.
1979 //===----------------------------------------------------------------------===//
1981 /// ParseValID - Parse an abstract value that doesn't necessarily have a
1982 /// type implied. For example, if we parse "4" we don't know what integer type
1983 /// it has. The value will later be combined with its type and checked for
1984 /// sanity. PFS is used to convert function-local operands of metadata (since
1985 /// metadata operands are not just parsed here but also converted to values).
1986 /// PFS can be null when we are not parsing metadata values inside a function.
1987 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1988 ID.Loc = Lex.getLoc();
1989 switch (Lex.getKind()) {
1990 default: return TokError("expected value token");
1991 case lltok::GlobalID: // @42
1992 ID.UIntVal = Lex.getUIntVal();
1993 ID.Kind = ValID::t_GlobalID;
1994 break;
1995 case lltok::GlobalVar: // @foo
1996 ID.StrVal = Lex.getStrVal();
1997 ID.Kind = ValID::t_GlobalName;
1998 break;
1999 case lltok::LocalVarID: // %42
2000 ID.UIntVal = Lex.getUIntVal();
2001 ID.Kind = ValID::t_LocalID;
2002 break;
2003 case lltok::LocalVar: // %foo
2004 case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
2005 ID.StrVal = Lex.getStrVal();
2006 ID.Kind = ValID::t_LocalName;
2007 break;
2008 case lltok::exclaim: // !42, !{...}, or !"foo"
2009 return ParseMetadataValue(ID, PFS);
2010 case lltok::APSInt:
2011 ID.APSIntVal = Lex.getAPSIntVal();
2012 ID.Kind = ValID::t_APSInt;
2013 break;
2014 case lltok::APFloat:
2015 ID.APFloatVal = Lex.getAPFloatVal();
2016 ID.Kind = ValID::t_APFloat;
2017 break;
2018 case lltok::kw_true:
2019 ID.ConstantVal = ConstantInt::getTrue(Context);
2020 ID.Kind = ValID::t_Constant;
2021 break;
2022 case lltok::kw_false:
2023 ID.ConstantVal = ConstantInt::getFalse(Context);
2024 ID.Kind = ValID::t_Constant;
2025 break;
2026 case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2027 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2028 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2030 case lltok::lbrace: {
2031 // ValID ::= '{' ConstVector '}'
2032 Lex.Lex();
2033 SmallVector<Constant*, 16> Elts;
2034 if (ParseGlobalValueVector(Elts) ||
2035 ParseToken(lltok::rbrace, "expected end of struct constant"))
2036 return true;
2038 ID.ConstantVal = ConstantStruct::get(Context, Elts.data(),
2039 Elts.size(), false);
2040 ID.Kind = ValID::t_Constant;
2041 return false;
2043 case lltok::less: {
2044 // ValID ::= '<' ConstVector '>' --> Vector.
2045 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2046 Lex.Lex();
2047 bool isPackedStruct = EatIfPresent(lltok::lbrace);
2049 SmallVector<Constant*, 16> Elts;
2050 LocTy FirstEltLoc = Lex.getLoc();
2051 if (ParseGlobalValueVector(Elts) ||
2052 (isPackedStruct &&
2053 ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2054 ParseToken(lltok::greater, "expected end of constant"))
2055 return true;
2057 if (isPackedStruct) {
2058 ID.ConstantVal =
2059 ConstantStruct::get(Context, Elts.data(), Elts.size(), true);
2060 ID.Kind = ValID::t_Constant;
2061 return false;
2064 if (Elts.empty())
2065 return Error(ID.Loc, "constant vector must not be empty");
2067 if (!Elts[0]->getType()->isIntegerTy() &&
2068 !Elts[0]->getType()->isFloatingPointTy())
2069 return Error(FirstEltLoc,
2070 "vector elements must have integer or floating point type");
2072 // Verify that all the vector elements have the same type.
2073 for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2074 if (Elts[i]->getType() != Elts[0]->getType())
2075 return Error(FirstEltLoc,
2076 "vector element #" + Twine(i) +
2077 " is not of type '" + Elts[0]->getType()->getDescription());
2079 ID.ConstantVal = ConstantVector::get(Elts);
2080 ID.Kind = ValID::t_Constant;
2081 return false;
2083 case lltok::lsquare: { // Array Constant
2084 Lex.Lex();
2085 SmallVector<Constant*, 16> Elts;
2086 LocTy FirstEltLoc = Lex.getLoc();
2087 if (ParseGlobalValueVector(Elts) ||
2088 ParseToken(lltok::rsquare, "expected end of array constant"))
2089 return true;
2091 // Handle empty element.
2092 if (Elts.empty()) {
2093 // Use undef instead of an array because it's inconvenient to determine
2094 // the element type at this point, there being no elements to examine.
2095 ID.Kind = ValID::t_EmptyArray;
2096 return false;
2099 if (!Elts[0]->getType()->isFirstClassType())
2100 return Error(FirstEltLoc, "invalid array element type: " +
2101 Elts[0]->getType()->getDescription());
2103 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2105 // Verify all elements are correct type!
2106 for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2107 if (Elts[i]->getType() != Elts[0]->getType())
2108 return Error(FirstEltLoc,
2109 "array element #" + Twine(i) +
2110 " is not of type '" +Elts[0]->getType()->getDescription());
2113 ID.ConstantVal = ConstantArray::get(ATy, Elts.data(), Elts.size());
2114 ID.Kind = ValID::t_Constant;
2115 return false;
2117 case lltok::kw_c: // c "foo"
2118 Lex.Lex();
2119 ID.ConstantVal = ConstantArray::get(Context, Lex.getStrVal(), false);
2120 if (ParseToken(lltok::StringConstant, "expected string")) return true;
2121 ID.Kind = ValID::t_Constant;
2122 return false;
2124 case lltok::kw_asm: {
2125 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2126 bool HasSideEffect, AlignStack;
2127 Lex.Lex();
2128 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2129 ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2130 ParseStringConstant(ID.StrVal) ||
2131 ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2132 ParseToken(lltok::StringConstant, "expected constraint string"))
2133 return true;
2134 ID.StrVal2 = Lex.getStrVal();
2135 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1);
2136 ID.Kind = ValID::t_InlineAsm;
2137 return false;
2140 case lltok::kw_blockaddress: {
2141 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2142 Lex.Lex();
2144 ValID Fn, Label;
2145 LocTy FnLoc, LabelLoc;
2147 if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2148 ParseValID(Fn) ||
2149 ParseToken(lltok::comma, "expected comma in block address expression")||
2150 ParseValID(Label) ||
2151 ParseToken(lltok::rparen, "expected ')' in block address expression"))
2152 return true;
2154 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2155 return Error(Fn.Loc, "expected function name in blockaddress");
2156 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2157 return Error(Label.Loc, "expected basic block name in blockaddress");
2159 // Make a global variable as a placeholder for this reference.
2160 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2161 false, GlobalValue::InternalLinkage,
2162 0, "");
2163 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2164 ID.ConstantVal = FwdRef;
2165 ID.Kind = ValID::t_Constant;
2166 return false;
2169 case lltok::kw_trunc:
2170 case lltok::kw_zext:
2171 case lltok::kw_sext:
2172 case lltok::kw_fptrunc:
2173 case lltok::kw_fpext:
2174 case lltok::kw_bitcast:
2175 case lltok::kw_uitofp:
2176 case lltok::kw_sitofp:
2177 case lltok::kw_fptoui:
2178 case lltok::kw_fptosi:
2179 case lltok::kw_inttoptr:
2180 case lltok::kw_ptrtoint: {
2181 unsigned Opc = Lex.getUIntVal();
2182 PATypeHolder DestTy(Type::getVoidTy(Context));
2183 Constant *SrcVal;
2184 Lex.Lex();
2185 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2186 ParseGlobalTypeAndValue(SrcVal) ||
2187 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2188 ParseType(DestTy) ||
2189 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2190 return true;
2191 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2192 return Error(ID.Loc, "invalid cast opcode for cast from '" +
2193 SrcVal->getType()->getDescription() + "' to '" +
2194 DestTy->getDescription() + "'");
2195 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2196 SrcVal, DestTy);
2197 ID.Kind = ValID::t_Constant;
2198 return false;
2200 case lltok::kw_extractvalue: {
2201 Lex.Lex();
2202 Constant *Val;
2203 SmallVector<unsigned, 4> Indices;
2204 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2205 ParseGlobalTypeAndValue(Val) ||
2206 ParseIndexList(Indices) ||
2207 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2208 return true;
2210 if (!Val->getType()->isAggregateType())
2211 return Error(ID.Loc, "extractvalue operand must be aggregate type");
2212 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
2213 Indices.end()))
2214 return Error(ID.Loc, "invalid indices for extractvalue");
2215 ID.ConstantVal =
2216 ConstantExpr::getExtractValue(Val, Indices.data(), Indices.size());
2217 ID.Kind = ValID::t_Constant;
2218 return false;
2220 case lltok::kw_insertvalue: {
2221 Lex.Lex();
2222 Constant *Val0, *Val1;
2223 SmallVector<unsigned, 4> Indices;
2224 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2225 ParseGlobalTypeAndValue(Val0) ||
2226 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2227 ParseGlobalTypeAndValue(Val1) ||
2228 ParseIndexList(Indices) ||
2229 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2230 return true;
2231 if (!Val0->getType()->isAggregateType())
2232 return Error(ID.Loc, "insertvalue operand must be aggregate type");
2233 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
2234 Indices.end()))
2235 return Error(ID.Loc, "invalid indices for insertvalue");
2236 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1,
2237 Indices.data(), Indices.size());
2238 ID.Kind = ValID::t_Constant;
2239 return false;
2241 case lltok::kw_icmp:
2242 case lltok::kw_fcmp: {
2243 unsigned PredVal, Opc = Lex.getUIntVal();
2244 Constant *Val0, *Val1;
2245 Lex.Lex();
2246 if (ParseCmpPredicate(PredVal, Opc) ||
2247 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2248 ParseGlobalTypeAndValue(Val0) ||
2249 ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2250 ParseGlobalTypeAndValue(Val1) ||
2251 ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2252 return true;
2254 if (Val0->getType() != Val1->getType())
2255 return Error(ID.Loc, "compare operands must have the same type");
2257 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2259 if (Opc == Instruction::FCmp) {
2260 if (!Val0->getType()->isFPOrFPVectorTy())
2261 return Error(ID.Loc, "fcmp requires floating point operands");
2262 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2263 } else {
2264 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2265 if (!Val0->getType()->isIntOrIntVectorTy() &&
2266 !Val0->getType()->isPointerTy())
2267 return Error(ID.Loc, "icmp requires pointer or integer operands");
2268 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2270 ID.Kind = ValID::t_Constant;
2271 return false;
2274 // Binary Operators.
2275 case lltok::kw_add:
2276 case lltok::kw_fadd:
2277 case lltok::kw_sub:
2278 case lltok::kw_fsub:
2279 case lltok::kw_mul:
2280 case lltok::kw_fmul:
2281 case lltok::kw_udiv:
2282 case lltok::kw_sdiv:
2283 case lltok::kw_fdiv:
2284 case lltok::kw_urem:
2285 case lltok::kw_srem:
2286 case lltok::kw_frem:
2287 case lltok::kw_shl:
2288 case lltok::kw_lshr:
2289 case lltok::kw_ashr: {
2290 bool NUW = false;
2291 bool NSW = false;
2292 bool Exact = false;
2293 unsigned Opc = Lex.getUIntVal();
2294 Constant *Val0, *Val1;
2295 Lex.Lex();
2296 LocTy ModifierLoc = Lex.getLoc();
2297 if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2298 Opc == Instruction::Mul || Opc == Instruction::Shl) {
2299 if (EatIfPresent(lltok::kw_nuw))
2300 NUW = true;
2301 if (EatIfPresent(lltok::kw_nsw)) {
2302 NSW = true;
2303 if (EatIfPresent(lltok::kw_nuw))
2304 NUW = true;
2306 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2307 Opc == Instruction::LShr || Opc == Instruction::AShr) {
2308 if (EatIfPresent(lltok::kw_exact))
2309 Exact = true;
2311 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2312 ParseGlobalTypeAndValue(Val0) ||
2313 ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2314 ParseGlobalTypeAndValue(Val1) ||
2315 ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2316 return true;
2317 if (Val0->getType() != Val1->getType())
2318 return Error(ID.Loc, "operands of constexpr must have same type");
2319 if (!Val0->getType()->isIntOrIntVectorTy()) {
2320 if (NUW)
2321 return Error(ModifierLoc, "nuw only applies to integer operations");
2322 if (NSW)
2323 return Error(ModifierLoc, "nsw only applies to integer operations");
2325 // Check that the type is valid for the operator.
2326 switch (Opc) {
2327 case Instruction::Add:
2328 case Instruction::Sub:
2329 case Instruction::Mul:
2330 case Instruction::UDiv:
2331 case Instruction::SDiv:
2332 case Instruction::URem:
2333 case Instruction::SRem:
2334 case Instruction::Shl:
2335 case Instruction::AShr:
2336 case Instruction::LShr:
2337 if (!Val0->getType()->isIntOrIntVectorTy())
2338 return Error(ID.Loc, "constexpr requires integer operands");
2339 break;
2340 case Instruction::FAdd:
2341 case Instruction::FSub:
2342 case Instruction::FMul:
2343 case Instruction::FDiv:
2344 case Instruction::FRem:
2345 if (!Val0->getType()->isFPOrFPVectorTy())
2346 return Error(ID.Loc, "constexpr requires fp operands");
2347 break;
2348 default: llvm_unreachable("Unknown binary operator!");
2350 unsigned Flags = 0;
2351 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2352 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
2353 if (Exact) Flags |= PossiblyExactOperator::IsExact;
2354 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2355 ID.ConstantVal = C;
2356 ID.Kind = ValID::t_Constant;
2357 return false;
2360 // Logical Operations
2361 case lltok::kw_and:
2362 case lltok::kw_or:
2363 case lltok::kw_xor: {
2364 unsigned Opc = Lex.getUIntVal();
2365 Constant *Val0, *Val1;
2366 Lex.Lex();
2367 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2368 ParseGlobalTypeAndValue(Val0) ||
2369 ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2370 ParseGlobalTypeAndValue(Val1) ||
2371 ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2372 return true;
2373 if (Val0->getType() != Val1->getType())
2374 return Error(ID.Loc, "operands of constexpr must have same type");
2375 if (!Val0->getType()->isIntOrIntVectorTy())
2376 return Error(ID.Loc,
2377 "constexpr requires integer or integer vector operands");
2378 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2379 ID.Kind = ValID::t_Constant;
2380 return false;
2383 case lltok::kw_getelementptr:
2384 case lltok::kw_shufflevector:
2385 case lltok::kw_insertelement:
2386 case lltok::kw_extractelement:
2387 case lltok::kw_select: {
2388 unsigned Opc = Lex.getUIntVal();
2389 SmallVector<Constant*, 16> Elts;
2390 bool InBounds = false;
2391 Lex.Lex();
2392 if (Opc == Instruction::GetElementPtr)
2393 InBounds = EatIfPresent(lltok::kw_inbounds);
2394 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2395 ParseGlobalValueVector(Elts) ||
2396 ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2397 return true;
2399 if (Opc == Instruction::GetElementPtr) {
2400 if (Elts.size() == 0 || !Elts[0]->getType()->isPointerTy())
2401 return Error(ID.Loc, "getelementptr requires pointer operand");
2403 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
2404 (Value**)(Elts.data() + 1),
2405 Elts.size() - 1))
2406 return Error(ID.Loc, "invalid indices for getelementptr");
2407 ID.ConstantVal = InBounds ?
2408 ConstantExpr::getInBoundsGetElementPtr(Elts[0],
2409 Elts.data() + 1,
2410 Elts.size() - 1) :
2411 ConstantExpr::getGetElementPtr(Elts[0],
2412 Elts.data() + 1, Elts.size() - 1);
2413 } else if (Opc == Instruction::Select) {
2414 if (Elts.size() != 3)
2415 return Error(ID.Loc, "expected three operands to select");
2416 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2417 Elts[2]))
2418 return Error(ID.Loc, Reason);
2419 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2420 } else if (Opc == Instruction::ShuffleVector) {
2421 if (Elts.size() != 3)
2422 return Error(ID.Loc, "expected three operands to shufflevector");
2423 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2424 return Error(ID.Loc, "invalid operands to shufflevector");
2425 ID.ConstantVal =
2426 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2427 } else if (Opc == Instruction::ExtractElement) {
2428 if (Elts.size() != 2)
2429 return Error(ID.Loc, "expected two operands to extractelement");
2430 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2431 return Error(ID.Loc, "invalid extractelement operands");
2432 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2433 } else {
2434 assert(Opc == Instruction::InsertElement && "Unknown opcode");
2435 if (Elts.size() != 3)
2436 return Error(ID.Loc, "expected three operands to insertelement");
2437 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2438 return Error(ID.Loc, "invalid insertelement operands");
2439 ID.ConstantVal =
2440 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2443 ID.Kind = ValID::t_Constant;
2444 return false;
2448 Lex.Lex();
2449 return false;
2452 /// ParseGlobalValue - Parse a global value with the specified type.
2453 bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&C) {
2454 C = 0;
2455 ValID ID;
2456 Value *V = NULL;
2457 bool Parsed = ParseValID(ID) ||
2458 ConvertValIDToValue(Ty, ID, V, NULL);
2459 if (V && !(C = dyn_cast<Constant>(V)))
2460 return Error(ID.Loc, "global values must be constants");
2461 return Parsed;
2464 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2465 PATypeHolder Type(Type::getVoidTy(Context));
2466 return ParseType(Type) ||
2467 ParseGlobalValue(Type, V);
2470 /// ParseGlobalValueVector
2471 /// ::= /*empty*/
2472 /// ::= TypeAndValue (',' TypeAndValue)*
2473 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2474 // Empty list.
2475 if (Lex.getKind() == lltok::rbrace ||
2476 Lex.getKind() == lltok::rsquare ||
2477 Lex.getKind() == lltok::greater ||
2478 Lex.getKind() == lltok::rparen)
2479 return false;
2481 Constant *C;
2482 if (ParseGlobalTypeAndValue(C)) return true;
2483 Elts.push_back(C);
2485 while (EatIfPresent(lltok::comma)) {
2486 if (ParseGlobalTypeAndValue(C)) return true;
2487 Elts.push_back(C);
2490 return false;
2493 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2494 assert(Lex.getKind() == lltok::lbrace);
2495 Lex.Lex();
2497 SmallVector<Value*, 16> Elts;
2498 if (ParseMDNodeVector(Elts, PFS) ||
2499 ParseToken(lltok::rbrace, "expected end of metadata node"))
2500 return true;
2502 ID.MDNodeVal = MDNode::get(Context, Elts);
2503 ID.Kind = ValID::t_MDNode;
2504 return false;
2507 /// ParseMetadataValue
2508 /// ::= !42
2509 /// ::= !{...}
2510 /// ::= !"string"
2511 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2512 assert(Lex.getKind() == lltok::exclaim);
2513 Lex.Lex();
2515 // MDNode:
2516 // !{ ... }
2517 if (Lex.getKind() == lltok::lbrace)
2518 return ParseMetadataListValue(ID, PFS);
2520 // Standalone metadata reference
2521 // !42
2522 if (Lex.getKind() == lltok::APSInt) {
2523 if (ParseMDNodeID(ID.MDNodeVal)) return true;
2524 ID.Kind = ValID::t_MDNode;
2525 return false;
2528 // MDString:
2529 // ::= '!' STRINGCONSTANT
2530 if (ParseMDString(ID.MDStringVal)) return true;
2531 ID.Kind = ValID::t_MDString;
2532 return false;
2536 //===----------------------------------------------------------------------===//
2537 // Function Parsing.
2538 //===----------------------------------------------------------------------===//
2540 bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
2541 PerFunctionState *PFS) {
2542 if (Ty->isFunctionTy())
2543 return Error(ID.Loc, "functions are not values, refer to them as pointers");
2545 switch (ID.Kind) {
2546 default: llvm_unreachable("Unknown ValID!");
2547 case ValID::t_LocalID:
2548 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2549 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2550 return (V == 0);
2551 case ValID::t_LocalName:
2552 if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2553 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2554 return (V == 0);
2555 case ValID::t_InlineAsm: {
2556 const PointerType *PTy = dyn_cast<PointerType>(Ty);
2557 const FunctionType *FTy =
2558 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2559 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2560 return Error(ID.Loc, "invalid type for inline asm constraint string");
2561 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, ID.UIntVal>>1);
2562 return false;
2564 case ValID::t_MDNode:
2565 if (!Ty->isMetadataTy())
2566 return Error(ID.Loc, "metadata value must have metadata type");
2567 V = ID.MDNodeVal;
2568 return false;
2569 case ValID::t_MDString:
2570 if (!Ty->isMetadataTy())
2571 return Error(ID.Loc, "metadata value must have metadata type");
2572 V = ID.MDStringVal;
2573 return false;
2574 case ValID::t_GlobalName:
2575 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2576 return V == 0;
2577 case ValID::t_GlobalID:
2578 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2579 return V == 0;
2580 case ValID::t_APSInt:
2581 if (!Ty->isIntegerTy())
2582 return Error(ID.Loc, "integer constant must have integer type");
2583 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2584 V = ConstantInt::get(Context, ID.APSIntVal);
2585 return false;
2586 case ValID::t_APFloat:
2587 if (!Ty->isFloatingPointTy() ||
2588 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2589 return Error(ID.Loc, "floating point constant invalid for type");
2591 // The lexer has no type info, so builds all float and double FP constants
2592 // as double. Fix this here. Long double does not need this.
2593 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
2594 Ty->isFloatTy()) {
2595 bool Ignored;
2596 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2597 &Ignored);
2599 V = ConstantFP::get(Context, ID.APFloatVal);
2601 if (V->getType() != Ty)
2602 return Error(ID.Loc, "floating point constant does not have type '" +
2603 Ty->getDescription() + "'");
2605 return false;
2606 case ValID::t_Null:
2607 if (!Ty->isPointerTy())
2608 return Error(ID.Loc, "null must be a pointer type");
2609 V = ConstantPointerNull::get(cast<PointerType>(Ty));
2610 return false;
2611 case ValID::t_Undef:
2612 // FIXME: LabelTy should not be a first-class type.
2613 if ((!Ty->isFirstClassType() || Ty->isLabelTy()) &&
2614 !Ty->isOpaqueTy())
2615 return Error(ID.Loc, "invalid type for undef constant");
2616 V = UndefValue::get(Ty);
2617 return false;
2618 case ValID::t_EmptyArray:
2619 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2620 return Error(ID.Loc, "invalid empty array initializer");
2621 V = UndefValue::get(Ty);
2622 return false;
2623 case ValID::t_Zero:
2624 // FIXME: LabelTy should not be a first-class type.
2625 if (!Ty->isFirstClassType() || Ty->isLabelTy())
2626 return Error(ID.Loc, "invalid type for null constant");
2627 V = Constant::getNullValue(Ty);
2628 return false;
2629 case ValID::t_Constant:
2630 if (ID.ConstantVal->getType() != Ty)
2631 return Error(ID.Loc, "constant expression type mismatch");
2633 V = ID.ConstantVal;
2634 return false;
2638 bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
2639 V = 0;
2640 ValID ID;
2641 return ParseValID(ID, &PFS) ||
2642 ConvertValIDToValue(Ty, ID, V, &PFS);
2645 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
2646 PATypeHolder T(Type::getVoidTy(Context));
2647 return ParseType(T) ||
2648 ParseValue(T, V, PFS);
2651 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2652 PerFunctionState &PFS) {
2653 Value *V;
2654 Loc = Lex.getLoc();
2655 if (ParseTypeAndValue(V, PFS)) return true;
2656 if (!isa<BasicBlock>(V))
2657 return Error(Loc, "expected a basic block");
2658 BB = cast<BasicBlock>(V);
2659 return false;
2663 /// FunctionHeader
2664 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2665 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2666 /// OptionalAlign OptGC
2667 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2668 // Parse the linkage.
2669 LocTy LinkageLoc = Lex.getLoc();
2670 unsigned Linkage;
2672 unsigned Visibility, RetAttrs;
2673 CallingConv::ID CC;
2674 PATypeHolder RetType(Type::getVoidTy(Context));
2675 LocTy RetTypeLoc = Lex.getLoc();
2676 if (ParseOptionalLinkage(Linkage) ||
2677 ParseOptionalVisibility(Visibility) ||
2678 ParseOptionalCallingConv(CC) ||
2679 ParseOptionalAttrs(RetAttrs, 1) ||
2680 ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2681 return true;
2683 // Verify that the linkage is ok.
2684 switch ((GlobalValue::LinkageTypes)Linkage) {
2685 case GlobalValue::ExternalLinkage:
2686 break; // always ok.
2687 case GlobalValue::DLLImportLinkage:
2688 case GlobalValue::ExternalWeakLinkage:
2689 if (isDefine)
2690 return Error(LinkageLoc, "invalid linkage for function definition");
2691 break;
2692 case GlobalValue::PrivateLinkage:
2693 case GlobalValue::LinkerPrivateLinkage:
2694 case GlobalValue::LinkerPrivateWeakLinkage:
2695 case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
2696 case GlobalValue::InternalLinkage:
2697 case GlobalValue::AvailableExternallyLinkage:
2698 case GlobalValue::LinkOnceAnyLinkage:
2699 case GlobalValue::LinkOnceODRLinkage:
2700 case GlobalValue::WeakAnyLinkage:
2701 case GlobalValue::WeakODRLinkage:
2702 case GlobalValue::DLLExportLinkage:
2703 if (!isDefine)
2704 return Error(LinkageLoc, "invalid linkage for function declaration");
2705 break;
2706 case GlobalValue::AppendingLinkage:
2707 case GlobalValue::CommonLinkage:
2708 return Error(LinkageLoc, "invalid function linkage type");
2711 if (!FunctionType::isValidReturnType(RetType) ||
2712 RetType->isOpaqueTy())
2713 return Error(RetTypeLoc, "invalid function return type");
2715 LocTy NameLoc = Lex.getLoc();
2717 std::string FunctionName;
2718 if (Lex.getKind() == lltok::GlobalVar) {
2719 FunctionName = Lex.getStrVal();
2720 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
2721 unsigned NameID = Lex.getUIntVal();
2723 if (NameID != NumberedVals.size())
2724 return TokError("function expected to be numbered '%" +
2725 Twine(NumberedVals.size()) + "'");
2726 } else {
2727 return TokError("expected function name");
2730 Lex.Lex();
2732 if (Lex.getKind() != lltok::lparen)
2733 return TokError("expected '(' in function argument list");
2735 std::vector<ArgInfo> ArgList;
2736 bool isVarArg;
2737 unsigned FuncAttrs;
2738 std::string Section;
2739 unsigned Alignment;
2740 std::string GC;
2741 bool UnnamedAddr;
2742 LocTy UnnamedAddrLoc;
2744 if (ParseArgumentList(ArgList, isVarArg, false) ||
2745 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2746 &UnnamedAddrLoc) ||
2747 ParseOptionalAttrs(FuncAttrs, 2) ||
2748 (EatIfPresent(lltok::kw_section) &&
2749 ParseStringConstant(Section)) ||
2750 ParseOptionalAlignment(Alignment) ||
2751 (EatIfPresent(lltok::kw_gc) &&
2752 ParseStringConstant(GC)))
2753 return true;
2755 // If the alignment was parsed as an attribute, move to the alignment field.
2756 if (FuncAttrs & Attribute::Alignment) {
2757 Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
2758 FuncAttrs &= ~Attribute::Alignment;
2761 // Okay, if we got here, the function is syntactically valid. Convert types
2762 // and do semantic checks.
2763 std::vector<const Type*> ParamTypeList;
2764 SmallVector<AttributeWithIndex, 8> Attrs;
2765 // FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
2766 // attributes.
2767 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
2768 if (FuncAttrs & ObsoleteFuncAttrs) {
2769 RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
2770 FuncAttrs &= ~ObsoleteFuncAttrs;
2773 if (RetAttrs != Attribute::None)
2774 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2776 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2777 ParamTypeList.push_back(ArgList[i].Type);
2778 if (ArgList[i].Attrs != Attribute::None)
2779 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2782 if (FuncAttrs != Attribute::None)
2783 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2785 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
2787 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2788 return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2790 const FunctionType *FT =
2791 FunctionType::get(RetType, ParamTypeList, isVarArg);
2792 const PointerType *PFT = PointerType::getUnqual(FT);
2794 Fn = 0;
2795 if (!FunctionName.empty()) {
2796 // If this was a definition of a forward reference, remove the definition
2797 // from the forward reference table and fill in the forward ref.
2798 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2799 ForwardRefVals.find(FunctionName);
2800 if (FRVI != ForwardRefVals.end()) {
2801 Fn = M->getFunction(FunctionName);
2802 if (Fn->getType() != PFT)
2803 return Error(FRVI->second.second, "invalid forward reference to "
2804 "function '" + FunctionName + "' with wrong type!");
2806 ForwardRefVals.erase(FRVI);
2807 } else if ((Fn = M->getFunction(FunctionName))) {
2808 // If this function already exists in the symbol table, then it is
2809 // multiply defined. We accept a few cases for old backwards compat.
2810 // FIXME: Remove this stuff for LLVM 3.0.
2811 if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
2812 (!Fn->isDeclaration() && isDefine)) {
2813 // If the redefinition has different type or different attributes,
2814 // reject it. If both have bodies, reject it.
2815 return Error(NameLoc, "invalid redefinition of function '" +
2816 FunctionName + "'");
2817 } else if (Fn->isDeclaration()) {
2818 // Make sure to strip off any argument names so we can't get conflicts.
2819 for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
2820 AI != AE; ++AI)
2821 AI->setName("");
2823 } else if (M->getNamedValue(FunctionName)) {
2824 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2827 } else {
2828 // If this is a definition of a forward referenced function, make sure the
2829 // types agree.
2830 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2831 = ForwardRefValIDs.find(NumberedVals.size());
2832 if (I != ForwardRefValIDs.end()) {
2833 Fn = cast<Function>(I->second.first);
2834 if (Fn->getType() != PFT)
2835 return Error(NameLoc, "type of definition and forward reference of '@" +
2836 Twine(NumberedVals.size()) + "' disagree");
2837 ForwardRefValIDs.erase(I);
2841 if (Fn == 0)
2842 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2843 else // Move the forward-reference to the correct spot in the module.
2844 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2846 if (FunctionName.empty())
2847 NumberedVals.push_back(Fn);
2849 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2850 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2851 Fn->setCallingConv(CC);
2852 Fn->setAttributes(PAL);
2853 Fn->setUnnamedAddr(UnnamedAddr);
2854 Fn->setAlignment(Alignment);
2855 Fn->setSection(Section);
2856 if (!GC.empty()) Fn->setGC(GC.c_str());
2858 // Add all of the arguments we parsed to the function.
2859 Function::arg_iterator ArgIt = Fn->arg_begin();
2860 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2861 // If we run out of arguments in the Function prototype, exit early.
2862 // FIXME: REMOVE THIS IN LLVM 3.0, this is just for the mismatch case above.
2863 if (ArgIt == Fn->arg_end()) break;
2865 // If the argument has a name, insert it into the argument symbol table.
2866 if (ArgList[i].Name.empty()) continue;
2868 // Set the name, if it conflicted, it will be auto-renamed.
2869 ArgIt->setName(ArgList[i].Name);
2871 if (ArgIt->getName() != ArgList[i].Name)
2872 return Error(ArgList[i].Loc, "redefinition of argument '%" +
2873 ArgList[i].Name + "'");
2876 return false;
2880 /// ParseFunctionBody
2881 /// ::= '{' BasicBlock+ '}'
2882 /// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
2884 bool LLParser::ParseFunctionBody(Function &Fn) {
2885 if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
2886 return TokError("expected '{' in function body");
2887 Lex.Lex(); // eat the {.
2889 int FunctionNumber = -1;
2890 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2892 PerFunctionState PFS(*this, Fn, FunctionNumber);
2894 // We need at least one basic block.
2895 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_end)
2896 return TokError("function body requires at least one basic block");
2898 while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
2899 if (ParseBasicBlock(PFS)) return true;
2901 // Eat the }.
2902 Lex.Lex();
2904 // Verify function is ok.
2905 return PFS.FinishFunction();
2908 /// ParseBasicBlock
2909 /// ::= LabelStr? Instruction*
2910 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2911 // If this basic block starts out with a name, remember it.
2912 std::string Name;
2913 LocTy NameLoc = Lex.getLoc();
2914 if (Lex.getKind() == lltok::LabelStr) {
2915 Name = Lex.getStrVal();
2916 Lex.Lex();
2919 BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2920 if (BB == 0) return true;
2922 std::string NameStr;
2924 // Parse the instructions in this block until we get a terminator.
2925 Instruction *Inst;
2926 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2927 do {
2928 // This instruction may have three possibilities for a name: a) none
2929 // specified, b) name specified "%foo =", c) number specified: "%4 =".
2930 LocTy NameLoc = Lex.getLoc();
2931 int NameID = -1;
2932 NameStr = "";
2934 if (Lex.getKind() == lltok::LocalVarID) {
2935 NameID = Lex.getUIntVal();
2936 Lex.Lex();
2937 if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2938 return true;
2939 } else if (Lex.getKind() == lltok::LocalVar ||
2940 // FIXME: REMOVE IN LLVM 3.0
2941 Lex.getKind() == lltok::StringConstant) {
2942 NameStr = Lex.getStrVal();
2943 Lex.Lex();
2944 if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2945 return true;
2948 switch (ParseInstruction(Inst, BB, PFS)) {
2949 default: assert(0 && "Unknown ParseInstruction result!");
2950 case InstError: return true;
2951 case InstNormal:
2952 BB->getInstList().push_back(Inst);
2954 // With a normal result, we check to see if the instruction is followed by
2955 // a comma and metadata.
2956 if (EatIfPresent(lltok::comma))
2957 if (ParseInstructionMetadata(Inst, &PFS))
2958 return true;
2959 break;
2960 case InstExtraComma:
2961 BB->getInstList().push_back(Inst);
2963 // If the instruction parser ate an extra comma at the end of it, it
2964 // *must* be followed by metadata.
2965 if (ParseInstructionMetadata(Inst, &PFS))
2966 return true;
2967 break;
2970 // Set the name on the instruction.
2971 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2972 } while (!isa<TerminatorInst>(Inst));
2974 return false;
2977 //===----------------------------------------------------------------------===//
2978 // Instruction Parsing.
2979 //===----------------------------------------------------------------------===//
2981 /// ParseInstruction - Parse one of the many different instructions.
2983 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2984 PerFunctionState &PFS) {
2985 lltok::Kind Token = Lex.getKind();
2986 if (Token == lltok::Eof)
2987 return TokError("found end of file when expecting more instructions");
2988 LocTy Loc = Lex.getLoc();
2989 unsigned KeywordVal = Lex.getUIntVal();
2990 Lex.Lex(); // Eat the keyword.
2992 switch (Token) {
2993 default: return Error(Loc, "expected instruction opcode");
2994 // Terminator Instructions.
2995 case lltok::kw_unwind: Inst = new UnwindInst(Context); return false;
2996 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2997 case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
2998 case lltok::kw_br: return ParseBr(Inst, PFS);
2999 case lltok::kw_switch: return ParseSwitch(Inst, PFS);
3000 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS);
3001 case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
3002 // Binary Operators.
3003 case lltok::kw_add:
3004 case lltok::kw_sub:
3005 case lltok::kw_mul:
3006 case lltok::kw_shl: {
3007 bool NUW = EatIfPresent(lltok::kw_nuw);
3008 bool NSW = EatIfPresent(lltok::kw_nsw);
3009 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3011 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3013 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3014 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3015 return false;
3017 case lltok::kw_fadd:
3018 case lltok::kw_fsub:
3019 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3021 case lltok::kw_sdiv:
3022 case lltok::kw_udiv:
3023 case lltok::kw_lshr:
3024 case lltok::kw_ashr: {
3025 bool Exact = EatIfPresent(lltok::kw_exact);
3027 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3028 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3029 return false;
3032 case lltok::kw_urem:
3033 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3034 case lltok::kw_fdiv:
3035 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3036 case lltok::kw_and:
3037 case lltok::kw_or:
3038 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
3039 case lltok::kw_icmp:
3040 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal);
3041 // Casts.
3042 case lltok::kw_trunc:
3043 case lltok::kw_zext:
3044 case lltok::kw_sext:
3045 case lltok::kw_fptrunc:
3046 case lltok::kw_fpext:
3047 case lltok::kw_bitcast:
3048 case lltok::kw_uitofp:
3049 case lltok::kw_sitofp:
3050 case lltok::kw_fptoui:
3051 case lltok::kw_fptosi:
3052 case lltok::kw_inttoptr:
3053 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
3054 // Other.
3055 case lltok::kw_select: return ParseSelect(Inst, PFS);
3056 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
3057 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3058 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
3059 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
3060 case lltok::kw_phi: return ParsePHI(Inst, PFS);
3061 case lltok::kw_call: return ParseCall(Inst, PFS, false);
3062 case lltok::kw_tail: return ParseCall(Inst, PFS, true);
3063 // Memory.
3064 case lltok::kw_alloca: return ParseAlloc(Inst, PFS);
3065 case lltok::kw_malloc: return ParseAlloc(Inst, PFS, BB, false);
3066 case lltok::kw_free: return ParseFree(Inst, PFS, BB);
3067 case lltok::kw_load: return ParseLoad(Inst, PFS, false);
3068 case lltok::kw_store: return ParseStore(Inst, PFS, false);
3069 case lltok::kw_volatile:
3070 if (EatIfPresent(lltok::kw_load))
3071 return ParseLoad(Inst, PFS, true);
3072 else if (EatIfPresent(lltok::kw_store))
3073 return ParseStore(Inst, PFS, true);
3074 else
3075 return TokError("expected 'load' or 'store'");
3076 case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
3077 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3078 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
3079 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
3083 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3084 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3085 if (Opc == Instruction::FCmp) {
3086 switch (Lex.getKind()) {
3087 default: TokError("expected fcmp predicate (e.g. 'oeq')");
3088 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3089 case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3090 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3091 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3092 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3093 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3094 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3095 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3096 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3097 case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3098 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3099 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3100 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3101 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3102 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3103 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3105 } else {
3106 switch (Lex.getKind()) {
3107 default: TokError("expected icmp predicate (e.g. 'eq')");
3108 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
3109 case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
3110 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3111 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3112 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3113 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3114 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3115 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3116 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3117 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3120 Lex.Lex();
3121 return false;
3124 //===----------------------------------------------------------------------===//
3125 // Terminator Instructions.
3126 //===----------------------------------------------------------------------===//
3128 /// ParseRet - Parse a return instruction.
3129 /// ::= 'ret' void (',' !dbg, !1)*
3130 /// ::= 'ret' TypeAndValue (',' !dbg, !1)*
3131 /// ::= 'ret' TypeAndValue (',' TypeAndValue)+ (',' !dbg, !1)*
3132 /// [[obsolete: LLVM 3.0]]
3133 int LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3134 PerFunctionState &PFS) {
3135 PATypeHolder Ty(Type::getVoidTy(Context));
3136 if (ParseType(Ty, true /*void allowed*/)) return true;
3138 if (Ty->isVoidTy()) {
3139 Inst = ReturnInst::Create(Context);
3140 return false;
3143 Value *RV;
3144 if (ParseValue(Ty, RV, PFS)) return true;
3146 bool ExtraComma = false;
3147 if (EatIfPresent(lltok::comma)) {
3148 // Parse optional custom metadata, e.g. !dbg
3149 if (Lex.getKind() == lltok::MetadataVar) {
3150 ExtraComma = true;
3151 } else {
3152 // The normal case is one return value.
3153 // FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring
3154 // use of 'ret {i32,i32} {i32 1, i32 2}'
3155 SmallVector<Value*, 8> RVs;
3156 RVs.push_back(RV);
3158 do {
3159 // If optional custom metadata, e.g. !dbg is seen then this is the
3160 // end of MRV.
3161 if (Lex.getKind() == lltok::MetadataVar)
3162 break;
3163 if (ParseTypeAndValue(RV, PFS)) return true;
3164 RVs.push_back(RV);
3165 } while (EatIfPresent(lltok::comma));
3167 RV = UndefValue::get(PFS.getFunction().getReturnType());
3168 for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
3169 Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
3170 BB->getInstList().push_back(I);
3171 RV = I;
3176 Inst = ReturnInst::Create(Context, RV);
3177 return ExtraComma ? InstExtraComma : InstNormal;
3181 /// ParseBr
3182 /// ::= 'br' TypeAndValue
3183 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3184 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3185 LocTy Loc, Loc2;
3186 Value *Op0;
3187 BasicBlock *Op1, *Op2;
3188 if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3190 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3191 Inst = BranchInst::Create(BB);
3192 return false;
3195 if (Op0->getType() != Type::getInt1Ty(Context))
3196 return Error(Loc, "branch condition must have 'i1' type");
3198 if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3199 ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3200 ParseToken(lltok::comma, "expected ',' after true destination") ||
3201 ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3202 return true;
3204 Inst = BranchInst::Create(Op1, Op2, Op0);
3205 return false;
3208 /// ParseSwitch
3209 /// Instruction
3210 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3211 /// JumpTable
3212 /// ::= (TypeAndValue ',' TypeAndValue)*
3213 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3214 LocTy CondLoc, BBLoc;
3215 Value *Cond;
3216 BasicBlock *DefaultBB;
3217 if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3218 ParseToken(lltok::comma, "expected ',' after switch condition") ||
3219 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3220 ParseToken(lltok::lsquare, "expected '[' with switch table"))
3221 return true;
3223 if (!Cond->getType()->isIntegerTy())
3224 return Error(CondLoc, "switch condition must have integer type");
3226 // Parse the jump table pairs.
3227 SmallPtrSet<Value*, 32> SeenCases;
3228 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3229 while (Lex.getKind() != lltok::rsquare) {
3230 Value *Constant;
3231 BasicBlock *DestBB;
3233 if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3234 ParseToken(lltok::comma, "expected ',' after case value") ||
3235 ParseTypeAndBasicBlock(DestBB, PFS))
3236 return true;
3238 if (!SeenCases.insert(Constant))
3239 return Error(CondLoc, "duplicate case value in switch");
3240 if (!isa<ConstantInt>(Constant))
3241 return Error(CondLoc, "case value is not a constant integer");
3243 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3246 Lex.Lex(); // Eat the ']'.
3248 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3249 for (unsigned i = 0, e = Table.size(); i != e; ++i)
3250 SI->addCase(Table[i].first, Table[i].second);
3251 Inst = SI;
3252 return false;
3255 /// ParseIndirectBr
3256 /// Instruction
3257 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3258 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3259 LocTy AddrLoc;
3260 Value *Address;
3261 if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3262 ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3263 ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3264 return true;
3266 if (!Address->getType()->isPointerTy())
3267 return Error(AddrLoc, "indirectbr address must have pointer type");
3269 // Parse the destination list.
3270 SmallVector<BasicBlock*, 16> DestList;
3272 if (Lex.getKind() != lltok::rsquare) {
3273 BasicBlock *DestBB;
3274 if (ParseTypeAndBasicBlock(DestBB, PFS))
3275 return true;
3276 DestList.push_back(DestBB);
3278 while (EatIfPresent(lltok::comma)) {
3279 if (ParseTypeAndBasicBlock(DestBB, PFS))
3280 return true;
3281 DestList.push_back(DestBB);
3285 if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3286 return true;
3288 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3289 for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3290 IBI->addDestination(DestList[i]);
3291 Inst = IBI;
3292 return false;
3296 /// ParseInvoke
3297 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3298 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3299 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3300 LocTy CallLoc = Lex.getLoc();
3301 unsigned RetAttrs, FnAttrs;
3302 CallingConv::ID CC;
3303 PATypeHolder RetType(Type::getVoidTy(Context));
3304 LocTy RetTypeLoc;
3305 ValID CalleeID;
3306 SmallVector<ParamInfo, 16> ArgList;
3308 BasicBlock *NormalBB, *UnwindBB;
3309 if (ParseOptionalCallingConv(CC) ||
3310 ParseOptionalAttrs(RetAttrs, 1) ||
3311 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3312 ParseValID(CalleeID) ||
3313 ParseParameterList(ArgList, PFS) ||
3314 ParseOptionalAttrs(FnAttrs, 2) ||
3315 ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3316 ParseTypeAndBasicBlock(NormalBB, PFS) ||
3317 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3318 ParseTypeAndBasicBlock(UnwindBB, PFS))
3319 return true;
3321 // If RetType is a non-function pointer type, then this is the short syntax
3322 // for the call, which means that RetType is just the return type. Infer the
3323 // rest of the function argument types from the arguments that are present.
3324 const PointerType *PFTy = 0;
3325 const FunctionType *Ty = 0;
3326 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3327 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3328 // Pull out the types of all of the arguments...
3329 std::vector<const Type*> ParamTypes;
3330 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3331 ParamTypes.push_back(ArgList[i].V->getType());
3333 if (!FunctionType::isValidReturnType(RetType))
3334 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3336 Ty = FunctionType::get(RetType, ParamTypes, false);
3337 PFTy = PointerType::getUnqual(Ty);
3340 // Look up the callee.
3341 Value *Callee;
3342 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3344 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3345 // function attributes.
3346 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3347 if (FnAttrs & ObsoleteFuncAttrs) {
3348 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3349 FnAttrs &= ~ObsoleteFuncAttrs;
3352 // Set up the Attributes for the function.
3353 SmallVector<AttributeWithIndex, 8> Attrs;
3354 if (RetAttrs != Attribute::None)
3355 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3357 SmallVector<Value*, 8> Args;
3359 // Loop through FunctionType's arguments and ensure they are specified
3360 // correctly. Also, gather any parameter attributes.
3361 FunctionType::param_iterator I = Ty->param_begin();
3362 FunctionType::param_iterator E = Ty->param_end();
3363 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3364 const Type *ExpectedTy = 0;
3365 if (I != E) {
3366 ExpectedTy = *I++;
3367 } else if (!Ty->isVarArg()) {
3368 return Error(ArgList[i].Loc, "too many arguments specified");
3371 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3372 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3373 ExpectedTy->getDescription() + "'");
3374 Args.push_back(ArgList[i].V);
3375 if (ArgList[i].Attrs != Attribute::None)
3376 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3379 if (I != E)
3380 return Error(CallLoc, "not enough parameters specified for call");
3382 if (FnAttrs != Attribute::None)
3383 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3385 // Finish off the Attributes and check them
3386 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3388 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB,
3389 Args.begin(), Args.end());
3390 II->setCallingConv(CC);
3391 II->setAttributes(PAL);
3392 Inst = II;
3393 return false;
3398 //===----------------------------------------------------------------------===//
3399 // Binary Operators.
3400 //===----------------------------------------------------------------------===//
3402 /// ParseArithmetic
3403 /// ::= ArithmeticOps TypeAndValue ',' Value
3405 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
3406 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3407 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3408 unsigned Opc, unsigned OperandType) {
3409 LocTy Loc; Value *LHS, *RHS;
3410 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3411 ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3412 ParseValue(LHS->getType(), RHS, PFS))
3413 return true;
3415 bool Valid;
3416 switch (OperandType) {
3417 default: llvm_unreachable("Unknown operand type!");
3418 case 0: // int or FP.
3419 Valid = LHS->getType()->isIntOrIntVectorTy() ||
3420 LHS->getType()->isFPOrFPVectorTy();
3421 break;
3422 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3423 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3426 if (!Valid)
3427 return Error(Loc, "invalid operand type for instruction");
3429 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3430 return false;
3433 /// ParseLogical
3434 /// ::= ArithmeticOps TypeAndValue ',' Value {
3435 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3436 unsigned Opc) {
3437 LocTy Loc; Value *LHS, *RHS;
3438 if (ParseTypeAndValue(LHS, Loc, PFS) ||
3439 ParseToken(lltok::comma, "expected ',' in logical operation") ||
3440 ParseValue(LHS->getType(), RHS, PFS))
3441 return true;
3443 if (!LHS->getType()->isIntOrIntVectorTy())
3444 return Error(Loc,"instruction requires integer or integer vector operands");
3446 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3447 return false;
3451 /// ParseCompare
3452 /// ::= 'icmp' IPredicates TypeAndValue ',' Value
3453 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value
3454 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3455 unsigned Opc) {
3456 // Parse the integer/fp comparison predicate.
3457 LocTy Loc;
3458 unsigned Pred;
3459 Value *LHS, *RHS;
3460 if (ParseCmpPredicate(Pred, Opc) ||
3461 ParseTypeAndValue(LHS, Loc, PFS) ||
3462 ParseToken(lltok::comma, "expected ',' after compare value") ||
3463 ParseValue(LHS->getType(), RHS, PFS))
3464 return true;
3466 if (Opc == Instruction::FCmp) {
3467 if (!LHS->getType()->isFPOrFPVectorTy())
3468 return Error(Loc, "fcmp requires floating point operands");
3469 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3470 } else {
3471 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3472 if (!LHS->getType()->isIntOrIntVectorTy() &&
3473 !LHS->getType()->isPointerTy())
3474 return Error(Loc, "icmp requires integer operands");
3475 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3477 return false;
3480 //===----------------------------------------------------------------------===//
3481 // Other Instructions.
3482 //===----------------------------------------------------------------------===//
3485 /// ParseCast
3486 /// ::= CastOpc TypeAndValue 'to' Type
3487 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3488 unsigned Opc) {
3489 LocTy Loc; Value *Op;
3490 PATypeHolder DestTy(Type::getVoidTy(Context));
3491 if (ParseTypeAndValue(Op, Loc, PFS) ||
3492 ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3493 ParseType(DestTy))
3494 return true;
3496 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3497 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3498 return Error(Loc, "invalid cast opcode for cast from '" +
3499 Op->getType()->getDescription() + "' to '" +
3500 DestTy->getDescription() + "'");
3502 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3503 return false;
3506 /// ParseSelect
3507 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3508 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3509 LocTy Loc;
3510 Value *Op0, *Op1, *Op2;
3511 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3512 ParseToken(lltok::comma, "expected ',' after select condition") ||
3513 ParseTypeAndValue(Op1, PFS) ||
3514 ParseToken(lltok::comma, "expected ',' after select value") ||
3515 ParseTypeAndValue(Op2, PFS))
3516 return true;
3518 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3519 return Error(Loc, Reason);
3521 Inst = SelectInst::Create(Op0, Op1, Op2);
3522 return false;
3525 /// ParseVA_Arg
3526 /// ::= 'va_arg' TypeAndValue ',' Type
3527 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3528 Value *Op;
3529 PATypeHolder EltTy(Type::getVoidTy(Context));
3530 LocTy TypeLoc;
3531 if (ParseTypeAndValue(Op, PFS) ||
3532 ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3533 ParseType(EltTy, TypeLoc))
3534 return true;
3536 if (!EltTy->isFirstClassType())
3537 return Error(TypeLoc, "va_arg requires operand with first class type");
3539 Inst = new VAArgInst(Op, EltTy);
3540 return false;
3543 /// ParseExtractElement
3544 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue
3545 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3546 LocTy Loc;
3547 Value *Op0, *Op1;
3548 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3549 ParseToken(lltok::comma, "expected ',' after extract value") ||
3550 ParseTypeAndValue(Op1, PFS))
3551 return true;
3553 if (!ExtractElementInst::isValidOperands(Op0, Op1))
3554 return Error(Loc, "invalid extractelement operands");
3556 Inst = ExtractElementInst::Create(Op0, Op1);
3557 return false;
3560 /// ParseInsertElement
3561 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3562 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3563 LocTy Loc;
3564 Value *Op0, *Op1, *Op2;
3565 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3566 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3567 ParseTypeAndValue(Op1, PFS) ||
3568 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3569 ParseTypeAndValue(Op2, PFS))
3570 return true;
3572 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3573 return Error(Loc, "invalid insertelement operands");
3575 Inst = InsertElementInst::Create(Op0, Op1, Op2);
3576 return false;
3579 /// ParseShuffleVector
3580 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3581 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3582 LocTy Loc;
3583 Value *Op0, *Op1, *Op2;
3584 if (ParseTypeAndValue(Op0, Loc, PFS) ||
3585 ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3586 ParseTypeAndValue(Op1, PFS) ||
3587 ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3588 ParseTypeAndValue(Op2, PFS))
3589 return true;
3591 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3592 return Error(Loc, "invalid extractelement operands");
3594 Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3595 return false;
3598 /// ParsePHI
3599 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3600 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3601 PATypeHolder Ty(Type::getVoidTy(Context));
3602 Value *Op0, *Op1;
3603 LocTy TypeLoc = Lex.getLoc();
3605 if (ParseType(Ty) ||
3606 ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3607 ParseValue(Ty, Op0, PFS) ||
3608 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3609 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3610 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3611 return true;
3613 bool AteExtraComma = false;
3614 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3615 while (1) {
3616 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3618 if (!EatIfPresent(lltok::comma))
3619 break;
3621 if (Lex.getKind() == lltok::MetadataVar) {
3622 AteExtraComma = true;
3623 break;
3626 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3627 ParseValue(Ty, Op0, PFS) ||
3628 ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3629 ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3630 ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3631 return true;
3634 if (!Ty->isFirstClassType())
3635 return Error(TypeLoc, "phi node must have first class type");
3637 PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3638 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3639 PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3640 Inst = PN;
3641 return AteExtraComma ? InstExtraComma : InstNormal;
3644 /// ParseCall
3645 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3646 /// ParameterList OptionalAttrs
3647 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3648 bool isTail) {
3649 unsigned RetAttrs, FnAttrs;
3650 CallingConv::ID CC;
3651 PATypeHolder RetType(Type::getVoidTy(Context));
3652 LocTy RetTypeLoc;
3653 ValID CalleeID;
3654 SmallVector<ParamInfo, 16> ArgList;
3655 LocTy CallLoc = Lex.getLoc();
3657 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3658 ParseOptionalCallingConv(CC) ||
3659 ParseOptionalAttrs(RetAttrs, 1) ||
3660 ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3661 ParseValID(CalleeID) ||
3662 ParseParameterList(ArgList, PFS) ||
3663 ParseOptionalAttrs(FnAttrs, 2))
3664 return true;
3666 // If RetType is a non-function pointer type, then this is the short syntax
3667 // for the call, which means that RetType is just the return type. Infer the
3668 // rest of the function argument types from the arguments that are present.
3669 const PointerType *PFTy = 0;
3670 const FunctionType *Ty = 0;
3671 if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3672 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3673 // Pull out the types of all of the arguments...
3674 std::vector<const Type*> ParamTypes;
3675 for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3676 ParamTypes.push_back(ArgList[i].V->getType());
3678 if (!FunctionType::isValidReturnType(RetType))
3679 return Error(RetTypeLoc, "Invalid result type for LLVM function");
3681 Ty = FunctionType::get(RetType, ParamTypes, false);
3682 PFTy = PointerType::getUnqual(Ty);
3685 // Look up the callee.
3686 Value *Callee;
3687 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3689 // FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
3690 // function attributes.
3691 unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
3692 if (FnAttrs & ObsoleteFuncAttrs) {
3693 RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
3694 FnAttrs &= ~ObsoleteFuncAttrs;
3697 // Set up the Attributes for the function.
3698 SmallVector<AttributeWithIndex, 8> Attrs;
3699 if (RetAttrs != Attribute::None)
3700 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3702 SmallVector<Value*, 8> Args;
3704 // Loop through FunctionType's arguments and ensure they are specified
3705 // correctly. Also, gather any parameter attributes.
3706 FunctionType::param_iterator I = Ty->param_begin();
3707 FunctionType::param_iterator E = Ty->param_end();
3708 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3709 const Type *ExpectedTy = 0;
3710 if (I != E) {
3711 ExpectedTy = *I++;
3712 } else if (!Ty->isVarArg()) {
3713 return Error(ArgList[i].Loc, "too many arguments specified");
3716 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3717 return Error(ArgList[i].Loc, "argument is not of expected type '" +
3718 ExpectedTy->getDescription() + "'");
3719 Args.push_back(ArgList[i].V);
3720 if (ArgList[i].Attrs != Attribute::None)
3721 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3724 if (I != E)
3725 return Error(CallLoc, "not enough parameters specified for call");
3727 if (FnAttrs != Attribute::None)
3728 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3730 // Finish off the Attributes and check them
3731 AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
3733 CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
3734 CI->setTailCall(isTail);
3735 CI->setCallingConv(CC);
3736 CI->setAttributes(PAL);
3737 Inst = CI;
3738 return false;
3741 //===----------------------------------------------------------------------===//
3742 // Memory Instructions.
3743 //===----------------------------------------------------------------------===//
3745 /// ParseAlloc
3746 /// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalInfo)?
3747 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3748 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
3749 BasicBlock* BB, bool isAlloca) {
3750 PATypeHolder Ty(Type::getVoidTy(Context));
3751 Value *Size = 0;
3752 LocTy SizeLoc;
3753 unsigned Alignment = 0;
3754 if (ParseType(Ty)) return true;
3756 bool AteExtraComma = false;
3757 if (EatIfPresent(lltok::comma)) {
3758 if (Lex.getKind() == lltok::kw_align) {
3759 if (ParseOptionalAlignment(Alignment)) return true;
3760 } else if (Lex.getKind() == lltok::MetadataVar) {
3761 AteExtraComma = true;
3762 } else {
3763 if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3764 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3765 return true;
3769 if (Size && !Size->getType()->isIntegerTy())
3770 return Error(SizeLoc, "element count must have integer type");
3772 if (isAlloca) {
3773 Inst = new AllocaInst(Ty, Size, Alignment);
3774 return AteExtraComma ? InstExtraComma : InstNormal;
3777 // Autoupgrade old malloc instruction to malloc call.
3778 // FIXME: Remove in LLVM 3.0.
3779 if (Size && !Size->getType()->isIntegerTy(32))
3780 return Error(SizeLoc, "element count must be i32");
3781 const Type *IntPtrTy = Type::getInt32Ty(Context);
3782 Constant *AllocSize = ConstantExpr::getSizeOf(Ty);
3783 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, IntPtrTy);
3784 if (!MallocF)
3785 // Prototype malloc as "void *(int32)".
3786 // This function is renamed as "malloc" in ValidateEndOfModule().
3787 MallocF = cast<Function>(
3788 M->getOrInsertFunction("", Type::getInt8PtrTy(Context), IntPtrTy, NULL));
3789 Inst = CallInst::CreateMalloc(BB, IntPtrTy, Ty, AllocSize, Size, MallocF);
3790 return AteExtraComma ? InstExtraComma : InstNormal;
3793 /// ParseFree
3794 /// ::= 'free' TypeAndValue
3795 bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS,
3796 BasicBlock* BB) {
3797 Value *Val; LocTy Loc;
3798 if (ParseTypeAndValue(Val, Loc, PFS)) return true;
3799 if (!Val->getType()->isPointerTy())
3800 return Error(Loc, "operand to free must be a pointer");
3801 Inst = CallInst::CreateFree(Val, BB);
3802 return false;
3805 /// ParseLoad
3806 /// ::= 'volatile'? 'load' TypeAndValue (',' OptionalInfo)?
3807 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
3808 bool isVolatile) {
3809 Value *Val; LocTy Loc;
3810 unsigned Alignment = 0;
3811 bool AteExtraComma = false;
3812 if (ParseTypeAndValue(Val, Loc, PFS) ||
3813 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3814 return true;
3816 if (!Val->getType()->isPointerTy() ||
3817 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3818 return Error(Loc, "load operand must be a pointer to a first class type");
3820 Inst = new LoadInst(Val, "", isVolatile, Alignment);
3821 return AteExtraComma ? InstExtraComma : InstNormal;
3824 /// ParseStore
3825 /// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3826 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
3827 bool isVolatile) {
3828 Value *Val, *Ptr; LocTy Loc, PtrLoc;
3829 unsigned Alignment = 0;
3830 bool AteExtraComma = false;
3831 if (ParseTypeAndValue(Val, Loc, PFS) ||
3832 ParseToken(lltok::comma, "expected ',' after store operand") ||
3833 ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3834 ParseOptionalCommaAlign(Alignment, AteExtraComma))
3835 return true;
3837 if (!Ptr->getType()->isPointerTy())
3838 return Error(PtrLoc, "store operand must be a pointer");
3839 if (!Val->getType()->isFirstClassType())
3840 return Error(Loc, "store operand must be a first class value");
3841 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3842 return Error(Loc, "stored value and pointer type do not match");
3844 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
3845 return AteExtraComma ? InstExtraComma : InstNormal;
3848 /// ParseGetResult
3849 /// ::= 'getresult' TypeAndValue ',' i32
3850 /// FIXME: Remove support for getresult in LLVM 3.0
3851 bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
3852 Value *Val; LocTy ValLoc, EltLoc;
3853 unsigned Element;
3854 if (ParseTypeAndValue(Val, ValLoc, PFS) ||
3855 ParseToken(lltok::comma, "expected ',' after getresult operand") ||
3856 ParseUInt32(Element, EltLoc))
3857 return true;
3859 if (!Val->getType()->isStructTy() && !Val->getType()->isArrayTy())
3860 return Error(ValLoc, "getresult inst requires an aggregate operand");
3861 if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
3862 return Error(EltLoc, "invalid getresult index for value");
3863 Inst = ExtractValueInst::Create(Val, Element);
3864 return false;
3867 /// ParseGetElementPtr
3868 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3869 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3870 Value *Ptr, *Val; LocTy Loc, EltLoc;
3872 bool InBounds = EatIfPresent(lltok::kw_inbounds);
3874 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3876 if (!Ptr->getType()->isPointerTy())
3877 return Error(Loc, "base of getelementptr must be a pointer");
3879 SmallVector<Value*, 16> Indices;
3880 bool AteExtraComma = false;
3881 while (EatIfPresent(lltok::comma)) {
3882 if (Lex.getKind() == lltok::MetadataVar) {
3883 AteExtraComma = true;
3884 break;
3886 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3887 if (!Val->getType()->isIntegerTy())
3888 return Error(EltLoc, "getelementptr index must be an integer");
3889 Indices.push_back(Val);
3892 if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
3893 Indices.begin(), Indices.end()))
3894 return Error(Loc, "invalid getelementptr indices");
3895 Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
3896 if (InBounds)
3897 cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
3898 return AteExtraComma ? InstExtraComma : InstNormal;
3901 /// ParseExtractValue
3902 /// ::= 'extractvalue' TypeAndValue (',' uint32)+
3903 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
3904 Value *Val; LocTy Loc;
3905 SmallVector<unsigned, 4> Indices;
3906 bool AteExtraComma;
3907 if (ParseTypeAndValue(Val, Loc, PFS) ||
3908 ParseIndexList(Indices, AteExtraComma))
3909 return true;
3911 if (!Val->getType()->isAggregateType())
3912 return Error(Loc, "extractvalue operand must be aggregate type");
3914 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
3915 Indices.end()))
3916 return Error(Loc, "invalid indices for extractvalue");
3917 Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
3918 return AteExtraComma ? InstExtraComma : InstNormal;
3921 /// ParseInsertValue
3922 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
3923 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
3924 Value *Val0, *Val1; LocTy Loc0, Loc1;
3925 SmallVector<unsigned, 4> Indices;
3926 bool AteExtraComma;
3927 if (ParseTypeAndValue(Val0, Loc0, PFS) ||
3928 ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
3929 ParseTypeAndValue(Val1, Loc1, PFS) ||
3930 ParseIndexList(Indices, AteExtraComma))
3931 return true;
3933 if (!Val0->getType()->isAggregateType())
3934 return Error(Loc0, "insertvalue operand must be aggregate type");
3936 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
3937 Indices.end()))
3938 return Error(Loc0, "invalid indices for insertvalue");
3939 Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
3940 return AteExtraComma ? InstExtraComma : InstNormal;
3943 //===----------------------------------------------------------------------===//
3944 // Embedded metadata.
3945 //===----------------------------------------------------------------------===//
3947 /// ParseMDNodeVector
3948 /// ::= Element (',' Element)*
3949 /// Element
3950 /// ::= 'null' | TypeAndValue
3951 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
3952 PerFunctionState *PFS) {
3953 // Check for an empty list.
3954 if (Lex.getKind() == lltok::rbrace)
3955 return false;
3957 do {
3958 // Null is a special case since it is typeless.
3959 if (EatIfPresent(lltok::kw_null)) {
3960 Elts.push_back(0);
3961 continue;
3964 Value *V = 0;
3965 PATypeHolder Ty(Type::getVoidTy(Context));
3966 ValID ID;
3967 if (ParseType(Ty) || ParseValID(ID, PFS) ||
3968 ConvertValIDToValue(Ty, ID, V, PFS))
3969 return true;
3971 Elts.push_back(V);
3972 } while (EatIfPresent(lltok::comma));
3974 return false;