1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
12 // This test program creates two LLVM functions then calls them from three
13 // separate threads. It requires the pthreads library.
14 // The three threads are created and then block waiting on a condition variable.
15 // Once all threads are blocked on the conditional variable, the main thread
16 // wakes them up. This complicated work is performed so that all three threads
17 // call into the JIT at the same time (or the best possible approximation of the
18 // same time). This test had assertion errors until I got the locking right.
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/ExecutionEngine/JIT.h"
27 #include "llvm/ExecutionEngine/Interpreter.h"
28 #include "llvm/ExecutionEngine/GenericValue.h"
29 #include "llvm/Target/TargetSelect.h"
33 static Function
* createAdd1(Module
*M
) {
34 // Create the add1 function entry and insert this entry into module M. The
35 // function will have a return type of "int" and take an argument of "int".
36 // The '0' terminates the list of argument types.
38 cast
<Function
>(M
->getOrInsertFunction("add1",
39 Type::getInt32Ty(M
->getContext()),
40 Type::getInt32Ty(M
->getContext()),
43 // Add a basic block to the function. As before, it automatically inserts
44 // because of the last argument.
45 BasicBlock
*BB
= BasicBlock::Create(M
->getContext(), "EntryBlock", Add1F
);
47 // Get pointers to the constant `1'.
48 Value
*One
= ConstantInt::get(Type::getInt32Ty(M
->getContext()), 1);
50 // Get pointers to the integer argument of the add1 function...
51 assert(Add1F
->arg_begin() != Add1F
->arg_end()); // Make sure there's an arg
52 Argument
*ArgX
= Add1F
->arg_begin(); // Get the arg
53 ArgX
->setName("AnArg"); // Give it a nice symbolic name for fun.
55 // Create the add instruction, inserting it into the end of BB.
56 Instruction
*Add
= BinaryOperator::CreateAdd(One
, ArgX
, "addresult", BB
);
58 // Create the return instruction and add it to the basic block
59 ReturnInst::Create(M
->getContext(), Add
, BB
);
61 // Now, function add1 is ready.
65 static Function
*CreateFibFunction(Module
*M
) {
66 // Create the fib function and insert it into module M. This function is said
67 // to return an int and take an int parameter.
69 cast
<Function
>(M
->getOrInsertFunction("fib",
70 Type::getInt32Ty(M
->getContext()),
71 Type::getInt32Ty(M
->getContext()),
74 // Add a basic block to the function.
75 BasicBlock
*BB
= BasicBlock::Create(M
->getContext(), "EntryBlock", FibF
);
77 // Get pointers to the constants.
78 Value
*One
= ConstantInt::get(Type::getInt32Ty(M
->getContext()), 1);
79 Value
*Two
= ConstantInt::get(Type::getInt32Ty(M
->getContext()), 2);
81 // Get pointer to the integer argument of the add1 function...
82 Argument
*ArgX
= FibF
->arg_begin(); // Get the arg.
83 ArgX
->setName("AnArg"); // Give it a nice symbolic name for fun.
85 // Create the true_block.
86 BasicBlock
*RetBB
= BasicBlock::Create(M
->getContext(), "return", FibF
);
87 // Create an exit block.
88 BasicBlock
* RecurseBB
= BasicBlock::Create(M
->getContext(), "recurse", FibF
);
90 // Create the "if (arg < 2) goto exitbb"
91 Value
*CondInst
= new ICmpInst(*BB
, ICmpInst::ICMP_SLE
, ArgX
, Two
, "cond");
92 BranchInst::Create(RetBB
, RecurseBB
, CondInst
, BB
);
95 ReturnInst::Create(M
->getContext(), One
, RetBB
);
98 Value
*Sub
= BinaryOperator::CreateSub(ArgX
, One
, "arg", RecurseBB
);
99 Value
*CallFibX1
= CallInst::Create(FibF
, Sub
, "fibx1", RecurseBB
);
102 Sub
= BinaryOperator::CreateSub(ArgX
, Two
, "arg", RecurseBB
);
103 Value
*CallFibX2
= CallInst::Create(FibF
, Sub
, "fibx2", RecurseBB
);
107 BinaryOperator::CreateAdd(CallFibX1
, CallFibX2
, "addresult", RecurseBB
);
109 // Create the return instruction and add it to the basic block
110 ReturnInst::Create(M
->getContext(), Sum
, RecurseBB
);
115 struct threadParams
{
121 // We block the subthreads just before they begin to execute:
122 // we want all of them to call into the JIT at the same time,
123 // to verify that the locking is working correctly.
132 int result
= pthread_cond_init( &condition
, NULL
);
133 assert( result
== 0 );
135 result
= pthread_mutex_init( &mutex
, NULL
);
136 assert( result
== 0 );
141 int result
= pthread_cond_destroy( &condition
);
142 assert( result
== 0 );
144 result
= pthread_mutex_destroy( &mutex
);
145 assert( result
== 0 );
148 // All threads will stop here until another thread calls releaseThreads
151 int result
= pthread_mutex_lock( &mutex
);
152 assert( result
== 0 );
154 //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
156 assert( waitFor
== 0 || n
<= waitFor
);
157 if ( waitFor
> 0 && n
== waitFor
)
159 // There are enough threads blocked that we can release all of them
160 std::cout
<< "Unblocking threads from block()" << std::endl
;
165 // We just need to wait until someone unblocks us
166 result
= pthread_cond_wait( &condition
, &mutex
);
167 assert( result
== 0 );
170 // unlock the mutex before returning
171 result
= pthread_mutex_unlock( &mutex
);
172 assert( result
== 0 );
175 // If there are num or more threads blocked, it will signal them all
176 // Otherwise, this thread blocks until there are enough OTHER threads
178 void releaseThreads( size_t num
)
180 int result
= pthread_mutex_lock( &mutex
);
181 assert( result
== 0 );
184 std::cout
<< "Unblocking threads from releaseThreads()" << std::endl
;
190 pthread_cond_wait( &condition
, &mutex
);
193 // unlock the mutex before returning
194 result
= pthread_mutex_unlock( &mutex
);
195 assert( result
== 0 );
199 void unblockThreads()
201 // Reset the counters to zero: this way, if any new threads
202 // enter while threads are exiting, they will block instead
203 // of triggering a new release of threads
206 // Reset waitFor to zero: this way, if waitFor threads enter
207 // while threads are exiting, they will block instead of
208 // triggering a new release of threads
211 int result
= pthread_cond_broadcast( &condition
);
212 assert(result
== 0); result
=result
;
217 pthread_cond_t condition
;
218 pthread_mutex_t mutex
;
221 static WaitForThreads synchronize
;
223 void* callFunc( void* param
)
225 struct threadParams
* p
= (struct threadParams
*) param
;
227 // Call the `foo' function with no arguments:
228 std::vector
<GenericValue
> Args(1);
229 Args
[0].IntVal
= APInt(32, p
->value
);
231 synchronize
.block(); // wait until other threads are at this point
232 GenericValue gv
= p
->EE
->runFunction(p
->F
, Args
);
234 return (void*)(intptr_t)gv
.IntVal
.getZExtValue();
238 InitializeNativeTarget();
241 // Create some module to put our function into it.
242 Module
*M
= new Module("test", Context
);
244 Function
* add1F
= createAdd1( M
);
245 Function
* fibF
= CreateFibFunction( M
);
247 // Now we create the JIT.
248 ExecutionEngine
* EE
= EngineBuilder(M
).create();
250 //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
251 //~ std::cout << "\n\nRunning foo: " << std::flush;
253 // Create one thread for add1 and two threads for fib
254 struct threadParams add1
= { EE
, add1F
, 1000 };
255 struct threadParams fib1
= { EE
, fibF
, 39 };
256 struct threadParams fib2
= { EE
, fibF
, 42 };
258 pthread_t add1Thread
;
259 int result
= pthread_create( &add1Thread
, NULL
, callFunc
, &add1
);
261 std::cerr
<< "Could not create thread" << std::endl
;
265 pthread_t fibThread1
;
266 result
= pthread_create( &fibThread1
, NULL
, callFunc
, &fib1
);
268 std::cerr
<< "Could not create thread" << std::endl
;
272 pthread_t fibThread2
;
273 result
= pthread_create( &fibThread2
, NULL
, callFunc
, &fib2
);
275 std::cerr
<< "Could not create thread" << std::endl
;
279 synchronize
.releaseThreads(3); // wait until other threads are at this point
282 result
= pthread_join( add1Thread
, &returnValue
);
284 std::cerr
<< "Could not join thread" << std::endl
;
287 std::cout
<< "Add1 returned " << intptr_t(returnValue
) << std::endl
;
289 result
= pthread_join( fibThread1
, &returnValue
);
291 std::cerr
<< "Could not join thread" << std::endl
;
294 std::cout
<< "Fib1 returned " << intptr_t(returnValue
) << std::endl
;
296 result
= pthread_join( fibThread2
, &returnValue
);
298 std::cerr
<< "Could not join thread" << std::endl
;
301 std::cout
<< "Fib2 returned " << intptr_t(returnValue
) << std::endl
;