1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Bitcode writer implementation.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "llvm/Bitcode/BitstreamWriter.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "ValueEnumerator.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/InlineAsm.h"
21 #include "llvm/Instructions.h"
22 #include "llvm/Module.h"
23 #include "llvm/Operator.h"
24 #include "llvm/ValueSymbolTable.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/Program.h"
34 /// These are manifest constants used by the bitcode writer. They do not need to
35 /// be kept in sync with the reader, but need to be consistent within this file.
39 // VALUE_SYMTAB_BLOCK abbrev id's.
40 VST_ENTRY_8_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
45 // CONSTANTS_BLOCK abbrev id's.
46 CONSTANTS_SETTYPE_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
47 CONSTANTS_INTEGER_ABBREV
,
48 CONSTANTS_CE_CAST_Abbrev
,
49 CONSTANTS_NULL_Abbrev
,
51 // FUNCTION_BLOCK abbrev id's.
52 FUNCTION_INST_LOAD_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
53 FUNCTION_INST_BINOP_ABBREV
,
54 FUNCTION_INST_BINOP_FLAGS_ABBREV
,
55 FUNCTION_INST_CAST_ABBREV
,
56 FUNCTION_INST_RET_VOID_ABBREV
,
57 FUNCTION_INST_RET_VAL_ABBREV
,
58 FUNCTION_INST_UNREACHABLE_ABBREV
62 static unsigned GetEncodedCastOpcode(unsigned Opcode
) {
64 default: llvm_unreachable("Unknown cast instruction!");
65 case Instruction::Trunc
: return bitc::CAST_TRUNC
;
66 case Instruction::ZExt
: return bitc::CAST_ZEXT
;
67 case Instruction::SExt
: return bitc::CAST_SEXT
;
68 case Instruction::FPToUI
: return bitc::CAST_FPTOUI
;
69 case Instruction::FPToSI
: return bitc::CAST_FPTOSI
;
70 case Instruction::UIToFP
: return bitc::CAST_UITOFP
;
71 case Instruction::SIToFP
: return bitc::CAST_SITOFP
;
72 case Instruction::FPTrunc
: return bitc::CAST_FPTRUNC
;
73 case Instruction::FPExt
: return bitc::CAST_FPEXT
;
74 case Instruction::PtrToInt
: return bitc::CAST_PTRTOINT
;
75 case Instruction::IntToPtr
: return bitc::CAST_INTTOPTR
;
76 case Instruction::BitCast
: return bitc::CAST_BITCAST
;
80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode
) {
82 default: llvm_unreachable("Unknown binary instruction!");
83 case Instruction::Add
:
84 case Instruction::FAdd
: return bitc::BINOP_ADD
;
85 case Instruction::Sub
:
86 case Instruction::FSub
: return bitc::BINOP_SUB
;
87 case Instruction::Mul
:
88 case Instruction::FMul
: return bitc::BINOP_MUL
;
89 case Instruction::UDiv
: return bitc::BINOP_UDIV
;
90 case Instruction::FDiv
:
91 case Instruction::SDiv
: return bitc::BINOP_SDIV
;
92 case Instruction::URem
: return bitc::BINOP_UREM
;
93 case Instruction::FRem
:
94 case Instruction::SRem
: return bitc::BINOP_SREM
;
95 case Instruction::Shl
: return bitc::BINOP_SHL
;
96 case Instruction::LShr
: return bitc::BINOP_LSHR
;
97 case Instruction::AShr
: return bitc::BINOP_ASHR
;
98 case Instruction::And
: return bitc::BINOP_AND
;
99 case Instruction::Or
: return bitc::BINOP_OR
;
100 case Instruction::Xor
: return bitc::BINOP_XOR
;
104 static void WriteStringRecord(unsigned Code
, StringRef Str
,
105 unsigned AbbrevToUse
, BitstreamWriter
&Stream
) {
106 SmallVector
<unsigned, 64> Vals
;
108 // Code: [strchar x N]
109 for (unsigned i
= 0, e
= Str
.size(); i
!= e
; ++i
) {
110 if (AbbrevToUse
&& !BitCodeAbbrevOp::isChar6(Str
[i
]))
112 Vals
.push_back(Str
[i
]);
115 // Emit the finished record.
116 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
119 // Emit information about parameter attributes.
120 static void WriteAttributeTable(const ValueEnumerator
&VE
,
121 BitstreamWriter
&Stream
) {
122 const std::vector
<AttrListPtr
> &Attrs
= VE
.getAttributes();
123 if (Attrs
.empty()) return;
125 Stream
.EnterSubblock(bitc::PARAMATTR_BLOCK_ID
, 3);
127 SmallVector
<uint64_t, 64> Record
;
128 for (unsigned i
= 0, e
= Attrs
.size(); i
!= e
; ++i
) {
129 const AttrListPtr
&A
= Attrs
[i
];
130 for (unsigned i
= 0, e
= A
.getNumSlots(); i
!= e
; ++i
) {
131 const AttributeWithIndex
&PAWI
= A
.getSlot(i
);
132 Record
.push_back(PAWI
.Index
);
134 // FIXME: remove in LLVM 3.0
135 // Store the alignment in the bitcode as a 16-bit raw value instead of a
136 // 5-bit log2 encoded value. Shift the bits above the alignment up by
138 uint64_t FauxAttr
= PAWI
.Attrs
& 0xffff;
139 if (PAWI
.Attrs
& Attribute::Alignment
)
140 FauxAttr
|= (1ull<<16)<<(((PAWI
.Attrs
& Attribute::Alignment
)-1) >> 16);
141 FauxAttr
|= (PAWI
.Attrs
& (0x3FFull
<< 21)) << 11;
143 Record
.push_back(FauxAttr
);
146 Stream
.EmitRecord(bitc::PARAMATTR_CODE_ENTRY
, Record
);
153 /// WriteTypeTable - Write out the type table for a module.
154 static void WriteTypeTable(const ValueEnumerator
&VE
, BitstreamWriter
&Stream
) {
155 const ValueEnumerator::TypeList
&TypeList
= VE
.getTypes();
157 Stream
.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW
, 4 /*count from # abbrevs */);
158 SmallVector
<uint64_t, 64> TypeVals
;
160 // Abbrev for TYPE_CODE_POINTER.
161 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
162 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER
));
163 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
164 Log2_32_Ceil(VE
.getTypes().size()+1)));
165 Abbv
->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
166 unsigned PtrAbbrev
= Stream
.EmitAbbrev(Abbv
);
168 // Abbrev for TYPE_CODE_FUNCTION.
169 Abbv
= new BitCodeAbbrev();
170 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION
));
171 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // isvararg
172 Abbv
->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0
173 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
174 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
175 Log2_32_Ceil(VE
.getTypes().size()+1)));
176 unsigned FunctionAbbrev
= Stream
.EmitAbbrev(Abbv
);
178 // Abbrev for TYPE_CODE_STRUCT_ANON.
179 Abbv
= new BitCodeAbbrev();
180 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON
));
181 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
182 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
183 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
184 Log2_32_Ceil(VE
.getTypes().size()+1)));
185 unsigned StructAnonAbbrev
= Stream
.EmitAbbrev(Abbv
);
187 // Abbrev for TYPE_CODE_STRUCT_NAME.
188 Abbv
= new BitCodeAbbrev();
189 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME
));
190 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
191 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
192 unsigned StructNameAbbrev
= Stream
.EmitAbbrev(Abbv
);
194 // Abbrev for TYPE_CODE_STRUCT_NAMED.
195 Abbv
= new BitCodeAbbrev();
196 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED
));
197 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
198 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
199 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
200 Log2_32_Ceil(VE
.getTypes().size()+1)));
201 unsigned StructNamedAbbrev
= Stream
.EmitAbbrev(Abbv
);
204 // Abbrev for TYPE_CODE_ARRAY.
205 Abbv
= new BitCodeAbbrev();
206 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY
));
207 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // size
208 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
209 Log2_32_Ceil(VE
.getTypes().size()+1)));
210 unsigned ArrayAbbrev
= Stream
.EmitAbbrev(Abbv
);
212 // Emit an entry count so the reader can reserve space.
213 TypeVals
.push_back(TypeList
.size());
214 Stream
.EmitRecord(bitc::TYPE_CODE_NUMENTRY
, TypeVals
);
217 // Loop over all of the types, emitting each in turn.
218 for (unsigned i
= 0, e
= TypeList
.size(); i
!= e
; ++i
) {
219 const Type
*T
= TypeList
[i
];
223 switch (T
->getTypeID()) {
224 default: llvm_unreachable("Unknown type!");
225 case Type::VoidTyID
: Code
= bitc::TYPE_CODE_VOID
; break;
226 case Type::FloatTyID
: Code
= bitc::TYPE_CODE_FLOAT
; break;
227 case Type::DoubleTyID
: Code
= bitc::TYPE_CODE_DOUBLE
; break;
228 case Type::X86_FP80TyID
: Code
= bitc::TYPE_CODE_X86_FP80
; break;
229 case Type::FP128TyID
: Code
= bitc::TYPE_CODE_FP128
; break;
230 case Type::PPC_FP128TyID
: Code
= bitc::TYPE_CODE_PPC_FP128
; break;
231 case Type::LabelTyID
: Code
= bitc::TYPE_CODE_LABEL
; break;
232 case Type::MetadataTyID
: Code
= bitc::TYPE_CODE_METADATA
; break;
233 case Type::X86_MMXTyID
: Code
= bitc::TYPE_CODE_X86_MMX
; break;
234 case Type::IntegerTyID
:
236 Code
= bitc::TYPE_CODE_INTEGER
;
237 TypeVals
.push_back(cast
<IntegerType
>(T
)->getBitWidth());
239 case Type::PointerTyID
: {
240 const PointerType
*PTy
= cast
<PointerType
>(T
);
241 // POINTER: [pointee type, address space]
242 Code
= bitc::TYPE_CODE_POINTER
;
243 TypeVals
.push_back(VE
.getTypeID(PTy
->getElementType()));
244 unsigned AddressSpace
= PTy
->getAddressSpace();
245 TypeVals
.push_back(AddressSpace
);
246 if (AddressSpace
== 0) AbbrevToUse
= PtrAbbrev
;
249 case Type::FunctionTyID
: {
250 const FunctionType
*FT
= cast
<FunctionType
>(T
);
251 // FUNCTION: [isvararg, attrid, retty, paramty x N]
252 Code
= bitc::TYPE_CODE_FUNCTION
;
253 TypeVals
.push_back(FT
->isVarArg());
254 TypeVals
.push_back(0); // FIXME: DEAD: remove in llvm 3.0
255 TypeVals
.push_back(VE
.getTypeID(FT
->getReturnType()));
256 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
)
257 TypeVals
.push_back(VE
.getTypeID(FT
->getParamType(i
)));
258 AbbrevToUse
= FunctionAbbrev
;
261 case Type::StructTyID
: {
262 const StructType
*ST
= cast
<StructType
>(T
);
263 // STRUCT: [ispacked, eltty x N]
264 TypeVals
.push_back(ST
->isPacked());
265 // Output all of the element types.
266 for (StructType::element_iterator I
= ST
->element_begin(),
267 E
= ST
->element_end(); I
!= E
; ++I
)
268 TypeVals
.push_back(VE
.getTypeID(*I
));
270 if (ST
->isAnonymous()) {
271 Code
= bitc::TYPE_CODE_STRUCT_ANON
;
272 AbbrevToUse
= StructAnonAbbrev
;
274 if (ST
->isOpaque()) {
275 Code
= bitc::TYPE_CODE_OPAQUE
;
277 Code
= bitc::TYPE_CODE_STRUCT_NAMED
;
278 AbbrevToUse
= StructNamedAbbrev
;
281 // Emit the name if it is present.
282 if (!ST
->getName().empty())
283 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME
, ST
->getName(),
284 StructNameAbbrev
, Stream
);
288 case Type::ArrayTyID
: {
289 const ArrayType
*AT
= cast
<ArrayType
>(T
);
290 // ARRAY: [numelts, eltty]
291 Code
= bitc::TYPE_CODE_ARRAY
;
292 TypeVals
.push_back(AT
->getNumElements());
293 TypeVals
.push_back(VE
.getTypeID(AT
->getElementType()));
294 AbbrevToUse
= ArrayAbbrev
;
297 case Type::VectorTyID
: {
298 const VectorType
*VT
= cast
<VectorType
>(T
);
299 // VECTOR [numelts, eltty]
300 Code
= bitc::TYPE_CODE_VECTOR
;
301 TypeVals
.push_back(VT
->getNumElements());
302 TypeVals
.push_back(VE
.getTypeID(VT
->getElementType()));
307 // Emit the finished record.
308 Stream
.EmitRecord(Code
, TypeVals
, AbbrevToUse
);
315 static unsigned getEncodedLinkage(const GlobalValue
*GV
) {
316 switch (GV
->getLinkage()) {
317 default: llvm_unreachable("Invalid linkage!");
318 case GlobalValue::ExternalLinkage
: return 0;
319 case GlobalValue::WeakAnyLinkage
: return 1;
320 case GlobalValue::AppendingLinkage
: return 2;
321 case GlobalValue::InternalLinkage
: return 3;
322 case GlobalValue::LinkOnceAnyLinkage
: return 4;
323 case GlobalValue::DLLImportLinkage
: return 5;
324 case GlobalValue::DLLExportLinkage
: return 6;
325 case GlobalValue::ExternalWeakLinkage
: return 7;
326 case GlobalValue::CommonLinkage
: return 8;
327 case GlobalValue::PrivateLinkage
: return 9;
328 case GlobalValue::WeakODRLinkage
: return 10;
329 case GlobalValue::LinkOnceODRLinkage
: return 11;
330 case GlobalValue::AvailableExternallyLinkage
: return 12;
331 case GlobalValue::LinkerPrivateLinkage
: return 13;
332 case GlobalValue::LinkerPrivateWeakLinkage
: return 14;
333 case GlobalValue::LinkerPrivateWeakDefAutoLinkage
: return 15;
337 static unsigned getEncodedVisibility(const GlobalValue
*GV
) {
338 switch (GV
->getVisibility()) {
339 default: llvm_unreachable("Invalid visibility!");
340 case GlobalValue::DefaultVisibility
: return 0;
341 case GlobalValue::HiddenVisibility
: return 1;
342 case GlobalValue::ProtectedVisibility
: return 2;
346 // Emit top-level description of module, including target triple, inline asm,
347 // descriptors for global variables, and function prototype info.
348 static void WriteModuleInfo(const Module
*M
, const ValueEnumerator
&VE
,
349 BitstreamWriter
&Stream
) {
350 // Emit the list of dependent libraries for the Module.
351 for (Module::lib_iterator I
= M
->lib_begin(), E
= M
->lib_end(); I
!= E
; ++I
)
352 WriteStringRecord(bitc::MODULE_CODE_DEPLIB
, *I
, 0/*TODO*/, Stream
);
354 // Emit various pieces of data attached to a module.
355 if (!M
->getTargetTriple().empty())
356 WriteStringRecord(bitc::MODULE_CODE_TRIPLE
, M
->getTargetTriple(),
358 if (!M
->getDataLayout().empty())
359 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT
, M
->getDataLayout(),
361 if (!M
->getModuleInlineAsm().empty())
362 WriteStringRecord(bitc::MODULE_CODE_ASM
, M
->getModuleInlineAsm(),
365 // Emit information about sections and GC, computing how many there are. Also
366 // compute the maximum alignment value.
367 std::map
<std::string
, unsigned> SectionMap
;
368 std::map
<std::string
, unsigned> GCMap
;
369 unsigned MaxAlignment
= 0;
370 unsigned MaxGlobalType
= 0;
371 for (Module::const_global_iterator GV
= M
->global_begin(),E
= M
->global_end();
373 MaxAlignment
= std::max(MaxAlignment
, GV
->getAlignment());
374 MaxGlobalType
= std::max(MaxGlobalType
, VE
.getTypeID(GV
->getType()));
376 if (!GV
->hasSection()) continue;
377 // Give section names unique ID's.
378 unsigned &Entry
= SectionMap
[GV
->getSection()];
379 if (Entry
!= 0) continue;
380 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME
, GV
->getSection(),
382 Entry
= SectionMap
.size();
384 for (Module::const_iterator F
= M
->begin(), E
= M
->end(); F
!= E
; ++F
) {
385 MaxAlignment
= std::max(MaxAlignment
, F
->getAlignment());
386 if (F
->hasSection()) {
387 // Give section names unique ID's.
388 unsigned &Entry
= SectionMap
[F
->getSection()];
390 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME
, F
->getSection(),
392 Entry
= SectionMap
.size();
396 // Same for GC names.
397 unsigned &Entry
= GCMap
[F
->getGC()];
399 WriteStringRecord(bitc::MODULE_CODE_GCNAME
, F
->getGC(),
401 Entry
= GCMap
.size();
406 // Emit abbrev for globals, now that we know # sections and max alignment.
407 unsigned SimpleGVarAbbrev
= 0;
408 if (!M
->global_empty()) {
409 // Add an abbrev for common globals with no visibility or thread localness.
410 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
411 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR
));
412 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
413 Log2_32_Ceil(MaxGlobalType
+1)));
414 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // Constant.
415 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Initializer.
416 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // Linkage.
417 if (MaxAlignment
== 0) // Alignment.
418 Abbv
->Add(BitCodeAbbrevOp(0));
420 unsigned MaxEncAlignment
= Log2_32(MaxAlignment
)+1;
421 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
422 Log2_32_Ceil(MaxEncAlignment
+1)));
424 if (SectionMap
.empty()) // Section.
425 Abbv
->Add(BitCodeAbbrevOp(0));
427 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
428 Log2_32_Ceil(SectionMap
.size()+1)));
429 // Don't bother emitting vis + thread local.
430 SimpleGVarAbbrev
= Stream
.EmitAbbrev(Abbv
);
433 // Emit the global variable information.
434 SmallVector
<unsigned, 64> Vals
;
435 for (Module::const_global_iterator GV
= M
->global_begin(),E
= M
->global_end();
437 unsigned AbbrevToUse
= 0;
439 // GLOBALVAR: [type, isconst, initid,
440 // linkage, alignment, section, visibility, threadlocal,
442 Vals
.push_back(VE
.getTypeID(GV
->getType()));
443 Vals
.push_back(GV
->isConstant());
444 Vals
.push_back(GV
->isDeclaration() ? 0 :
445 (VE
.getValueID(GV
->getInitializer()) + 1));
446 Vals
.push_back(getEncodedLinkage(GV
));
447 Vals
.push_back(Log2_32(GV
->getAlignment())+1);
448 Vals
.push_back(GV
->hasSection() ? SectionMap
[GV
->getSection()] : 0);
449 if (GV
->isThreadLocal() ||
450 GV
->getVisibility() != GlobalValue::DefaultVisibility
||
451 GV
->hasUnnamedAddr()) {
452 Vals
.push_back(getEncodedVisibility(GV
));
453 Vals
.push_back(GV
->isThreadLocal());
454 Vals
.push_back(GV
->hasUnnamedAddr());
456 AbbrevToUse
= SimpleGVarAbbrev
;
459 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
, AbbrevToUse
);
463 // Emit the function proto information.
464 for (Module::const_iterator F
= M
->begin(), E
= M
->end(); F
!= E
; ++F
) {
465 // FUNCTION: [type, callingconv, isproto, paramattr,
466 // linkage, alignment, section, visibility, gc, unnamed_addr]
467 Vals
.push_back(VE
.getTypeID(F
->getType()));
468 Vals
.push_back(F
->getCallingConv());
469 Vals
.push_back(F
->isDeclaration());
470 Vals
.push_back(getEncodedLinkage(F
));
471 Vals
.push_back(VE
.getAttributeID(F
->getAttributes()));
472 Vals
.push_back(Log2_32(F
->getAlignment())+1);
473 Vals
.push_back(F
->hasSection() ? SectionMap
[F
->getSection()] : 0);
474 Vals
.push_back(getEncodedVisibility(F
));
475 Vals
.push_back(F
->hasGC() ? GCMap
[F
->getGC()] : 0);
476 Vals
.push_back(F
->hasUnnamedAddr());
478 unsigned AbbrevToUse
= 0;
479 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
, AbbrevToUse
);
483 // Emit the alias information.
484 for (Module::const_alias_iterator AI
= M
->alias_begin(), E
= M
->alias_end();
486 Vals
.push_back(VE
.getTypeID(AI
->getType()));
487 Vals
.push_back(VE
.getValueID(AI
->getAliasee()));
488 Vals
.push_back(getEncodedLinkage(AI
));
489 Vals
.push_back(getEncodedVisibility(AI
));
490 unsigned AbbrevToUse
= 0;
491 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS
, Vals
, AbbrevToUse
);
496 static uint64_t GetOptimizationFlags(const Value
*V
) {
499 if (const OverflowingBinaryOperator
*OBO
=
500 dyn_cast
<OverflowingBinaryOperator
>(V
)) {
501 if (OBO
->hasNoSignedWrap())
502 Flags
|= 1 << bitc::OBO_NO_SIGNED_WRAP
;
503 if (OBO
->hasNoUnsignedWrap())
504 Flags
|= 1 << bitc::OBO_NO_UNSIGNED_WRAP
;
505 } else if (const PossiblyExactOperator
*PEO
=
506 dyn_cast
<PossiblyExactOperator
>(V
)) {
508 Flags
|= 1 << bitc::PEO_EXACT
;
514 static void WriteMDNode(const MDNode
*N
,
515 const ValueEnumerator
&VE
,
516 BitstreamWriter
&Stream
,
517 SmallVector
<uint64_t, 64> &Record
) {
518 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
519 if (N
->getOperand(i
)) {
520 Record
.push_back(VE
.getTypeID(N
->getOperand(i
)->getType()));
521 Record
.push_back(VE
.getValueID(N
->getOperand(i
)));
523 Record
.push_back(VE
.getTypeID(Type::getVoidTy(N
->getContext())));
527 unsigned MDCode
= N
->isFunctionLocal() ? bitc::METADATA_FN_NODE
:
529 Stream
.EmitRecord(MDCode
, Record
, 0);
533 static void WriteModuleMetadata(const Module
*M
,
534 const ValueEnumerator
&VE
,
535 BitstreamWriter
&Stream
) {
536 const ValueEnumerator::ValueList
&Vals
= VE
.getMDValues();
537 bool StartedMetadataBlock
= false;
538 unsigned MDSAbbrev
= 0;
539 SmallVector
<uint64_t, 64> Record
;
540 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
542 if (const MDNode
*N
= dyn_cast
<MDNode
>(Vals
[i
].first
)) {
543 if (!N
->isFunctionLocal() || !N
->getFunction()) {
544 if (!StartedMetadataBlock
) {
545 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
546 StartedMetadataBlock
= true;
548 WriteMDNode(N
, VE
, Stream
, Record
);
550 } else if (const MDString
*MDS
= dyn_cast
<MDString
>(Vals
[i
].first
)) {
551 if (!StartedMetadataBlock
) {
552 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
554 // Abbrev for METADATA_STRING.
555 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
556 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_STRING
));
557 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
558 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
559 MDSAbbrev
= Stream
.EmitAbbrev(Abbv
);
560 StartedMetadataBlock
= true;
563 // Code: [strchar x N]
564 Record
.append(MDS
->begin(), MDS
->end());
566 // Emit the finished record.
567 Stream
.EmitRecord(bitc::METADATA_STRING
, Record
, MDSAbbrev
);
572 // Write named metadata.
573 for (Module::const_named_metadata_iterator I
= M
->named_metadata_begin(),
574 E
= M
->named_metadata_end(); I
!= E
; ++I
) {
575 const NamedMDNode
*NMD
= I
;
576 if (!StartedMetadataBlock
) {
577 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
578 StartedMetadataBlock
= true;
582 StringRef Str
= NMD
->getName();
583 for (unsigned i
= 0, e
= Str
.size(); i
!= e
; ++i
)
584 Record
.push_back(Str
[i
]);
585 Stream
.EmitRecord(bitc::METADATA_NAME
, Record
, 0/*TODO*/);
588 // Write named metadata operands.
589 for (unsigned i
= 0, e
= NMD
->getNumOperands(); i
!= e
; ++i
)
590 Record
.push_back(VE
.getValueID(NMD
->getOperand(i
)));
591 Stream
.EmitRecord(bitc::METADATA_NAMED_NODE
, Record
, 0);
595 if (StartedMetadataBlock
)
599 static void WriteFunctionLocalMetadata(const Function
&F
,
600 const ValueEnumerator
&VE
,
601 BitstreamWriter
&Stream
) {
602 bool StartedMetadataBlock
= false;
603 SmallVector
<uint64_t, 64> Record
;
604 const SmallVector
<const MDNode
*, 8> &Vals
= VE
.getFunctionLocalMDValues();
605 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
)
606 if (const MDNode
*N
= Vals
[i
])
607 if (N
->isFunctionLocal() && N
->getFunction() == &F
) {
608 if (!StartedMetadataBlock
) {
609 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
610 StartedMetadataBlock
= true;
612 WriteMDNode(N
, VE
, Stream
, Record
);
615 if (StartedMetadataBlock
)
619 static void WriteMetadataAttachment(const Function
&F
,
620 const ValueEnumerator
&VE
,
621 BitstreamWriter
&Stream
) {
622 Stream
.EnterSubblock(bitc::METADATA_ATTACHMENT_ID
, 3);
624 SmallVector
<uint64_t, 64> Record
;
626 // Write metadata attachments
627 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
628 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
630 for (Function::const_iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
631 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end();
634 I
->getAllMetadataOtherThanDebugLoc(MDs
);
636 // If no metadata, ignore instruction.
637 if (MDs
.empty()) continue;
639 Record
.push_back(VE
.getInstructionID(I
));
641 for (unsigned i
= 0, e
= MDs
.size(); i
!= e
; ++i
) {
642 Record
.push_back(MDs
[i
].first
);
643 Record
.push_back(VE
.getValueID(MDs
[i
].second
));
645 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
652 static void WriteModuleMetadataStore(const Module
*M
, BitstreamWriter
&Stream
) {
653 SmallVector
<uint64_t, 64> Record
;
655 // Write metadata kinds
656 // METADATA_KIND - [n x [id, name]]
657 SmallVector
<StringRef
, 4> Names
;
658 M
->getMDKindNames(Names
);
660 if (Names
.empty()) return;
662 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
664 for (unsigned MDKindID
= 0, e
= Names
.size(); MDKindID
!= e
; ++MDKindID
) {
665 Record
.push_back(MDKindID
);
666 StringRef KName
= Names
[MDKindID
];
667 Record
.append(KName
.begin(), KName
.end());
669 Stream
.EmitRecord(bitc::METADATA_KIND
, Record
, 0);
676 static void WriteConstants(unsigned FirstVal
, unsigned LastVal
,
677 const ValueEnumerator
&VE
,
678 BitstreamWriter
&Stream
, bool isGlobal
) {
679 if (FirstVal
== LastVal
) return;
681 Stream
.EnterSubblock(bitc::CONSTANTS_BLOCK_ID
, 4);
683 unsigned AggregateAbbrev
= 0;
684 unsigned String8Abbrev
= 0;
685 unsigned CString7Abbrev
= 0;
686 unsigned CString6Abbrev
= 0;
687 // If this is a constant pool for the module, emit module-specific abbrevs.
689 // Abbrev for CST_CODE_AGGREGATE.
690 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
691 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE
));
692 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
693 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, Log2_32_Ceil(LastVal
+1)));
694 AggregateAbbrev
= Stream
.EmitAbbrev(Abbv
);
696 // Abbrev for CST_CODE_STRING.
697 Abbv
= new BitCodeAbbrev();
698 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING
));
699 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
700 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
701 String8Abbrev
= Stream
.EmitAbbrev(Abbv
);
702 // Abbrev for CST_CODE_CSTRING.
703 Abbv
= new BitCodeAbbrev();
704 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
705 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
706 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
707 CString7Abbrev
= Stream
.EmitAbbrev(Abbv
);
708 // Abbrev for CST_CODE_CSTRING.
709 Abbv
= new BitCodeAbbrev();
710 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
711 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
712 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
713 CString6Abbrev
= Stream
.EmitAbbrev(Abbv
);
716 SmallVector
<uint64_t, 64> Record
;
718 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
719 const Type
*LastTy
= 0;
720 for (unsigned i
= FirstVal
; i
!= LastVal
; ++i
) {
721 const Value
*V
= Vals
[i
].first
;
722 // If we need to switch types, do so now.
723 if (V
->getType() != LastTy
) {
724 LastTy
= V
->getType();
725 Record
.push_back(VE
.getTypeID(LastTy
));
726 Stream
.EmitRecord(bitc::CST_CODE_SETTYPE
, Record
,
727 CONSTANTS_SETTYPE_ABBREV
);
731 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
732 Record
.push_back(unsigned(IA
->hasSideEffects()) |
733 unsigned(IA
->isAlignStack()) << 1);
735 // Add the asm string.
736 const std::string
&AsmStr
= IA
->getAsmString();
737 Record
.push_back(AsmStr
.size());
738 for (unsigned i
= 0, e
= AsmStr
.size(); i
!= e
; ++i
)
739 Record
.push_back(AsmStr
[i
]);
741 // Add the constraint string.
742 const std::string
&ConstraintStr
= IA
->getConstraintString();
743 Record
.push_back(ConstraintStr
.size());
744 for (unsigned i
= 0, e
= ConstraintStr
.size(); i
!= e
; ++i
)
745 Record
.push_back(ConstraintStr
[i
]);
746 Stream
.EmitRecord(bitc::CST_CODE_INLINEASM
, Record
);
750 const Constant
*C
= cast
<Constant
>(V
);
752 unsigned AbbrevToUse
= 0;
753 if (C
->isNullValue()) {
754 Code
= bitc::CST_CODE_NULL
;
755 } else if (isa
<UndefValue
>(C
)) {
756 Code
= bitc::CST_CODE_UNDEF
;
757 } else if (const ConstantInt
*IV
= dyn_cast
<ConstantInt
>(C
)) {
758 if (IV
->getBitWidth() <= 64) {
759 uint64_t V
= IV
->getSExtValue();
761 Record
.push_back(V
<< 1);
763 Record
.push_back((-V
<< 1) | 1);
764 Code
= bitc::CST_CODE_INTEGER
;
765 AbbrevToUse
= CONSTANTS_INTEGER_ABBREV
;
766 } else { // Wide integers, > 64 bits in size.
767 // We have an arbitrary precision integer value to write whose
768 // bit width is > 64. However, in canonical unsigned integer
769 // format it is likely that the high bits are going to be zero.
770 // So, we only write the number of active words.
771 unsigned NWords
= IV
->getValue().getActiveWords();
772 const uint64_t *RawWords
= IV
->getValue().getRawData();
773 for (unsigned i
= 0; i
!= NWords
; ++i
) {
774 int64_t V
= RawWords
[i
];
776 Record
.push_back(V
<< 1);
778 Record
.push_back((-V
<< 1) | 1);
780 Code
= bitc::CST_CODE_WIDE_INTEGER
;
782 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
783 Code
= bitc::CST_CODE_FLOAT
;
784 const Type
*Ty
= CFP
->getType();
785 if (Ty
->isFloatTy() || Ty
->isDoubleTy()) {
786 Record
.push_back(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
787 } else if (Ty
->isX86_FP80Ty()) {
788 // api needed to prevent premature destruction
789 // bits are not in the same order as a normal i80 APInt, compensate.
790 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
791 const uint64_t *p
= api
.getRawData();
792 Record
.push_back((p
[1] << 48) | (p
[0] >> 16));
793 Record
.push_back(p
[0] & 0xffffLL
);
794 } else if (Ty
->isFP128Ty() || Ty
->isPPC_FP128Ty()) {
795 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
796 const uint64_t *p
= api
.getRawData();
797 Record
.push_back(p
[0]);
798 Record
.push_back(p
[1]);
800 assert (0 && "Unknown FP type!");
802 } else if (isa
<ConstantArray
>(C
) && cast
<ConstantArray
>(C
)->isString()) {
803 const ConstantArray
*CA
= cast
<ConstantArray
>(C
);
804 // Emit constant strings specially.
805 unsigned NumOps
= CA
->getNumOperands();
806 // If this is a null-terminated string, use the denser CSTRING encoding.
807 if (CA
->getOperand(NumOps
-1)->isNullValue()) {
808 Code
= bitc::CST_CODE_CSTRING
;
809 --NumOps
; // Don't encode the null, which isn't allowed by char6.
811 Code
= bitc::CST_CODE_STRING
;
812 AbbrevToUse
= String8Abbrev
;
814 bool isCStr7
= Code
== bitc::CST_CODE_CSTRING
;
815 bool isCStrChar6
= Code
== bitc::CST_CODE_CSTRING
;
816 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
817 unsigned char V
= cast
<ConstantInt
>(CA
->getOperand(i
))->getZExtValue();
819 isCStr7
&= (V
& 128) == 0;
821 isCStrChar6
= BitCodeAbbrevOp::isChar6(V
);
825 AbbrevToUse
= CString6Abbrev
;
827 AbbrevToUse
= CString7Abbrev
;
828 } else if (isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(V
) ||
829 isa
<ConstantVector
>(V
)) {
830 Code
= bitc::CST_CODE_AGGREGATE
;
831 for (unsigned i
= 0, e
= C
->getNumOperands(); i
!= e
; ++i
)
832 Record
.push_back(VE
.getValueID(C
->getOperand(i
)));
833 AbbrevToUse
= AggregateAbbrev
;
834 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
835 switch (CE
->getOpcode()) {
837 if (Instruction::isCast(CE
->getOpcode())) {
838 Code
= bitc::CST_CODE_CE_CAST
;
839 Record
.push_back(GetEncodedCastOpcode(CE
->getOpcode()));
840 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
841 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
842 AbbrevToUse
= CONSTANTS_CE_CAST_Abbrev
;
844 assert(CE
->getNumOperands() == 2 && "Unknown constant expr!");
845 Code
= bitc::CST_CODE_CE_BINOP
;
846 Record
.push_back(GetEncodedBinaryOpcode(CE
->getOpcode()));
847 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
848 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
849 uint64_t Flags
= GetOptimizationFlags(CE
);
851 Record
.push_back(Flags
);
854 case Instruction::GetElementPtr
:
855 Code
= bitc::CST_CODE_CE_GEP
;
856 if (cast
<GEPOperator
>(C
)->isInBounds())
857 Code
= bitc::CST_CODE_CE_INBOUNDS_GEP
;
858 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
) {
859 Record
.push_back(VE
.getTypeID(C
->getOperand(i
)->getType()));
860 Record
.push_back(VE
.getValueID(C
->getOperand(i
)));
863 case Instruction::Select
:
864 Code
= bitc::CST_CODE_CE_SELECT
;
865 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
866 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
867 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
869 case Instruction::ExtractElement
:
870 Code
= bitc::CST_CODE_CE_EXTRACTELT
;
871 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
872 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
873 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
875 case Instruction::InsertElement
:
876 Code
= bitc::CST_CODE_CE_INSERTELT
;
877 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
878 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
879 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
881 case Instruction::ShuffleVector
:
882 // If the return type and argument types are the same, this is a
883 // standard shufflevector instruction. If the types are different,
884 // then the shuffle is widening or truncating the input vectors, and
885 // the argument type must also be encoded.
886 if (C
->getType() == C
->getOperand(0)->getType()) {
887 Code
= bitc::CST_CODE_CE_SHUFFLEVEC
;
889 Code
= bitc::CST_CODE_CE_SHUFVEC_EX
;
890 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
892 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
893 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
894 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
896 case Instruction::ICmp
:
897 case Instruction::FCmp
:
898 Code
= bitc::CST_CODE_CE_CMP
;
899 Record
.push_back(VE
.getTypeID(C
->getOperand(0)->getType()));
900 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
901 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
902 Record
.push_back(CE
->getPredicate());
905 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
)) {
906 Code
= bitc::CST_CODE_BLOCKADDRESS
;
907 Record
.push_back(VE
.getTypeID(BA
->getFunction()->getType()));
908 Record
.push_back(VE
.getValueID(BA
->getFunction()));
909 Record
.push_back(VE
.getGlobalBasicBlockID(BA
->getBasicBlock()));
914 llvm_unreachable("Unknown constant!");
916 Stream
.EmitRecord(Code
, Record
, AbbrevToUse
);
923 static void WriteModuleConstants(const ValueEnumerator
&VE
,
924 BitstreamWriter
&Stream
) {
925 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
927 // Find the first constant to emit, which is the first non-globalvalue value.
928 // We know globalvalues have been emitted by WriteModuleInfo.
929 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
930 if (!isa
<GlobalValue
>(Vals
[i
].first
)) {
931 WriteConstants(i
, Vals
.size(), VE
, Stream
, true);
937 /// PushValueAndType - The file has to encode both the value and type id for
938 /// many values, because we need to know what type to create for forward
939 /// references. However, most operands are not forward references, so this type
940 /// field is not needed.
942 /// This function adds V's value ID to Vals. If the value ID is higher than the
943 /// instruction ID, then it is a forward reference, and it also includes the
945 static bool PushValueAndType(const Value
*V
, unsigned InstID
,
946 SmallVector
<unsigned, 64> &Vals
,
947 ValueEnumerator
&VE
) {
948 unsigned ValID
= VE
.getValueID(V
);
949 Vals
.push_back(ValID
);
950 if (ValID
>= InstID
) {
951 Vals
.push_back(VE
.getTypeID(V
->getType()));
957 /// WriteInstruction - Emit an instruction to the specified stream.
958 static void WriteInstruction(const Instruction
&I
, unsigned InstID
,
959 ValueEnumerator
&VE
, BitstreamWriter
&Stream
,
960 SmallVector
<unsigned, 64> &Vals
) {
962 unsigned AbbrevToUse
= 0;
963 VE
.setInstructionID(&I
);
964 switch (I
.getOpcode()) {
966 if (Instruction::isCast(I
.getOpcode())) {
967 Code
= bitc::FUNC_CODE_INST_CAST
;
968 if (!PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
))
969 AbbrevToUse
= FUNCTION_INST_CAST_ABBREV
;
970 Vals
.push_back(VE
.getTypeID(I
.getType()));
971 Vals
.push_back(GetEncodedCastOpcode(I
.getOpcode()));
973 assert(isa
<BinaryOperator
>(I
) && "Unknown instruction!");
974 Code
= bitc::FUNC_CODE_INST_BINOP
;
975 if (!PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
))
976 AbbrevToUse
= FUNCTION_INST_BINOP_ABBREV
;
977 Vals
.push_back(VE
.getValueID(I
.getOperand(1)));
978 Vals
.push_back(GetEncodedBinaryOpcode(I
.getOpcode()));
979 uint64_t Flags
= GetOptimizationFlags(&I
);
981 if (AbbrevToUse
== FUNCTION_INST_BINOP_ABBREV
)
982 AbbrevToUse
= FUNCTION_INST_BINOP_FLAGS_ABBREV
;
983 Vals
.push_back(Flags
);
988 case Instruction::GetElementPtr
:
989 Code
= bitc::FUNC_CODE_INST_GEP
;
990 if (cast
<GEPOperator
>(&I
)->isInBounds())
991 Code
= bitc::FUNC_CODE_INST_INBOUNDS_GEP
;
992 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
993 PushValueAndType(I
.getOperand(i
), InstID
, Vals
, VE
);
995 case Instruction::ExtractValue
: {
996 Code
= bitc::FUNC_CODE_INST_EXTRACTVAL
;
997 PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
);
998 const ExtractValueInst
*EVI
= cast
<ExtractValueInst
>(&I
);
999 for (const unsigned *i
= EVI
->idx_begin(), *e
= EVI
->idx_end(); i
!= e
; ++i
)
1003 case Instruction::InsertValue
: {
1004 Code
= bitc::FUNC_CODE_INST_INSERTVAL
;
1005 PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
);
1006 PushValueAndType(I
.getOperand(1), InstID
, Vals
, VE
);
1007 const InsertValueInst
*IVI
= cast
<InsertValueInst
>(&I
);
1008 for (const unsigned *i
= IVI
->idx_begin(), *e
= IVI
->idx_end(); i
!= e
; ++i
)
1012 case Instruction::Select
:
1013 Code
= bitc::FUNC_CODE_INST_VSELECT
;
1014 PushValueAndType(I
.getOperand(1), InstID
, Vals
, VE
);
1015 Vals
.push_back(VE
.getValueID(I
.getOperand(2)));
1016 PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
);
1018 case Instruction::ExtractElement
:
1019 Code
= bitc::FUNC_CODE_INST_EXTRACTELT
;
1020 PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
);
1021 Vals
.push_back(VE
.getValueID(I
.getOperand(1)));
1023 case Instruction::InsertElement
:
1024 Code
= bitc::FUNC_CODE_INST_INSERTELT
;
1025 PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
);
1026 Vals
.push_back(VE
.getValueID(I
.getOperand(1)));
1027 Vals
.push_back(VE
.getValueID(I
.getOperand(2)));
1029 case Instruction::ShuffleVector
:
1030 Code
= bitc::FUNC_CODE_INST_SHUFFLEVEC
;
1031 PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
);
1032 Vals
.push_back(VE
.getValueID(I
.getOperand(1)));
1033 Vals
.push_back(VE
.getValueID(I
.getOperand(2)));
1035 case Instruction::ICmp
:
1036 case Instruction::FCmp
:
1037 // compare returning Int1Ty or vector of Int1Ty
1038 Code
= bitc::FUNC_CODE_INST_CMP2
;
1039 PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
);
1040 Vals
.push_back(VE
.getValueID(I
.getOperand(1)));
1041 Vals
.push_back(cast
<CmpInst
>(I
).getPredicate());
1044 case Instruction::Ret
:
1046 Code
= bitc::FUNC_CODE_INST_RET
;
1047 unsigned NumOperands
= I
.getNumOperands();
1048 if (NumOperands
== 0)
1049 AbbrevToUse
= FUNCTION_INST_RET_VOID_ABBREV
;
1050 else if (NumOperands
== 1) {
1051 if (!PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
))
1052 AbbrevToUse
= FUNCTION_INST_RET_VAL_ABBREV
;
1054 for (unsigned i
= 0, e
= NumOperands
; i
!= e
; ++i
)
1055 PushValueAndType(I
.getOperand(i
), InstID
, Vals
, VE
);
1059 case Instruction::Br
:
1061 Code
= bitc::FUNC_CODE_INST_BR
;
1062 BranchInst
&II
= cast
<BranchInst
>(I
);
1063 Vals
.push_back(VE
.getValueID(II
.getSuccessor(0)));
1064 if (II
.isConditional()) {
1065 Vals
.push_back(VE
.getValueID(II
.getSuccessor(1)));
1066 Vals
.push_back(VE
.getValueID(II
.getCondition()));
1070 case Instruction::Switch
:
1071 Code
= bitc::FUNC_CODE_INST_SWITCH
;
1072 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
1073 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
1074 Vals
.push_back(VE
.getValueID(I
.getOperand(i
)));
1076 case Instruction::IndirectBr
:
1077 Code
= bitc::FUNC_CODE_INST_INDIRECTBR
;
1078 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
1079 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
1080 Vals
.push_back(VE
.getValueID(I
.getOperand(i
)));
1083 case Instruction::Invoke
: {
1084 const InvokeInst
*II
= cast
<InvokeInst
>(&I
);
1085 const Value
*Callee(II
->getCalledValue());
1086 const PointerType
*PTy
= cast
<PointerType
>(Callee
->getType());
1087 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1088 Code
= bitc::FUNC_CODE_INST_INVOKE
;
1090 Vals
.push_back(VE
.getAttributeID(II
->getAttributes()));
1091 Vals
.push_back(II
->getCallingConv());
1092 Vals
.push_back(VE
.getValueID(II
->getNormalDest()));
1093 Vals
.push_back(VE
.getValueID(II
->getUnwindDest()));
1094 PushValueAndType(Callee
, InstID
, Vals
, VE
);
1096 // Emit value #'s for the fixed parameters.
1097 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1098 Vals
.push_back(VE
.getValueID(I
.getOperand(i
))); // fixed param.
1100 // Emit type/value pairs for varargs params.
1101 if (FTy
->isVarArg()) {
1102 for (unsigned i
= FTy
->getNumParams(), e
= I
.getNumOperands()-3;
1104 PushValueAndType(I
.getOperand(i
), InstID
, Vals
, VE
); // vararg
1108 case Instruction::Unwind
:
1109 Code
= bitc::FUNC_CODE_INST_UNWIND
;
1111 case Instruction::Unreachable
:
1112 Code
= bitc::FUNC_CODE_INST_UNREACHABLE
;
1113 AbbrevToUse
= FUNCTION_INST_UNREACHABLE_ABBREV
;
1116 case Instruction::PHI
: {
1117 const PHINode
&PN
= cast
<PHINode
>(I
);
1118 Code
= bitc::FUNC_CODE_INST_PHI
;
1119 Vals
.push_back(VE
.getTypeID(PN
.getType()));
1120 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
1121 Vals
.push_back(VE
.getValueID(PN
.getIncomingValue(i
)));
1122 Vals
.push_back(VE
.getValueID(PN
.getIncomingBlock(i
)));
1127 case Instruction::Alloca
:
1128 Code
= bitc::FUNC_CODE_INST_ALLOCA
;
1129 Vals
.push_back(VE
.getTypeID(I
.getType()));
1130 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType()));
1131 Vals
.push_back(VE
.getValueID(I
.getOperand(0))); // size.
1132 Vals
.push_back(Log2_32(cast
<AllocaInst
>(I
).getAlignment())+1);
1135 case Instruction::Load
:
1136 Code
= bitc::FUNC_CODE_INST_LOAD
;
1137 if (!PushValueAndType(I
.getOperand(0), InstID
, Vals
, VE
)) // ptr
1138 AbbrevToUse
= FUNCTION_INST_LOAD_ABBREV
;
1140 Vals
.push_back(Log2_32(cast
<LoadInst
>(I
).getAlignment())+1);
1141 Vals
.push_back(cast
<LoadInst
>(I
).isVolatile());
1143 case Instruction::Store
:
1144 Code
= bitc::FUNC_CODE_INST_STORE
;
1145 PushValueAndType(I
.getOperand(1), InstID
, Vals
, VE
); // ptrty + ptr
1146 Vals
.push_back(VE
.getValueID(I
.getOperand(0))); // val.
1147 Vals
.push_back(Log2_32(cast
<StoreInst
>(I
).getAlignment())+1);
1148 Vals
.push_back(cast
<StoreInst
>(I
).isVolatile());
1150 case Instruction::Call
: {
1151 const CallInst
&CI
= cast
<CallInst
>(I
);
1152 const PointerType
*PTy
= cast
<PointerType
>(CI
.getCalledValue()->getType());
1153 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
1155 Code
= bitc::FUNC_CODE_INST_CALL
;
1157 Vals
.push_back(VE
.getAttributeID(CI
.getAttributes()));
1158 Vals
.push_back((CI
.getCallingConv() << 1) | unsigned(CI
.isTailCall()));
1159 PushValueAndType(CI
.getCalledValue(), InstID
, Vals
, VE
); // Callee
1161 // Emit value #'s for the fixed parameters.
1162 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
1163 Vals
.push_back(VE
.getValueID(CI
.getArgOperand(i
))); // fixed param.
1165 // Emit type/value pairs for varargs params.
1166 if (FTy
->isVarArg()) {
1167 for (unsigned i
= FTy
->getNumParams(), e
= CI
.getNumArgOperands();
1169 PushValueAndType(CI
.getArgOperand(i
), InstID
, Vals
, VE
); // varargs
1173 case Instruction::VAArg
:
1174 Code
= bitc::FUNC_CODE_INST_VAARG
;
1175 Vals
.push_back(VE
.getTypeID(I
.getOperand(0)->getType())); // valistty
1176 Vals
.push_back(VE
.getValueID(I
.getOperand(0))); // valist.
1177 Vals
.push_back(VE
.getTypeID(I
.getType())); // restype.
1181 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
1185 // Emit names for globals/functions etc.
1186 static void WriteValueSymbolTable(const ValueSymbolTable
&VST
,
1187 const ValueEnumerator
&VE
,
1188 BitstreamWriter
&Stream
) {
1189 if (VST
.empty()) return;
1190 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
1192 // FIXME: Set up the abbrev, we know how many values there are!
1193 // FIXME: We know if the type names can use 7-bit ascii.
1194 SmallVector
<unsigned, 64> NameVals
;
1196 for (ValueSymbolTable::const_iterator SI
= VST
.begin(), SE
= VST
.end();
1199 const ValueName
&Name
= *SI
;
1201 // Figure out the encoding to use for the name.
1203 bool isChar6
= true;
1204 for (const char *C
= Name
.getKeyData(), *E
= C
+Name
.getKeyLength();
1207 isChar6
= BitCodeAbbrevOp::isChar6(*C
);
1208 if ((unsigned char)*C
& 128) {
1210 break; // don't bother scanning the rest.
1214 unsigned AbbrevToUse
= VST_ENTRY_8_ABBREV
;
1216 // VST_ENTRY: [valueid, namechar x N]
1217 // VST_BBENTRY: [bbid, namechar x N]
1219 if (isa
<BasicBlock
>(SI
->getValue())) {
1220 Code
= bitc::VST_CODE_BBENTRY
;
1222 AbbrevToUse
= VST_BBENTRY_6_ABBREV
;
1224 Code
= bitc::VST_CODE_ENTRY
;
1226 AbbrevToUse
= VST_ENTRY_6_ABBREV
;
1228 AbbrevToUse
= VST_ENTRY_7_ABBREV
;
1231 NameVals
.push_back(VE
.getValueID(SI
->getValue()));
1232 for (const char *P
= Name
.getKeyData(),
1233 *E
= Name
.getKeyData()+Name
.getKeyLength(); P
!= E
; ++P
)
1234 NameVals
.push_back((unsigned char)*P
);
1236 // Emit the finished record.
1237 Stream
.EmitRecord(Code
, NameVals
, AbbrevToUse
);
1243 /// WriteFunction - Emit a function body to the module stream.
1244 static void WriteFunction(const Function
&F
, ValueEnumerator
&VE
,
1245 BitstreamWriter
&Stream
) {
1246 Stream
.EnterSubblock(bitc::FUNCTION_BLOCK_ID
, 4);
1247 VE
.incorporateFunction(F
);
1249 SmallVector
<unsigned, 64> Vals
;
1251 // Emit the number of basic blocks, so the reader can create them ahead of
1253 Vals
.push_back(VE
.getBasicBlocks().size());
1254 Stream
.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS
, Vals
);
1257 // If there are function-local constants, emit them now.
1258 unsigned CstStart
, CstEnd
;
1259 VE
.getFunctionConstantRange(CstStart
, CstEnd
);
1260 WriteConstants(CstStart
, CstEnd
, VE
, Stream
, false);
1262 // If there is function-local metadata, emit it now.
1263 WriteFunctionLocalMetadata(F
, VE
, Stream
);
1265 // Keep a running idea of what the instruction ID is.
1266 unsigned InstID
= CstEnd
;
1268 bool NeedsMetadataAttachment
= false;
1272 // Finally, emit all the instructions, in order.
1273 for (Function::const_iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
1274 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end();
1276 WriteInstruction(*I
, InstID
, VE
, Stream
, Vals
);
1278 if (!I
->getType()->isVoidTy())
1281 // If the instruction has metadata, write a metadata attachment later.
1282 NeedsMetadataAttachment
|= I
->hasMetadataOtherThanDebugLoc();
1284 // If the instruction has a debug location, emit it.
1285 DebugLoc DL
= I
->getDebugLoc();
1286 if (DL
.isUnknown()) {
1288 } else if (DL
== LastDL
) {
1289 // Just repeat the same debug loc as last time.
1290 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN
, Vals
);
1293 DL
.getScopeAndInlinedAt(Scope
, IA
, I
->getContext());
1295 Vals
.push_back(DL
.getLine());
1296 Vals
.push_back(DL
.getCol());
1297 Vals
.push_back(Scope
? VE
.getValueID(Scope
)+1 : 0);
1298 Vals
.push_back(IA
? VE
.getValueID(IA
)+1 : 0);
1299 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC
, Vals
);
1306 // Emit names for all the instructions etc.
1307 WriteValueSymbolTable(F
.getValueSymbolTable(), VE
, Stream
);
1309 if (NeedsMetadataAttachment
)
1310 WriteMetadataAttachment(F
, VE
, Stream
);
1315 // Emit blockinfo, which defines the standard abbreviations etc.
1316 static void WriteBlockInfo(const ValueEnumerator
&VE
, BitstreamWriter
&Stream
) {
1317 // We only want to emit block info records for blocks that have multiple
1318 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other
1319 // blocks can defined their abbrevs inline.
1320 Stream
.EnterBlockInfoBlock(2);
1322 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
1323 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1324 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 3));
1325 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1326 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1327 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
1328 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
,
1329 Abbv
) != VST_ENTRY_8_ABBREV
)
1330 llvm_unreachable("Unexpected abbrev ordering!");
1333 { // 7-bit fixed width VST_ENTRY strings.
1334 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1335 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
1336 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1337 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1338 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
1339 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
,
1340 Abbv
) != VST_ENTRY_7_ABBREV
)
1341 llvm_unreachable("Unexpected abbrev ordering!");
1343 { // 6-bit char6 VST_ENTRY strings.
1344 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1345 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
1346 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1347 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1348 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
1349 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
,
1350 Abbv
) != VST_ENTRY_6_ABBREV
)
1351 llvm_unreachable("Unexpected abbrev ordering!");
1353 { // 6-bit char6 VST_BBENTRY strings.
1354 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1355 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY
));
1356 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1357 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1358 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
1359 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
,
1360 Abbv
) != VST_BBENTRY_6_ABBREV
)
1361 llvm_unreachable("Unexpected abbrev ordering!");
1366 { // SETTYPE abbrev for CONSTANTS_BLOCK.
1367 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1368 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE
));
1369 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1370 Log2_32_Ceil(VE
.getTypes().size()+1)));
1371 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
,
1372 Abbv
) != CONSTANTS_SETTYPE_ABBREV
)
1373 llvm_unreachable("Unexpected abbrev ordering!");
1376 { // INTEGER abbrev for CONSTANTS_BLOCK.
1377 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1378 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER
));
1379 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1380 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
,
1381 Abbv
) != CONSTANTS_INTEGER_ABBREV
)
1382 llvm_unreachable("Unexpected abbrev ordering!");
1385 { // CE_CAST abbrev for CONSTANTS_BLOCK.
1386 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1387 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST
));
1388 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // cast opc
1389 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // typeid
1390 Log2_32_Ceil(VE
.getTypes().size()+1)));
1391 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
1393 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
,
1394 Abbv
) != CONSTANTS_CE_CAST_Abbrev
)
1395 llvm_unreachable("Unexpected abbrev ordering!");
1397 { // NULL abbrev for CONSTANTS_BLOCK.
1398 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1399 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL
));
1400 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
,
1401 Abbv
) != CONSTANTS_NULL_Abbrev
)
1402 llvm_unreachable("Unexpected abbrev ordering!");
1405 // FIXME: This should only use space for first class types!
1407 { // INST_LOAD abbrev for FUNCTION_BLOCK.
1408 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1409 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD
));
1410 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Ptr
1411 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // Align
1412 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // volatile
1413 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
,
1414 Abbv
) != FUNCTION_INST_LOAD_ABBREV
)
1415 llvm_unreachable("Unexpected abbrev ordering!");
1417 { // INST_BINOP abbrev for FUNCTION_BLOCK.
1418 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1419 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
1420 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
1421 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
1422 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
1423 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
,
1424 Abbv
) != FUNCTION_INST_BINOP_ABBREV
)
1425 llvm_unreachable("Unexpected abbrev ordering!");
1427 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
1428 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1429 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
1430 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
1431 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
1432 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
1433 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7)); // flags
1434 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
,
1435 Abbv
) != FUNCTION_INST_BINOP_FLAGS_ABBREV
)
1436 llvm_unreachable("Unexpected abbrev ordering!");
1438 { // INST_CAST abbrev for FUNCTION_BLOCK.
1439 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1440 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST
));
1441 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // OpVal
1442 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
1443 Log2_32_Ceil(VE
.getTypes().size()+1)));
1444 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
1445 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
,
1446 Abbv
) != FUNCTION_INST_CAST_ABBREV
)
1447 llvm_unreachable("Unexpected abbrev ordering!");
1450 { // INST_RET abbrev for FUNCTION_BLOCK.
1451 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1452 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
1453 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
,
1454 Abbv
) != FUNCTION_INST_RET_VOID_ABBREV
)
1455 llvm_unreachable("Unexpected abbrev ordering!");
1457 { // INST_RET abbrev for FUNCTION_BLOCK.
1458 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1459 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
1460 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // ValID
1461 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
,
1462 Abbv
) != FUNCTION_INST_RET_VAL_ABBREV
)
1463 llvm_unreachable("Unexpected abbrev ordering!");
1465 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
1466 BitCodeAbbrev
*Abbv
= new BitCodeAbbrev();
1467 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE
));
1468 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
,
1469 Abbv
) != FUNCTION_INST_UNREACHABLE_ABBREV
)
1470 llvm_unreachable("Unexpected abbrev ordering!");
1477 /// WriteModule - Emit the specified module to the bitstream.
1478 static void WriteModule(const Module
*M
, BitstreamWriter
&Stream
) {
1479 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
1481 // Emit the version number if it is non-zero.
1483 SmallVector
<unsigned, 1> Vals
;
1484 Vals
.push_back(CurVersion
);
1485 Stream
.EmitRecord(bitc::MODULE_CODE_VERSION
, Vals
);
1488 // Analyze the module, enumerating globals, functions, etc.
1489 ValueEnumerator
VE(M
);
1491 // Emit blockinfo, which defines the standard abbreviations etc.
1492 WriteBlockInfo(VE
, Stream
);
1494 // Emit information about parameter attributes.
1495 WriteAttributeTable(VE
, Stream
);
1497 // Emit information describing all of the types in the module.
1498 WriteTypeTable(VE
, Stream
);
1500 // Emit top-level description of module, including target triple, inline asm,
1501 // descriptors for global variables, and function prototype info.
1502 WriteModuleInfo(M
, VE
, Stream
);
1505 WriteModuleConstants(VE
, Stream
);
1508 WriteModuleMetadata(M
, VE
, Stream
);
1510 // Emit function bodies.
1511 for (Module::const_iterator F
= M
->begin(), E
= M
->end(); F
!= E
; ++F
)
1512 if (!F
->isDeclaration())
1513 WriteFunction(*F
, VE
, Stream
);
1516 WriteModuleMetadataStore(M
, Stream
);
1518 // Emit names for globals/functions etc.
1519 WriteValueSymbolTable(M
->getValueSymbolTable(), VE
, Stream
);
1524 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
1525 /// header and trailer to make it compatible with the system archiver. To do
1526 /// this we emit the following header, and then emit a trailer that pads the
1527 /// file out to be a multiple of 16 bytes.
1529 /// struct bc_header {
1530 /// uint32_t Magic; // 0x0B17C0DE
1531 /// uint32_t Version; // Version, currently always 0.
1532 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1533 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
1534 /// uint32_t CPUType; // CPU specifier.
1535 /// ... potentially more later ...
1538 DarwinBCSizeFieldOffset
= 3*4, // Offset to bitcode_size.
1539 DarwinBCHeaderSize
= 5*4
1542 static void EmitDarwinBCHeader(BitstreamWriter
&Stream
, const Triple
&TT
) {
1543 unsigned CPUType
= ~0U;
1545 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
1546 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
1547 // number from /usr/include/mach/machine.h. It is ok to reproduce the
1548 // specific constants here because they are implicitly part of the Darwin ABI.
1550 DARWIN_CPU_ARCH_ABI64
= 0x01000000,
1551 DARWIN_CPU_TYPE_X86
= 7,
1552 DARWIN_CPU_TYPE_ARM
= 12,
1553 DARWIN_CPU_TYPE_POWERPC
= 18
1556 Triple::ArchType Arch
= TT
.getArch();
1557 if (Arch
== Triple::x86_64
)
1558 CPUType
= DARWIN_CPU_TYPE_X86
| DARWIN_CPU_ARCH_ABI64
;
1559 else if (Arch
== Triple::x86
)
1560 CPUType
= DARWIN_CPU_TYPE_X86
;
1561 else if (Arch
== Triple::ppc
)
1562 CPUType
= DARWIN_CPU_TYPE_POWERPC
;
1563 else if (Arch
== Triple::ppc64
)
1564 CPUType
= DARWIN_CPU_TYPE_POWERPC
| DARWIN_CPU_ARCH_ABI64
;
1565 else if (Arch
== Triple::arm
|| Arch
== Triple::thumb
)
1566 CPUType
= DARWIN_CPU_TYPE_ARM
;
1568 // Traditional Bitcode starts after header.
1569 unsigned BCOffset
= DarwinBCHeaderSize
;
1571 Stream
.Emit(0x0B17C0DE, 32);
1572 Stream
.Emit(0 , 32); // Version.
1573 Stream
.Emit(BCOffset
, 32);
1574 Stream
.Emit(0 , 32); // Filled in later.
1575 Stream
.Emit(CPUType
, 32);
1578 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and
1579 /// finalize the header.
1580 static void EmitDarwinBCTrailer(BitstreamWriter
&Stream
, unsigned BufferSize
) {
1581 // Update the size field in the header.
1582 Stream
.BackpatchWord(DarwinBCSizeFieldOffset
, BufferSize
-DarwinBCHeaderSize
);
1584 // If the file is not a multiple of 16 bytes, insert dummy padding.
1585 while (BufferSize
& 15) {
1592 /// WriteBitcodeToFile - Write the specified module to the specified output
1594 void llvm::WriteBitcodeToFile(const Module
*M
, raw_ostream
&Out
) {
1595 std::vector
<unsigned char> Buffer
;
1596 BitstreamWriter
Stream(Buffer
);
1598 Buffer
.reserve(256*1024);
1600 WriteBitcodeToStream( M
, Stream
);
1602 // Write the generated bitstream to "Out".
1603 Out
.write((char*)&Buffer
.front(), Buffer
.size());
1606 /// WriteBitcodeToStream - Write the specified module to the specified output
1608 void llvm::WriteBitcodeToStream(const Module
*M
, BitstreamWriter
&Stream
) {
1609 // If this is darwin or another generic macho target, emit a file header and
1610 // trailer if needed.
1611 Triple
TT(M
->getTargetTriple());
1612 if (TT
.isOSDarwin())
1613 EmitDarwinBCHeader(Stream
, TT
);
1615 // Emit the file header.
1616 Stream
.Emit((unsigned)'B', 8);
1617 Stream
.Emit((unsigned)'C', 8);
1618 Stream
.Emit(0x0, 4);
1619 Stream
.Emit(0xC, 4);
1620 Stream
.Emit(0xE, 4);
1621 Stream
.Emit(0xD, 4);
1624 WriteModule(M
, Stream
);
1626 if (TT
.isOSDarwin())
1627 EmitDarwinBCTrailer(Stream
, Stream
.getBuffer().size());