1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the SelectionDAG::LegalizeTypes method. It transforms
11 // an arbitrary well-formed SelectionDAG to only consist of legal types. This
12 // is common code shared among the LegalizeTypes*.cpp files.
14 //===----------------------------------------------------------------------===//
16 #include "LegalizeTypes.h"
17 #include "llvm/CallingConv.h"
18 #include "llvm/Target/TargetData.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
26 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden
);
28 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
29 void DAGTypeLegalizer::PerformExpensiveChecks() {
30 // If a node is not processed, then none of its values should be mapped by any
31 // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
33 // If a node is processed, then each value with an illegal type must be mapped
34 // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35 // Values with a legal type may be mapped by ReplacedValues, but not by any of
38 // Note that these invariants may not hold momentarily when processing a node:
39 // the node being processed may be put in a map before being marked Processed.
41 // Note that it is possible to have nodes marked NewNode in the DAG. This can
42 // occur in two ways. Firstly, a node may be created during legalization but
43 // never passed to the legalization core. This is usually due to the implicit
44 // folding that occurs when using the DAG.getNode operators. Secondly, a new
45 // node may be passed to the legalization core, but when analyzed may morph
46 // into a different node, leaving the original node as a NewNode in the DAG.
47 // A node may morph if one of its operands changes during analysis. Whether
48 // it actually morphs or not depends on whether, after updating its operands,
49 // it is equivalent to an existing node: if so, it morphs into that existing
50 // node (CSE). An operand can change during analysis if the operand is a new
51 // node that morphs, or it is a processed value that was mapped to some other
52 // value (as recorded in ReplacedValues) in which case the operand is turned
53 // into that other value. If a node morphs then the node it morphed into will
54 // be used instead of it for legalization, however the original node continues
55 // to live on in the DAG.
56 // The conclusion is that though there may be nodes marked NewNode in the DAG,
57 // all uses of such nodes are also marked NewNode: the result is a fungus of
58 // NewNodes growing on top of the useful nodes, and perhaps using them, but
61 // If a value is mapped by ReplacedValues, then it must have no uses, except
62 // by nodes marked NewNode (see above).
64 // The final node obtained by mapping by ReplacedValues is not marked NewNode.
65 // Note that ReplacedValues should be applied iteratively.
67 // Note that the ReplacedValues map may also map deleted nodes (by iterating
68 // over the DAG we never dereference deleted nodes). This means that it may
69 // also map nodes marked NewNode if the deallocated memory was reallocated as
70 // another node, and that new node was not seen by the LegalizeTypes machinery
71 // (for example because it was created but not used). In general, we cannot
72 // distinguish between new nodes and deleted nodes.
73 SmallVector
<SDNode
*, 16> NewNodes
;
74 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
75 E
= DAG
.allnodes_end(); I
!= E
; ++I
) {
76 // Remember nodes marked NewNode - they are subject to extra checking below.
77 if (I
->getNodeId() == NewNode
)
78 NewNodes
.push_back(I
);
80 for (unsigned i
= 0, e
= I
->getNumValues(); i
!= e
; ++i
) {
85 if (ReplacedValues
.find(Res
) != ReplacedValues
.end()) {
87 // Check that remapped values are only used by nodes marked NewNode.
88 for (SDNode::use_iterator UI
= I
->use_begin(), UE
= I
->use_end();
90 if (UI
.getUse().getResNo() == i
)
91 assert(UI
->getNodeId() == NewNode
&&
92 "Remapped value has non-trivial use!");
94 // Check that the final result of applying ReplacedValues is not
96 SDValue NewVal
= ReplacedValues
[Res
];
97 DenseMap
<SDValue
, SDValue
>::iterator I
= ReplacedValues
.find(NewVal
);
98 while (I
!= ReplacedValues
.end()) {
100 I
= ReplacedValues
.find(NewVal
);
102 assert(NewVal
.getNode()->getNodeId() != NewNode
&&
103 "ReplacedValues maps to a new node!");
105 if (PromotedIntegers
.find(Res
) != PromotedIntegers
.end())
107 if (SoftenedFloats
.find(Res
) != SoftenedFloats
.end())
109 if (ScalarizedVectors
.find(Res
) != ScalarizedVectors
.end())
111 if (ExpandedIntegers
.find(Res
) != ExpandedIntegers
.end())
113 if (ExpandedFloats
.find(Res
) != ExpandedFloats
.end())
115 if (SplitVectors
.find(Res
) != SplitVectors
.end())
117 if (WidenedVectors
.find(Res
) != WidenedVectors
.end())
120 if (I
->getNodeId() != Processed
) {
121 // Since we allow ReplacedValues to map deleted nodes, it may map nodes
122 // marked NewNode too, since a deleted node may have been reallocated as
123 // another node that has not been seen by the LegalizeTypes machinery.
124 if ((I
->getNodeId() == NewNode
&& Mapped
> 1) ||
125 (I
->getNodeId() != NewNode
&& Mapped
!= 0)) {
126 dbgs() << "Unprocessed value in a map!";
129 } else if (isTypeLegal(Res
.getValueType()) || IgnoreNodeResults(I
)) {
131 dbgs() << "Value with legal type was transformed!";
136 dbgs() << "Processed value not in any map!";
138 } else if (Mapped
& (Mapped
- 1)) {
139 dbgs() << "Value in multiple maps!";
146 dbgs() << " ReplacedValues";
148 dbgs() << " PromotedIntegers";
150 dbgs() << " SoftenedFloats";
152 dbgs() << " ScalarizedVectors";
154 dbgs() << " ExpandedIntegers";
156 dbgs() << " ExpandedFloats";
158 dbgs() << " SplitVectors";
160 dbgs() << " WidenedVectors";
167 // Checked that NewNodes are only used by other NewNodes.
168 for (unsigned i
= 0, e
= NewNodes
.size(); i
!= e
; ++i
) {
169 SDNode
*N
= NewNodes
[i
];
170 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
172 assert(UI
->getNodeId() == NewNode
&& "NewNode used by non-NewNode!");
176 /// run - This is the main entry point for the type legalizer. This does a
177 /// top-down traversal of the dag, legalizing types as it goes. Returns "true"
178 /// if it made any changes.
179 bool DAGTypeLegalizer::run() {
180 bool Changed
= false;
182 // Create a dummy node (which is not added to allnodes), that adds a reference
183 // to the root node, preventing it from being deleted, and tracking any
184 // changes of the root.
185 HandleSDNode
Dummy(DAG
.getRoot());
186 Dummy
.setNodeId(Unanalyzed
);
188 // The root of the dag may dangle to deleted nodes until the type legalizer is
189 // done. Set it to null to avoid confusion.
190 DAG
.setRoot(SDValue());
192 // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
193 // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
195 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
196 E
= DAG
.allnodes_end(); I
!= E
; ++I
) {
197 if (I
->getNumOperands() == 0) {
198 I
->setNodeId(ReadyToProcess
);
199 Worklist
.push_back(I
);
201 I
->setNodeId(Unanalyzed
);
205 // Now that we have a set of nodes to process, handle them all.
206 while (!Worklist
.empty()) {
208 if (EnableExpensiveChecks
)
210 PerformExpensiveChecks();
212 SDNode
*N
= Worklist
.back();
214 assert(N
->getNodeId() == ReadyToProcess
&&
215 "Node should be ready if on worklist!");
217 if (IgnoreNodeResults(N
))
220 // Scan the values produced by the node, checking to see if any result
221 // types are illegal.
222 for (unsigned i
= 0, NumResults
= N
->getNumValues(); i
< NumResults
; ++i
) {
223 EVT ResultVT
= N
->getValueType(i
);
224 switch (getTypeAction(ResultVT
)) {
226 assert(false && "Unknown action!");
227 case TargetLowering::TypeLegal
:
229 // The following calls must take care of *all* of the node's results,
230 // not just the illegal result they were passed (this includes results
231 // with a legal type). Results can be remapped using ReplaceValueWith,
232 // or their promoted/expanded/etc values registered in PromotedIntegers,
233 // ExpandedIntegers etc.
234 case TargetLowering::TypePromoteInteger
:
235 PromoteIntegerResult(N
, i
);
238 case TargetLowering::TypeExpandInteger
:
239 ExpandIntegerResult(N
, i
);
242 case TargetLowering::TypeSoftenFloat
:
243 SoftenFloatResult(N
, i
);
246 case TargetLowering::TypeExpandFloat
:
247 ExpandFloatResult(N
, i
);
250 case TargetLowering::TypeScalarizeVector
:
251 ScalarizeVectorResult(N
, i
);
254 case TargetLowering::TypeSplitVector
:
255 SplitVectorResult(N
, i
);
258 case TargetLowering::TypeWidenVector
:
259 WidenVectorResult(N
, i
);
266 // Scan the operand list for the node, handling any nodes with operands that
269 unsigned NumOperands
= N
->getNumOperands();
270 bool NeedsReanalyzing
= false;
272 for (i
= 0; i
!= NumOperands
; ++i
) {
273 if (IgnoreNodeResults(N
->getOperand(i
).getNode()))
276 EVT OpVT
= N
->getOperand(i
).getValueType();
277 switch (getTypeAction(OpVT
)) {
279 assert(false && "Unknown action!");
280 case TargetLowering::TypeLegal
:
282 // The following calls must either replace all of the node's results
283 // using ReplaceValueWith, and return "false"; or update the node's
284 // operands in place, and return "true".
285 case TargetLowering::TypePromoteInteger
:
286 NeedsReanalyzing
= PromoteIntegerOperand(N
, i
);
289 case TargetLowering::TypeExpandInteger
:
290 NeedsReanalyzing
= ExpandIntegerOperand(N
, i
);
293 case TargetLowering::TypeSoftenFloat
:
294 NeedsReanalyzing
= SoftenFloatOperand(N
, i
);
297 case TargetLowering::TypeExpandFloat
:
298 NeedsReanalyzing
= ExpandFloatOperand(N
, i
);
301 case TargetLowering::TypeScalarizeVector
:
302 NeedsReanalyzing
= ScalarizeVectorOperand(N
, i
);
305 case TargetLowering::TypeSplitVector
:
306 NeedsReanalyzing
= SplitVectorOperand(N
, i
);
309 case TargetLowering::TypeWidenVector
:
310 NeedsReanalyzing
= WidenVectorOperand(N
, i
);
317 // The sub-method updated N in place. Check to see if any operands are new,
318 // and if so, mark them. If the node needs revisiting, don't add all users
319 // to the worklist etc.
320 if (NeedsReanalyzing
) {
321 assert(N
->getNodeId() == ReadyToProcess
&& "Node ID recalculated?");
322 N
->setNodeId(NewNode
);
323 // Recompute the NodeId and correct processed operands, adding the node to
324 // the worklist if ready.
325 SDNode
*M
= AnalyzeNewNode(N
);
327 // The node didn't morph - nothing special to do, it will be revisited.
330 // The node morphed - this is equivalent to legalizing by replacing every
331 // value of N with the corresponding value of M. So do that now.
332 assert(N
->getNumValues() == M
->getNumValues() &&
333 "Node morphing changed the number of results!");
334 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
)
335 // Replacing the value takes care of remapping the new value.
336 ReplaceValueWith(SDValue(N
, i
), SDValue(M
, i
));
337 assert(N
->getNodeId() == NewNode
&& "Unexpected node state!");
338 // The node continues to live on as part of the NewNode fungus that
339 // grows on top of the useful nodes. Nothing more needs to be done
340 // with it - move on to the next node.
344 if (i
== NumOperands
) {
345 DEBUG(dbgs() << "Legally typed node: "; N
->dump(&DAG
); dbgs() << "\n");
350 // If we reach here, the node was processed, potentially creating new nodes.
351 // Mark it as processed and add its users to the worklist as appropriate.
352 assert(N
->getNodeId() == ReadyToProcess
&& "Node ID recalculated?");
353 N
->setNodeId(Processed
);
355 for (SDNode::use_iterator UI
= N
->use_begin(), E
= N
->use_end();
358 int NodeId
= User
->getNodeId();
360 // This node has two options: it can either be a new node or its Node ID
361 // may be a count of the number of operands it has that are not ready.
363 User
->setNodeId(NodeId
-1);
365 // If this was the last use it was waiting on, add it to the ready list.
366 if (NodeId
-1 == ReadyToProcess
)
367 Worklist
.push_back(User
);
371 // If this is an unreachable new node, then ignore it. If it ever becomes
372 // reachable by being used by a newly created node then it will be handled
373 // by AnalyzeNewNode.
374 if (NodeId
== NewNode
)
377 // Otherwise, this node is new: this is the first operand of it that
378 // became ready. Its new NodeId is the number of operands it has minus 1
379 // (as this node is now processed).
380 assert(NodeId
== Unanalyzed
&& "Unknown node ID!");
381 User
->setNodeId(User
->getNumOperands() - 1);
383 // If the node only has a single operand, it is now ready.
384 if (User
->getNumOperands() == 1)
385 Worklist
.push_back(User
);
390 if (EnableExpensiveChecks
)
392 PerformExpensiveChecks();
394 // If the root changed (e.g. it was a dead load) update the root.
395 DAG
.setRoot(Dummy
.getValue());
397 // Remove dead nodes. This is important to do for cleanliness but also before
398 // the checking loop below. Implicit folding by the DAG.getNode operators and
399 // node morphing can cause unreachable nodes to be around with their flags set
401 DAG
.RemoveDeadNodes();
403 // In a debug build, scan all the nodes to make sure we found them all. This
404 // ensures that there are no cycles and that everything got processed.
406 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
407 E
= DAG
.allnodes_end(); I
!= E
; ++I
) {
410 // Check that all result types are legal.
411 if (!IgnoreNodeResults(I
))
412 for (unsigned i
= 0, NumVals
= I
->getNumValues(); i
< NumVals
; ++i
)
413 if (!isTypeLegal(I
->getValueType(i
))) {
414 dbgs() << "Result type " << i
<< " illegal!\n";
418 // Check that all operand types are legal.
419 for (unsigned i
= 0, NumOps
= I
->getNumOperands(); i
< NumOps
; ++i
)
420 if (!IgnoreNodeResults(I
->getOperand(i
).getNode()) &&
421 !isTypeLegal(I
->getOperand(i
).getValueType())) {
422 dbgs() << "Operand type " << i
<< " illegal!\n";
426 if (I
->getNodeId() != Processed
) {
427 if (I
->getNodeId() == NewNode
)
428 dbgs() << "New node not analyzed?\n";
429 else if (I
->getNodeId() == Unanalyzed
)
430 dbgs() << "Unanalyzed node not noticed?\n";
431 else if (I
->getNodeId() > 0)
432 dbgs() << "Operand not processed?\n";
433 else if (I
->getNodeId() == ReadyToProcess
)
434 dbgs() << "Not added to worklist?\n";
439 I
->dump(&DAG
); dbgs() << "\n";
448 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially
449 /// new nodes. Correct any processed operands (this may change the node) and
450 /// calculate the NodeId. If the node itself changes to a processed node, it
451 /// is not remapped - the caller needs to take care of this.
452 /// Returns the potentially changed node.
453 SDNode
*DAGTypeLegalizer::AnalyzeNewNode(SDNode
*N
) {
454 // If this was an existing node that is already done, we're done.
455 if (N
->getNodeId() != NewNode
&& N
->getNodeId() != Unanalyzed
)
458 // Remove any stale map entries.
461 // Okay, we know that this node is new. Recursively walk all of its operands
462 // to see if they are new also. The depth of this walk is bounded by the size
463 // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
464 // about revisiting of nodes.
466 // As we walk the operands, keep track of the number of nodes that are
467 // processed. If non-zero, this will become the new nodeid of this node.
468 // Operands may morph when they are analyzed. If so, the node will be
469 // updated after all operands have been analyzed. Since this is rare,
470 // the code tries to minimize overhead in the non-morphing case.
472 SmallVector
<SDValue
, 8> NewOps
;
473 unsigned NumProcessed
= 0;
474 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
475 SDValue OrigOp
= N
->getOperand(i
);
478 AnalyzeNewValue(Op
); // Op may morph.
480 if (Op
.getNode()->getNodeId() == Processed
)
483 if (!NewOps
.empty()) {
484 // Some previous operand changed. Add this one to the list.
485 NewOps
.push_back(Op
);
486 } else if (Op
!= OrigOp
) {
487 // This is the first operand to change - add all operands so far.
488 NewOps
.append(N
->op_begin(), N
->op_begin() + i
);
489 NewOps
.push_back(Op
);
493 // Some operands changed - update the node.
494 if (!NewOps
.empty()) {
495 SDNode
*M
= DAG
.UpdateNodeOperands(N
, &NewOps
[0], NewOps
.size());
497 // The node morphed into a different node. Normally for this to happen
498 // the original node would have to be marked NewNode. However this can
499 // in theory momentarily not be the case while ReplaceValueWith is doing
500 // its stuff. Mark the original node NewNode to help sanity checking.
501 N
->setNodeId(NewNode
);
502 if (M
->getNodeId() != NewNode
&& M
->getNodeId() != Unanalyzed
)
503 // It morphed into a previously analyzed node - nothing more to do.
506 // It morphed into a different new node. Do the equivalent of passing
507 // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need
508 // to remap the operands, since they are the same as the operands we
515 // Calculate the NodeId.
516 N
->setNodeId(N
->getNumOperands() - NumProcessed
);
517 if (N
->getNodeId() == ReadyToProcess
)
518 Worklist
.push_back(N
);
523 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
524 /// If the node changes to a processed node, then remap it.
525 void DAGTypeLegalizer::AnalyzeNewValue(SDValue
&Val
) {
526 Val
.setNode(AnalyzeNewNode(Val
.getNode()));
527 if (Val
.getNode()->getNodeId() == Processed
)
528 // We were passed a processed node, or it morphed into one - remap it.
532 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
533 /// This can occur when a node is deleted then reallocated as a new node -
534 /// the mapping in ReplacedValues applies to the deleted node, not the new
536 /// The only map that can have a deleted node as a source is ReplacedValues.
537 /// Other maps can have deleted nodes as targets, but since their looked-up
538 /// values are always immediately remapped using RemapValue, resulting in a
539 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
540 /// always performs correct mappings. In order to keep the mapping correct,
541 /// ExpungeNode should be called on any new nodes *before* adding them as
542 /// either source or target to ReplacedValues (which typically means calling
543 /// Expunge when a new node is first seen, since it may no longer be marked
544 /// NewNode by the time it is added to ReplacedValues).
545 void DAGTypeLegalizer::ExpungeNode(SDNode
*N
) {
546 if (N
->getNodeId() != NewNode
)
549 // If N is not remapped by ReplacedValues then there is nothing to do.
551 for (i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
)
552 if (ReplacedValues
.find(SDValue(N
, i
)) != ReplacedValues
.end())
558 // Remove N from all maps - this is expensive but rare.
560 for (DenseMap
<SDValue
, SDValue
>::iterator I
= PromotedIntegers
.begin(),
561 E
= PromotedIntegers
.end(); I
!= E
; ++I
) {
562 assert(I
->first
.getNode() != N
);
563 RemapValue(I
->second
);
566 for (DenseMap
<SDValue
, SDValue
>::iterator I
= SoftenedFloats
.begin(),
567 E
= SoftenedFloats
.end(); I
!= E
; ++I
) {
568 assert(I
->first
.getNode() != N
);
569 RemapValue(I
->second
);
572 for (DenseMap
<SDValue
, SDValue
>::iterator I
= ScalarizedVectors
.begin(),
573 E
= ScalarizedVectors
.end(); I
!= E
; ++I
) {
574 assert(I
->first
.getNode() != N
);
575 RemapValue(I
->second
);
578 for (DenseMap
<SDValue
, SDValue
>::iterator I
= WidenedVectors
.begin(),
579 E
= WidenedVectors
.end(); I
!= E
; ++I
) {
580 assert(I
->first
.getNode() != N
);
581 RemapValue(I
->second
);
584 for (DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> >::iterator
585 I
= ExpandedIntegers
.begin(), E
= ExpandedIntegers
.end(); I
!= E
; ++I
){
586 assert(I
->first
.getNode() != N
);
587 RemapValue(I
->second
.first
);
588 RemapValue(I
->second
.second
);
591 for (DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> >::iterator
592 I
= ExpandedFloats
.begin(), E
= ExpandedFloats
.end(); I
!= E
; ++I
) {
593 assert(I
->first
.getNode() != N
);
594 RemapValue(I
->second
.first
);
595 RemapValue(I
->second
.second
);
598 for (DenseMap
<SDValue
, std::pair
<SDValue
, SDValue
> >::iterator
599 I
= SplitVectors
.begin(), E
= SplitVectors
.end(); I
!= E
; ++I
) {
600 assert(I
->first
.getNode() != N
);
601 RemapValue(I
->second
.first
);
602 RemapValue(I
->second
.second
);
605 for (DenseMap
<SDValue
, SDValue
>::iterator I
= ReplacedValues
.begin(),
606 E
= ReplacedValues
.end(); I
!= E
; ++I
)
607 RemapValue(I
->second
);
609 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
)
610 ReplacedValues
.erase(SDValue(N
, i
));
613 /// RemapValue - If the specified value was already legalized to another value,
614 /// replace it by that value.
615 void DAGTypeLegalizer::RemapValue(SDValue
&N
) {
616 DenseMap
<SDValue
, SDValue
>::iterator I
= ReplacedValues
.find(N
);
617 if (I
!= ReplacedValues
.end()) {
618 // Use path compression to speed up future lookups if values get multiply
619 // replaced with other values.
620 RemapValue(I
->second
);
622 assert(N
.getNode()->getNodeId() != NewNode
&& "Mapped to new node!");
627 /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
628 /// updates to nodes and recomputes their ready state.
629 class NodeUpdateListener
: public SelectionDAG::DAGUpdateListener
{
630 DAGTypeLegalizer
&DTL
;
631 SmallSetVector
<SDNode
*, 16> &NodesToAnalyze
;
633 explicit NodeUpdateListener(DAGTypeLegalizer
&dtl
,
634 SmallSetVector
<SDNode
*, 16> &nta
)
635 : DTL(dtl
), NodesToAnalyze(nta
) {}
637 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
) {
638 assert(N
->getNodeId() != DAGTypeLegalizer::ReadyToProcess
&&
639 N
->getNodeId() != DAGTypeLegalizer::Processed
&&
640 "Invalid node ID for RAUW deletion!");
641 // It is possible, though rare, for the deleted node N to occur as a
642 // target in a map, so note the replacement N -> E in ReplacedValues.
643 assert(E
&& "Node not replaced?");
644 DTL
.NoteDeletion(N
, E
);
646 // In theory the deleted node could also have been scheduled for analysis.
647 // So remove it from the set of nodes which will be analyzed.
648 NodesToAnalyze
.remove(N
);
650 // In general nothing needs to be done for E, since it didn't change but
651 // only gained new uses. However N -> E was just added to ReplacedValues,
652 // and the result of a ReplacedValues mapping is not allowed to be marked
653 // NewNode. So if E is marked NewNode, then it needs to be analyzed.
654 if (E
->getNodeId() == DAGTypeLegalizer::NewNode
)
655 NodesToAnalyze
.insert(E
);
658 virtual void NodeUpdated(SDNode
*N
) {
659 // Node updates can mean pretty much anything. It is possible that an
660 // operand was set to something already processed (f.e.) in which case
661 // this node could become ready. Recompute its flags.
662 assert(N
->getNodeId() != DAGTypeLegalizer::ReadyToProcess
&&
663 N
->getNodeId() != DAGTypeLegalizer::Processed
&&
664 "Invalid node ID for RAUW deletion!");
665 N
->setNodeId(DAGTypeLegalizer::NewNode
);
666 NodesToAnalyze
.insert(N
);
672 /// ReplaceValueWith - The specified value was legalized to the specified other
673 /// value. Update the DAG and NodeIds replacing any uses of From to use To
675 void DAGTypeLegalizer::ReplaceValueWith(SDValue From
, SDValue To
) {
676 assert(From
.getNode() != To
.getNode() && "Potential legalization loop!");
678 // If expansion produced new nodes, make sure they are properly marked.
679 ExpungeNode(From
.getNode());
680 AnalyzeNewValue(To
); // Expunges To.
682 // Anything that used the old node should now use the new one. Note that this
683 // can potentially cause recursive merging.
684 SmallSetVector
<SDNode
*, 16> NodesToAnalyze
;
685 NodeUpdateListener
NUL(*this, NodesToAnalyze
);
687 DAG
.ReplaceAllUsesOfValueWith(From
, To
, &NUL
);
689 // The old node may still be present in a map like ExpandedIntegers or
690 // PromotedIntegers. Inform maps about the replacement.
691 ReplacedValues
[From
] = To
;
693 // Process the list of nodes that need to be reanalyzed.
694 while (!NodesToAnalyze
.empty()) {
695 SDNode
*N
= NodesToAnalyze
.back();
696 NodesToAnalyze
.pop_back();
697 if (N
->getNodeId() != DAGTypeLegalizer::NewNode
)
698 // The node was analyzed while reanalyzing an earlier node - it is safe
699 // to skip. Note that this is not a morphing node - otherwise it would
700 // still be marked NewNode.
703 // Analyze the node's operands and recalculate the node ID.
704 SDNode
*M
= AnalyzeNewNode(N
);
706 // The node morphed into a different node. Make everyone use the new
708 assert(M
->getNodeId() != NewNode
&& "Analysis resulted in NewNode!");
709 assert(N
->getNumValues() == M
->getNumValues() &&
710 "Node morphing changed the number of results!");
711 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
712 SDValue
OldVal(N
, i
);
713 SDValue
NewVal(M
, i
);
714 if (M
->getNodeId() == Processed
)
716 DAG
.ReplaceAllUsesOfValueWith(OldVal
, NewVal
, &NUL
);
717 // OldVal may be a target of the ReplacedValues map which was marked
718 // NewNode to force reanalysis because it was updated. Ensure that
719 // anything that ReplacedValues mapped to OldVal will now be mapped
720 // all the way to NewVal.
721 ReplacedValues
[OldVal
] = NewVal
;
723 // The original node continues to exist in the DAG, marked NewNode.
726 // When recursively update nodes with new nodes, it is possible to have
727 // new uses of From due to CSE. If this happens, replace the new uses of
729 } while (!From
.use_empty());
732 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op
, SDValue Result
) {
733 assert(Result
.getValueType() ==
734 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
735 "Invalid type for promoted integer");
736 AnalyzeNewValue(Result
);
738 SDValue
&OpEntry
= PromotedIntegers
[Op
];
739 assert(OpEntry
.getNode() == 0 && "Node is already promoted!");
743 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op
, SDValue Result
) {
744 assert(Result
.getValueType() ==
745 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
746 "Invalid type for softened float");
747 AnalyzeNewValue(Result
);
749 SDValue
&OpEntry
= SoftenedFloats
[Op
];
750 assert(OpEntry
.getNode() == 0 && "Node is already converted to integer!");
754 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op
, SDValue Result
) {
755 assert(Result
.getValueType() == Op
.getValueType().getVectorElementType() &&
756 "Invalid type for scalarized vector");
757 AnalyzeNewValue(Result
);
759 SDValue
&OpEntry
= ScalarizedVectors
[Op
];
760 assert(OpEntry
.getNode() == 0 && "Node is already scalarized!");
764 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op
, SDValue
&Lo
,
766 std::pair
<SDValue
, SDValue
> &Entry
= ExpandedIntegers
[Op
];
767 RemapValue(Entry
.first
);
768 RemapValue(Entry
.second
);
769 assert(Entry
.first
.getNode() && "Operand isn't expanded");
774 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op
, SDValue Lo
,
776 assert(Lo
.getValueType() ==
777 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
778 Hi
.getValueType() == Lo
.getValueType() &&
779 "Invalid type for expanded integer");
780 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
784 // Remember that this is the result of the node.
785 std::pair
<SDValue
, SDValue
> &Entry
= ExpandedIntegers
[Op
];
786 assert(Entry
.first
.getNode() == 0 && "Node already expanded");
791 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op
, SDValue
&Lo
,
793 std::pair
<SDValue
, SDValue
> &Entry
= ExpandedFloats
[Op
];
794 RemapValue(Entry
.first
);
795 RemapValue(Entry
.second
);
796 assert(Entry
.first
.getNode() && "Operand isn't expanded");
801 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op
, SDValue Lo
,
803 assert(Lo
.getValueType() ==
804 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
805 Hi
.getValueType() == Lo
.getValueType() &&
806 "Invalid type for expanded float");
807 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
811 // Remember that this is the result of the node.
812 std::pair
<SDValue
, SDValue
> &Entry
= ExpandedFloats
[Op
];
813 assert(Entry
.first
.getNode() == 0 && "Node already expanded");
818 void DAGTypeLegalizer::GetSplitVector(SDValue Op
, SDValue
&Lo
,
820 std::pair
<SDValue
, SDValue
> &Entry
= SplitVectors
[Op
];
821 RemapValue(Entry
.first
);
822 RemapValue(Entry
.second
);
823 assert(Entry
.first
.getNode() && "Operand isn't split");
828 void DAGTypeLegalizer::SetSplitVector(SDValue Op
, SDValue Lo
,
830 assert(Lo
.getValueType().getVectorElementType() ==
831 Op
.getValueType().getVectorElementType() &&
832 2*Lo
.getValueType().getVectorNumElements() ==
833 Op
.getValueType().getVectorNumElements() &&
834 Hi
.getValueType() == Lo
.getValueType() &&
835 "Invalid type for split vector");
836 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
840 // Remember that this is the result of the node.
841 std::pair
<SDValue
, SDValue
> &Entry
= SplitVectors
[Op
];
842 assert(Entry
.first
.getNode() == 0 && "Node already split");
847 void DAGTypeLegalizer::SetWidenedVector(SDValue Op
, SDValue Result
) {
848 assert(Result
.getValueType() ==
849 TLI
.getTypeToTransformTo(*DAG
.getContext(), Op
.getValueType()) &&
850 "Invalid type for widened vector");
851 AnalyzeNewValue(Result
);
853 SDValue
&OpEntry
= WidenedVectors
[Op
];
854 assert(OpEntry
.getNode() == 0 && "Node already widened!");
859 //===----------------------------------------------------------------------===//
861 //===----------------------------------------------------------------------===//
863 /// BitConvertToInteger - Convert to an integer of the same size.
864 SDValue
DAGTypeLegalizer::BitConvertToInteger(SDValue Op
) {
865 unsigned BitWidth
= Op
.getValueType().getSizeInBits();
866 return DAG
.getNode(ISD::BITCAST
, Op
.getDebugLoc(),
867 EVT::getIntegerVT(*DAG
.getContext(), BitWidth
), Op
);
870 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
872 SDValue
DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op
) {
873 assert(Op
.getValueType().isVector() && "Only applies to vectors!");
874 unsigned EltWidth
= Op
.getValueType().getVectorElementType().getSizeInBits();
875 EVT EltNVT
= EVT::getIntegerVT(*DAG
.getContext(), EltWidth
);
876 unsigned NumElts
= Op
.getValueType().getVectorNumElements();
877 return DAG
.getNode(ISD::BITCAST
, Op
.getDebugLoc(),
878 EVT::getVectorVT(*DAG
.getContext(), EltNVT
, NumElts
), Op
);
881 SDValue
DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op
,
883 DebugLoc dl
= Op
.getDebugLoc();
884 // Create the stack frame object. Make sure it is aligned for both
885 // the source and destination types.
886 SDValue StackPtr
= DAG
.CreateStackTemporary(Op
.getValueType(), DestVT
);
887 // Emit a store to the stack slot.
888 SDValue Store
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op
, StackPtr
,
889 MachinePointerInfo(), false, false, 0);
890 // Result is a load from the stack slot.
891 return DAG
.getLoad(DestVT
, dl
, Store
, StackPtr
, MachinePointerInfo(),
895 /// CustomLowerNode - Replace the node's results with custom code provided
896 /// by the target and return "true", or do nothing and return "false".
897 /// The last parameter is FALSE if we are dealing with a node with legal
898 /// result types and illegal operand. The second parameter denotes the type of
899 /// illegal OperandNo in that case.
900 /// The last parameter being TRUE means we are dealing with a
901 /// node with illegal result types. The second parameter denotes the type of
902 /// illegal ResNo in that case.
903 bool DAGTypeLegalizer::CustomLowerNode(SDNode
*N
, EVT VT
, bool LegalizeResult
) {
904 // See if the target wants to custom lower this node.
905 if (TLI
.getOperationAction(N
->getOpcode(), VT
) != TargetLowering::Custom
)
908 SmallVector
<SDValue
, 8> Results
;
910 TLI
.ReplaceNodeResults(N
, Results
, DAG
);
912 TLI
.LowerOperationWrapper(N
, Results
, DAG
);
915 // The target didn't want to custom lower it after all.
918 // Make everything that once used N's values now use those in Results instead.
919 assert(Results
.size() == N
->getNumValues() &&
920 "Custom lowering returned the wrong number of results!");
921 for (unsigned i
= 0, e
= Results
.size(); i
!= e
; ++i
)
922 ReplaceValueWith(SDValue(N
, i
), Results
[i
]);
927 /// CustomWidenLowerNode - Widen the node's results with custom code provided
928 /// by the target and return "true", or do nothing and return "false".
929 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode
*N
, EVT VT
) {
930 // See if the target wants to custom lower this node.
931 if (TLI
.getOperationAction(N
->getOpcode(), VT
) != TargetLowering::Custom
)
934 SmallVector
<SDValue
, 8> Results
;
935 TLI
.ReplaceNodeResults(N
, Results
, DAG
);
938 // The target didn't want to custom widen lower its result after all.
941 // Update the widening map.
942 assert(Results
.size() == N
->getNumValues() &&
943 "Custom lowering returned the wrong number of results!");
944 for (unsigned i
= 0, e
= Results
.size(); i
!= e
; ++i
)
945 SetWidenedVector(SDValue(N
, i
), Results
[i
]);
949 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
950 /// which is split into two not necessarily identical pieces.
951 void DAGTypeLegalizer::GetSplitDestVTs(EVT InVT
, EVT
&LoVT
, EVT
&HiVT
) {
952 // Currently all types are split in half.
953 if (!InVT
.isVector()) {
954 LoVT
= HiVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), InVT
);
956 unsigned NumElements
= InVT
.getVectorNumElements();
957 assert(!(NumElements
& 1) && "Splitting vector, but not in half!");
958 LoVT
= HiVT
= EVT::getVectorVT(*DAG
.getContext(),
959 InVT
.getVectorElementType(), NumElements
/2);
963 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
964 /// high parts of the given value.
965 void DAGTypeLegalizer::GetPairElements(SDValue Pair
,
966 SDValue
&Lo
, SDValue
&Hi
) {
967 DebugLoc dl
= Pair
.getDebugLoc();
968 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), Pair
.getValueType());
969 Lo
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, NVT
, Pair
,
970 DAG
.getIntPtrConstant(0));
971 Hi
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, NVT
, Pair
,
972 DAG
.getIntPtrConstant(1));
975 SDValue
DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr
, EVT EltVT
,
977 DebugLoc dl
= Index
.getDebugLoc();
978 // Make sure the index type is big enough to compute in.
979 if (Index
.getValueType().bitsGT(TLI
.getPointerTy()))
980 Index
= DAG
.getNode(ISD::TRUNCATE
, dl
, TLI
.getPointerTy(), Index
);
982 Index
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, TLI
.getPointerTy(), Index
);
984 // Calculate the element offset and add it to the pointer.
985 unsigned EltSize
= EltVT
.getSizeInBits() / 8; // FIXME: should be ABI size.
987 Index
= DAG
.getNode(ISD::MUL
, dl
, Index
.getValueType(), Index
,
988 DAG
.getConstant(EltSize
, Index
.getValueType()));
989 return DAG
.getNode(ISD::ADD
, dl
, Index
.getValueType(), Index
, VecPtr
);
992 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
993 SDValue
DAGTypeLegalizer::JoinIntegers(SDValue Lo
, SDValue Hi
) {
994 // Arbitrarily use dlHi for result DebugLoc
995 DebugLoc dlHi
= Hi
.getDebugLoc();
996 DebugLoc dlLo
= Lo
.getDebugLoc();
997 EVT LVT
= Lo
.getValueType();
998 EVT HVT
= Hi
.getValueType();
999 EVT NVT
= EVT::getIntegerVT(*DAG
.getContext(),
1000 LVT
.getSizeInBits() + HVT
.getSizeInBits());
1002 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dlLo
, NVT
, Lo
);
1003 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dlHi
, NVT
, Hi
);
1004 Hi
= DAG
.getNode(ISD::SHL
, dlHi
, NVT
, Hi
,
1005 DAG
.getConstant(LVT
.getSizeInBits(), TLI
.getPointerTy()));
1006 return DAG
.getNode(ISD::OR
, dlHi
, NVT
, Lo
, Hi
);
1009 /// LibCallify - Convert the node into a libcall with the same prototype.
1010 SDValue
DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC
, SDNode
*N
,
1012 unsigned NumOps
= N
->getNumOperands();
1013 DebugLoc dl
= N
->getDebugLoc();
1015 return MakeLibCall(LC
, N
->getValueType(0), 0, 0, isSigned
, dl
);
1016 } else if (NumOps
== 1) {
1017 SDValue Op
= N
->getOperand(0);
1018 return MakeLibCall(LC
, N
->getValueType(0), &Op
, 1, isSigned
, dl
);
1019 } else if (NumOps
== 2) {
1020 SDValue Ops
[2] = { N
->getOperand(0), N
->getOperand(1) };
1021 return MakeLibCall(LC
, N
->getValueType(0), Ops
, 2, isSigned
, dl
);
1023 SmallVector
<SDValue
, 8> Ops(NumOps
);
1024 for (unsigned i
= 0; i
< NumOps
; ++i
)
1025 Ops
[i
] = N
->getOperand(i
);
1027 return MakeLibCall(LC
, N
->getValueType(0), &Ops
[0], NumOps
, isSigned
, dl
);
1030 /// MakeLibCall - Generate a libcall taking the given operands as arguments and
1031 /// returning a result of type RetVT.
1032 SDValue
DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC
, EVT RetVT
,
1033 const SDValue
*Ops
, unsigned NumOps
,
1034 bool isSigned
, DebugLoc dl
) {
1035 TargetLowering::ArgListTy Args
;
1036 Args
.reserve(NumOps
);
1038 TargetLowering::ArgListEntry Entry
;
1039 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
1040 Entry
.Node
= Ops
[i
];
1041 Entry
.Ty
= Entry
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
1042 Entry
.isSExt
= isSigned
;
1043 Entry
.isZExt
= !isSigned
;
1044 Args
.push_back(Entry
);
1046 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
1047 TLI
.getPointerTy());
1049 const Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
1050 std::pair
<SDValue
,SDValue
> CallInfo
=
1051 TLI
.LowerCallTo(DAG
.getEntryNode(), RetTy
, isSigned
, !isSigned
, false,
1052 false, 0, TLI
.getLibcallCallingConv(LC
), false,
1053 /*isReturnValueUsed=*/true,
1054 Callee
, Args
, DAG
, dl
);
1055 return CallInfo
.first
;
1058 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1059 // ExpandLibCall except that the first operand is the in-chain.
1060 std::pair
<SDValue
, SDValue
>
1061 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC
,
1064 SDValue InChain
= Node
->getOperand(0);
1066 TargetLowering::ArgListTy Args
;
1067 TargetLowering::ArgListEntry Entry
;
1068 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
1069 EVT ArgVT
= Node
->getOperand(i
).getValueType();
1070 const Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
1071 Entry
.Node
= Node
->getOperand(i
);
1073 Entry
.isSExt
= isSigned
;
1074 Entry
.isZExt
= !isSigned
;
1075 Args
.push_back(Entry
);
1077 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
1078 TLI
.getPointerTy());
1080 // Splice the libcall in wherever FindInputOutputChains tells us to.
1081 const Type
*RetTy
= Node
->getValueType(0).getTypeForEVT(*DAG
.getContext());
1082 std::pair
<SDValue
, SDValue
> CallInfo
=
1083 TLI
.LowerCallTo(InChain
, RetTy
, isSigned
, !isSigned
, false, false,
1084 0, TLI
.getLibcallCallingConv(LC
), /*isTailCall=*/false,
1085 /*isReturnValueUsed=*/true,
1086 Callee
, Args
, DAG
, Node
->getDebugLoc());
1091 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean
1092 /// of the given type. A target boolean is an integer value, not necessarily of
1093 /// type i1, the bits of which conform to getBooleanContents.
1094 SDValue
DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool
, EVT VT
) {
1095 DebugLoc dl
= Bool
.getDebugLoc();
1096 ISD::NodeType ExtendCode
;
1097 switch (TLI
.getBooleanContents()) {
1099 assert(false && "Unknown BooleanContent!");
1100 case TargetLowering::UndefinedBooleanContent
:
1101 // Extend to VT by adding rubbish bits.
1102 ExtendCode
= ISD::ANY_EXTEND
;
1104 case TargetLowering::ZeroOrOneBooleanContent
:
1105 // Extend to VT by adding zero bits.
1106 ExtendCode
= ISD::ZERO_EXTEND
;
1108 case TargetLowering::ZeroOrNegativeOneBooleanContent
: {
1109 // Extend to VT by copying the sign bit.
1110 ExtendCode
= ISD::SIGN_EXTEND
;
1114 return DAG
.getNode(ExtendCode
, dl
, VT
, Bool
);
1117 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
1119 void DAGTypeLegalizer::SplitInteger(SDValue Op
,
1121 SDValue
&Lo
, SDValue
&Hi
) {
1122 DebugLoc dl
= Op
.getDebugLoc();
1123 assert(LoVT
.getSizeInBits() + HiVT
.getSizeInBits() ==
1124 Op
.getValueType().getSizeInBits() && "Invalid integer splitting!");
1125 Lo
= DAG
.getNode(ISD::TRUNCATE
, dl
, LoVT
, Op
);
1126 Hi
= DAG
.getNode(ISD::SRL
, dl
, Op
.getValueType(), Op
,
1127 DAG
.getConstant(LoVT
.getSizeInBits(), TLI
.getPointerTy()));
1128 Hi
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiVT
, Hi
);
1131 /// SplitInteger - Return the lower and upper halves of Op's bits in a value
1132 /// type half the size of Op's.
1133 void DAGTypeLegalizer::SplitInteger(SDValue Op
,
1134 SDValue
&Lo
, SDValue
&Hi
) {
1135 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(),
1136 Op
.getValueType().getSizeInBits()/2);
1137 SplitInteger(Op
, HalfVT
, HalfVT
, Lo
, Hi
);
1141 //===----------------------------------------------------------------------===//
1143 //===----------------------------------------------------------------------===//
1145 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
1146 /// only uses types natively supported by the target. Returns "true" if it made
1149 /// Note that this is an involved process that may invalidate pointers into
1151 bool SelectionDAG::LegalizeTypes() {
1152 return DAGTypeLegalizer(*this).run();