1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure"). For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "globalsmodref-aa"
18 #include "llvm/Analysis/Passes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Constants.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/CallGraph.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/InstIterator.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/SCCIterator.h"
35 STATISTIC(NumNonAddrTakenGlobalVars
,
36 "Number of global vars without address taken");
37 STATISTIC(NumNonAddrTakenFunctions
,"Number of functions without address taken");
38 STATISTIC(NumNoMemFunctions
, "Number of functions that do not access memory");
39 STATISTIC(NumReadMemFunctions
, "Number of functions that only read memory");
40 STATISTIC(NumIndirectGlobalVars
, "Number of indirect global objects");
43 /// FunctionRecord - One instance of this structure is stored for every
44 /// function in the program. Later, the entries for these functions are
45 /// removed if the function is found to call an external function (in which
46 /// case we know nothing about it.
47 struct FunctionRecord
{
48 /// GlobalInfo - Maintain mod/ref info for all of the globals without
49 /// addresses taken that are read or written (transitively) by this
51 std::map
<const GlobalValue
*, unsigned> GlobalInfo
;
53 /// MayReadAnyGlobal - May read global variables, but it is not known which.
54 bool MayReadAnyGlobal
;
56 unsigned getInfoForGlobal(const GlobalValue
*GV
) const {
57 unsigned Effect
= MayReadAnyGlobal
? AliasAnalysis::Ref
: 0;
58 std::map
<const GlobalValue
*, unsigned>::const_iterator I
=
60 if (I
!= GlobalInfo
.end())
65 /// FunctionEffect - Capture whether or not this function reads or writes to
66 /// ANY memory. If not, we can do a lot of aggressive analysis on it.
67 unsigned FunctionEffect
;
69 FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
72 /// GlobalsModRef - The actual analysis pass.
73 class GlobalsModRef
: public ModulePass
, public AliasAnalysis
{
74 /// NonAddressTakenGlobals - The globals that do not have their addresses
76 std::set
<const GlobalValue
*> NonAddressTakenGlobals
;
78 /// IndirectGlobals - The memory pointed to by this global is known to be
79 /// 'owned' by the global.
80 std::set
<const GlobalValue
*> IndirectGlobals
;
82 /// AllocsForIndirectGlobals - If an instruction allocates memory for an
83 /// indirect global, this map indicates which one.
84 std::map
<const Value
*, const GlobalValue
*> AllocsForIndirectGlobals
;
86 /// FunctionInfo - For each function, keep track of what globals are
88 std::map
<const Function
*, FunctionRecord
> FunctionInfo
;
92 GlobalsModRef() : ModulePass(ID
) {
93 initializeGlobalsModRefPass(*PassRegistry::getPassRegistry());
96 bool runOnModule(Module
&M
) {
97 InitializeAliasAnalysis(this); // set up super class
98 AnalyzeGlobals(M
); // find non-addr taken globals
99 AnalyzeCallGraph(getAnalysis
<CallGraph
>(), M
); // Propagate on CG
103 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
104 AliasAnalysis::getAnalysisUsage(AU
);
105 AU
.addRequired
<CallGraph
>();
106 AU
.setPreservesAll(); // Does not transform code
109 //------------------------------------------------
110 // Implement the AliasAnalysis API
112 AliasResult
alias(const Location
&LocA
, const Location
&LocB
);
113 ModRefResult
getModRefInfo(ImmutableCallSite CS
,
114 const Location
&Loc
);
115 ModRefResult
getModRefInfo(ImmutableCallSite CS1
,
116 ImmutableCallSite CS2
) {
117 return AliasAnalysis::getModRefInfo(CS1
, CS2
);
120 /// getModRefBehavior - Return the behavior of the specified function if
121 /// called from the specified call site. The call site may be null in which
122 /// case the most generic behavior of this function should be returned.
123 ModRefBehavior
getModRefBehavior(const Function
*F
) {
124 ModRefBehavior Min
= UnknownModRefBehavior
;
126 if (FunctionRecord
*FR
= getFunctionInfo(F
)) {
127 if (FR
->FunctionEffect
== 0)
128 Min
= DoesNotAccessMemory
;
129 else if ((FR
->FunctionEffect
& Mod
) == 0)
130 Min
= OnlyReadsMemory
;
133 return ModRefBehavior(AliasAnalysis::getModRefBehavior(F
) & Min
);
136 /// getModRefBehavior - Return the behavior of the specified function if
137 /// called from the specified call site. The call site may be null in which
138 /// case the most generic behavior of this function should be returned.
139 ModRefBehavior
getModRefBehavior(ImmutableCallSite CS
) {
140 ModRefBehavior Min
= UnknownModRefBehavior
;
142 if (const Function
* F
= CS
.getCalledFunction())
143 if (FunctionRecord
*FR
= getFunctionInfo(F
)) {
144 if (FR
->FunctionEffect
== 0)
145 Min
= DoesNotAccessMemory
;
146 else if ((FR
->FunctionEffect
& Mod
) == 0)
147 Min
= OnlyReadsMemory
;
150 return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS
) & Min
);
153 virtual void deleteValue(Value
*V
);
154 virtual void copyValue(Value
*From
, Value
*To
);
155 virtual void addEscapingUse(Use
&U
);
157 /// getAdjustedAnalysisPointer - This method is used when a pass implements
158 /// an analysis interface through multiple inheritance. If needed, it
159 /// should override this to adjust the this pointer as needed for the
160 /// specified pass info.
161 virtual void *getAdjustedAnalysisPointer(AnalysisID PI
) {
162 if (PI
== &AliasAnalysis::ID
)
163 return (AliasAnalysis
*)this;
168 /// getFunctionInfo - Return the function info for the function, or null if
169 /// we don't have anything useful to say about it.
170 FunctionRecord
*getFunctionInfo(const Function
*F
) {
171 std::map
<const Function
*, FunctionRecord
>::iterator I
=
172 FunctionInfo
.find(F
);
173 if (I
!= FunctionInfo
.end())
178 void AnalyzeGlobals(Module
&M
);
179 void AnalyzeCallGraph(CallGraph
&CG
, Module
&M
);
180 bool AnalyzeUsesOfPointer(Value
*V
, std::vector
<Function
*> &Readers
,
181 std::vector
<Function
*> &Writers
,
182 GlobalValue
*OkayStoreDest
= 0);
183 bool AnalyzeIndirectGlobalMemory(GlobalValue
*GV
);
187 char GlobalsModRef::ID
= 0;
188 INITIALIZE_AG_PASS_BEGIN(GlobalsModRef
, AliasAnalysis
,
189 "globalsmodref-aa", "Simple mod/ref analysis for globals",
191 INITIALIZE_AG_DEPENDENCY(CallGraph
)
192 INITIALIZE_AG_PASS_END(GlobalsModRef
, AliasAnalysis
,
193 "globalsmodref-aa", "Simple mod/ref analysis for globals",
196 Pass
*llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
198 /// AnalyzeGlobals - Scan through the users of all of the internal
199 /// GlobalValue's in the program. If none of them have their "address taken"
200 /// (really, their address passed to something nontrivial), record this fact,
201 /// and record the functions that they are used directly in.
202 void GlobalsModRef::AnalyzeGlobals(Module
&M
) {
203 std::vector
<Function
*> Readers
, Writers
;
204 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
)
205 if (I
->hasLocalLinkage()) {
206 if (!AnalyzeUsesOfPointer(I
, Readers
, Writers
)) {
207 // Remember that we are tracking this global.
208 NonAddressTakenGlobals
.insert(I
);
209 ++NumNonAddrTakenFunctions
;
211 Readers
.clear(); Writers
.clear();
214 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
216 if (I
->hasLocalLinkage()) {
217 if (!AnalyzeUsesOfPointer(I
, Readers
, Writers
)) {
218 // Remember that we are tracking this global, and the mod/ref fns
219 NonAddressTakenGlobals
.insert(I
);
221 for (unsigned i
= 0, e
= Readers
.size(); i
!= e
; ++i
)
222 FunctionInfo
[Readers
[i
]].GlobalInfo
[I
] |= Ref
;
224 if (!I
->isConstant()) // No need to keep track of writers to constants
225 for (unsigned i
= 0, e
= Writers
.size(); i
!= e
; ++i
)
226 FunctionInfo
[Writers
[i
]].GlobalInfo
[I
] |= Mod
;
227 ++NumNonAddrTakenGlobalVars
;
229 // If this global holds a pointer type, see if it is an indirect global.
230 if (I
->getType()->getElementType()->isPointerTy() &&
231 AnalyzeIndirectGlobalMemory(I
))
232 ++NumIndirectGlobalVars
;
234 Readers
.clear(); Writers
.clear();
238 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
239 /// If this is used by anything complex (i.e., the address escapes), return
240 /// true. Also, while we are at it, keep track of those functions that read and
241 /// write to the value.
243 /// If OkayStoreDest is non-null, stores into this global are allowed.
244 bool GlobalsModRef::AnalyzeUsesOfPointer(Value
*V
,
245 std::vector
<Function
*> &Readers
,
246 std::vector
<Function
*> &Writers
,
247 GlobalValue
*OkayStoreDest
) {
248 if (!V
->getType()->isPointerTy()) return true;
250 for (Value::use_iterator UI
= V
->use_begin(), E
=V
->use_end(); UI
!= E
; ++UI
) {
252 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
253 Readers
.push_back(LI
->getParent()->getParent());
254 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
255 if (V
== SI
->getOperand(1)) {
256 Writers
.push_back(SI
->getParent()->getParent());
257 } else if (SI
->getOperand(1) != OkayStoreDest
) {
258 return true; // Storing the pointer
260 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
261 if (AnalyzeUsesOfPointer(GEP
, Readers
, Writers
)) return true;
262 } else if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(U
)) {
263 if (AnalyzeUsesOfPointer(BCI
, Readers
, Writers
, OkayStoreDest
))
265 } else if (isFreeCall(U
)) {
266 Writers
.push_back(cast
<Instruction
>(U
)->getParent()->getParent());
267 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
268 // Make sure that this is just the function being called, not that it is
269 // passing into the function.
270 for (unsigned i
= 0, e
= CI
->getNumArgOperands(); i
!= e
; ++i
)
271 if (CI
->getArgOperand(i
) == V
) return true;
272 } else if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(U
)) {
273 // Make sure that this is just the function being called, not that it is
274 // passing into the function.
275 for (unsigned i
= 0, e
= II
->getNumArgOperands(); i
!= e
; ++i
)
276 if (II
->getArgOperand(i
) == V
) return true;
277 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
)) {
278 if (CE
->getOpcode() == Instruction::GetElementPtr
||
279 CE
->getOpcode() == Instruction::BitCast
) {
280 if (AnalyzeUsesOfPointer(CE
, Readers
, Writers
))
285 } else if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(U
)) {
286 if (!isa
<ConstantPointerNull
>(ICI
->getOperand(1)))
287 return true; // Allow comparison against null.
296 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
297 /// which holds a pointer type. See if the global always points to non-aliased
298 /// heap memory: that is, all initializers of the globals are allocations, and
299 /// those allocations have no use other than initialization of the global.
300 /// Further, all loads out of GV must directly use the memory, not store the
301 /// pointer somewhere. If this is true, we consider the memory pointed to by
302 /// GV to be owned by GV and can disambiguate other pointers from it.
303 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue
*GV
) {
304 // Keep track of values related to the allocation of the memory, f.e. the
305 // value produced by the malloc call and any casts.
306 std::vector
<Value
*> AllocRelatedValues
;
308 // Walk the user list of the global. If we find anything other than a direct
309 // load or store, bail out.
310 for (Value::use_iterator I
= GV
->use_begin(), E
= GV
->use_end(); I
!= E
; ++I
){
312 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
313 // The pointer loaded from the global can only be used in simple ways:
314 // we allow addressing of it and loading storing to it. We do *not* allow
315 // storing the loaded pointer somewhere else or passing to a function.
316 std::vector
<Function
*> ReadersWriters
;
317 if (AnalyzeUsesOfPointer(LI
, ReadersWriters
, ReadersWriters
))
318 return false; // Loaded pointer escapes.
319 // TODO: Could try some IP mod/ref of the loaded pointer.
320 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
321 // Storing the global itself.
322 if (SI
->getOperand(0) == GV
) return false;
324 // If storing the null pointer, ignore it.
325 if (isa
<ConstantPointerNull
>(SI
->getOperand(0)))
328 // Check the value being stored.
329 Value
*Ptr
= GetUnderlyingObject(SI
->getOperand(0));
333 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(Ptr
)) {
334 Function
*F
= CI
->getCalledFunction();
335 if (!F
|| !F
->isDeclaration()) return false; // Too hard to analyze.
336 if (F
->getName() != "calloc") return false; // Not calloc.
338 return false; // Too hard to analyze.
341 // Analyze all uses of the allocation. If any of them are used in a
342 // non-simple way (e.g. stored to another global) bail out.
343 std::vector
<Function
*> ReadersWriters
;
344 if (AnalyzeUsesOfPointer(Ptr
, ReadersWriters
, ReadersWriters
, GV
))
345 return false; // Loaded pointer escapes.
347 // Remember that this allocation is related to the indirect global.
348 AllocRelatedValues
.push_back(Ptr
);
350 // Something complex, bail out.
355 // Okay, this is an indirect global. Remember all of the allocations for
356 // this global in AllocsForIndirectGlobals.
357 while (!AllocRelatedValues
.empty()) {
358 AllocsForIndirectGlobals
[AllocRelatedValues
.back()] = GV
;
359 AllocRelatedValues
.pop_back();
361 IndirectGlobals
.insert(GV
);
365 /// AnalyzeCallGraph - At this point, we know the functions where globals are
366 /// immediately stored to and read from. Propagate this information up the call
367 /// graph to all callers and compute the mod/ref info for all memory for each
369 void GlobalsModRef::AnalyzeCallGraph(CallGraph
&CG
, Module
&M
) {
370 // We do a bottom-up SCC traversal of the call graph. In other words, we
371 // visit all callees before callers (leaf-first).
372 for (scc_iterator
<CallGraph
*> I
= scc_begin(&CG
), E
= scc_end(&CG
); I
!= E
;
374 std::vector
<CallGraphNode
*> &SCC
= *I
;
375 assert(!SCC
.empty() && "SCC with no functions?");
377 if (!SCC
[0]->getFunction()) {
378 // Calls externally - can't say anything useful. Remove any existing
379 // function records (may have been created when scanning globals).
380 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
; ++i
)
381 FunctionInfo
.erase(SCC
[i
]->getFunction());
385 FunctionRecord
&FR
= FunctionInfo
[SCC
[0]->getFunction()];
387 bool KnowNothing
= false;
388 unsigned FunctionEffect
= 0;
390 // Collect the mod/ref properties due to called functions. We only compute
392 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
&& !KnowNothing
; ++i
) {
393 Function
*F
= SCC
[i
]->getFunction();
399 if (F
->isDeclaration()) {
400 // Try to get mod/ref behaviour from function attributes.
401 if (F
->doesNotAccessMemory()) {
402 // Can't do better than that!
403 } else if (F
->onlyReadsMemory()) {
404 FunctionEffect
|= Ref
;
405 if (!F
->isIntrinsic())
406 // This function might call back into the module and read a global -
407 // consider every global as possibly being read by this function.
408 FR
.MayReadAnyGlobal
= true;
410 FunctionEffect
|= ModRef
;
411 // Can't say anything useful unless it's an intrinsic - they don't
412 // read or write global variables of the kind considered here.
413 KnowNothing
= !F
->isIntrinsic();
418 for (CallGraphNode::iterator CI
= SCC
[i
]->begin(), E
= SCC
[i
]->end();
419 CI
!= E
&& !KnowNothing
; ++CI
)
420 if (Function
*Callee
= CI
->second
->getFunction()) {
421 if (FunctionRecord
*CalleeFR
= getFunctionInfo(Callee
)) {
422 // Propagate function effect up.
423 FunctionEffect
|= CalleeFR
->FunctionEffect
;
425 // Incorporate callee's effects on globals into our info.
426 for (std::map
<const GlobalValue
*, unsigned>::iterator GI
=
427 CalleeFR
->GlobalInfo
.begin(), E
= CalleeFR
->GlobalInfo
.end();
429 FR
.GlobalInfo
[GI
->first
] |= GI
->second
;
430 FR
.MayReadAnyGlobal
|= CalleeFR
->MayReadAnyGlobal
;
432 // Can't say anything about it. However, if it is inside our SCC,
433 // then nothing needs to be done.
434 CallGraphNode
*CalleeNode
= CG
[Callee
];
435 if (std::find(SCC
.begin(), SCC
.end(), CalleeNode
) == SCC
.end())
443 // If we can't say anything useful about this SCC, remove all SCC functions
444 // from the FunctionInfo map.
446 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
; ++i
)
447 FunctionInfo
.erase(SCC
[i
]->getFunction());
451 // Scan the function bodies for explicit loads or stores.
452 for (unsigned i
= 0, e
= SCC
.size(); i
!= e
&& FunctionEffect
!= ModRef
;++i
)
453 for (inst_iterator II
= inst_begin(SCC
[i
]->getFunction()),
454 E
= inst_end(SCC
[i
]->getFunction());
455 II
!= E
&& FunctionEffect
!= ModRef
; ++II
)
456 if (isa
<LoadInst
>(*II
)) {
457 FunctionEffect
|= Ref
;
458 if (cast
<LoadInst
>(*II
).isVolatile())
459 // Volatile loads may have side-effects, so mark them as writing
460 // memory (for example, a flag inside the processor).
461 FunctionEffect
|= Mod
;
462 } else if (isa
<StoreInst
>(*II
)) {
463 FunctionEffect
|= Mod
;
464 if (cast
<StoreInst
>(*II
).isVolatile())
465 // Treat volatile stores as reading memory somewhere.
466 FunctionEffect
|= Ref
;
467 } else if (isMalloc(&cast
<Instruction
>(*II
)) ||
468 isFreeCall(&cast
<Instruction
>(*II
))) {
469 FunctionEffect
|= ModRef
;
472 if ((FunctionEffect
& Mod
) == 0)
473 ++NumReadMemFunctions
;
474 if (FunctionEffect
== 0)
476 FR
.FunctionEffect
= FunctionEffect
;
478 // Finally, now that we know the full effect on this SCC, clone the
479 // information to each function in the SCC.
480 for (unsigned i
= 1, e
= SCC
.size(); i
!= e
; ++i
)
481 FunctionInfo
[SCC
[i
]->getFunction()] = FR
;
487 /// alias - If one of the pointers is to a global that we are tracking, and the
488 /// other is some random pointer, we know there cannot be an alias, because the
489 /// address of the global isn't taken.
490 AliasAnalysis::AliasResult
491 GlobalsModRef::alias(const Location
&LocA
,
492 const Location
&LocB
) {
493 // Get the base object these pointers point to.
494 const Value
*UV1
= GetUnderlyingObject(LocA
.Ptr
);
495 const Value
*UV2
= GetUnderlyingObject(LocB
.Ptr
);
497 // If either of the underlying values is a global, they may be non-addr-taken
498 // globals, which we can answer queries about.
499 const GlobalValue
*GV1
= dyn_cast
<GlobalValue
>(UV1
);
500 const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(UV2
);
502 // If the global's address is taken, pretend we don't know it's a pointer to
504 if (GV1
&& !NonAddressTakenGlobals
.count(GV1
)) GV1
= 0;
505 if (GV2
&& !NonAddressTakenGlobals
.count(GV2
)) GV2
= 0;
507 // If the two pointers are derived from two different non-addr-taken
508 // globals, or if one is and the other isn't, we know these can't alias.
509 if ((GV1
|| GV2
) && GV1
!= GV2
)
512 // Otherwise if they are both derived from the same addr-taken global, we
513 // can't know the two accesses don't overlap.
516 // These pointers may be based on the memory owned by an indirect global. If
517 // so, we may be able to handle this. First check to see if the base pointer
518 // is a direct load from an indirect global.
520 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(UV1
))
521 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
522 if (IndirectGlobals
.count(GV
))
524 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(UV2
))
525 if (const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(LI
->getOperand(0)))
526 if (IndirectGlobals
.count(GV
))
529 // These pointers may also be from an allocation for the indirect global. If
530 // so, also handle them.
531 if (AllocsForIndirectGlobals
.count(UV1
))
532 GV1
= AllocsForIndirectGlobals
[UV1
];
533 if (AllocsForIndirectGlobals
.count(UV2
))
534 GV2
= AllocsForIndirectGlobals
[UV2
];
536 // Now that we know whether the two pointers are related to indirect globals,
537 // use this to disambiguate the pointers. If either pointer is based on an
538 // indirect global and if they are not both based on the same indirect global,
539 // they cannot alias.
540 if ((GV1
|| GV2
) && GV1
!= GV2
)
543 return AliasAnalysis::alias(LocA
, LocB
);
546 AliasAnalysis::ModRefResult
547 GlobalsModRef::getModRefInfo(ImmutableCallSite CS
,
548 const Location
&Loc
) {
549 unsigned Known
= ModRef
;
551 // If we are asking for mod/ref info of a direct call with a pointer to a
552 // global we are tracking, return information if we have it.
553 if (const GlobalValue
*GV
=
554 dyn_cast
<GlobalValue
>(GetUnderlyingObject(Loc
.Ptr
)))
555 if (GV
->hasLocalLinkage())
556 if (const Function
*F
= CS
.getCalledFunction())
557 if (NonAddressTakenGlobals
.count(GV
))
558 if (const FunctionRecord
*FR
= getFunctionInfo(F
))
559 Known
= FR
->getInfoForGlobal(GV
);
561 if (Known
== NoModRef
)
562 return NoModRef
; // No need to query other mod/ref analyses
563 return ModRefResult(Known
& AliasAnalysis::getModRefInfo(CS
, Loc
));
567 //===----------------------------------------------------------------------===//
568 // Methods to update the analysis as a result of the client transformation.
570 void GlobalsModRef::deleteValue(Value
*V
) {
571 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
)) {
572 if (NonAddressTakenGlobals
.erase(GV
)) {
573 // This global might be an indirect global. If so, remove it and remove
574 // any AllocRelatedValues for it.
575 if (IndirectGlobals
.erase(GV
)) {
576 // Remove any entries in AllocsForIndirectGlobals for this global.
577 for (std::map
<const Value
*, const GlobalValue
*>::iterator
578 I
= AllocsForIndirectGlobals
.begin(),
579 E
= AllocsForIndirectGlobals
.end(); I
!= E
; ) {
580 if (I
->second
== GV
) {
581 AllocsForIndirectGlobals
.erase(I
++);
590 // Otherwise, if this is an allocation related to an indirect global, remove
592 AllocsForIndirectGlobals
.erase(V
);
594 AliasAnalysis::deleteValue(V
);
597 void GlobalsModRef::copyValue(Value
*From
, Value
*To
) {
598 AliasAnalysis::copyValue(From
, To
);
601 void GlobalsModRef::addEscapingUse(Use
&U
) {
602 // For the purposes of this analysis, it is conservatively correct to treat
603 // a newly escaping value equivalently to a deleted one. We could perhaps
604 // be more precise by processing the new use and attempting to update our
605 // saved analysis results to accommodate it.
608 AliasAnalysis::addEscapingUse(U
);