Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / FastISel.cpp
blobea7feade60d4e6cca1546c9cf0229a8ed4ca4653
1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the FastISel class.
12 // "Fast" instruction selection is designed to emit very poor code quickly.
13 // Also, it is not designed to be able to do much lowering, so most illegal
14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is
15 // also not intended to be able to do much optimization, except in a few cases
16 // where doing optimizations reduces overall compile time. For example, folding
17 // constants into immediate fields is often done, because it's cheap and it
18 // reduces the number of instructions later phases have to examine.
20 // "Fast" instruction selection is able to fail gracefully and transfer
21 // control to the SelectionDAG selector for operations that it doesn't
22 // support. In many cases, this allows us to avoid duplicating a lot of
23 // the complicated lowering logic that SelectionDAG currently has.
25 // The intended use for "fast" instruction selection is "-O0" mode
26 // compilation, where the quality of the generated code is irrelevant when
27 // weighed against the speed at which the code can be generated. Also,
28 // at -O0, the LLVM optimizers are not running, and this makes the
29 // compile time of codegen a much higher portion of the overall compile
30 // time. Despite its limitations, "fast" instruction selection is able to
31 // handle enough code on its own to provide noticeable overall speedups
32 // in -O0 compiles.
34 // Basic operations are supported in a target-independent way, by reading
35 // the same instruction descriptions that the SelectionDAG selector reads,
36 // and identifying simple arithmetic operations that can be directly selected
37 // from simple operators. More complicated operations currently require
38 // target-specific code.
40 //===----------------------------------------------------------------------===//
42 #include "llvm/Function.h"
43 #include "llvm/GlobalVariable.h"
44 #include "llvm/Instructions.h"
45 #include "llvm/IntrinsicInst.h"
46 #include "llvm/Operator.h"
47 #include "llvm/CodeGen/Analysis.h"
48 #include "llvm/CodeGen/FastISel.h"
49 #include "llvm/CodeGen/FunctionLoweringInfo.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/Analysis/DebugInfo.h"
54 #include "llvm/Analysis/Loads.h"
55 #include "llvm/Target/TargetData.h"
56 #include "llvm/Target/TargetInstrInfo.h"
57 #include "llvm/Target/TargetLowering.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/Debug.h"
61 using namespace llvm;
63 /// startNewBlock - Set the current block to which generated machine
64 /// instructions will be appended, and clear the local CSE map.
65 ///
66 void FastISel::startNewBlock() {
67 LocalValueMap.clear();
69 // Start out as null, meaining no local-value instructions have
70 // been emitted.
71 LastLocalValue = 0;
73 // Advance the last local value past any EH_LABEL instructions.
74 MachineBasicBlock::iterator
75 I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
76 while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
77 LastLocalValue = I;
78 ++I;
82 bool FastISel::hasTrivialKill(const Value *V) const {
83 // Don't consider constants or arguments to have trivial kills.
84 const Instruction *I = dyn_cast<Instruction>(V);
85 if (!I)
86 return false;
88 // No-op casts are trivially coalesced by fast-isel.
89 if (const CastInst *Cast = dyn_cast<CastInst>(I))
90 if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
91 !hasTrivialKill(Cast->getOperand(0)))
92 return false;
94 // Only instructions with a single use in the same basic block are considered
95 // to have trivial kills.
96 return I->hasOneUse() &&
97 !(I->getOpcode() == Instruction::BitCast ||
98 I->getOpcode() == Instruction::PtrToInt ||
99 I->getOpcode() == Instruction::IntToPtr) &&
100 cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
103 unsigned FastISel::getRegForValue(const Value *V) {
104 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
105 // Don't handle non-simple values in FastISel.
106 if (!RealVT.isSimple())
107 return 0;
109 // Ignore illegal types. We must do this before looking up the value
110 // in ValueMap because Arguments are given virtual registers regardless
111 // of whether FastISel can handle them.
112 MVT VT = RealVT.getSimpleVT();
113 if (!TLI.isTypeLegal(VT)) {
114 // Handle integer promotions, though, because they're common and easy.
115 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
116 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
117 else
118 return 0;
121 // Look up the value to see if we already have a register for it. We
122 // cache values defined by Instructions across blocks, and other values
123 // only locally. This is because Instructions already have the SSA
124 // def-dominates-use requirement enforced.
125 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
126 if (I != FuncInfo.ValueMap.end())
127 return I->second;
129 unsigned Reg = LocalValueMap[V];
130 if (Reg != 0)
131 return Reg;
133 // In bottom-up mode, just create the virtual register which will be used
134 // to hold the value. It will be materialized later.
135 if (isa<Instruction>(V) &&
136 (!isa<AllocaInst>(V) ||
137 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
138 return FuncInfo.InitializeRegForValue(V);
140 SavePoint SaveInsertPt = enterLocalValueArea();
142 // Materialize the value in a register. Emit any instructions in the
143 // local value area.
144 Reg = materializeRegForValue(V, VT);
146 leaveLocalValueArea(SaveInsertPt);
148 return Reg;
151 /// materializeRegForValue - Helper for getRegForValue. This function is
152 /// called when the value isn't already available in a register and must
153 /// be materialized with new instructions.
154 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
155 unsigned Reg = 0;
157 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
158 if (CI->getValue().getActiveBits() <= 64)
159 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
160 } else if (isa<AllocaInst>(V)) {
161 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
162 } else if (isa<ConstantPointerNull>(V)) {
163 // Translate this as an integer zero so that it can be
164 // local-CSE'd with actual integer zeros.
165 Reg =
166 getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
167 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
168 if (CF->isNullValue()) {
169 Reg = TargetMaterializeFloatZero(CF);
170 } else {
171 // Try to emit the constant directly.
172 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
175 if (!Reg) {
176 // Try to emit the constant by using an integer constant with a cast.
177 const APFloat &Flt = CF->getValueAPF();
178 EVT IntVT = TLI.getPointerTy();
180 uint64_t x[2];
181 uint32_t IntBitWidth = IntVT.getSizeInBits();
182 bool isExact;
183 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
184 APFloat::rmTowardZero, &isExact);
185 if (isExact) {
186 APInt IntVal(IntBitWidth, 2, x);
188 unsigned IntegerReg =
189 getRegForValue(ConstantInt::get(V->getContext(), IntVal));
190 if (IntegerReg != 0)
191 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
192 IntegerReg, /*Kill=*/false);
195 } else if (const Operator *Op = dyn_cast<Operator>(V)) {
196 if (!SelectOperator(Op, Op->getOpcode()))
197 if (!isa<Instruction>(Op) ||
198 !TargetSelectInstruction(cast<Instruction>(Op)))
199 return 0;
200 Reg = lookUpRegForValue(Op);
201 } else if (isa<UndefValue>(V)) {
202 Reg = createResultReg(TLI.getRegClassFor(VT));
203 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
204 TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
207 // If target-independent code couldn't handle the value, give target-specific
208 // code a try.
209 if (!Reg && isa<Constant>(V))
210 Reg = TargetMaterializeConstant(cast<Constant>(V));
212 // Don't cache constant materializations in the general ValueMap.
213 // To do so would require tracking what uses they dominate.
214 if (Reg != 0) {
215 LocalValueMap[V] = Reg;
216 LastLocalValue = MRI.getVRegDef(Reg);
218 return Reg;
221 unsigned FastISel::lookUpRegForValue(const Value *V) {
222 // Look up the value to see if we already have a register for it. We
223 // cache values defined by Instructions across blocks, and other values
224 // only locally. This is because Instructions already have the SSA
225 // def-dominates-use requirement enforced.
226 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
227 if (I != FuncInfo.ValueMap.end())
228 return I->second;
229 return LocalValueMap[V];
232 /// UpdateValueMap - Update the value map to include the new mapping for this
233 /// instruction, or insert an extra copy to get the result in a previous
234 /// determined register.
235 /// NOTE: This is only necessary because we might select a block that uses
236 /// a value before we select the block that defines the value. It might be
237 /// possible to fix this by selecting blocks in reverse postorder.
238 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
239 if (!isa<Instruction>(I)) {
240 LocalValueMap[I] = Reg;
241 return;
244 unsigned &AssignedReg = FuncInfo.ValueMap[I];
245 if (AssignedReg == 0)
246 // Use the new register.
247 AssignedReg = Reg;
248 else if (Reg != AssignedReg) {
249 // Arrange for uses of AssignedReg to be replaced by uses of Reg.
250 for (unsigned i = 0; i < NumRegs; i++)
251 FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
253 AssignedReg = Reg;
257 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
258 unsigned IdxN = getRegForValue(Idx);
259 if (IdxN == 0)
260 // Unhandled operand. Halt "fast" selection and bail.
261 return std::pair<unsigned, bool>(0, false);
263 bool IdxNIsKill = hasTrivialKill(Idx);
265 // If the index is smaller or larger than intptr_t, truncate or extend it.
266 MVT PtrVT = TLI.getPointerTy();
267 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
268 if (IdxVT.bitsLT(PtrVT)) {
269 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
270 IdxN, IdxNIsKill);
271 IdxNIsKill = true;
273 else if (IdxVT.bitsGT(PtrVT)) {
274 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
275 IdxN, IdxNIsKill);
276 IdxNIsKill = true;
278 return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
281 void FastISel::recomputeInsertPt() {
282 if (getLastLocalValue()) {
283 FuncInfo.InsertPt = getLastLocalValue();
284 FuncInfo.MBB = FuncInfo.InsertPt->getParent();
285 ++FuncInfo.InsertPt;
286 } else
287 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
289 // Now skip past any EH_LABELs, which must remain at the beginning.
290 while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
291 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
292 ++FuncInfo.InsertPt;
295 FastISel::SavePoint FastISel::enterLocalValueArea() {
296 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
297 DebugLoc OldDL = DL;
298 recomputeInsertPt();
299 DL = DebugLoc();
300 SavePoint SP = { OldInsertPt, OldDL };
301 return SP;
304 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
305 if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
306 LastLocalValue = llvm::prior(FuncInfo.InsertPt);
308 // Restore the previous insert position.
309 FuncInfo.InsertPt = OldInsertPt.InsertPt;
310 DL = OldInsertPt.DL;
313 /// SelectBinaryOp - Select and emit code for a binary operator instruction,
314 /// which has an opcode which directly corresponds to the given ISD opcode.
316 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
317 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
318 if (VT == MVT::Other || !VT.isSimple())
319 // Unhandled type. Halt "fast" selection and bail.
320 return false;
322 // We only handle legal types. For example, on x86-32 the instruction
323 // selector contains all of the 64-bit instructions from x86-64,
324 // under the assumption that i64 won't be used if the target doesn't
325 // support it.
326 if (!TLI.isTypeLegal(VT)) {
327 // MVT::i1 is special. Allow AND, OR, or XOR because they
328 // don't require additional zeroing, which makes them easy.
329 if (VT == MVT::i1 &&
330 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
331 ISDOpcode == ISD::XOR))
332 VT = TLI.getTypeToTransformTo(I->getContext(), VT);
333 else
334 return false;
337 // Check if the first operand is a constant, and handle it as "ri". At -O0,
338 // we don't have anything that canonicalizes operand order.
339 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
340 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
341 unsigned Op1 = getRegForValue(I->getOperand(1));
342 if (Op1 == 0) return false;
344 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
346 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
347 Op1IsKill, CI->getZExtValue(),
348 VT.getSimpleVT());
349 if (ResultReg == 0) return false;
351 // We successfully emitted code for the given LLVM Instruction.
352 UpdateValueMap(I, ResultReg);
353 return true;
357 unsigned Op0 = getRegForValue(I->getOperand(0));
358 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail.
359 return false;
361 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
363 // Check if the second operand is a constant and handle it appropriately.
364 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
365 uint64_t Imm = CI->getZExtValue();
367 // Transform "sdiv exact X, 8" -> "sra X, 3".
368 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
369 cast<BinaryOperator>(I)->isExact() &&
370 isPowerOf2_64(Imm)) {
371 Imm = Log2_64(Imm);
372 ISDOpcode = ISD::SRA;
375 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
376 Op0IsKill, Imm, VT.getSimpleVT());
377 if (ResultReg == 0) return false;
379 // We successfully emitted code for the given LLVM Instruction.
380 UpdateValueMap(I, ResultReg);
381 return true;
384 // Check if the second operand is a constant float.
385 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
386 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
387 ISDOpcode, Op0, Op0IsKill, CF);
388 if (ResultReg != 0) {
389 // We successfully emitted code for the given LLVM Instruction.
390 UpdateValueMap(I, ResultReg);
391 return true;
395 unsigned Op1 = getRegForValue(I->getOperand(1));
396 if (Op1 == 0)
397 // Unhandled operand. Halt "fast" selection and bail.
398 return false;
400 bool Op1IsKill = hasTrivialKill(I->getOperand(1));
402 // Now we have both operands in registers. Emit the instruction.
403 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
404 ISDOpcode,
405 Op0, Op0IsKill,
406 Op1, Op1IsKill);
407 if (ResultReg == 0)
408 // Target-specific code wasn't able to find a machine opcode for
409 // the given ISD opcode and type. Halt "fast" selection and bail.
410 return false;
412 // We successfully emitted code for the given LLVM Instruction.
413 UpdateValueMap(I, ResultReg);
414 return true;
417 bool FastISel::SelectGetElementPtr(const User *I) {
418 unsigned N = getRegForValue(I->getOperand(0));
419 if (N == 0)
420 // Unhandled operand. Halt "fast" selection and bail.
421 return false;
423 bool NIsKill = hasTrivialKill(I->getOperand(0));
425 const Type *Ty = I->getOperand(0)->getType();
426 MVT VT = TLI.getPointerTy();
427 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
428 E = I->op_end(); OI != E; ++OI) {
429 const Value *Idx = *OI;
430 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
431 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
432 if (Field) {
433 // N = N + Offset
434 uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
435 // FIXME: This can be optimized by combining the add with a
436 // subsequent one.
437 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
438 if (N == 0)
439 // Unhandled operand. Halt "fast" selection and bail.
440 return false;
441 NIsKill = true;
443 Ty = StTy->getElementType(Field);
444 } else {
445 Ty = cast<SequentialType>(Ty)->getElementType();
447 // If this is a constant subscript, handle it quickly.
448 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
449 if (CI->isZero()) continue;
450 uint64_t Offs =
451 TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
452 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
453 if (N == 0)
454 // Unhandled operand. Halt "fast" selection and bail.
455 return false;
456 NIsKill = true;
457 continue;
460 // N = N + Idx * ElementSize;
461 uint64_t ElementSize = TD.getTypeAllocSize(Ty);
462 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
463 unsigned IdxN = Pair.first;
464 bool IdxNIsKill = Pair.second;
465 if (IdxN == 0)
466 // Unhandled operand. Halt "fast" selection and bail.
467 return false;
469 if (ElementSize != 1) {
470 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
471 if (IdxN == 0)
472 // Unhandled operand. Halt "fast" selection and bail.
473 return false;
474 IdxNIsKill = true;
476 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
477 if (N == 0)
478 // Unhandled operand. Halt "fast" selection and bail.
479 return false;
483 // We successfully emitted code for the given LLVM Instruction.
484 UpdateValueMap(I, N);
485 return true;
488 bool FastISel::SelectCall(const User *I) {
489 const CallInst *Call = cast<CallInst>(I);
491 // Handle simple inline asms.
492 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getArgOperand(0))) {
493 // Don't attempt to handle constraints.
494 if (!IA->getConstraintString().empty())
495 return false;
497 unsigned ExtraInfo = 0;
498 if (IA->hasSideEffects())
499 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
500 if (IA->isAlignStack())
501 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
503 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
504 TII.get(TargetOpcode::INLINEASM))
505 .addExternalSymbol(IA->getAsmString().c_str())
506 .addImm(ExtraInfo);
507 return true;
510 const Function *F = Call->getCalledFunction();
511 if (!F) return false;
513 // Handle selected intrinsic function calls.
514 switch (F->getIntrinsicID()) {
515 default: break;
516 case Intrinsic::dbg_declare: {
517 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
518 if (!DIVariable(DI->getVariable()).Verify() ||
519 !FuncInfo.MF->getMMI().hasDebugInfo())
520 return true;
522 const Value *Address = DI->getAddress();
523 if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
524 return true;
526 unsigned Reg = 0;
527 unsigned Offset = 0;
528 if (const Argument *Arg = dyn_cast<Argument>(Address)) {
529 if (Arg->hasByValAttr()) {
530 // Byval arguments' frame index is recorded during argument lowering.
531 // Use this info directly.
532 Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
533 if (Offset)
534 Reg = TRI.getFrameRegister(*FuncInfo.MF);
537 if (!Reg)
538 Reg = getRegForValue(Address);
540 if (Reg)
541 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
542 TII.get(TargetOpcode::DBG_VALUE))
543 .addReg(Reg, RegState::Debug).addImm(Offset)
544 .addMetadata(DI->getVariable());
545 return true;
547 case Intrinsic::dbg_value: {
548 // This form of DBG_VALUE is target-independent.
549 const DbgValueInst *DI = cast<DbgValueInst>(Call);
550 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
551 const Value *V = DI->getValue();
552 if (!V) {
553 // Currently the optimizer can produce this; insert an undef to
554 // help debugging. Probably the optimizer should not do this.
555 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
556 .addReg(0U).addImm(DI->getOffset())
557 .addMetadata(DI->getVariable());
558 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
559 if (CI->getBitWidth() > 64)
560 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
561 .addCImm(CI).addImm(DI->getOffset())
562 .addMetadata(DI->getVariable());
563 else
564 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
565 .addImm(CI->getZExtValue()).addImm(DI->getOffset())
566 .addMetadata(DI->getVariable());
567 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
568 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
569 .addFPImm(CF).addImm(DI->getOffset())
570 .addMetadata(DI->getVariable());
571 } else if (unsigned Reg = lookUpRegForValue(V)) {
572 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
573 .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
574 .addMetadata(DI->getVariable());
575 } else {
576 // We can't yet handle anything else here because it would require
577 // generating code, thus altering codegen because of debug info.
578 DEBUG(dbgs() << "Dropping debug info for " << DI);
580 return true;
582 case Intrinsic::eh_exception: {
583 EVT VT = TLI.getValueType(Call->getType());
584 if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand)
585 break;
587 assert(FuncInfo.MBB->isLandingPad() &&
588 "Call to eh.exception not in landing pad!");
589 unsigned Reg = TLI.getExceptionAddressRegister();
590 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
591 unsigned ResultReg = createResultReg(RC);
592 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
593 ResultReg).addReg(Reg);
594 UpdateValueMap(Call, ResultReg);
595 return true;
597 case Intrinsic::eh_selector: {
598 EVT VT = TLI.getValueType(Call->getType());
599 if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand)
600 break;
601 if (FuncInfo.MBB->isLandingPad())
602 AddCatchInfo(*Call, &FuncInfo.MF->getMMI(), FuncInfo.MBB);
603 else {
604 #ifndef NDEBUG
605 FuncInfo.CatchInfoLost.insert(Call);
606 #endif
607 // FIXME: Mark exception selector register as live in. Hack for PR1508.
608 unsigned Reg = TLI.getExceptionSelectorRegister();
609 if (Reg) FuncInfo.MBB->addLiveIn(Reg);
612 unsigned Reg = TLI.getExceptionSelectorRegister();
613 EVT SrcVT = TLI.getPointerTy();
614 const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
615 unsigned ResultReg = createResultReg(RC);
616 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
617 ResultReg).addReg(Reg);
619 bool ResultRegIsKill = hasTrivialKill(Call);
621 // Cast the register to the type of the selector.
622 if (SrcVT.bitsGT(MVT::i32))
623 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
624 ResultReg, ResultRegIsKill);
625 else if (SrcVT.bitsLT(MVT::i32))
626 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
627 ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
628 if (ResultReg == 0)
629 // Unhandled operand. Halt "fast" selection and bail.
630 return false;
632 UpdateValueMap(Call, ResultReg);
634 return true;
636 case Intrinsic::objectsize: {
637 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
638 unsigned long long Res = CI->isZero() ? -1ULL : 0;
639 Constant *ResCI = ConstantInt::get(Call->getType(), Res);
640 unsigned ResultReg = getRegForValue(ResCI);
641 if (ResultReg == 0)
642 return false;
643 UpdateValueMap(Call, ResultReg);
644 return true;
648 // An arbitrary call. Bail.
649 return false;
652 bool FastISel::SelectCast(const User *I, unsigned Opcode) {
653 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
654 EVT DstVT = TLI.getValueType(I->getType());
656 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
657 DstVT == MVT::Other || !DstVT.isSimple())
658 // Unhandled type. Halt "fast" selection and bail.
659 return false;
661 // Check if the destination type is legal.
662 if (!TLI.isTypeLegal(DstVT))
663 return false;
665 // Check if the source operand is legal.
666 if (!TLI.isTypeLegal(SrcVT))
667 return false;
669 unsigned InputReg = getRegForValue(I->getOperand(0));
670 if (!InputReg)
671 // Unhandled operand. Halt "fast" selection and bail.
672 return false;
674 bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
676 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
677 DstVT.getSimpleVT(),
678 Opcode,
679 InputReg, InputRegIsKill);
680 if (!ResultReg)
681 return false;
683 UpdateValueMap(I, ResultReg);
684 return true;
687 bool FastISel::SelectBitCast(const User *I) {
688 // If the bitcast doesn't change the type, just use the operand value.
689 if (I->getType() == I->getOperand(0)->getType()) {
690 unsigned Reg = getRegForValue(I->getOperand(0));
691 if (Reg == 0)
692 return false;
693 UpdateValueMap(I, Reg);
694 return true;
697 // Bitcasts of other values become reg-reg copies or BITCAST operators.
698 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
699 EVT DstVT = TLI.getValueType(I->getType());
701 if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
702 DstVT == MVT::Other || !DstVT.isSimple() ||
703 !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
704 // Unhandled type. Halt "fast" selection and bail.
705 return false;
707 unsigned Op0 = getRegForValue(I->getOperand(0));
708 if (Op0 == 0)
709 // Unhandled operand. Halt "fast" selection and bail.
710 return false;
712 bool Op0IsKill = hasTrivialKill(I->getOperand(0));
714 // First, try to perform the bitcast by inserting a reg-reg copy.
715 unsigned ResultReg = 0;
716 if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
717 TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
718 TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
719 // Don't attempt a cross-class copy. It will likely fail.
720 if (SrcClass == DstClass) {
721 ResultReg = createResultReg(DstClass);
722 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
723 ResultReg).addReg(Op0);
727 // If the reg-reg copy failed, select a BITCAST opcode.
728 if (!ResultReg)
729 ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
730 ISD::BITCAST, Op0, Op0IsKill);
732 if (!ResultReg)
733 return false;
735 UpdateValueMap(I, ResultReg);
736 return true;
739 bool
740 FastISel::SelectInstruction(const Instruction *I) {
741 // Just before the terminator instruction, insert instructions to
742 // feed PHI nodes in successor blocks.
743 if (isa<TerminatorInst>(I))
744 if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
745 return false;
747 DL = I->getDebugLoc();
749 // First, try doing target-independent selection.
750 if (SelectOperator(I, I->getOpcode())) {
751 DL = DebugLoc();
752 return true;
755 // Next, try calling the target to attempt to handle the instruction.
756 if (TargetSelectInstruction(I)) {
757 DL = DebugLoc();
758 return true;
761 DL = DebugLoc();
762 return false;
765 /// FastEmitBranch - Emit an unconditional branch to the given block,
766 /// unless it is the immediate (fall-through) successor, and update
767 /// the CFG.
768 void
769 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
770 if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
771 // The unconditional fall-through case, which needs no instructions.
772 } else {
773 // The unconditional branch case.
774 TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
775 SmallVector<MachineOperand, 0>(), DL);
777 FuncInfo.MBB->addSuccessor(MSucc);
780 /// SelectFNeg - Emit an FNeg operation.
782 bool
783 FastISel::SelectFNeg(const User *I) {
784 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
785 if (OpReg == 0) return false;
787 bool OpRegIsKill = hasTrivialKill(I);
789 // If the target has ISD::FNEG, use it.
790 EVT VT = TLI.getValueType(I->getType());
791 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
792 ISD::FNEG, OpReg, OpRegIsKill);
793 if (ResultReg != 0) {
794 UpdateValueMap(I, ResultReg);
795 return true;
798 // Bitcast the value to integer, twiddle the sign bit with xor,
799 // and then bitcast it back to floating-point.
800 if (VT.getSizeInBits() > 64) return false;
801 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
802 if (!TLI.isTypeLegal(IntVT))
803 return false;
805 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
806 ISD::BITCAST, OpReg, OpRegIsKill);
807 if (IntReg == 0)
808 return false;
810 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
811 IntReg, /*Kill=*/true,
812 UINT64_C(1) << (VT.getSizeInBits()-1),
813 IntVT.getSimpleVT());
814 if (IntResultReg == 0)
815 return false;
817 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
818 ISD::BITCAST, IntResultReg, /*Kill=*/true);
819 if (ResultReg == 0)
820 return false;
822 UpdateValueMap(I, ResultReg);
823 return true;
826 bool
827 FastISel::SelectExtractValue(const User *U) {
828 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
829 if (!EVI)
830 return false;
832 // Make sure we only try to handle extracts with a legal result. But also
833 // allow i1 because it's easy.
834 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
835 if (!RealVT.isSimple())
836 return false;
837 MVT VT = RealVT.getSimpleVT();
838 if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
839 return false;
841 const Value *Op0 = EVI->getOperand(0);
842 const Type *AggTy = Op0->getType();
844 // Get the base result register.
845 unsigned ResultReg;
846 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
847 if (I != FuncInfo.ValueMap.end())
848 ResultReg = I->second;
849 else if (isa<Instruction>(Op0))
850 ResultReg = FuncInfo.InitializeRegForValue(Op0);
851 else
852 return false; // fast-isel can't handle aggregate constants at the moment
854 // Get the actual result register, which is an offset from the base register.
855 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->idx_begin(), EVI->idx_end());
857 SmallVector<EVT, 4> AggValueVTs;
858 ComputeValueVTs(TLI, AggTy, AggValueVTs);
860 for (unsigned i = 0; i < VTIndex; i++)
861 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
863 UpdateValueMap(EVI, ResultReg);
864 return true;
867 bool
868 FastISel::SelectOperator(const User *I, unsigned Opcode) {
869 switch (Opcode) {
870 case Instruction::Add:
871 return SelectBinaryOp(I, ISD::ADD);
872 case Instruction::FAdd:
873 return SelectBinaryOp(I, ISD::FADD);
874 case Instruction::Sub:
875 return SelectBinaryOp(I, ISD::SUB);
876 case Instruction::FSub:
877 // FNeg is currently represented in LLVM IR as a special case of FSub.
878 if (BinaryOperator::isFNeg(I))
879 return SelectFNeg(I);
880 return SelectBinaryOp(I, ISD::FSUB);
881 case Instruction::Mul:
882 return SelectBinaryOp(I, ISD::MUL);
883 case Instruction::FMul:
884 return SelectBinaryOp(I, ISD::FMUL);
885 case Instruction::SDiv:
886 return SelectBinaryOp(I, ISD::SDIV);
887 case Instruction::UDiv:
888 return SelectBinaryOp(I, ISD::UDIV);
889 case Instruction::FDiv:
890 return SelectBinaryOp(I, ISD::FDIV);
891 case Instruction::SRem:
892 return SelectBinaryOp(I, ISD::SREM);
893 case Instruction::URem:
894 return SelectBinaryOp(I, ISD::UREM);
895 case Instruction::FRem:
896 return SelectBinaryOp(I, ISD::FREM);
897 case Instruction::Shl:
898 return SelectBinaryOp(I, ISD::SHL);
899 case Instruction::LShr:
900 return SelectBinaryOp(I, ISD::SRL);
901 case Instruction::AShr:
902 return SelectBinaryOp(I, ISD::SRA);
903 case Instruction::And:
904 return SelectBinaryOp(I, ISD::AND);
905 case Instruction::Or:
906 return SelectBinaryOp(I, ISD::OR);
907 case Instruction::Xor:
908 return SelectBinaryOp(I, ISD::XOR);
910 case Instruction::GetElementPtr:
911 return SelectGetElementPtr(I);
913 case Instruction::Br: {
914 const BranchInst *BI = cast<BranchInst>(I);
916 if (BI->isUnconditional()) {
917 const BasicBlock *LLVMSucc = BI->getSuccessor(0);
918 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
919 FastEmitBranch(MSucc, BI->getDebugLoc());
920 return true;
923 // Conditional branches are not handed yet.
924 // Halt "fast" selection and bail.
925 return false;
928 case Instruction::Unreachable:
929 // Nothing to emit.
930 return true;
932 case Instruction::Alloca:
933 // FunctionLowering has the static-sized case covered.
934 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
935 return true;
937 // Dynamic-sized alloca is not handled yet.
938 return false;
940 case Instruction::Call:
941 return SelectCall(I);
943 case Instruction::BitCast:
944 return SelectBitCast(I);
946 case Instruction::FPToSI:
947 return SelectCast(I, ISD::FP_TO_SINT);
948 case Instruction::ZExt:
949 return SelectCast(I, ISD::ZERO_EXTEND);
950 case Instruction::SExt:
951 return SelectCast(I, ISD::SIGN_EXTEND);
952 case Instruction::Trunc:
953 return SelectCast(I, ISD::TRUNCATE);
954 case Instruction::SIToFP:
955 return SelectCast(I, ISD::SINT_TO_FP);
957 case Instruction::IntToPtr: // Deliberate fall-through.
958 case Instruction::PtrToInt: {
959 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
960 EVT DstVT = TLI.getValueType(I->getType());
961 if (DstVT.bitsGT(SrcVT))
962 return SelectCast(I, ISD::ZERO_EXTEND);
963 if (DstVT.bitsLT(SrcVT))
964 return SelectCast(I, ISD::TRUNCATE);
965 unsigned Reg = getRegForValue(I->getOperand(0));
966 if (Reg == 0) return false;
967 UpdateValueMap(I, Reg);
968 return true;
971 case Instruction::ExtractValue:
972 return SelectExtractValue(I);
974 case Instruction::PHI:
975 llvm_unreachable("FastISel shouldn't visit PHI nodes!");
977 default:
978 // Unhandled instruction. Halt "fast" selection and bail.
979 return false;
983 FastISel::FastISel(FunctionLoweringInfo &funcInfo)
984 : FuncInfo(funcInfo),
985 MRI(FuncInfo.MF->getRegInfo()),
986 MFI(*FuncInfo.MF->getFrameInfo()),
987 MCP(*FuncInfo.MF->getConstantPool()),
988 TM(FuncInfo.MF->getTarget()),
989 TD(*TM.getTargetData()),
990 TII(*TM.getInstrInfo()),
991 TLI(*TM.getTargetLowering()),
992 TRI(*TM.getRegisterInfo()) {
995 FastISel::~FastISel() {}
997 unsigned FastISel::FastEmit_(MVT, MVT,
998 unsigned) {
999 return 0;
1002 unsigned FastISel::FastEmit_r(MVT, MVT,
1003 unsigned,
1004 unsigned /*Op0*/, bool /*Op0IsKill*/) {
1005 return 0;
1008 unsigned FastISel::FastEmit_rr(MVT, MVT,
1009 unsigned,
1010 unsigned /*Op0*/, bool /*Op0IsKill*/,
1011 unsigned /*Op1*/, bool /*Op1IsKill*/) {
1012 return 0;
1015 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1016 return 0;
1019 unsigned FastISel::FastEmit_f(MVT, MVT,
1020 unsigned, const ConstantFP * /*FPImm*/) {
1021 return 0;
1024 unsigned FastISel::FastEmit_ri(MVT, MVT,
1025 unsigned,
1026 unsigned /*Op0*/, bool /*Op0IsKill*/,
1027 uint64_t /*Imm*/) {
1028 return 0;
1031 unsigned FastISel::FastEmit_rf(MVT, MVT,
1032 unsigned,
1033 unsigned /*Op0*/, bool /*Op0IsKill*/,
1034 const ConstantFP * /*FPImm*/) {
1035 return 0;
1038 unsigned FastISel::FastEmit_rri(MVT, MVT,
1039 unsigned,
1040 unsigned /*Op0*/, bool /*Op0IsKill*/,
1041 unsigned /*Op1*/, bool /*Op1IsKill*/,
1042 uint64_t /*Imm*/) {
1043 return 0;
1046 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1047 /// to emit an instruction with an immediate operand using FastEmit_ri.
1048 /// If that fails, it materializes the immediate into a register and try
1049 /// FastEmit_rr instead.
1050 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1051 unsigned Op0, bool Op0IsKill,
1052 uint64_t Imm, MVT ImmType) {
1053 // If this is a multiply by a power of two, emit this as a shift left.
1054 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1055 Opcode = ISD::SHL;
1056 Imm = Log2_64(Imm);
1057 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1058 // div x, 8 -> srl x, 3
1059 Opcode = ISD::SRL;
1060 Imm = Log2_64(Imm);
1063 // Horrible hack (to be removed), check to make sure shift amounts are
1064 // in-range.
1065 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1066 Imm >= VT.getSizeInBits())
1067 return 0;
1069 // First check if immediate type is legal. If not, we can't use the ri form.
1070 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1071 if (ResultReg != 0)
1072 return ResultReg;
1073 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1074 if (MaterialReg == 0) {
1075 // This is a bit ugly/slow, but failing here means falling out of
1076 // fast-isel, which would be very slow.
1077 const IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1078 VT.getSizeInBits());
1079 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1081 return FastEmit_rr(VT, VT, Opcode,
1082 Op0, Op0IsKill,
1083 MaterialReg, /*Kill=*/true);
1086 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1087 return MRI.createVirtualRegister(RC);
1090 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1091 const TargetRegisterClass* RC) {
1092 unsigned ResultReg = createResultReg(RC);
1093 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1095 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1096 return ResultReg;
1099 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1100 const TargetRegisterClass *RC,
1101 unsigned Op0, bool Op0IsKill) {
1102 unsigned ResultReg = createResultReg(RC);
1103 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1105 if (II.getNumDefs() >= 1)
1106 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1107 .addReg(Op0, Op0IsKill * RegState::Kill);
1108 else {
1109 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1110 .addReg(Op0, Op0IsKill * RegState::Kill);
1111 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1112 ResultReg).addReg(II.ImplicitDefs[0]);
1115 return ResultReg;
1118 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1119 const TargetRegisterClass *RC,
1120 unsigned Op0, bool Op0IsKill,
1121 unsigned Op1, bool Op1IsKill) {
1122 unsigned ResultReg = createResultReg(RC);
1123 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1125 if (II.getNumDefs() >= 1)
1126 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1127 .addReg(Op0, Op0IsKill * RegState::Kill)
1128 .addReg(Op1, Op1IsKill * RegState::Kill);
1129 else {
1130 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1131 .addReg(Op0, Op0IsKill * RegState::Kill)
1132 .addReg(Op1, Op1IsKill * RegState::Kill);
1133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1134 ResultReg).addReg(II.ImplicitDefs[0]);
1136 return ResultReg;
1139 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1140 const TargetRegisterClass *RC,
1141 unsigned Op0, bool Op0IsKill,
1142 unsigned Op1, bool Op1IsKill,
1143 unsigned Op2, bool Op2IsKill) {
1144 unsigned ResultReg = createResultReg(RC);
1145 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1147 if (II.getNumDefs() >= 1)
1148 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1149 .addReg(Op0, Op0IsKill * RegState::Kill)
1150 .addReg(Op1, Op1IsKill * RegState::Kill)
1151 .addReg(Op2, Op2IsKill * RegState::Kill);
1152 else {
1153 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1154 .addReg(Op0, Op0IsKill * RegState::Kill)
1155 .addReg(Op1, Op1IsKill * RegState::Kill)
1156 .addReg(Op2, Op2IsKill * RegState::Kill);
1157 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1158 ResultReg).addReg(II.ImplicitDefs[0]);
1160 return ResultReg;
1163 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1164 const TargetRegisterClass *RC,
1165 unsigned Op0, bool Op0IsKill,
1166 uint64_t Imm) {
1167 unsigned ResultReg = createResultReg(RC);
1168 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1170 if (II.getNumDefs() >= 1)
1171 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1172 .addReg(Op0, Op0IsKill * RegState::Kill)
1173 .addImm(Imm);
1174 else {
1175 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1176 .addReg(Op0, Op0IsKill * RegState::Kill)
1177 .addImm(Imm);
1178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1179 ResultReg).addReg(II.ImplicitDefs[0]);
1181 return ResultReg;
1184 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1185 const TargetRegisterClass *RC,
1186 unsigned Op0, bool Op0IsKill,
1187 uint64_t Imm1, uint64_t Imm2) {
1188 unsigned ResultReg = createResultReg(RC);
1189 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1191 if (II.getNumDefs() >= 1)
1192 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1193 .addReg(Op0, Op0IsKill * RegState::Kill)
1194 .addImm(Imm1)
1195 .addImm(Imm2);
1196 else {
1197 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1198 .addReg(Op0, Op0IsKill * RegState::Kill)
1199 .addImm(Imm1)
1200 .addImm(Imm2);
1201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1202 ResultReg).addReg(II.ImplicitDefs[0]);
1204 return ResultReg;
1207 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1208 const TargetRegisterClass *RC,
1209 unsigned Op0, bool Op0IsKill,
1210 const ConstantFP *FPImm) {
1211 unsigned ResultReg = createResultReg(RC);
1212 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1214 if (II.getNumDefs() >= 1)
1215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1216 .addReg(Op0, Op0IsKill * RegState::Kill)
1217 .addFPImm(FPImm);
1218 else {
1219 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1220 .addReg(Op0, Op0IsKill * RegState::Kill)
1221 .addFPImm(FPImm);
1222 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1223 ResultReg).addReg(II.ImplicitDefs[0]);
1225 return ResultReg;
1228 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1229 const TargetRegisterClass *RC,
1230 unsigned Op0, bool Op0IsKill,
1231 unsigned Op1, bool Op1IsKill,
1232 uint64_t Imm) {
1233 unsigned ResultReg = createResultReg(RC);
1234 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1236 if (II.getNumDefs() >= 1)
1237 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1238 .addReg(Op0, Op0IsKill * RegState::Kill)
1239 .addReg(Op1, Op1IsKill * RegState::Kill)
1240 .addImm(Imm);
1241 else {
1242 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1243 .addReg(Op0, Op0IsKill * RegState::Kill)
1244 .addReg(Op1, Op1IsKill * RegState::Kill)
1245 .addImm(Imm);
1246 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1247 ResultReg).addReg(II.ImplicitDefs[0]);
1249 return ResultReg;
1252 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1253 const TargetRegisterClass *RC,
1254 uint64_t Imm) {
1255 unsigned ResultReg = createResultReg(RC);
1256 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1258 if (II.getNumDefs() >= 1)
1259 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1260 else {
1261 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1262 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1263 ResultReg).addReg(II.ImplicitDefs[0]);
1265 return ResultReg;
1268 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1269 const TargetRegisterClass *RC,
1270 uint64_t Imm1, uint64_t Imm2) {
1271 unsigned ResultReg = createResultReg(RC);
1272 const MCInstrDesc &II = TII.get(MachineInstOpcode);
1274 if (II.getNumDefs() >= 1)
1275 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1276 .addImm(Imm1).addImm(Imm2);
1277 else {
1278 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1280 ResultReg).addReg(II.ImplicitDefs[0]);
1282 return ResultReg;
1285 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1286 unsigned Op0, bool Op0IsKill,
1287 uint32_t Idx) {
1288 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1289 assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1290 "Cannot yet extract from physregs");
1291 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1292 DL, TII.get(TargetOpcode::COPY), ResultReg)
1293 .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1294 return ResultReg;
1297 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1298 /// with all but the least significant bit set to zero.
1299 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1300 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1303 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1304 /// Emit code to ensure constants are copied into registers when needed.
1305 /// Remember the virtual registers that need to be added to the Machine PHI
1306 /// nodes as input. We cannot just directly add them, because expansion
1307 /// might result in multiple MBB's for one BB. As such, the start of the
1308 /// BB might correspond to a different MBB than the end.
1309 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1310 const TerminatorInst *TI = LLVMBB->getTerminator();
1312 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1313 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1315 // Check successor nodes' PHI nodes that expect a constant to be available
1316 // from this block.
1317 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1318 const BasicBlock *SuccBB = TI->getSuccessor(succ);
1319 if (!isa<PHINode>(SuccBB->begin())) continue;
1320 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1322 // If this terminator has multiple identical successors (common for
1323 // switches), only handle each succ once.
1324 if (!SuccsHandled.insert(SuccMBB)) continue;
1326 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1328 // At this point we know that there is a 1-1 correspondence between LLVM PHI
1329 // nodes and Machine PHI nodes, but the incoming operands have not been
1330 // emitted yet.
1331 for (BasicBlock::const_iterator I = SuccBB->begin();
1332 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1334 // Ignore dead phi's.
1335 if (PN->use_empty()) continue;
1337 // Only handle legal types. Two interesting things to note here. First,
1338 // by bailing out early, we may leave behind some dead instructions,
1339 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1340 // own moves. Second, this check is necessary because FastISel doesn't
1341 // use CreateRegs to create registers, so it always creates
1342 // exactly one register for each non-void instruction.
1343 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1344 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1345 // Promote MVT::i1.
1346 if (VT == MVT::i1)
1347 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1348 else {
1349 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1350 return false;
1354 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1356 // Set the DebugLoc for the copy. Prefer the location of the operand
1357 // if there is one; use the location of the PHI otherwise.
1358 DL = PN->getDebugLoc();
1359 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1360 DL = Inst->getDebugLoc();
1362 unsigned Reg = getRegForValue(PHIOp);
1363 if (Reg == 0) {
1364 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1365 return false;
1367 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1368 DL = DebugLoc();
1372 return true;