1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the LoopInfo class that is used to identify natural loops
11 // and determine the loop depth of various nodes of the CFG. Note that the
12 // loops identified may actually be several natural loops that share the same
13 // header node... not just a single natural loop.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Constants.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Analysis/Dominators.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/Support/CFG.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/SmallPtrSet.h"
30 // Always verify loopinfo if expensive checking is enabled.
32 static bool VerifyLoopInfo
= true;
34 static bool VerifyLoopInfo
= false;
36 static cl::opt
<bool,true>
37 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo
),
38 cl::desc("Verify loop info (time consuming)"));
40 char LoopInfo::ID
= 0;
41 INITIALIZE_PASS_BEGIN(LoopInfo
, "loops", "Natural Loop Information", true, true)
42 INITIALIZE_PASS_DEPENDENCY(DominatorTree
)
43 INITIALIZE_PASS_END(LoopInfo
, "loops", "Natural Loop Information", true, true)
45 //===----------------------------------------------------------------------===//
46 // Loop implementation
49 /// isLoopInvariant - Return true if the specified value is loop invariant
51 bool Loop::isLoopInvariant(Value
*V
) const {
52 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
54 return true; // All non-instructions are loop invariant
57 /// hasLoopInvariantOperands - Return true if all the operands of the
58 /// specified instruction are loop invariant.
59 bool Loop::hasLoopInvariantOperands(Instruction
*I
) const {
60 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
61 if (!isLoopInvariant(I
->getOperand(i
)))
67 /// makeLoopInvariant - If the given value is an instruciton inside of the
68 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
69 /// Return true if the value after any hoisting is loop invariant. This
70 /// function can be used as a slightly more aggressive replacement for
73 /// If InsertPt is specified, it is the point to hoist instructions to.
74 /// If null, the terminator of the loop preheader is used.
76 bool Loop::makeLoopInvariant(Value
*V
, bool &Changed
,
77 Instruction
*InsertPt
) const {
78 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
79 return makeLoopInvariant(I
, Changed
, InsertPt
);
80 return true; // All non-instructions are loop-invariant.
83 /// makeLoopInvariant - If the given instruction is inside of the
84 /// loop and it can be hoisted, do so to make it trivially loop-invariant.
85 /// Return true if the instruction after any hoisting is loop invariant. This
86 /// function can be used as a slightly more aggressive replacement for
89 /// If InsertPt is specified, it is the point to hoist instructions to.
90 /// If null, the terminator of the loop preheader is used.
92 bool Loop::makeLoopInvariant(Instruction
*I
, bool &Changed
,
93 Instruction
*InsertPt
) const {
94 // Test if the value is already loop-invariant.
95 if (isLoopInvariant(I
))
97 if (!I
->isSafeToSpeculativelyExecute())
99 if (I
->mayReadFromMemory())
101 // Determine the insertion point, unless one was given.
103 BasicBlock
*Preheader
= getLoopPreheader();
104 // Without a preheader, hoisting is not feasible.
107 InsertPt
= Preheader
->getTerminator();
109 // Don't hoist instructions with loop-variant operands.
110 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
111 if (!makeLoopInvariant(I
->getOperand(i
), Changed
, InsertPt
))
115 I
->moveBefore(InsertPt
);
120 /// getCanonicalInductionVariable - Check to see if the loop has a canonical
121 /// induction variable: an integer recurrence that starts at 0 and increments
122 /// by one each time through the loop. If so, return the phi node that
123 /// corresponds to it.
125 /// The IndVarSimplify pass transforms loops to have a canonical induction
128 PHINode
*Loop::getCanonicalInductionVariable() const {
129 BasicBlock
*H
= getHeader();
131 BasicBlock
*Incoming
= 0, *Backedge
= 0;
132 pred_iterator PI
= pred_begin(H
);
133 assert(PI
!= pred_end(H
) &&
134 "Loop must have at least one backedge!");
136 if (PI
== pred_end(H
)) return 0; // dead loop
138 if (PI
!= pred_end(H
)) return 0; // multiple backedges?
140 if (contains(Incoming
)) {
141 if (contains(Backedge
))
143 std::swap(Incoming
, Backedge
);
144 } else if (!contains(Backedge
))
147 // Loop over all of the PHI nodes, looking for a canonical indvar.
148 for (BasicBlock::iterator I
= H
->begin(); isa
<PHINode
>(I
); ++I
) {
149 PHINode
*PN
= cast
<PHINode
>(I
);
150 if (ConstantInt
*CI
=
151 dyn_cast
<ConstantInt
>(PN
->getIncomingValueForBlock(Incoming
)))
152 if (CI
->isNullValue())
153 if (Instruction
*Inc
=
154 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(Backedge
)))
155 if (Inc
->getOpcode() == Instruction::Add
&&
156 Inc
->getOperand(0) == PN
)
157 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Inc
->getOperand(1)))
158 if (CI
->equalsInt(1))
164 /// getTripCount - Return a loop-invariant LLVM value indicating the number of
165 /// times the loop will be executed. Note that this means that the backedge
166 /// of the loop executes N-1 times. If the trip-count cannot be determined,
167 /// this returns null.
169 /// The IndVarSimplify pass transforms loops to have a form that this
170 /// function easily understands.
172 Value
*Loop::getTripCount() const {
173 // Canonical loops will end with a 'cmp ne I, V', where I is the incremented
174 // canonical induction variable and V is the trip count of the loop.
175 PHINode
*IV
= getCanonicalInductionVariable();
176 if (IV
== 0 || IV
->getNumIncomingValues() != 2) return 0;
178 bool P0InLoop
= contains(IV
->getIncomingBlock(0));
179 Value
*Inc
= IV
->getIncomingValue(!P0InLoop
);
180 BasicBlock
*BackedgeBlock
= IV
->getIncomingBlock(!P0InLoop
);
182 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BackedgeBlock
->getTerminator()))
183 if (BI
->isConditional()) {
184 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(BI
->getCondition())) {
185 if (ICI
->getOperand(0) == Inc
) {
186 if (BI
->getSuccessor(0) == getHeader()) {
187 if (ICI
->getPredicate() == ICmpInst::ICMP_NE
)
188 return ICI
->getOperand(1);
189 } else if (ICI
->getPredicate() == ICmpInst::ICMP_EQ
) {
190 return ICI
->getOperand(1);
199 /// getSmallConstantTripCount - Returns the trip count of this loop as a
200 /// normal unsigned value, if possible. Returns 0 if the trip count is unknown
201 /// or not constant. Will also return 0 if the trip count is very large
203 unsigned Loop::getSmallConstantTripCount() const {
204 Value
* TripCount
= this->getTripCount();
206 if (ConstantInt
*TripCountC
= dyn_cast
<ConstantInt
>(TripCount
)) {
207 // Guard against huge trip counts.
208 if (TripCountC
->getValue().getActiveBits() <= 32) {
209 return (unsigned)TripCountC
->getZExtValue();
216 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
217 /// trip count of this loop as a normal unsigned value, if possible. This
218 /// means that the actual trip count is always a multiple of the returned
219 /// value (don't forget the trip count could very well be zero as well!).
221 /// Returns 1 if the trip count is unknown or not guaranteed to be the
222 /// multiple of a constant (which is also the case if the trip count is simply
223 /// constant, use getSmallConstantTripCount for that case), Will also return 1
224 /// if the trip count is very large (>= 2^32).
225 unsigned Loop::getSmallConstantTripMultiple() const {
226 Value
* TripCount
= this->getTripCount();
227 // This will hold the ConstantInt result, if any
228 ConstantInt
*Result
= NULL
;
230 // See if the trip count is constant itself
231 Result
= dyn_cast
<ConstantInt
>(TripCount
);
232 // if not, see if it is a multiplication
234 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(TripCount
)) {
235 switch (BO
->getOpcode()) {
236 case BinaryOperator::Mul
:
237 Result
= dyn_cast
<ConstantInt
>(BO
->getOperand(1));
239 case BinaryOperator::Shl
:
240 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1)))
241 if (CI
->getValue().getActiveBits() <= 5)
242 return 1u << CI
->getZExtValue();
249 // Guard against huge trip counts.
250 if (Result
&& Result
->getValue().getActiveBits() <= 32) {
251 return (unsigned)Result
->getZExtValue();
257 /// isLCSSAForm - Return true if the Loop is in LCSSA form
258 bool Loop::isLCSSAForm(DominatorTree
&DT
) const {
259 // Sort the blocks vector so that we can use binary search to do quick
261 SmallPtrSet
<BasicBlock
*, 16> LoopBBs(block_begin(), block_end());
263 for (block_iterator BI
= block_begin(), E
= block_end(); BI
!= E
; ++BI
) {
264 BasicBlock
*BB
= *BI
;
265 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;++I
)
266 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end(); UI
!= E
;
269 BasicBlock
*UserBB
= cast
<Instruction
>(U
)->getParent();
270 if (PHINode
*P
= dyn_cast
<PHINode
>(U
))
271 UserBB
= P
->getIncomingBlock(UI
);
273 // Check the current block, as a fast-path, before checking whether
274 // the use is anywhere in the loop. Most values are used in the same
275 // block they are defined in. Also, blocks not reachable from the
276 // entry are special; uses in them don't need to go through PHIs.
278 !LoopBBs
.count(UserBB
) &&
279 DT
.isReachableFromEntry(UserBB
))
287 /// isLoopSimplifyForm - Return true if the Loop is in the form that
288 /// the LoopSimplify form transforms loops to, which is sometimes called
290 bool Loop::isLoopSimplifyForm() const {
291 // Normal-form loops have a preheader, a single backedge, and all of their
292 // exits have all their predecessors inside the loop.
293 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
296 /// hasDedicatedExits - Return true if no exit block for the loop
297 /// has a predecessor that is outside the loop.
298 bool Loop::hasDedicatedExits() const {
299 // Sort the blocks vector so that we can use binary search to do quick
301 SmallPtrSet
<BasicBlock
*, 16> LoopBBs(block_begin(), block_end());
302 // Each predecessor of each exit block of a normal loop is contained
304 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
305 getExitBlocks(ExitBlocks
);
306 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
)
307 for (pred_iterator PI
= pred_begin(ExitBlocks
[i
]),
308 PE
= pred_end(ExitBlocks
[i
]); PI
!= PE
; ++PI
)
309 if (!LoopBBs
.count(*PI
))
311 // All the requirements are met.
315 /// getUniqueExitBlocks - Return all unique successor blocks of this loop.
316 /// These are the blocks _outside of the current loop_ which are branched to.
317 /// This assumes that loop exits are in canonical form.
320 Loop::getUniqueExitBlocks(SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) const {
321 assert(hasDedicatedExits() &&
322 "getUniqueExitBlocks assumes the loop has canonical form exits!");
324 // Sort the blocks vector so that we can use binary search to do quick
326 SmallVector
<BasicBlock
*, 128> LoopBBs(block_begin(), block_end());
327 std::sort(LoopBBs
.begin(), LoopBBs
.end());
329 SmallVector
<BasicBlock
*, 32> switchExitBlocks
;
331 for (block_iterator BI
= block_begin(), BE
= block_end(); BI
!= BE
; ++BI
) {
333 BasicBlock
*current
= *BI
;
334 switchExitBlocks
.clear();
336 for (succ_iterator I
= succ_begin(*BI
), E
= succ_end(*BI
); I
!= E
; ++I
) {
337 // If block is inside the loop then it is not a exit block.
338 if (std::binary_search(LoopBBs
.begin(), LoopBBs
.end(), *I
))
341 pred_iterator PI
= pred_begin(*I
);
342 BasicBlock
*firstPred
= *PI
;
344 // If current basic block is this exit block's first predecessor
345 // then only insert exit block in to the output ExitBlocks vector.
346 // This ensures that same exit block is not inserted twice into
347 // ExitBlocks vector.
348 if (current
!= firstPred
)
351 // If a terminator has more then two successors, for example SwitchInst,
352 // then it is possible that there are multiple edges from current block
353 // to one exit block.
354 if (std::distance(succ_begin(current
), succ_end(current
)) <= 2) {
355 ExitBlocks
.push_back(*I
);
359 // In case of multiple edges from current block to exit block, collect
360 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
362 if (std::find(switchExitBlocks
.begin(), switchExitBlocks
.end(), *I
)
363 == switchExitBlocks
.end()) {
364 switchExitBlocks
.push_back(*I
);
365 ExitBlocks
.push_back(*I
);
371 /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one
372 /// block, return that block. Otherwise return null.
373 BasicBlock
*Loop::getUniqueExitBlock() const {
374 SmallVector
<BasicBlock
*, 8> UniqueExitBlocks
;
375 getUniqueExitBlocks(UniqueExitBlocks
);
376 if (UniqueExitBlocks
.size() == 1)
377 return UniqueExitBlocks
[0];
381 void Loop::dump() const {
385 //===----------------------------------------------------------------------===//
386 // LoopInfo implementation
388 bool LoopInfo::runOnFunction(Function
&) {
390 LI
.Calculate(getAnalysis
<DominatorTree
>().getBase()); // Update
394 void LoopInfo::verifyAnalysis() const {
395 // LoopInfo is a FunctionPass, but verifying every loop in the function
396 // each time verifyAnalysis is called is very expensive. The
397 // -verify-loop-info option can enable this. In order to perform some
398 // checking by default, LoopPass has been taught to call verifyLoop
399 // manually during loop pass sequences.
401 if (!VerifyLoopInfo
) return;
403 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
404 assert(!(*I
)->getParentLoop() && "Top-level loop has a parent!");
405 (*I
)->verifyLoopNest();
408 // TODO: check BBMap consistency.
411 void LoopInfo::getAnalysisUsage(AnalysisUsage
&AU
) const {
412 AU
.setPreservesAll();
413 AU
.addRequired
<DominatorTree
>();
416 void LoopInfo::print(raw_ostream
&OS
, const Module
*) const {