1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements routines for translating functions from LLVM IR into
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "function-lowering-info"
16 #include "llvm/CodeGen/FunctionLoweringInfo.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Analysis/DebugInfo.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetLowering.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
41 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
42 /// PHI nodes or outside of the basic block that defines it, or used by a
43 /// switch or atomic instruction, which may expand to multiple basic blocks.
44 static bool isUsedOutsideOfDefiningBlock(const Instruction
*I
) {
45 if (I
->use_empty()) return false;
46 if (isa
<PHINode
>(I
)) return true;
47 const BasicBlock
*BB
= I
->getParent();
48 for (Value::const_use_iterator UI
= I
->use_begin(), E
= I
->use_end();
51 if (cast
<Instruction
>(U
)->getParent() != BB
|| isa
<PHINode
>(U
))
57 FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering
&tli
)
61 void FunctionLoweringInfo::set(const Function
&fn
, MachineFunction
&mf
) {
64 RegInfo
= &MF
->getRegInfo();
66 // Check whether the function can return without sret-demotion.
67 SmallVector
<ISD::OutputArg
, 4> Outs
;
68 GetReturnInfo(Fn
->getReturnType(),
69 Fn
->getAttributes().getRetAttributes(), Outs
, TLI
);
70 CanLowerReturn
= TLI
.CanLowerReturn(Fn
->getCallingConv(), *MF
,
72 Outs
, Fn
->getContext());
74 // Initialize the mapping of values to registers. This is only set up for
75 // instruction values that are used outside of the block that defines
77 Function::const_iterator BB
= Fn
->begin(), EB
= Fn
->end();
78 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
79 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
))
80 if (const ConstantInt
*CUI
= dyn_cast
<ConstantInt
>(AI
->getArraySize())) {
81 const Type
*Ty
= AI
->getAllocatedType();
82 uint64_t TySize
= TLI
.getTargetData()->getTypeAllocSize(Ty
);
84 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
),
87 TySize
*= CUI
->getZExtValue(); // Get total allocated size.
88 if (TySize
== 0) TySize
= 1; // Don't create zero-sized stack objects.
90 // The object may need to be placed onto the stack near the stack
91 // protector if one exists. Determine here if this object is a suitable
92 // candidate. I.e., it would trigger the creation of a stack protector.
94 (AI
->isArrayAllocation() ||
95 (TySize
> 8 && isa
<ArrayType
>(Ty
) &&
96 cast
<ArrayType
>(Ty
)->getElementType()->isIntegerTy(8)));
98 MF
->getFrameInfo()->CreateStackObject(TySize
, Align
, false, MayNeedSP
);
101 for (; BB
!= EB
; ++BB
)
102 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
103 // Mark values used outside their block as exported, by allocating
104 // a virtual register for them.
105 if (isUsedOutsideOfDefiningBlock(I
))
106 if (!isa
<AllocaInst
>(I
) ||
107 !StaticAllocaMap
.count(cast
<AllocaInst
>(I
)))
108 InitializeRegForValue(I
);
110 // Collect llvm.dbg.declare information. This is done now instead of
111 // during the initial isel pass through the IR so that it is done
112 // in a predictable order.
113 if (const DbgDeclareInst
*DI
= dyn_cast
<DbgDeclareInst
>(I
)) {
114 MachineModuleInfo
&MMI
= MF
->getMMI();
115 if (MMI
.hasDebugInfo() &&
116 DIVariable(DI
->getVariable()).Verify() &&
117 !DI
->getDebugLoc().isUnknown()) {
118 // Don't handle byval struct arguments or VLAs, for example.
119 // Non-byval arguments are handled here (they refer to the stack
120 // temporary alloca at this point).
121 const Value
*Address
= DI
->getAddress();
123 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
124 Address
= BCI
->getOperand(0);
125 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Address
)) {
126 DenseMap
<const AllocaInst
*, int>::iterator SI
=
127 StaticAllocaMap
.find(AI
);
128 if (SI
!= StaticAllocaMap
.end()) { // Check for VLAs.
130 MMI
.setVariableDbgInfo(DI
->getVariable(),
131 FI
, DI
->getDebugLoc());
139 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
140 // also creates the initial PHI MachineInstrs, though none of the input
141 // operands are populated.
142 for (BB
= Fn
->begin(); BB
!= EB
; ++BB
) {
143 MachineBasicBlock
*MBB
= mf
.CreateMachineBasicBlock(BB
);
147 // Transfer the address-taken flag. This is necessary because there could
148 // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
149 // the first one should be marked.
150 if (BB
->hasAddressTaken())
151 MBB
->setHasAddressTaken();
153 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
155 for (BasicBlock::const_iterator I
= BB
->begin();
156 const PHINode
*PN
= dyn_cast
<PHINode
>(I
); ++I
) {
157 if (PN
->use_empty()) continue;
160 if (PN
->getType()->isEmptyTy())
163 DebugLoc DL
= PN
->getDebugLoc();
164 unsigned PHIReg
= ValueMap
[PN
];
165 assert(PHIReg
&& "PHI node does not have an assigned virtual register!");
167 SmallVector
<EVT
, 4> ValueVTs
;
168 ComputeValueVTs(TLI
, PN
->getType(), ValueVTs
);
169 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
170 EVT VT
= ValueVTs
[vti
];
171 unsigned NumRegisters
= TLI
.getNumRegisters(Fn
->getContext(), VT
);
172 const TargetInstrInfo
*TII
= MF
->getTarget().getInstrInfo();
173 for (unsigned i
= 0; i
!= NumRegisters
; ++i
)
174 BuildMI(MBB
, DL
, TII
->get(TargetOpcode::PHI
), PHIReg
+ i
);
175 PHIReg
+= NumRegisters
;
180 // Mark landing pad blocks.
181 for (BB
= Fn
->begin(); BB
!= EB
; ++BB
)
182 if (const InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(BB
->getTerminator()))
183 MBBMap
[Invoke
->getSuccessor(1)]->setIsLandingPad();
186 /// clear - Clear out all the function-specific state. This returns this
187 /// FunctionLoweringInfo to an empty state, ready to be used for a
188 /// different function.
189 void FunctionLoweringInfo::clear() {
190 assert(CatchInfoFound
.size() == CatchInfoLost
.size() &&
191 "Not all catch info was assigned to a landing pad!");
195 StaticAllocaMap
.clear();
197 CatchInfoLost
.clear();
198 CatchInfoFound
.clear();
200 LiveOutRegInfo
.clear();
202 ArgDbgValues
.clear();
203 ByValArgFrameIndexMap
.clear();
207 /// CreateReg - Allocate a single virtual register for the given type.
208 unsigned FunctionLoweringInfo::CreateReg(EVT VT
) {
209 return RegInfo
->createVirtualRegister(TLI
.getRegClassFor(VT
));
212 /// CreateRegs - Allocate the appropriate number of virtual registers of
213 /// the correctly promoted or expanded types. Assign these registers
214 /// consecutive vreg numbers and return the first assigned number.
216 /// In the case that the given value has struct or array type, this function
217 /// will assign registers for each member or element.
219 unsigned FunctionLoweringInfo::CreateRegs(const Type
*Ty
) {
220 SmallVector
<EVT
, 4> ValueVTs
;
221 ComputeValueVTs(TLI
, Ty
, ValueVTs
);
223 unsigned FirstReg
= 0;
224 for (unsigned Value
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
225 EVT ValueVT
= ValueVTs
[Value
];
226 EVT RegisterVT
= TLI
.getRegisterType(Ty
->getContext(), ValueVT
);
228 unsigned NumRegs
= TLI
.getNumRegisters(Ty
->getContext(), ValueVT
);
229 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
230 unsigned R
= CreateReg(RegisterVT
);
231 if (!FirstReg
) FirstReg
= R
;
237 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
238 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
239 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
240 /// the larger bit width by zero extension. The bit width must be no smaller
241 /// than the LiveOutInfo's existing bit width.
242 const FunctionLoweringInfo::LiveOutInfo
*
243 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg
, unsigned BitWidth
) {
244 if (!LiveOutRegInfo
.inBounds(Reg
))
247 LiveOutInfo
*LOI
= &LiveOutRegInfo
[Reg
];
251 if (BitWidth
> LOI
->KnownZero
.getBitWidth()) {
252 LOI
->NumSignBits
= 1;
253 LOI
->KnownZero
= LOI
->KnownZero
.zextOrTrunc(BitWidth
);
254 LOI
->KnownOne
= LOI
->KnownOne
.zextOrTrunc(BitWidth
);
260 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
261 /// register based on the LiveOutInfo of its operands.
262 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode
*PN
) {
263 const Type
*Ty
= PN
->getType();
264 if (!Ty
->isIntegerTy() || Ty
->isVectorTy())
267 SmallVector
<EVT
, 1> ValueVTs
;
268 ComputeValueVTs(TLI
, Ty
, ValueVTs
);
269 assert(ValueVTs
.size() == 1 &&
270 "PHIs with non-vector integer types should have a single VT.");
271 EVT IntVT
= ValueVTs
[0];
273 if (TLI
.getNumRegisters(PN
->getContext(), IntVT
) != 1)
275 IntVT
= TLI
.getTypeToTransformTo(PN
->getContext(), IntVT
);
276 unsigned BitWidth
= IntVT
.getSizeInBits();
278 unsigned DestReg
= ValueMap
[PN
];
279 if (!TargetRegisterInfo::isVirtualRegister(DestReg
))
281 LiveOutRegInfo
.grow(DestReg
);
282 LiveOutInfo
&DestLOI
= LiveOutRegInfo
[DestReg
];
284 Value
*V
= PN
->getIncomingValue(0);
285 if (isa
<UndefValue
>(V
) || isa
<ConstantExpr
>(V
)) {
286 DestLOI
.NumSignBits
= 1;
287 APInt
Zero(BitWidth
, 0);
288 DestLOI
.KnownZero
= Zero
;
289 DestLOI
.KnownOne
= Zero
;
293 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
294 APInt Val
= CI
->getValue().zextOrTrunc(BitWidth
);
295 DestLOI
.NumSignBits
= Val
.getNumSignBits();
296 DestLOI
.KnownZero
= ~Val
;
297 DestLOI
.KnownOne
= Val
;
299 assert(ValueMap
.count(V
) && "V should have been placed in ValueMap when its"
300 "CopyToReg node was created.");
301 unsigned SrcReg
= ValueMap
[V
];
302 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
)) {
303 DestLOI
.IsValid
= false;
306 const LiveOutInfo
*SrcLOI
= GetLiveOutRegInfo(SrcReg
, BitWidth
);
308 DestLOI
.IsValid
= false;
314 assert(DestLOI
.KnownZero
.getBitWidth() == BitWidth
&&
315 DestLOI
.KnownOne
.getBitWidth() == BitWidth
&&
316 "Masks should have the same bit width as the type.");
318 for (unsigned i
= 1, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
319 Value
*V
= PN
->getIncomingValue(i
);
320 if (isa
<UndefValue
>(V
) || isa
<ConstantExpr
>(V
)) {
321 DestLOI
.NumSignBits
= 1;
322 APInt
Zero(BitWidth
, 0);
323 DestLOI
.KnownZero
= Zero
;
324 DestLOI
.KnownOne
= Zero
;
328 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
329 APInt Val
= CI
->getValue().zextOrTrunc(BitWidth
);
330 DestLOI
.NumSignBits
= std::min(DestLOI
.NumSignBits
, Val
.getNumSignBits());
331 DestLOI
.KnownZero
&= ~Val
;
332 DestLOI
.KnownOne
&= Val
;
336 assert(ValueMap
.count(V
) && "V should have been placed in ValueMap when "
337 "its CopyToReg node was created.");
338 unsigned SrcReg
= ValueMap
[V
];
339 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
)) {
340 DestLOI
.IsValid
= false;
343 const LiveOutInfo
*SrcLOI
= GetLiveOutRegInfo(SrcReg
, BitWidth
);
345 DestLOI
.IsValid
= false;
348 DestLOI
.NumSignBits
= std::min(DestLOI
.NumSignBits
, SrcLOI
->NumSignBits
);
349 DestLOI
.KnownZero
&= SrcLOI
->KnownZero
;
350 DestLOI
.KnownOne
&= SrcLOI
->KnownOne
;
354 /// setByValArgumentFrameIndex - Record frame index for the byval
355 /// argument. This overrides previous frame index entry for this argument,
357 void FunctionLoweringInfo::setByValArgumentFrameIndex(const Argument
*A
,
359 assert (A
->hasByValAttr() && "Argument does not have byval attribute!");
360 ByValArgFrameIndexMap
[A
] = FI
;
363 /// getByValArgumentFrameIndex - Get frame index for the byval argument.
364 /// If the argument does not have any assigned frame index then 0 is
366 int FunctionLoweringInfo::getByValArgumentFrameIndex(const Argument
*A
) {
367 assert (A
->hasByValAttr() && "Argument does not have byval attribute!");
368 DenseMap
<const Argument
*, int>::iterator I
=
369 ByValArgFrameIndexMap
.find(A
);
370 if (I
!= ByValArgFrameIndexMap
.end())
372 DEBUG(dbgs() << "Argument does not have assigned frame index!");
376 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
377 /// call, and add them to the specified machine basic block.
378 void llvm::AddCatchInfo(const CallInst
&I
, MachineModuleInfo
*MMI
,
379 MachineBasicBlock
*MBB
) {
380 // Inform the MachineModuleInfo of the personality for this landing pad.
381 const ConstantExpr
*CE
= cast
<ConstantExpr
>(I
.getArgOperand(1));
382 assert(CE
->getOpcode() == Instruction::BitCast
&&
383 isa
<Function
>(CE
->getOperand(0)) &&
384 "Personality should be a function");
385 MMI
->addPersonality(MBB
, cast
<Function
>(CE
->getOperand(0)));
387 // Gather all the type infos for this landing pad and pass them along to
388 // MachineModuleInfo.
389 std::vector
<const GlobalVariable
*> TyInfo
;
390 unsigned N
= I
.getNumArgOperands();
392 for (unsigned i
= N
- 1; i
> 1; --i
) {
393 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(i
))) {
394 unsigned FilterLength
= CI
->getZExtValue();
395 unsigned FirstCatch
= i
+ FilterLength
+ !FilterLength
;
396 assert(FirstCatch
<= N
&& "Invalid filter length");
398 if (FirstCatch
< N
) {
399 TyInfo
.reserve(N
- FirstCatch
);
400 for (unsigned j
= FirstCatch
; j
< N
; ++j
)
401 TyInfo
.push_back(ExtractTypeInfo(I
.getArgOperand(j
)));
402 MMI
->addCatchTypeInfo(MBB
, TyInfo
);
408 MMI
->addCleanup(MBB
);
411 TyInfo
.reserve(FilterLength
- 1);
412 for (unsigned j
= i
+ 1; j
< FirstCatch
; ++j
)
413 TyInfo
.push_back(ExtractTypeInfo(I
.getArgOperand(j
)));
414 MMI
->addFilterTypeInfo(MBB
, TyInfo
);
423 TyInfo
.reserve(N
- 2);
424 for (unsigned j
= 2; j
< N
; ++j
)
425 TyInfo
.push_back(ExtractTypeInfo(I
.getArgOperand(j
)));
426 MMI
->addCatchTypeInfo(MBB
, TyInfo
);
430 void llvm::CopyCatchInfo(const BasicBlock
*SuccBB
, const BasicBlock
*LPad
,
431 MachineModuleInfo
*MMI
, FunctionLoweringInfo
&FLI
) {
432 SmallPtrSet
<const BasicBlock
*, 4> Visited
;
434 // The 'eh.selector' call may not be in the direct successor of a basic block,
435 // but could be several successors deeper. If we don't find it, try going one
436 // level further. <rdar://problem/8824861>
437 while (Visited
.insert(SuccBB
)) {
438 for (BasicBlock::const_iterator I
= SuccBB
->begin(), E
= --SuccBB
->end();
440 if (const EHSelectorInst
*EHSel
= dyn_cast
<EHSelectorInst
>(I
)) {
441 // Apply the catch info to LPad.
442 AddCatchInfo(*EHSel
, MMI
, FLI
.MBBMap
[LPad
]);
444 if (!FLI
.MBBMap
[SuccBB
]->isLandingPad())
445 FLI
.CatchInfoFound
.insert(EHSel
);
450 const BranchInst
*Br
= dyn_cast
<BranchInst
>(SuccBB
->getTerminator());
451 if (Br
&& Br
->isUnconditional())
452 SuccBB
= Br
->getSuccessor(0);