Silence -Wunused-variable in release builds.
[llvm/stm8.git] / lib / CodeGen / SelectionDAG / LegalizeTypes.cpp
blobba658b022053ab884a7c3b8444ef05c1720615f7
1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeTypes method. It transforms
11 // an arbitrary well-formed SelectionDAG to only consist of legal types. This
12 // is common code shared among the LegalizeTypes*.cpp files.
14 //===----------------------------------------------------------------------===//
16 #include "LegalizeTypes.h"
17 #include "llvm/CallingConv.h"
18 #include "llvm/Target/TargetData.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace llvm;
25 static cl::opt<bool>
26 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
28 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
29 void DAGTypeLegalizer::PerformExpensiveChecks() {
30 // If a node is not processed, then none of its values should be mapped by any
31 // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
33 // If a node is processed, then each value with an illegal type must be mapped
34 // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35 // Values with a legal type may be mapped by ReplacedValues, but not by any of
36 // the other maps.
38 // Note that these invariants may not hold momentarily when processing a node:
39 // the node being processed may be put in a map before being marked Processed.
41 // Note that it is possible to have nodes marked NewNode in the DAG. This can
42 // occur in two ways. Firstly, a node may be created during legalization but
43 // never passed to the legalization core. This is usually due to the implicit
44 // folding that occurs when using the DAG.getNode operators. Secondly, a new
45 // node may be passed to the legalization core, but when analyzed may morph
46 // into a different node, leaving the original node as a NewNode in the DAG.
47 // A node may morph if one of its operands changes during analysis. Whether
48 // it actually morphs or not depends on whether, after updating its operands,
49 // it is equivalent to an existing node: if so, it morphs into that existing
50 // node (CSE). An operand can change during analysis if the operand is a new
51 // node that morphs, or it is a processed value that was mapped to some other
52 // value (as recorded in ReplacedValues) in which case the operand is turned
53 // into that other value. If a node morphs then the node it morphed into will
54 // be used instead of it for legalization, however the original node continues
55 // to live on in the DAG.
56 // The conclusion is that though there may be nodes marked NewNode in the DAG,
57 // all uses of such nodes are also marked NewNode: the result is a fungus of
58 // NewNodes growing on top of the useful nodes, and perhaps using them, but
59 // not used by them.
61 // If a value is mapped by ReplacedValues, then it must have no uses, except
62 // by nodes marked NewNode (see above).
64 // The final node obtained by mapping by ReplacedValues is not marked NewNode.
65 // Note that ReplacedValues should be applied iteratively.
67 // Note that the ReplacedValues map may also map deleted nodes (by iterating
68 // over the DAG we never dereference deleted nodes). This means that it may
69 // also map nodes marked NewNode if the deallocated memory was reallocated as
70 // another node, and that new node was not seen by the LegalizeTypes machinery
71 // (for example because it was created but not used). In general, we cannot
72 // distinguish between new nodes and deleted nodes.
73 SmallVector<SDNode*, 16> NewNodes;
74 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
75 E = DAG.allnodes_end(); I != E; ++I) {
76 // Remember nodes marked NewNode - they are subject to extra checking below.
77 if (I->getNodeId() == NewNode)
78 NewNodes.push_back(I);
80 for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
81 SDValue Res(I, i);
82 bool Failed = false;
84 unsigned Mapped = 0;
85 if (ReplacedValues.find(Res) != ReplacedValues.end()) {
86 Mapped |= 1;
87 // Check that remapped values are only used by nodes marked NewNode.
88 for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
89 UI != UE; ++UI)
90 if (UI.getUse().getResNo() == i)
91 assert(UI->getNodeId() == NewNode &&
92 "Remapped value has non-trivial use!");
94 // Check that the final result of applying ReplacedValues is not
95 // marked NewNode.
96 SDValue NewVal = ReplacedValues[Res];
97 DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
98 while (I != ReplacedValues.end()) {
99 NewVal = I->second;
100 I = ReplacedValues.find(NewVal);
102 assert(NewVal.getNode()->getNodeId() != NewNode &&
103 "ReplacedValues maps to a new node!");
105 if (PromotedIntegers.find(Res) != PromotedIntegers.end())
106 Mapped |= 2;
107 if (SoftenedFloats.find(Res) != SoftenedFloats.end())
108 Mapped |= 4;
109 if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
110 Mapped |= 8;
111 if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
112 Mapped |= 16;
113 if (ExpandedFloats.find(Res) != ExpandedFloats.end())
114 Mapped |= 32;
115 if (SplitVectors.find(Res) != SplitVectors.end())
116 Mapped |= 64;
117 if (WidenedVectors.find(Res) != WidenedVectors.end())
118 Mapped |= 128;
120 if (I->getNodeId() != Processed) {
121 // Since we allow ReplacedValues to map deleted nodes, it may map nodes
122 // marked NewNode too, since a deleted node may have been reallocated as
123 // another node that has not been seen by the LegalizeTypes machinery.
124 if ((I->getNodeId() == NewNode && Mapped > 1) ||
125 (I->getNodeId() != NewNode && Mapped != 0)) {
126 dbgs() << "Unprocessed value in a map!";
127 Failed = true;
129 } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
130 if (Mapped > 1) {
131 dbgs() << "Value with legal type was transformed!";
132 Failed = true;
134 } else {
135 if (Mapped == 0) {
136 dbgs() << "Processed value not in any map!";
137 Failed = true;
138 } else if (Mapped & (Mapped - 1)) {
139 dbgs() << "Value in multiple maps!";
140 Failed = true;
144 if (Failed) {
145 if (Mapped & 1)
146 dbgs() << " ReplacedValues";
147 if (Mapped & 2)
148 dbgs() << " PromotedIntegers";
149 if (Mapped & 4)
150 dbgs() << " SoftenedFloats";
151 if (Mapped & 8)
152 dbgs() << " ScalarizedVectors";
153 if (Mapped & 16)
154 dbgs() << " ExpandedIntegers";
155 if (Mapped & 32)
156 dbgs() << " ExpandedFloats";
157 if (Mapped & 64)
158 dbgs() << " SplitVectors";
159 if (Mapped & 128)
160 dbgs() << " WidenedVectors";
161 dbgs() << "\n";
162 llvm_unreachable(0);
167 // Checked that NewNodes are only used by other NewNodes.
168 for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
169 SDNode *N = NewNodes[i];
170 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
171 UI != UE; ++UI)
172 assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
176 /// run - This is the main entry point for the type legalizer. This does a
177 /// top-down traversal of the dag, legalizing types as it goes. Returns "true"
178 /// if it made any changes.
179 bool DAGTypeLegalizer::run() {
180 bool Changed = false;
182 // Create a dummy node (which is not added to allnodes), that adds a reference
183 // to the root node, preventing it from being deleted, and tracking any
184 // changes of the root.
185 HandleSDNode Dummy(DAG.getRoot());
186 Dummy.setNodeId(Unanalyzed);
188 // The root of the dag may dangle to deleted nodes until the type legalizer is
189 // done. Set it to null to avoid confusion.
190 DAG.setRoot(SDValue());
192 // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
193 // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
194 // non-leaves.
195 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
196 E = DAG.allnodes_end(); I != E; ++I) {
197 if (I->getNumOperands() == 0) {
198 I->setNodeId(ReadyToProcess);
199 Worklist.push_back(I);
200 } else {
201 I->setNodeId(Unanalyzed);
205 // Now that we have a set of nodes to process, handle them all.
206 while (!Worklist.empty()) {
207 #ifndef XDEBUG
208 if (EnableExpensiveChecks)
209 #endif
210 PerformExpensiveChecks();
212 SDNode *N = Worklist.back();
213 Worklist.pop_back();
214 assert(N->getNodeId() == ReadyToProcess &&
215 "Node should be ready if on worklist!");
217 if (IgnoreNodeResults(N))
218 goto ScanOperands;
220 // Scan the values produced by the node, checking to see if any result
221 // types are illegal.
222 for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
223 EVT ResultVT = N->getValueType(i);
224 switch (getTypeAction(ResultVT)) {
225 default:
226 assert(false && "Unknown action!");
227 case TargetLowering::TypeLegal:
228 break;
229 // The following calls must take care of *all* of the node's results,
230 // not just the illegal result they were passed (this includes results
231 // with a legal type). Results can be remapped using ReplaceValueWith,
232 // or their promoted/expanded/etc values registered in PromotedIntegers,
233 // ExpandedIntegers etc.
234 case TargetLowering::TypePromoteInteger:
235 PromoteIntegerResult(N, i);
236 Changed = true;
237 goto NodeDone;
238 case TargetLowering::TypeExpandInteger:
239 ExpandIntegerResult(N, i);
240 Changed = true;
241 goto NodeDone;
242 case TargetLowering::TypeSoftenFloat:
243 SoftenFloatResult(N, i);
244 Changed = true;
245 goto NodeDone;
246 case TargetLowering::TypeExpandFloat:
247 ExpandFloatResult(N, i);
248 Changed = true;
249 goto NodeDone;
250 case TargetLowering::TypeScalarizeVector:
251 ScalarizeVectorResult(N, i);
252 Changed = true;
253 goto NodeDone;
254 case TargetLowering::TypeSplitVector:
255 SplitVectorResult(N, i);
256 Changed = true;
257 goto NodeDone;
258 case TargetLowering::TypeWidenVector:
259 WidenVectorResult(N, i);
260 Changed = true;
261 goto NodeDone;
265 ScanOperands:
266 // Scan the operand list for the node, handling any nodes with operands that
267 // are illegal.
269 unsigned NumOperands = N->getNumOperands();
270 bool NeedsReanalyzing = false;
271 unsigned i;
272 for (i = 0; i != NumOperands; ++i) {
273 if (IgnoreNodeResults(N->getOperand(i).getNode()))
274 continue;
276 EVT OpVT = N->getOperand(i).getValueType();
277 switch (getTypeAction(OpVT)) {
278 default:
279 assert(false && "Unknown action!");
280 case TargetLowering::TypeLegal:
281 continue;
282 // The following calls must either replace all of the node's results
283 // using ReplaceValueWith, and return "false"; or update the node's
284 // operands in place, and return "true".
285 case TargetLowering::TypePromoteInteger:
286 NeedsReanalyzing = PromoteIntegerOperand(N, i);
287 Changed = true;
288 break;
289 case TargetLowering::TypeExpandInteger:
290 NeedsReanalyzing = ExpandIntegerOperand(N, i);
291 Changed = true;
292 break;
293 case TargetLowering::TypeSoftenFloat:
294 NeedsReanalyzing = SoftenFloatOperand(N, i);
295 Changed = true;
296 break;
297 case TargetLowering::TypeExpandFloat:
298 NeedsReanalyzing = ExpandFloatOperand(N, i);
299 Changed = true;
300 break;
301 case TargetLowering::TypeScalarizeVector:
302 NeedsReanalyzing = ScalarizeVectorOperand(N, i);
303 Changed = true;
304 break;
305 case TargetLowering::TypeSplitVector:
306 NeedsReanalyzing = SplitVectorOperand(N, i);
307 Changed = true;
308 break;
309 case TargetLowering::TypeWidenVector:
310 NeedsReanalyzing = WidenVectorOperand(N, i);
311 Changed = true;
312 break;
314 break;
317 // The sub-method updated N in place. Check to see if any operands are new,
318 // and if so, mark them. If the node needs revisiting, don't add all users
319 // to the worklist etc.
320 if (NeedsReanalyzing) {
321 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
322 N->setNodeId(NewNode);
323 // Recompute the NodeId and correct processed operands, adding the node to
324 // the worklist if ready.
325 SDNode *M = AnalyzeNewNode(N);
326 if (M == N)
327 // The node didn't morph - nothing special to do, it will be revisited.
328 continue;
330 // The node morphed - this is equivalent to legalizing by replacing every
331 // value of N with the corresponding value of M. So do that now.
332 assert(N->getNumValues() == M->getNumValues() &&
333 "Node morphing changed the number of results!");
334 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
335 // Replacing the value takes care of remapping the new value.
336 ReplaceValueWith(SDValue(N, i), SDValue(M, i));
337 assert(N->getNodeId() == NewNode && "Unexpected node state!");
338 // The node continues to live on as part of the NewNode fungus that
339 // grows on top of the useful nodes. Nothing more needs to be done
340 // with it - move on to the next node.
341 continue;
344 if (i == NumOperands) {
345 DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
348 NodeDone:
350 // If we reach here, the node was processed, potentially creating new nodes.
351 // Mark it as processed and add its users to the worklist as appropriate.
352 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
353 N->setNodeId(Processed);
355 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
356 UI != E; ++UI) {
357 SDNode *User = *UI;
358 int NodeId = User->getNodeId();
360 // This node has two options: it can either be a new node or its Node ID
361 // may be a count of the number of operands it has that are not ready.
362 if (NodeId > 0) {
363 User->setNodeId(NodeId-1);
365 // If this was the last use it was waiting on, add it to the ready list.
366 if (NodeId-1 == ReadyToProcess)
367 Worklist.push_back(User);
368 continue;
371 // If this is an unreachable new node, then ignore it. If it ever becomes
372 // reachable by being used by a newly created node then it will be handled
373 // by AnalyzeNewNode.
374 if (NodeId == NewNode)
375 continue;
377 // Otherwise, this node is new: this is the first operand of it that
378 // became ready. Its new NodeId is the number of operands it has minus 1
379 // (as this node is now processed).
380 assert(NodeId == Unanalyzed && "Unknown node ID!");
381 User->setNodeId(User->getNumOperands() - 1);
383 // If the node only has a single operand, it is now ready.
384 if (User->getNumOperands() == 1)
385 Worklist.push_back(User);
389 #ifndef XDEBUG
390 if (EnableExpensiveChecks)
391 #endif
392 PerformExpensiveChecks();
394 // If the root changed (e.g. it was a dead load) update the root.
395 DAG.setRoot(Dummy.getValue());
397 // Remove dead nodes. This is important to do for cleanliness but also before
398 // the checking loop below. Implicit folding by the DAG.getNode operators and
399 // node morphing can cause unreachable nodes to be around with their flags set
400 // to new.
401 DAG.RemoveDeadNodes();
403 // In a debug build, scan all the nodes to make sure we found them all. This
404 // ensures that there are no cycles and that everything got processed.
405 #ifndef NDEBUG
406 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
407 E = DAG.allnodes_end(); I != E; ++I) {
408 bool Failed = false;
410 // Check that all result types are legal.
411 if (!IgnoreNodeResults(I))
412 for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
413 if (!isTypeLegal(I->getValueType(i))) {
414 dbgs() << "Result type " << i << " illegal!\n";
415 Failed = true;
418 // Check that all operand types are legal.
419 for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
420 if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
421 !isTypeLegal(I->getOperand(i).getValueType())) {
422 dbgs() << "Operand type " << i << " illegal!\n";
423 Failed = true;
426 if (I->getNodeId() != Processed) {
427 if (I->getNodeId() == NewNode)
428 dbgs() << "New node not analyzed?\n";
429 else if (I->getNodeId() == Unanalyzed)
430 dbgs() << "Unanalyzed node not noticed?\n";
431 else if (I->getNodeId() > 0)
432 dbgs() << "Operand not processed?\n";
433 else if (I->getNodeId() == ReadyToProcess)
434 dbgs() << "Not added to worklist?\n";
435 Failed = true;
438 if (Failed) {
439 I->dump(&DAG); dbgs() << "\n";
440 llvm_unreachable(0);
443 #endif
445 return Changed;
448 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially
449 /// new nodes. Correct any processed operands (this may change the node) and
450 /// calculate the NodeId. If the node itself changes to a processed node, it
451 /// is not remapped - the caller needs to take care of this.
452 /// Returns the potentially changed node.
453 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
454 // If this was an existing node that is already done, we're done.
455 if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
456 return N;
458 // Remove any stale map entries.
459 ExpungeNode(N);
461 // Okay, we know that this node is new. Recursively walk all of its operands
462 // to see if they are new also. The depth of this walk is bounded by the size
463 // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
464 // about revisiting of nodes.
466 // As we walk the operands, keep track of the number of nodes that are
467 // processed. If non-zero, this will become the new nodeid of this node.
468 // Operands may morph when they are analyzed. If so, the node will be
469 // updated after all operands have been analyzed. Since this is rare,
470 // the code tries to minimize overhead in the non-morphing case.
472 SmallVector<SDValue, 8> NewOps;
473 unsigned NumProcessed = 0;
474 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
475 SDValue OrigOp = N->getOperand(i);
476 SDValue Op = OrigOp;
478 AnalyzeNewValue(Op); // Op may morph.
480 if (Op.getNode()->getNodeId() == Processed)
481 ++NumProcessed;
483 if (!NewOps.empty()) {
484 // Some previous operand changed. Add this one to the list.
485 NewOps.push_back(Op);
486 } else if (Op != OrigOp) {
487 // This is the first operand to change - add all operands so far.
488 NewOps.append(N->op_begin(), N->op_begin() + i);
489 NewOps.push_back(Op);
493 // Some operands changed - update the node.
494 if (!NewOps.empty()) {
495 SDNode *M = DAG.UpdateNodeOperands(N, &NewOps[0], NewOps.size());
496 if (M != N) {
497 // The node morphed into a different node. Normally for this to happen
498 // the original node would have to be marked NewNode. However this can
499 // in theory momentarily not be the case while ReplaceValueWith is doing
500 // its stuff. Mark the original node NewNode to help sanity checking.
501 N->setNodeId(NewNode);
502 if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
503 // It morphed into a previously analyzed node - nothing more to do.
504 return M;
506 // It morphed into a different new node. Do the equivalent of passing
507 // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need
508 // to remap the operands, since they are the same as the operands we
509 // remapped above.
510 N = M;
511 ExpungeNode(N);
515 // Calculate the NodeId.
516 N->setNodeId(N->getNumOperands() - NumProcessed);
517 if (N->getNodeId() == ReadyToProcess)
518 Worklist.push_back(N);
520 return N;
523 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
524 /// If the node changes to a processed node, then remap it.
525 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
526 Val.setNode(AnalyzeNewNode(Val.getNode()));
527 if (Val.getNode()->getNodeId() == Processed)
528 // We were passed a processed node, or it morphed into one - remap it.
529 RemapValue(Val);
532 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
533 /// This can occur when a node is deleted then reallocated as a new node -
534 /// the mapping in ReplacedValues applies to the deleted node, not the new
535 /// one.
536 /// The only map that can have a deleted node as a source is ReplacedValues.
537 /// Other maps can have deleted nodes as targets, but since their looked-up
538 /// values are always immediately remapped using RemapValue, resulting in a
539 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
540 /// always performs correct mappings. In order to keep the mapping correct,
541 /// ExpungeNode should be called on any new nodes *before* adding them as
542 /// either source or target to ReplacedValues (which typically means calling
543 /// Expunge when a new node is first seen, since it may no longer be marked
544 /// NewNode by the time it is added to ReplacedValues).
545 void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
546 if (N->getNodeId() != NewNode)
547 return;
549 // If N is not remapped by ReplacedValues then there is nothing to do.
550 unsigned i, e;
551 for (i = 0, e = N->getNumValues(); i != e; ++i)
552 if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
553 break;
555 if (i == e)
556 return;
558 // Remove N from all maps - this is expensive but rare.
560 for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
561 E = PromotedIntegers.end(); I != E; ++I) {
562 assert(I->first.getNode() != N);
563 RemapValue(I->second);
566 for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
567 E = SoftenedFloats.end(); I != E; ++I) {
568 assert(I->first.getNode() != N);
569 RemapValue(I->second);
572 for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
573 E = ScalarizedVectors.end(); I != E; ++I) {
574 assert(I->first.getNode() != N);
575 RemapValue(I->second);
578 for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
579 E = WidenedVectors.end(); I != E; ++I) {
580 assert(I->first.getNode() != N);
581 RemapValue(I->second);
584 for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
585 I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
586 assert(I->first.getNode() != N);
587 RemapValue(I->second.first);
588 RemapValue(I->second.second);
591 for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
592 I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
593 assert(I->first.getNode() != N);
594 RemapValue(I->second.first);
595 RemapValue(I->second.second);
598 for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
599 I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
600 assert(I->first.getNode() != N);
601 RemapValue(I->second.first);
602 RemapValue(I->second.second);
605 for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
606 E = ReplacedValues.end(); I != E; ++I)
607 RemapValue(I->second);
609 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
610 ReplacedValues.erase(SDValue(N, i));
613 /// RemapValue - If the specified value was already legalized to another value,
614 /// replace it by that value.
615 void DAGTypeLegalizer::RemapValue(SDValue &N) {
616 DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
617 if (I != ReplacedValues.end()) {
618 // Use path compression to speed up future lookups if values get multiply
619 // replaced with other values.
620 RemapValue(I->second);
621 N = I->second;
622 assert(N.getNode()->getNodeId() != NewNode && "Mapped to new node!");
626 namespace {
627 /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
628 /// updates to nodes and recomputes their ready state.
629 class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
630 DAGTypeLegalizer &DTL;
631 SmallSetVector<SDNode*, 16> &NodesToAnalyze;
632 public:
633 explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
634 SmallSetVector<SDNode*, 16> &nta)
635 : DTL(dtl), NodesToAnalyze(nta) {}
637 virtual void NodeDeleted(SDNode *N, SDNode *E) {
638 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
639 N->getNodeId() != DAGTypeLegalizer::Processed &&
640 "Invalid node ID for RAUW deletion!");
641 // It is possible, though rare, for the deleted node N to occur as a
642 // target in a map, so note the replacement N -> E in ReplacedValues.
643 assert(E && "Node not replaced?");
644 DTL.NoteDeletion(N, E);
646 // In theory the deleted node could also have been scheduled for analysis.
647 // So remove it from the set of nodes which will be analyzed.
648 NodesToAnalyze.remove(N);
650 // In general nothing needs to be done for E, since it didn't change but
651 // only gained new uses. However N -> E was just added to ReplacedValues,
652 // and the result of a ReplacedValues mapping is not allowed to be marked
653 // NewNode. So if E is marked NewNode, then it needs to be analyzed.
654 if (E->getNodeId() == DAGTypeLegalizer::NewNode)
655 NodesToAnalyze.insert(E);
658 virtual void NodeUpdated(SDNode *N) {
659 // Node updates can mean pretty much anything. It is possible that an
660 // operand was set to something already processed (f.e.) in which case
661 // this node could become ready. Recompute its flags.
662 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
663 N->getNodeId() != DAGTypeLegalizer::Processed &&
664 "Invalid node ID for RAUW deletion!");
665 N->setNodeId(DAGTypeLegalizer::NewNode);
666 NodesToAnalyze.insert(N);
672 /// ReplaceValueWith - The specified value was legalized to the specified other
673 /// value. Update the DAG and NodeIds replacing any uses of From to use To
674 /// instead.
675 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
676 assert(From.getNode() != To.getNode() && "Potential legalization loop!");
678 // If expansion produced new nodes, make sure they are properly marked.
679 ExpungeNode(From.getNode());
680 AnalyzeNewValue(To); // Expunges To.
682 // Anything that used the old node should now use the new one. Note that this
683 // can potentially cause recursive merging.
684 SmallSetVector<SDNode*, 16> NodesToAnalyze;
685 NodeUpdateListener NUL(*this, NodesToAnalyze);
686 do {
687 DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
689 // The old node may still be present in a map like ExpandedIntegers or
690 // PromotedIntegers. Inform maps about the replacement.
691 ReplacedValues[From] = To;
693 // Process the list of nodes that need to be reanalyzed.
694 while (!NodesToAnalyze.empty()) {
695 SDNode *N = NodesToAnalyze.back();
696 NodesToAnalyze.pop_back();
697 if (N->getNodeId() != DAGTypeLegalizer::NewNode)
698 // The node was analyzed while reanalyzing an earlier node - it is safe
699 // to skip. Note that this is not a morphing node - otherwise it would
700 // still be marked NewNode.
701 continue;
703 // Analyze the node's operands and recalculate the node ID.
704 SDNode *M = AnalyzeNewNode(N);
705 if (M != N) {
706 // The node morphed into a different node. Make everyone use the new
707 // node instead.
708 assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
709 assert(N->getNumValues() == M->getNumValues() &&
710 "Node morphing changed the number of results!");
711 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
712 SDValue OldVal(N, i);
713 SDValue NewVal(M, i);
714 if (M->getNodeId() == Processed)
715 RemapValue(NewVal);
716 DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal, &NUL);
717 // OldVal may be a target of the ReplacedValues map which was marked
718 // NewNode to force reanalysis because it was updated. Ensure that
719 // anything that ReplacedValues mapped to OldVal will now be mapped
720 // all the way to NewVal.
721 ReplacedValues[OldVal] = NewVal;
723 // The original node continues to exist in the DAG, marked NewNode.
726 // When recursively update nodes with new nodes, it is possible to have
727 // new uses of From due to CSE. If this happens, replace the new uses of
728 // From with To.
729 } while (!From.use_empty());
732 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
733 assert(Result.getValueType() ==
734 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
735 "Invalid type for promoted integer");
736 AnalyzeNewValue(Result);
738 SDValue &OpEntry = PromotedIntegers[Op];
739 assert(OpEntry.getNode() == 0 && "Node is already promoted!");
740 OpEntry = Result;
743 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
744 assert(Result.getValueType() ==
745 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
746 "Invalid type for softened float");
747 AnalyzeNewValue(Result);
749 SDValue &OpEntry = SoftenedFloats[Op];
750 assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
751 OpEntry = Result;
754 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
755 assert(Result.getValueType() == Op.getValueType().getVectorElementType() &&
756 "Invalid type for scalarized vector");
757 AnalyzeNewValue(Result);
759 SDValue &OpEntry = ScalarizedVectors[Op];
760 assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
761 OpEntry = Result;
764 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
765 SDValue &Hi) {
766 std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
767 RemapValue(Entry.first);
768 RemapValue(Entry.second);
769 assert(Entry.first.getNode() && "Operand isn't expanded");
770 Lo = Entry.first;
771 Hi = Entry.second;
774 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
775 SDValue Hi) {
776 assert(Lo.getValueType() ==
777 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
778 Hi.getValueType() == Lo.getValueType() &&
779 "Invalid type for expanded integer");
780 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
781 AnalyzeNewValue(Lo);
782 AnalyzeNewValue(Hi);
784 // Remember that this is the result of the node.
785 std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
786 assert(Entry.first.getNode() == 0 && "Node already expanded");
787 Entry.first = Lo;
788 Entry.second = Hi;
791 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
792 SDValue &Hi) {
793 std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
794 RemapValue(Entry.first);
795 RemapValue(Entry.second);
796 assert(Entry.first.getNode() && "Operand isn't expanded");
797 Lo = Entry.first;
798 Hi = Entry.second;
801 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
802 SDValue Hi) {
803 assert(Lo.getValueType() ==
804 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
805 Hi.getValueType() == Lo.getValueType() &&
806 "Invalid type for expanded float");
807 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
808 AnalyzeNewValue(Lo);
809 AnalyzeNewValue(Hi);
811 // Remember that this is the result of the node.
812 std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
813 assert(Entry.first.getNode() == 0 && "Node already expanded");
814 Entry.first = Lo;
815 Entry.second = Hi;
818 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
819 SDValue &Hi) {
820 std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
821 RemapValue(Entry.first);
822 RemapValue(Entry.second);
823 assert(Entry.first.getNode() && "Operand isn't split");
824 Lo = Entry.first;
825 Hi = Entry.second;
828 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
829 SDValue Hi) {
830 assert(Lo.getValueType().getVectorElementType() ==
831 Op.getValueType().getVectorElementType() &&
832 2*Lo.getValueType().getVectorNumElements() ==
833 Op.getValueType().getVectorNumElements() &&
834 Hi.getValueType() == Lo.getValueType() &&
835 "Invalid type for split vector");
836 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
837 AnalyzeNewValue(Lo);
838 AnalyzeNewValue(Hi);
840 // Remember that this is the result of the node.
841 std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
842 assert(Entry.first.getNode() == 0 && "Node already split");
843 Entry.first = Lo;
844 Entry.second = Hi;
847 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
848 assert(Result.getValueType() ==
849 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
850 "Invalid type for widened vector");
851 AnalyzeNewValue(Result);
853 SDValue &OpEntry = WidenedVectors[Op];
854 assert(OpEntry.getNode() == 0 && "Node already widened!");
855 OpEntry = Result;
859 //===----------------------------------------------------------------------===//
860 // Utilities.
861 //===----------------------------------------------------------------------===//
863 /// BitConvertToInteger - Convert to an integer of the same size.
864 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
865 unsigned BitWidth = Op.getValueType().getSizeInBits();
866 return DAG.getNode(ISD::BITCAST, Op.getDebugLoc(),
867 EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
870 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
871 /// same size.
872 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
873 assert(Op.getValueType().isVector() && "Only applies to vectors!");
874 unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
875 EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
876 unsigned NumElts = Op.getValueType().getVectorNumElements();
877 return DAG.getNode(ISD::BITCAST, Op.getDebugLoc(),
878 EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
881 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
882 EVT DestVT) {
883 DebugLoc dl = Op.getDebugLoc();
884 // Create the stack frame object. Make sure it is aligned for both
885 // the source and destination types.
886 SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
887 // Emit a store to the stack slot.
888 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
889 MachinePointerInfo(), false, false, 0);
890 // Result is a load from the stack slot.
891 return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
892 false, false, 0);
895 /// CustomLowerNode - Replace the node's results with custom code provided
896 /// by the target and return "true", or do nothing and return "false".
897 /// The last parameter is FALSE if we are dealing with a node with legal
898 /// result types and illegal operand. The second parameter denotes the type of
899 /// illegal OperandNo in that case.
900 /// The last parameter being TRUE means we are dealing with a
901 /// node with illegal result types. The second parameter denotes the type of
902 /// illegal ResNo in that case.
903 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
904 // See if the target wants to custom lower this node.
905 if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
906 return false;
908 SmallVector<SDValue, 8> Results;
909 if (LegalizeResult)
910 TLI.ReplaceNodeResults(N, Results, DAG);
911 else
912 TLI.LowerOperationWrapper(N, Results, DAG);
914 if (Results.empty())
915 // The target didn't want to custom lower it after all.
916 return false;
918 // Make everything that once used N's values now use those in Results instead.
919 assert(Results.size() == N->getNumValues() &&
920 "Custom lowering returned the wrong number of results!");
921 for (unsigned i = 0, e = Results.size(); i != e; ++i)
922 ReplaceValueWith(SDValue(N, i), Results[i]);
923 return true;
927 /// CustomWidenLowerNode - Widen the node's results with custom code provided
928 /// by the target and return "true", or do nothing and return "false".
929 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
930 // See if the target wants to custom lower this node.
931 if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
932 return false;
934 SmallVector<SDValue, 8> Results;
935 TLI.ReplaceNodeResults(N, Results, DAG);
937 if (Results.empty())
938 // The target didn't want to custom widen lower its result after all.
939 return false;
941 // Update the widening map.
942 assert(Results.size() == N->getNumValues() &&
943 "Custom lowering returned the wrong number of results!");
944 for (unsigned i = 0, e = Results.size(); i != e; ++i)
945 SetWidenedVector(SDValue(N, i), Results[i]);
946 return true;
949 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
950 /// which is split into two not necessarily identical pieces.
951 void DAGTypeLegalizer::GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT) {
952 // Currently all types are split in half.
953 if (!InVT.isVector()) {
954 LoVT = HiVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
955 } else {
956 unsigned NumElements = InVT.getVectorNumElements();
957 assert(!(NumElements & 1) && "Splitting vector, but not in half!");
958 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
959 InVT.getVectorElementType(), NumElements/2);
963 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
964 /// high parts of the given value.
965 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
966 SDValue &Lo, SDValue &Hi) {
967 DebugLoc dl = Pair.getDebugLoc();
968 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
969 Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
970 DAG.getIntPtrConstant(0));
971 Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
972 DAG.getIntPtrConstant(1));
975 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
976 SDValue Index) {
977 DebugLoc dl = Index.getDebugLoc();
978 // Make sure the index type is big enough to compute in.
979 if (Index.getValueType().bitsGT(TLI.getPointerTy()))
980 Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index);
981 else
982 Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index);
984 // Calculate the element offset and add it to the pointer.
985 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
987 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
988 DAG.getConstant(EltSize, Index.getValueType()));
989 return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
992 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
993 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
994 // Arbitrarily use dlHi for result DebugLoc
995 DebugLoc dlHi = Hi.getDebugLoc();
996 DebugLoc dlLo = Lo.getDebugLoc();
997 EVT LVT = Lo.getValueType();
998 EVT HVT = Hi.getValueType();
999 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1000 LVT.getSizeInBits() + HVT.getSizeInBits());
1002 Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
1003 Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
1004 Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1005 DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
1006 return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1009 /// LibCallify - Convert the node into a libcall with the same prototype.
1010 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
1011 bool isSigned) {
1012 unsigned NumOps = N->getNumOperands();
1013 DebugLoc dl = N->getDebugLoc();
1014 if (NumOps == 0) {
1015 return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned, dl);
1016 } else if (NumOps == 1) {
1017 SDValue Op = N->getOperand(0);
1018 return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned, dl);
1019 } else if (NumOps == 2) {
1020 SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1021 return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned, dl);
1023 SmallVector<SDValue, 8> Ops(NumOps);
1024 for (unsigned i = 0; i < NumOps; ++i)
1025 Ops[i] = N->getOperand(i);
1027 return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned, dl);
1030 /// MakeLibCall - Generate a libcall taking the given operands as arguments and
1031 /// returning a result of type RetVT.
1032 SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
1033 const SDValue *Ops, unsigned NumOps,
1034 bool isSigned, DebugLoc dl) {
1035 TargetLowering::ArgListTy Args;
1036 Args.reserve(NumOps);
1038 TargetLowering::ArgListEntry Entry;
1039 for (unsigned i = 0; i != NumOps; ++i) {
1040 Entry.Node = Ops[i];
1041 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1042 Entry.isSExt = isSigned;
1043 Entry.isZExt = !isSigned;
1044 Args.push_back(Entry);
1046 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1047 TLI.getPointerTy());
1049 const Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1050 std::pair<SDValue,SDValue> CallInfo =
1051 TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1052 false, 0, TLI.getLibcallCallingConv(LC), false,
1053 /*isReturnValueUsed=*/true,
1054 Callee, Args, DAG, dl);
1055 return CallInfo.first;
1058 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1059 // ExpandLibCall except that the first operand is the in-chain.
1060 std::pair<SDValue, SDValue>
1061 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC,
1062 SDNode *Node,
1063 bool isSigned) {
1064 SDValue InChain = Node->getOperand(0);
1066 TargetLowering::ArgListTy Args;
1067 TargetLowering::ArgListEntry Entry;
1068 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1069 EVT ArgVT = Node->getOperand(i).getValueType();
1070 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1071 Entry.Node = Node->getOperand(i);
1072 Entry.Ty = ArgTy;
1073 Entry.isSExt = isSigned;
1074 Entry.isZExt = !isSigned;
1075 Args.push_back(Entry);
1077 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1078 TLI.getPointerTy());
1080 // Splice the libcall in wherever FindInputOutputChains tells us to.
1081 const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1082 std::pair<SDValue, SDValue> CallInfo =
1083 TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1084 0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1085 /*isReturnValueUsed=*/true,
1086 Callee, Args, DAG, Node->getDebugLoc());
1088 return CallInfo;
1091 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean
1092 /// of the given type. A target boolean is an integer value, not necessarily of
1093 /// type i1, the bits of which conform to getBooleanContents.
1094 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT VT) {
1095 DebugLoc dl = Bool.getDebugLoc();
1096 ISD::NodeType ExtendCode;
1097 switch (TLI.getBooleanContents()) {
1098 default:
1099 assert(false && "Unknown BooleanContent!");
1100 case TargetLowering::UndefinedBooleanContent:
1101 // Extend to VT by adding rubbish bits.
1102 ExtendCode = ISD::ANY_EXTEND;
1103 break;
1104 case TargetLowering::ZeroOrOneBooleanContent:
1105 // Extend to VT by adding zero bits.
1106 ExtendCode = ISD::ZERO_EXTEND;
1107 break;
1108 case TargetLowering::ZeroOrNegativeOneBooleanContent: {
1109 // Extend to VT by copying the sign bit.
1110 ExtendCode = ISD::SIGN_EXTEND;
1111 break;
1114 return DAG.getNode(ExtendCode, dl, VT, Bool);
1117 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1118 /// bits in Hi.
1119 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1120 EVT LoVT, EVT HiVT,
1121 SDValue &Lo, SDValue &Hi) {
1122 DebugLoc dl = Op.getDebugLoc();
1123 assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1124 Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
1125 Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1126 Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1127 DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
1128 Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1131 /// SplitInteger - Return the lower and upper halves of Op's bits in a value
1132 /// type half the size of Op's.
1133 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1134 SDValue &Lo, SDValue &Hi) {
1135 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
1136 Op.getValueType().getSizeInBits()/2);
1137 SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1141 //===----------------------------------------------------------------------===//
1142 // Entry Point
1143 //===----------------------------------------------------------------------===//
1145 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1146 /// only uses types natively supported by the target. Returns "true" if it made
1147 /// any changes.
1149 /// Note that this is an involved process that may invalidate pointers into
1150 /// the graph.
1151 bool SelectionDAG::LegalizeTypes() {
1152 return DAGTypeLegalizer(*this).run();