1 //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains support for writing DWARF exception info into asm files.
12 //===----------------------------------------------------------------------===//
14 #include "DwarfException.h"
15 #include "llvm/Module.h"
16 #include "llvm/CodeGen/AsmPrinter.h"
17 #include "llvm/CodeGen/MachineModuleInfo.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineLocation.h"
21 #include "llvm/MC/MCAsmInfo.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCSection.h"
25 #include "llvm/MC/MCStreamer.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/Target/Mangler.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLoweringObjectFile.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Support/Dwarf.h"
35 #include "llvm/Support/FormattedStream.h"
36 #include "llvm/ADT/SmallString.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/Twine.h"
41 DwarfException::DwarfException(AsmPrinter
*A
)
42 : Asm(A
), MMI(Asm
->MMI
) {}
44 DwarfException::~DwarfException() {}
46 /// SharedTypeIds - How many leading type ids two landing pads have in common.
47 unsigned DwarfException::SharedTypeIds(const LandingPadInfo
*L
,
48 const LandingPadInfo
*R
) {
49 const std::vector
<int> &LIds
= L
->TypeIds
, &RIds
= R
->TypeIds
;
50 unsigned LSize
= LIds
.size(), RSize
= RIds
.size();
51 unsigned MinSize
= LSize
< RSize
? LSize
: RSize
;
54 for (; Count
!= MinSize
; ++Count
)
55 if (LIds
[Count
] != RIds
[Count
])
61 /// PadLT - Order landing pads lexicographically by type id.
62 bool DwarfException::PadLT(const LandingPadInfo
*L
, const LandingPadInfo
*R
) {
63 const std::vector
<int> &LIds
= L
->TypeIds
, &RIds
= R
->TypeIds
;
64 unsigned LSize
= LIds
.size(), RSize
= RIds
.size();
65 unsigned MinSize
= LSize
< RSize
? LSize
: RSize
;
67 for (unsigned i
= 0; i
!= MinSize
; ++i
)
68 if (LIds
[i
] != RIds
[i
])
69 return LIds
[i
] < RIds
[i
];
74 /// ComputeActionsTable - Compute the actions table and gather the first action
75 /// index for each landing pad site.
76 unsigned DwarfException::
77 ComputeActionsTable(const SmallVectorImpl
<const LandingPadInfo
*> &LandingPads
,
78 SmallVectorImpl
<ActionEntry
> &Actions
,
79 SmallVectorImpl
<unsigned> &FirstActions
) {
81 // The action table follows the call-site table in the LSDA. The individual
82 // records are of two types:
85 // * Exception specification
87 // The two record kinds have the same format, with only small differences.
88 // They are distinguished by the "switch value" field: Catch clauses
89 // (TypeInfos) have strictly positive switch values, and exception
90 // specifications (FilterIds) have strictly negative switch values. Value 0
91 // indicates a catch-all clause.
93 // Negative type IDs index into FilterIds. Positive type IDs index into
94 // TypeInfos. The value written for a positive type ID is just the type ID
95 // itself. For a negative type ID, however, the value written is the
96 // (negative) byte offset of the corresponding FilterIds entry. The byte
97 // offset is usually equal to the type ID (because the FilterIds entries are
98 // written using a variable width encoding, which outputs one byte per entry
99 // as long as the value written is not too large) but can differ. This kind
100 // of complication does not occur for positive type IDs because type infos are
101 // output using a fixed width encoding. FilterOffsets[i] holds the byte
102 // offset corresponding to FilterIds[i].
104 const std::vector
<unsigned> &FilterIds
= MMI
->getFilterIds();
105 SmallVector
<int, 16> FilterOffsets
;
106 FilterOffsets
.reserve(FilterIds
.size());
109 for (std::vector
<unsigned>::const_iterator
110 I
= FilterIds
.begin(), E
= FilterIds
.end(); I
!= E
; ++I
) {
111 FilterOffsets
.push_back(Offset
);
112 Offset
-= MCAsmInfo::getULEB128Size(*I
);
115 FirstActions
.reserve(LandingPads
.size());
118 unsigned SizeActions
= 0;
119 const LandingPadInfo
*PrevLPI
= 0;
121 for (SmallVectorImpl
<const LandingPadInfo
*>::const_iterator
122 I
= LandingPads
.begin(), E
= LandingPads
.end(); I
!= E
; ++I
) {
123 const LandingPadInfo
*LPI
= *I
;
124 const std::vector
<int> &TypeIds
= LPI
->TypeIds
;
125 unsigned NumShared
= PrevLPI
? SharedTypeIds(LPI
, PrevLPI
) : 0;
126 unsigned SizeSiteActions
= 0;
128 if (NumShared
< TypeIds
.size()) {
129 unsigned SizeAction
= 0;
130 unsigned PrevAction
= (unsigned)-1;
133 unsigned SizePrevIds
= PrevLPI
->TypeIds
.size();
134 assert(Actions
.size());
135 PrevAction
= Actions
.size() - 1;
137 MCAsmInfo::getSLEB128Size(Actions
[PrevAction
].NextAction
) +
138 MCAsmInfo::getSLEB128Size(Actions
[PrevAction
].ValueForTypeID
);
140 for (unsigned j
= NumShared
; j
!= SizePrevIds
; ++j
) {
141 assert(PrevAction
!= (unsigned)-1 && "PrevAction is invalid!");
143 MCAsmInfo::getSLEB128Size(Actions
[PrevAction
].ValueForTypeID
);
144 SizeAction
+= -Actions
[PrevAction
].NextAction
;
145 PrevAction
= Actions
[PrevAction
].Previous
;
149 // Compute the actions.
150 for (unsigned J
= NumShared
, M
= TypeIds
.size(); J
!= M
; ++J
) {
151 int TypeID
= TypeIds
[J
];
152 assert(-1 - TypeID
< (int)FilterOffsets
.size() && "Unknown filter id!");
153 int ValueForTypeID
= TypeID
< 0 ? FilterOffsets
[-1 - TypeID
] : TypeID
;
154 unsigned SizeTypeID
= MCAsmInfo::getSLEB128Size(ValueForTypeID
);
156 int NextAction
= SizeAction
? -(SizeAction
+ SizeTypeID
) : 0;
157 SizeAction
= SizeTypeID
+ MCAsmInfo::getSLEB128Size(NextAction
);
158 SizeSiteActions
+= SizeAction
;
160 ActionEntry Action
= { ValueForTypeID
, NextAction
, PrevAction
};
161 Actions
.push_back(Action
);
162 PrevAction
= Actions
.size() - 1;
165 // Record the first action of the landing pad site.
166 FirstAction
= SizeActions
+ SizeSiteActions
- SizeAction
+ 1;
167 } // else identical - re-use previous FirstAction
169 // Information used when created the call-site table. The action record
170 // field of the call site record is the offset of the first associated
171 // action record, relative to the start of the actions table. This value is
172 // biased by 1 (1 indicating the start of the actions table), and 0
173 // indicates that there are no actions.
174 FirstActions
.push_back(FirstAction
);
176 // Compute this sites contribution to size.
177 SizeActions
+= SizeSiteActions
;
185 /// CallToNoUnwindFunction - Return `true' if this is a call to a function
186 /// marked `nounwind'. Return `false' otherwise.
187 bool DwarfException::CallToNoUnwindFunction(const MachineInstr
*MI
) {
188 assert(MI
->getDesc().isCall() && "This should be a call instruction!");
190 bool MarkedNoUnwind
= false;
191 bool SawFunc
= false;
193 for (unsigned I
= 0, E
= MI
->getNumOperands(); I
!= E
; ++I
) {
194 const MachineOperand
&MO
= MI
->getOperand(I
);
196 if (!MO
.isGlobal()) continue;
198 const Function
*F
= dyn_cast
<Function
>(MO
.getGlobal());
199 if (F
== 0) continue;
202 // Be conservative. If we have more than one function operand for this
203 // call, then we can't make the assumption that it's the callee and
204 // not a parameter to the call.
206 // FIXME: Determine if there's a way to say that `F' is the callee or
208 MarkedNoUnwind
= false;
212 MarkedNoUnwind
= F
->doesNotThrow();
216 return MarkedNoUnwind
;
219 /// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke
220 /// has a try-range containing the call, a non-zero landing pad, and an
221 /// appropriate action. The entry for an ordinary call has a try-range
222 /// containing the call and zero for the landing pad and the action. Calls
223 /// marked 'nounwind' have no entry and must not be contained in the try-range
224 /// of any entry - they form gaps in the table. Entries must be ordered by
225 /// try-range address.
226 void DwarfException::
227 ComputeCallSiteTable(SmallVectorImpl
<CallSiteEntry
> &CallSites
,
228 const RangeMapType
&PadMap
,
229 const SmallVectorImpl
<const LandingPadInfo
*> &LandingPads
,
230 const SmallVectorImpl
<unsigned> &FirstActions
) {
231 // The end label of the previous invoke or nounwind try-range.
232 MCSymbol
*LastLabel
= 0;
234 // Whether there is a potentially throwing instruction (currently this means
235 // an ordinary call) between the end of the previous try-range and now.
236 bool SawPotentiallyThrowing
= false;
238 // Whether the last CallSite entry was for an invoke.
239 bool PreviousIsInvoke
= false;
241 // Visit all instructions in order of address.
242 for (MachineFunction::const_iterator I
= Asm
->MF
->begin(), E
= Asm
->MF
->end();
244 for (MachineBasicBlock::const_iterator MI
= I
->begin(), E
= I
->end();
246 if (!MI
->isLabel()) {
247 if (MI
->getDesc().isCall())
248 SawPotentiallyThrowing
|= !CallToNoUnwindFunction(MI
);
252 // End of the previous try-range?
253 MCSymbol
*BeginLabel
= MI
->getOperand(0).getMCSymbol();
254 if (BeginLabel
== LastLabel
)
255 SawPotentiallyThrowing
= false;
257 // Beginning of a new try-range?
258 RangeMapType::const_iterator L
= PadMap
.find(BeginLabel
);
259 if (L
== PadMap
.end())
260 // Nope, it was just some random label.
263 const PadRange
&P
= L
->second
;
264 const LandingPadInfo
*LandingPad
= LandingPads
[P
.PadIndex
];
265 assert(BeginLabel
== LandingPad
->BeginLabels
[P
.RangeIndex
] &&
266 "Inconsistent landing pad map!");
268 // For Dwarf exception handling (SjLj handling doesn't use this). If some
269 // instruction between the previous try-range and this one may throw,
270 // create a call-site entry with no landing pad for the region between the
272 if (SawPotentiallyThrowing
&& Asm
->MAI
->isExceptionHandlingDwarf()) {
273 CallSiteEntry Site
= { LastLabel
, BeginLabel
, 0, 0 };
274 CallSites
.push_back(Site
);
275 PreviousIsInvoke
= false;
278 LastLabel
= LandingPad
->EndLabels
[P
.RangeIndex
];
279 assert(BeginLabel
&& LastLabel
&& "Invalid landing pad!");
281 if (!LandingPad
->LandingPadLabel
) {
283 PreviousIsInvoke
= false;
285 // This try-range is for an invoke.
286 CallSiteEntry Site
= {
289 LandingPad
->LandingPadLabel
,
290 FirstActions
[P
.PadIndex
]
293 // Try to merge with the previous call-site. SJLJ doesn't do this
294 if (PreviousIsInvoke
&& Asm
->MAI
->isExceptionHandlingDwarf()) {
295 CallSiteEntry
&Prev
= CallSites
.back();
296 if (Site
.PadLabel
== Prev
.PadLabel
&& Site
.Action
== Prev
.Action
) {
297 // Extend the range of the previous entry.
298 Prev
.EndLabel
= Site
.EndLabel
;
303 // Otherwise, create a new call-site.
304 if (Asm
->MAI
->isExceptionHandlingDwarf())
305 CallSites
.push_back(Site
);
307 // SjLj EH must maintain the call sites in the order assigned
308 // to them by the SjLjPrepare pass.
309 unsigned SiteNo
= MMI
->getCallSiteBeginLabel(BeginLabel
);
310 if (CallSites
.size() < SiteNo
)
311 CallSites
.resize(SiteNo
);
312 CallSites
[SiteNo
- 1] = Site
;
314 PreviousIsInvoke
= true;
319 // If some instruction between the previous try-range and the end of the
320 // function may throw, create a call-site entry with no landing pad for the
321 // region following the try-range.
322 if (SawPotentiallyThrowing
&& Asm
->MAI
->isExceptionHandlingDwarf()) {
323 CallSiteEntry Site
= { LastLabel
, 0, 0, 0 };
324 CallSites
.push_back(Site
);
328 /// EmitExceptionTable - Emit landing pads and actions.
330 /// The general organization of the table is complex, but the basic concepts are
331 /// easy. First there is a header which describes the location and organization
332 /// of the three components that follow.
334 /// 1. The landing pad site information describes the range of code covered by
335 /// the try. In our case it's an accumulation of the ranges covered by the
336 /// invokes in the try. There is also a reference to the landing pad that
337 /// handles the exception once processed. Finally an index into the actions
339 /// 2. The action table, in our case, is composed of pairs of type IDs and next
340 /// action offset. Starting with the action index from the landing pad
341 /// site, each type ID is checked for a match to the current exception. If
342 /// it matches then the exception and type id are passed on to the landing
343 /// pad. Otherwise the next action is looked up. This chain is terminated
344 /// with a next action of zero. If no type id is found then the frame is
345 /// unwound and handling continues.
346 /// 3. Type ID table contains references to all the C++ typeinfo for all
347 /// catches in the function. This tables is reverse indexed base 1.
348 void DwarfException::EmitExceptionTable() {
349 const std::vector
<const GlobalVariable
*> &TypeInfos
= MMI
->getTypeInfos();
350 const std::vector
<unsigned> &FilterIds
= MMI
->getFilterIds();
351 const std::vector
<LandingPadInfo
> &PadInfos
= MMI
->getLandingPads();
353 // Sort the landing pads in order of their type ids. This is used to fold
354 // duplicate actions.
355 SmallVector
<const LandingPadInfo
*, 64> LandingPads
;
356 LandingPads
.reserve(PadInfos
.size());
358 for (unsigned i
= 0, N
= PadInfos
.size(); i
!= N
; ++i
)
359 LandingPads
.push_back(&PadInfos
[i
]);
361 std::sort(LandingPads
.begin(), LandingPads
.end(), PadLT
);
363 // Compute the actions table and gather the first action index for each
365 SmallVector
<ActionEntry
, 32> Actions
;
366 SmallVector
<unsigned, 64> FirstActions
;
367 unsigned SizeActions
=ComputeActionsTable(LandingPads
, Actions
, FirstActions
);
369 // Invokes and nounwind calls have entries in PadMap (due to being bracketed
370 // by try-range labels when lowered). Ordinary calls do not, so appropriate
371 // try-ranges for them need be deduced when using DWARF exception handling.
373 for (unsigned i
= 0, N
= LandingPads
.size(); i
!= N
; ++i
) {
374 const LandingPadInfo
*LandingPad
= LandingPads
[i
];
375 for (unsigned j
= 0, E
= LandingPad
->BeginLabels
.size(); j
!= E
; ++j
) {
376 MCSymbol
*BeginLabel
= LandingPad
->BeginLabels
[j
];
377 assert(!PadMap
.count(BeginLabel
) && "Duplicate landing pad labels!");
378 PadRange P
= { i
, j
};
379 PadMap
[BeginLabel
] = P
;
383 // Compute the call-site table.
384 SmallVector
<CallSiteEntry
, 64> CallSites
;
385 ComputeCallSiteTable(CallSites
, PadMap
, LandingPads
, FirstActions
);
390 bool IsSJLJ
= Asm
->MAI
->getExceptionHandlingType() == ExceptionHandling::SjLj
;
391 bool HaveTTData
= IsSJLJ
? (!TypeInfos
.empty() || !FilterIds
.empty()) : true;
393 unsigned CallSiteTableLength
;
395 CallSiteTableLength
= 0;
397 unsigned SiteStartSize
= 4; // dwarf::DW_EH_PE_udata4
398 unsigned SiteLengthSize
= 4; // dwarf::DW_EH_PE_udata4
399 unsigned LandingPadSize
= 4; // dwarf::DW_EH_PE_udata4
400 CallSiteTableLength
=
401 CallSites
.size() * (SiteStartSize
+ SiteLengthSize
+ LandingPadSize
);
404 for (unsigned i
= 0, e
= CallSites
.size(); i
< e
; ++i
) {
405 CallSiteTableLength
+= MCAsmInfo::getULEB128Size(CallSites
[i
].Action
);
407 CallSiteTableLength
+= MCAsmInfo::getULEB128Size(i
);
411 const MCSection
*LSDASection
= Asm
->getObjFileLowering().getLSDASection();
412 unsigned TTypeEncoding
;
413 unsigned TypeFormatSize
;
416 // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
417 // that we're omitting that bit.
418 TTypeEncoding
= dwarf::DW_EH_PE_omit
;
419 // dwarf::DW_EH_PE_absptr
420 TypeFormatSize
= Asm
->getTargetData().getPointerSize();
422 // Okay, we have actual filters or typeinfos to emit. As such, we need to
423 // pick a type encoding for them. We're about to emit a list of pointers to
424 // typeinfo objects at the end of the LSDA. However, unless we're in static
425 // mode, this reference will require a relocation by the dynamic linker.
427 // Because of this, we have a couple of options:
429 // 1) If we are in -static mode, we can always use an absolute reference
430 // from the LSDA, because the static linker will resolve it.
432 // 2) Otherwise, if the LSDA section is writable, we can output the direct
433 // reference to the typeinfo and allow the dynamic linker to relocate
434 // it. Since it is in a writable section, the dynamic linker won't
437 // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
438 // we need to use some form of indirection. For example, on Darwin,
439 // we can output a statically-relocatable reference to a dyld stub. The
440 // offset to the stub is constant, but the contents are in a section
441 // that is updated by the dynamic linker. This is easy enough, but we
442 // need to tell the personality function of the unwinder to indirect
443 // through the dyld stub.
445 // FIXME: When (3) is actually implemented, we'll have to emit the stubs
446 // somewhere. This predicate should be moved to a shared location that is
447 // in target-independent code.
449 TTypeEncoding
= Asm
->getObjFileLowering().getTTypeEncoding();
450 TypeFormatSize
= Asm
->GetSizeOfEncodedValue(TTypeEncoding
);
453 // Begin the exception table.
454 // Sometimes we want not to emit the data into separate section (e.g. ARM
455 // EHABI). In this case LSDASection will be NULL.
457 Asm
->OutStreamer
.SwitchSection(LSDASection
);
458 Asm
->EmitAlignment(2);
462 Asm
->OutContext
.GetOrCreateSymbol(Twine("GCC_except_table")+
463 Twine(Asm
->getFunctionNumber()));
464 Asm
->OutStreamer
.EmitLabel(GCCETSym
);
465 Asm
->OutStreamer
.EmitLabel(Asm
->GetTempSymbol("exception",
466 Asm
->getFunctionNumber()));
469 Asm
->OutStreamer
.EmitLabel(Asm
->GetTempSymbol("_LSDA_",
470 Asm
->getFunctionNumber()));
472 // Emit the LSDA header.
473 Asm
->EmitEncodingByte(dwarf::DW_EH_PE_omit
, "@LPStart");
474 Asm
->EmitEncodingByte(TTypeEncoding
, "@TType");
476 // The type infos need to be aligned. GCC does this by inserting padding just
477 // before the type infos. However, this changes the size of the exception
478 // table, so you need to take this into account when you output the exception
479 // table size. However, the size is output using a variable length encoding.
480 // So by increasing the size by inserting padding, you may increase the number
481 // of bytes used for writing the size. If it increases, say by one byte, then
482 // you now need to output one less byte of padding to get the type infos
483 // aligned. However this decreases the size of the exception table. This
484 // changes the value you have to output for the exception table size. Due to
485 // the variable length encoding, the number of bytes used for writing the
486 // length may decrease. If so, you then have to increase the amount of
487 // padding. And so on. If you look carefully at the GCC code you will see that
488 // it indeed does this in a loop, going on and on until the values stabilize.
489 // We chose another solution: don't output padding inside the table like GCC
490 // does, instead output it before the table.
491 unsigned SizeTypes
= TypeInfos
.size() * TypeFormatSize
;
492 unsigned CallSiteTableLengthSize
=
493 MCAsmInfo::getULEB128Size(CallSiteTableLength
);
494 unsigned TTypeBaseOffset
=
495 sizeof(int8_t) + // Call site format
496 CallSiteTableLengthSize
+ // Call site table length size
497 CallSiteTableLength
+ // Call site table length
498 SizeActions
+ // Actions size
500 unsigned TTypeBaseOffsetSize
= MCAsmInfo::getULEB128Size(TTypeBaseOffset
);
502 sizeof(int8_t) + // LPStart format
503 sizeof(int8_t) + // TType format
504 (HaveTTData
? TTypeBaseOffsetSize
: 0) + // TType base offset size
505 TTypeBaseOffset
; // TType base offset
506 unsigned SizeAlign
= (4 - TotalSize
) & 3;
509 // Account for any extra padding that will be added to the call site table
511 Asm
->EmitULEB128(TTypeBaseOffset
, "@TType base offset", SizeAlign
);
515 bool VerboseAsm
= Asm
->OutStreamer
.isVerboseAsm();
517 // SjLj Exception handling
519 Asm
->EmitEncodingByte(dwarf::DW_EH_PE_udata4
, "Call site");
521 // Add extra padding if it wasn't added to the TType base offset.
522 Asm
->EmitULEB128(CallSiteTableLength
, "Call site table length", SizeAlign
);
524 // Emit the landing pad site information.
526 for (SmallVectorImpl
<CallSiteEntry
>::const_iterator
527 I
= CallSites
.begin(), E
= CallSites
.end(); I
!= E
; ++I
, ++idx
) {
528 const CallSiteEntry
&S
= *I
;
531 // Emit comments that decode the call site.
532 Asm
->OutStreamer
.AddComment(Twine(">> Call Site ") +
533 llvm::utostr(idx
) + " <<");
534 Asm
->OutStreamer
.AddComment(Twine(" On exception at call site ") +
538 Asm
->OutStreamer
.AddComment(" Action: cleanup");
540 Asm
->OutStreamer
.AddComment(Twine(" Action: ") +
541 llvm::utostr((S
.Action
- 1) / 2 + 1));
543 Asm
->OutStreamer
.AddBlankLine();
546 // Offset of the landing pad, counted in 16-byte bundles relative to the
548 Asm
->EmitULEB128(idx
);
550 // Offset of the first associated action record, relative to the start of
551 // the action table. This value is biased by 1 (1 indicates the start of
552 // the action table), and 0 indicates that there are no actions.
553 Asm
->EmitULEB128(S
.Action
);
556 // DWARF Exception handling
557 assert(Asm
->MAI
->isExceptionHandlingDwarf());
559 // The call-site table is a list of all call sites that may throw an
560 // exception (including C++ 'throw' statements) in the procedure
561 // fragment. It immediately follows the LSDA header. Each entry indicates,
562 // for a given call, the first corresponding action record and corresponding
565 // The table begins with the number of bytes, stored as an LEB128
566 // compressed, unsigned integer. The records immediately follow the record
567 // count. They are sorted in increasing call-site address. Each record
570 // * The position of the call-site.
571 // * The position of the landing pad.
572 // * The first action record for that call site.
574 // A missing entry in the call-site table indicates that a call is not
575 // supposed to throw.
577 // Emit the landing pad call site table.
578 Asm
->EmitEncodingByte(dwarf::DW_EH_PE_udata4
, "Call site");
580 // Add extra padding if it wasn't added to the TType base offset.
581 Asm
->EmitULEB128(CallSiteTableLength
, "Call site table length", SizeAlign
);
584 for (SmallVectorImpl
<CallSiteEntry
>::const_iterator
585 I
= CallSites
.begin(), E
= CallSites
.end(); I
!= E
; ++I
) {
586 const CallSiteEntry
&S
= *I
;
588 MCSymbol
*EHFuncBeginSym
=
589 Asm
->GetTempSymbol("eh_func_begin", Asm
->getFunctionNumber());
591 MCSymbol
*BeginLabel
= S
.BeginLabel
;
593 BeginLabel
= EHFuncBeginSym
;
594 MCSymbol
*EndLabel
= S
.EndLabel
;
596 EndLabel
= Asm
->GetTempSymbol("eh_func_end", Asm
->getFunctionNumber());
599 // Emit comments that decode the call site.
600 Asm
->OutStreamer
.AddComment(Twine(">> Call Site ") +
601 llvm::utostr(++Entry
) + " <<");
602 Asm
->OutStreamer
.AddComment(Twine(" Call between ") +
603 BeginLabel
->getName() + " and " +
604 EndLabel
->getName());
607 Asm
->OutStreamer
.AddComment(" has no landing pad");
609 Asm
->OutStreamer
.AddComment(Twine(" jumps to ") +
610 S
.PadLabel
->getName());
613 Asm
->OutStreamer
.AddComment(" On action: cleanup");
615 Asm
->OutStreamer
.AddComment(Twine(" On action: ") +
616 llvm::utostr((S
.Action
- 1) / 2 + 1));
619 Asm
->OutStreamer
.AddBlankLine();
622 // Offset of the call site relative to the previous call site, counted in
623 // number of 16-byte bundles. The first call site is counted relative to
624 // the start of the procedure fragment.
625 Asm
->EmitLabelDifference(BeginLabel
, EHFuncBeginSym
, 4);
626 Asm
->EmitLabelDifference(EndLabel
, BeginLabel
, 4);
628 // Offset of the landing pad, counted in 16-byte bundles relative to the
631 Asm
->OutStreamer
.EmitIntValue(0, 4/*size*/, 0/*addrspace*/);
633 Asm
->EmitLabelDifference(S
.PadLabel
, EHFuncBeginSym
, 4);
635 // Offset of the first associated action record, relative to the start of
636 // the action table. This value is biased by 1 (1 indicates the start of
637 // the action table), and 0 indicates that there are no actions.
638 Asm
->EmitULEB128(S
.Action
);
642 // Emit the Action Table.
644 for (SmallVectorImpl
<ActionEntry
>::const_iterator
645 I
= Actions
.begin(), E
= Actions
.end(); I
!= E
; ++I
) {
646 const ActionEntry
&Action
= *I
;
649 // Emit comments that decode the action table.
650 Asm
->OutStreamer
.AddComment(Twine(">> Action Record ") +
651 llvm::utostr(++Entry
) + " <<");
652 if (Action
.ValueForTypeID
>= 0)
653 Asm
->OutStreamer
.AddComment(Twine(" Catch TypeInfo ") +
654 llvm::itostr(Action
.ValueForTypeID
));
656 Asm
->OutStreamer
.AddComment(Twine(" Filter TypeInfo ") +
657 llvm::itostr(Action
.ValueForTypeID
));
659 if (Action
.NextAction
== 0) {
660 Asm
->OutStreamer
.AddComment(" No further actions");
662 unsigned NextAction
= Entry
+ (Action
.NextAction
+ 1) / 2;
663 Asm
->OutStreamer
.AddComment(Twine(" Continue to action ") +
664 llvm::utostr(NextAction
));
667 Asm
->OutStreamer
.AddBlankLine();
672 // Used by the runtime to match the type of the thrown exception to the
673 // type of the catch clauses or the types in the exception specification.
674 Asm
->EmitSLEB128(Action
.ValueForTypeID
);
678 // Self-relative signed displacement in bytes of the next action record,
679 // or 0 if there is no next action record.
680 Asm
->EmitSLEB128(Action
.NextAction
);
683 // Emit the Catch TypeInfos.
684 if (VerboseAsm
&& !TypeInfos
.empty()) {
685 Asm
->OutStreamer
.AddComment(">> Catch TypeInfos <<");
686 Asm
->OutStreamer
.AddBlankLine();
687 Entry
= TypeInfos
.size();
690 for (std::vector
<const GlobalVariable
*>::const_reverse_iterator
691 I
= TypeInfos
.rbegin(), E
= TypeInfos
.rend(); I
!= E
; ++I
) {
692 const GlobalVariable
*GV
= *I
;
694 Asm
->OutStreamer
.AddComment(Twine("TypeInfo ") + llvm::utostr(Entry
--));
696 Asm
->EmitReference(GV
, TTypeEncoding
);
698 Asm
->OutStreamer
.EmitIntValue(0,Asm
->GetSizeOfEncodedValue(TTypeEncoding
),
702 // Emit the Exception Specifications.
703 if (VerboseAsm
&& !FilterIds
.empty()) {
704 Asm
->OutStreamer
.AddComment(">> Filter TypeInfos <<");
705 Asm
->OutStreamer
.AddBlankLine();
708 for (std::vector
<unsigned>::const_iterator
709 I
= FilterIds
.begin(), E
= FilterIds
.end(); I
< E
; ++I
) {
710 unsigned TypeID
= *I
;
714 Asm
->OutStreamer
.AddComment(Twine("FilterInfo ") + llvm::itostr(Entry
));
717 Asm
->EmitULEB128(TypeID
);
720 Asm
->EmitAlignment(2);
723 /// EndModule - Emit all exception information that should come after the
725 void DwarfException::EndModule() {
726 assert(0 && "Should be implemented");
729 /// BeginFunction - Gather pre-function exception information. Assumes it's
730 /// being emitted immediately after the function entry point.
731 void DwarfException::BeginFunction(const MachineFunction
*MF
) {
732 assert(0 && "Should be implemented");
735 /// EndFunction - Gather and emit post-function exception information.
737 void DwarfException::EndFunction() {
738 assert(0 && "Should be implemented");