1 //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the SelectionDAG class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "SDNodeOrdering.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/Constants.h"
18 #include "llvm/Analysis/DebugInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/Function.h"
21 #include "llvm/GlobalAlias.h"
22 #include "llvm/GlobalVariable.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/Assembly/Writer.h"
26 #include "llvm/CallingConv.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include "llvm/Target/TargetData.h"
34 #include "llvm/Target/TargetLowering.h"
35 #include "llvm/Target/TargetSelectionDAGInfo.h"
36 #include "llvm/Target/TargetOptions.h"
37 #include "llvm/Target/TargetInstrInfo.h"
38 #include "llvm/Target/TargetIntrinsicInfo.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/ManagedStatic.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Support/Mutex.h"
47 #include "llvm/ADT/SetVector.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallSet.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/ADT/StringExtras.h"
56 /// makeVTList - Return an instance of the SDVTList struct initialized with the
57 /// specified members.
58 static SDVTList
makeVTList(const EVT
*VTs
, unsigned NumVTs
) {
59 SDVTList Res
= {VTs
, NumVTs
};
63 static const fltSemantics
*EVTToAPFloatSemantics(EVT VT
) {
64 switch (VT
.getSimpleVT().SimpleTy
) {
65 default: llvm_unreachable("Unknown FP format");
66 case MVT::f32
: return &APFloat::IEEEsingle
;
67 case MVT::f64
: return &APFloat::IEEEdouble
;
68 case MVT::f80
: return &APFloat::x87DoubleExtended
;
69 case MVT::f128
: return &APFloat::IEEEquad
;
70 case MVT::ppcf128
: return &APFloat::PPCDoubleDouble
;
74 SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76 //===----------------------------------------------------------------------===//
77 // ConstantFPSDNode Class
78 //===----------------------------------------------------------------------===//
80 /// isExactlyValue - We don't rely on operator== working on double values, as
81 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82 /// As such, this method can be used to do an exact bit-for-bit comparison of
83 /// two floating point values.
84 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
85 return getValueAPF().bitwiseIsEqual(V
);
88 bool ConstantFPSDNode::isValueValidForType(EVT VT
,
90 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
92 // PPC long double cannot be converted to any other type.
93 if (VT
== MVT::ppcf128
||
94 &Val
.getSemantics() == &APFloat::PPCDoubleDouble
)
97 // convert modifies in place, so make a copy.
98 APFloat Val2
= APFloat(Val
);
100 (void) Val2
.convert(*EVTToAPFloatSemantics(VT
), APFloat::rmNearestTiesToEven
,
105 //===----------------------------------------------------------------------===//
107 //===----------------------------------------------------------------------===//
109 /// isBuildVectorAllOnes - Return true if the specified node is a
110 /// BUILD_VECTOR where all of the elements are ~0 or undef.
111 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
112 // Look through a bit convert.
113 if (N
->getOpcode() == ISD::BITCAST
)
114 N
= N
->getOperand(0).getNode();
116 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
118 unsigned i
= 0, e
= N
->getNumOperands();
120 // Skip over all of the undef values.
121 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
124 // Do not accept an all-undef vector.
125 if (i
== e
) return false;
127 // Do not accept build_vectors that aren't all constants or which have non-~0
129 SDValue NotZero
= N
->getOperand(i
);
130 if (isa
<ConstantSDNode
>(NotZero
)) {
131 if (!cast
<ConstantSDNode
>(NotZero
)->isAllOnesValue())
133 } else if (isa
<ConstantFPSDNode
>(NotZero
)) {
134 if (!cast
<ConstantFPSDNode
>(NotZero
)->getValueAPF().
135 bitcastToAPInt().isAllOnesValue())
140 // Okay, we have at least one ~0 value, check to see if the rest match or are
142 for (++i
; i
!= e
; ++i
)
143 if (N
->getOperand(i
) != NotZero
&&
144 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
150 /// isBuildVectorAllZeros - Return true if the specified node is a
151 /// BUILD_VECTOR where all of the elements are 0 or undef.
152 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
153 // Look through a bit convert.
154 if (N
->getOpcode() == ISD::BITCAST
)
155 N
= N
->getOperand(0).getNode();
157 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
159 unsigned i
= 0, e
= N
->getNumOperands();
161 // Skip over all of the undef values.
162 while (i
!= e
&& N
->getOperand(i
).getOpcode() == ISD::UNDEF
)
165 // Do not accept an all-undef vector.
166 if (i
== e
) return false;
168 // Do not accept build_vectors that aren't all constants or which have non-0
170 SDValue Zero
= N
->getOperand(i
);
171 if (isa
<ConstantSDNode
>(Zero
)) {
172 if (!cast
<ConstantSDNode
>(Zero
)->isNullValue())
174 } else if (isa
<ConstantFPSDNode
>(Zero
)) {
175 if (!cast
<ConstantFPSDNode
>(Zero
)->getValueAPF().isPosZero())
180 // Okay, we have at least one 0 value, check to see if the rest match or are
182 for (++i
; i
!= e
; ++i
)
183 if (N
->getOperand(i
) != Zero
&&
184 N
->getOperand(i
).getOpcode() != ISD::UNDEF
)
189 /// isScalarToVector - Return true if the specified node is a
190 /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191 /// element is not an undef.
192 bool ISD::isScalarToVector(const SDNode
*N
) {
193 if (N
->getOpcode() == ISD::SCALAR_TO_VECTOR
)
196 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
198 if (N
->getOperand(0).getOpcode() == ISD::UNDEF
)
200 unsigned NumElems
= N
->getNumOperands();
203 for (unsigned i
= 1; i
< NumElems
; ++i
) {
204 SDValue V
= N
->getOperand(i
);
205 if (V
.getOpcode() != ISD::UNDEF
)
211 /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212 /// when given the operation for (X op Y).
213 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
214 // To perform this operation, we just need to swap the L and G bits of the
216 unsigned OldL
= (Operation
>> 2) & 1;
217 unsigned OldG
= (Operation
>> 1) & 1;
218 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
219 (OldL
<< 1) | // New G bit
220 (OldG
<< 2)); // New L bit.
223 /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224 /// 'op' is a valid SetCC operation.
225 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
226 unsigned Operation
= Op
;
228 Operation
^= 7; // Flip L, G, E bits, but not U.
230 Operation
^= 15; // Flip all of the condition bits.
232 if (Operation
> ISD::SETTRUE2
)
233 Operation
&= ~8; // Don't let N and U bits get set.
235 return ISD::CondCode(Operation
);
239 /// isSignedOp - For an integer comparison, return 1 if the comparison is a
240 /// signed operation and 2 if the result is an unsigned comparison. Return zero
241 /// if the operation does not depend on the sign of the input (setne and seteq).
242 static int isSignedOp(ISD::CondCode Opcode
) {
244 default: llvm_unreachable("Illegal integer setcc operation!");
246 case ISD::SETNE
: return 0;
250 case ISD::SETGE
: return 1;
254 case ISD::SETUGE
: return 2;
258 /// getSetCCOrOperation - Return the result of a logical OR between different
259 /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
260 /// returns SETCC_INVALID if it is not possible to represent the resultant
262 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
264 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
265 // Cannot fold a signed integer setcc with an unsigned integer setcc.
266 return ISD::SETCC_INVALID
;
268 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
270 // If the N and U bits get set then the resultant comparison DOES suddenly
271 // care about orderedness, and is true when ordered.
272 if (Op
> ISD::SETTRUE2
)
273 Op
&= ~16; // Clear the U bit if the N bit is set.
275 // Canonicalize illegal integer setcc's.
276 if (isInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
279 return ISD::CondCode(Op
);
282 /// getSetCCAndOperation - Return the result of a logical AND between different
283 /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
284 /// function returns zero if it is not possible to represent the resultant
286 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
288 if (isInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
289 // Cannot fold a signed setcc with an unsigned setcc.
290 return ISD::SETCC_INVALID
;
292 // Combine all of the condition bits.
293 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
295 // Canonicalize illegal integer setcc's.
299 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
300 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
301 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
302 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
303 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
310 //===----------------------------------------------------------------------===//
311 // SDNode Profile Support
312 //===----------------------------------------------------------------------===//
314 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
320 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321 /// solely with their pointer.
322 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
323 ID
.AddPointer(VTList
.VTs
);
326 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
329 const SDValue
*Ops
, unsigned NumOps
) {
330 for (; NumOps
; --NumOps
, ++Ops
) {
331 ID
.AddPointer(Ops
->getNode());
332 ID
.AddInteger(Ops
->getResNo());
336 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
339 const SDUse
*Ops
, unsigned NumOps
) {
340 for (; NumOps
; --NumOps
, ++Ops
) {
341 ID
.AddPointer(Ops
->getNode());
342 ID
.AddInteger(Ops
->getResNo());
346 static void AddNodeIDNode(FoldingSetNodeID
&ID
,
347 unsigned short OpC
, SDVTList VTList
,
348 const SDValue
*OpList
, unsigned N
) {
349 AddNodeIDOpcode(ID
, OpC
);
350 AddNodeIDValueTypes(ID
, VTList
);
351 AddNodeIDOperands(ID
, OpList
, N
);
354 /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
357 switch (N
->getOpcode()) {
358 case ISD::TargetExternalSymbol
:
359 case ISD::ExternalSymbol
:
360 llvm_unreachable("Should only be used on nodes with operands");
361 default: break; // Normal nodes don't need extra info.
362 case ISD::TargetConstant
:
364 ID
.AddPointer(cast
<ConstantSDNode
>(N
)->getConstantIntValue());
366 case ISD::TargetConstantFP
:
367 case ISD::ConstantFP
: {
368 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
371 case ISD::TargetGlobalAddress
:
372 case ISD::GlobalAddress
:
373 case ISD::TargetGlobalTLSAddress
:
374 case ISD::GlobalTLSAddress
: {
375 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
376 ID
.AddPointer(GA
->getGlobal());
377 ID
.AddInteger(GA
->getOffset());
378 ID
.AddInteger(GA
->getTargetFlags());
381 case ISD::BasicBlock
:
382 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
385 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
389 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
391 case ISD::FrameIndex
:
392 case ISD::TargetFrameIndex
:
393 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
396 case ISD::TargetJumpTable
:
397 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
398 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getTargetFlags());
400 case ISD::ConstantPool
:
401 case ISD::TargetConstantPool
: {
402 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
403 ID
.AddInteger(CP
->getAlignment());
404 ID
.AddInteger(CP
->getOffset());
405 if (CP
->isMachineConstantPoolEntry())
406 CP
->getMachineCPVal()->AddSelectionDAGCSEId(ID
);
408 ID
.AddPointer(CP
->getConstVal());
409 ID
.AddInteger(CP
->getTargetFlags());
413 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
414 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
415 ID
.AddInteger(LD
->getRawSubclassData());
419 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
420 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
421 ID
.AddInteger(ST
->getRawSubclassData());
424 case ISD::ATOMIC_CMP_SWAP
:
425 case ISD::ATOMIC_SWAP
:
426 case ISD::ATOMIC_LOAD_ADD
:
427 case ISD::ATOMIC_LOAD_SUB
:
428 case ISD::ATOMIC_LOAD_AND
:
429 case ISD::ATOMIC_LOAD_OR
:
430 case ISD::ATOMIC_LOAD_XOR
:
431 case ISD::ATOMIC_LOAD_NAND
:
432 case ISD::ATOMIC_LOAD_MIN
:
433 case ISD::ATOMIC_LOAD_MAX
:
434 case ISD::ATOMIC_LOAD_UMIN
:
435 case ISD::ATOMIC_LOAD_UMAX
: {
436 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
437 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
438 ID
.AddInteger(AT
->getRawSubclassData());
441 case ISD::VECTOR_SHUFFLE
: {
442 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
443 for (unsigned i
= 0, e
= N
->getValueType(0).getVectorNumElements();
445 ID
.AddInteger(SVN
->getMaskElt(i
));
448 case ISD::TargetBlockAddress
:
449 case ISD::BlockAddress
: {
450 ID
.AddPointer(cast
<BlockAddressSDNode
>(N
)->getBlockAddress());
451 ID
.AddInteger(cast
<BlockAddressSDNode
>(N
)->getTargetFlags());
454 } // end switch (N->getOpcode())
457 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
460 AddNodeIDOpcode(ID
, N
->getOpcode());
461 // Add the return value info.
462 AddNodeIDValueTypes(ID
, N
->getVTList());
463 // Add the operand info.
464 AddNodeIDOperands(ID
, N
->op_begin(), N
->getNumOperands());
466 // Handle SDNode leafs with special info.
467 AddNodeIDCustom(ID
, N
);
470 /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471 /// the CSE map that carries volatility, temporalness, indexing mode, and
472 /// extension/truncation information.
474 static inline unsigned
475 encodeMemSDNodeFlags(int ConvType
, ISD::MemIndexedMode AM
, bool isVolatile
,
476 bool isNonTemporal
) {
477 assert((ConvType
& 3) == ConvType
&&
478 "ConvType may not require more than 2 bits!");
479 assert((AM
& 7) == AM
&&
480 "AM may not require more than 3 bits!");
484 (isNonTemporal
<< 6);
487 //===----------------------------------------------------------------------===//
488 // SelectionDAG Class
489 //===----------------------------------------------------------------------===//
491 /// doNotCSE - Return true if CSE should not be performed for this node.
492 static bool doNotCSE(SDNode
*N
) {
493 if (N
->getValueType(0) == MVT::Glue
)
494 return true; // Never CSE anything that produces a flag.
496 switch (N
->getOpcode()) {
498 case ISD::HANDLENODE
:
500 return true; // Never CSE these nodes.
503 // Check that remaining values produced are not flags.
504 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
505 if (N
->getValueType(i
) == MVT::Glue
)
506 return true; // Never CSE anything that produces a flag.
511 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
513 void SelectionDAG::RemoveDeadNodes() {
514 // Create a dummy node (which is not added to allnodes), that adds a reference
515 // to the root node, preventing it from being deleted.
516 HandleSDNode
Dummy(getRoot());
518 SmallVector
<SDNode
*, 128> DeadNodes
;
520 // Add all obviously-dead nodes to the DeadNodes worklist.
521 for (allnodes_iterator I
= allnodes_begin(), E
= allnodes_end(); I
!= E
; ++I
)
523 DeadNodes
.push_back(I
);
525 RemoveDeadNodes(DeadNodes
);
527 // If the root changed (e.g. it was a dead load, update the root).
528 setRoot(Dummy
.getValue());
531 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
532 /// given list, and any nodes that become unreachable as a result.
533 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
,
534 DAGUpdateListener
*UpdateListener
) {
536 // Process the worklist, deleting the nodes and adding their uses to the
538 while (!DeadNodes
.empty()) {
539 SDNode
*N
= DeadNodes
.pop_back_val();
542 UpdateListener
->NodeDeleted(N
, 0);
544 // Take the node out of the appropriate CSE map.
545 RemoveNodeFromCSEMaps(N
);
547 // Next, brutally remove the operand list. This is safe to do, as there are
548 // no cycles in the graph.
549 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
551 SDNode
*Operand
= Use
.getNode();
554 // Now that we removed this operand, see if there are no uses of it left.
555 if (Operand
->use_empty())
556 DeadNodes
.push_back(Operand
);
563 void SelectionDAG::RemoveDeadNode(SDNode
*N
, DAGUpdateListener
*UpdateListener
){
564 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
565 RemoveDeadNodes(DeadNodes
, UpdateListener
);
568 void SelectionDAG::DeleteNode(SDNode
*N
) {
569 // First take this out of the appropriate CSE map.
570 RemoveNodeFromCSEMaps(N
);
572 // Finally, remove uses due to operands of this node, remove from the
573 // AllNodes list, and delete the node.
574 DeleteNodeNotInCSEMaps(N
);
577 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
578 assert(N
!= AllNodes
.begin() && "Cannot delete the entry node!");
579 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
581 // Drop all of the operands and decrement used node's use counts.
587 void SelectionDAG::DeallocateNode(SDNode
*N
) {
588 if (N
->OperandsNeedDelete
)
589 delete[] N
->OperandList
;
591 // Set the opcode to DELETED_NODE to help catch bugs when node
592 // memory is reallocated.
593 N
->NodeType
= ISD::DELETED_NODE
;
595 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
597 // Remove the ordering of this node.
600 // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
601 ArrayRef
<SDDbgValue
*> DbgVals
= DbgInfo
->getSDDbgValues(N
);
602 for (unsigned i
= 0, e
= DbgVals
.size(); i
!= e
; ++i
)
603 DbgVals
[i
]->setIsInvalidated();
606 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607 /// correspond to it. This is useful when we're about to delete or repurpose
608 /// the node. We don't want future request for structurally identical nodes
609 /// to return N anymore.
610 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
612 switch (N
->getOpcode()) {
613 case ISD::HANDLENODE
: return false; // noop.
615 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
616 "Cond code doesn't exist!");
617 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != 0;
618 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = 0;
620 case ISD::ExternalSymbol
:
621 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
623 case ISD::TargetExternalSymbol
: {
624 ExternalSymbolSDNode
*ESN
= cast
<ExternalSymbolSDNode
>(N
);
625 Erased
= TargetExternalSymbols
.erase(
626 std::pair
<std::string
,unsigned char>(ESN
->getSymbol(),
627 ESN
->getTargetFlags()));
630 case ISD::VALUETYPE
: {
631 EVT VT
= cast
<VTSDNode
>(N
)->getVT();
632 if (VT
.isExtended()) {
633 Erased
= ExtendedValueTypeNodes
.erase(VT
);
635 Erased
= ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] != 0;
636 ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] = 0;
641 // Remove it from the CSE Map.
642 assert(N
->getOpcode() != ISD::DELETED_NODE
&& "DELETED_NODE in CSEMap!");
643 assert(N
->getOpcode() != ISD::EntryToken
&& "EntryToken in CSEMap!");
644 Erased
= CSEMap
.RemoveNode(N
);
648 // Verify that the node was actually in one of the CSE maps, unless it has a
649 // flag result (which cannot be CSE'd) or is one of the special cases that are
650 // not subject to CSE.
651 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Glue
&&
652 !N
->isMachineOpcode() && !doNotCSE(N
)) {
655 llvm_unreachable("Node is not in map!");
661 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662 /// maps and modified in place. Add it back to the CSE maps, unless an identical
663 /// node already exists, in which case transfer all its users to the existing
664 /// node. This transfer can potentially trigger recursive merging.
667 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
,
668 DAGUpdateListener
*UpdateListener
) {
669 // For node types that aren't CSE'd, just act as if no identical node
672 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
674 // If there was already an existing matching node, use ReplaceAllUsesWith
675 // to replace the dead one with the existing one. This can cause
676 // recursive merging of other unrelated nodes down the line.
677 ReplaceAllUsesWith(N
, Existing
, UpdateListener
);
679 // N is now dead. Inform the listener if it exists and delete it.
681 UpdateListener
->NodeDeleted(N
, Existing
);
682 DeleteNodeNotInCSEMaps(N
);
687 // If the node doesn't already exist, we updated it. Inform a listener if
690 UpdateListener
->NodeUpdated(N
);
693 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694 /// were replaced with those specified. If this node is never memoized,
695 /// return null, otherwise return a pointer to the slot it would take. If a
696 /// node already exists with these operands, the slot will be non-null.
697 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
702 SDValue Ops
[] = { Op
};
704 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 1);
705 AddNodeIDCustom(ID
, N
);
706 SDNode
*Node
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
710 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711 /// were replaced with those specified. If this node is never memoized,
712 /// return null, otherwise return a pointer to the slot it would take. If a
713 /// node already exists with these operands, the slot will be non-null.
714 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
715 SDValue Op1
, SDValue Op2
,
720 SDValue Ops
[] = { Op1
, Op2
};
722 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, 2);
723 AddNodeIDCustom(ID
, N
);
724 SDNode
*Node
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
729 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730 /// were replaced with those specified. If this node is never memoized,
731 /// return null, otherwise return a pointer to the slot it would take. If a
732 /// node already exists with these operands, the slot will be non-null.
733 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
734 const SDValue
*Ops
,unsigned NumOps
,
740 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
, NumOps
);
741 AddNodeIDCustom(ID
, N
);
742 SDNode
*Node
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
747 /// VerifyNodeCommon - Sanity check the given node. Aborts if it is invalid.
748 static void VerifyNodeCommon(SDNode
*N
) {
749 switch (N
->getOpcode()) {
752 case ISD::BUILD_PAIR
: {
753 EVT VT
= N
->getValueType(0);
754 assert(N
->getNumValues() == 1 && "Too many results!");
755 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
756 "Wrong return type!");
757 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
758 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
759 "Mismatched operand types!");
760 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
761 "Wrong operand type!");
762 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
763 "Wrong return type size");
766 case ISD::BUILD_VECTOR
: {
767 assert(N
->getNumValues() == 1 && "Too many results!");
768 assert(N
->getValueType(0).isVector() && "Wrong return type!");
769 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
770 "Wrong number of operands!");
771 EVT EltVT
= N
->getValueType(0).getVectorElementType();
772 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ++I
)
773 assert((I
->getValueType() == EltVT
||
774 (EltVT
.isInteger() && I
->getValueType().isInteger() &&
775 EltVT
.bitsLE(I
->getValueType()))) &&
776 "Wrong operand type!");
782 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
783 static void VerifySDNode(SDNode
*N
) {
784 // The SDNode allocators cannot be used to allocate nodes with fields that are
785 // not present in an SDNode!
786 assert(!isa
<MemSDNode
>(N
) && "Bad MemSDNode!");
787 assert(!isa
<ShuffleVectorSDNode
>(N
) && "Bad ShuffleVectorSDNode!");
788 assert(!isa
<ConstantSDNode
>(N
) && "Bad ConstantSDNode!");
789 assert(!isa
<ConstantFPSDNode
>(N
) && "Bad ConstantFPSDNode!");
790 assert(!isa
<GlobalAddressSDNode
>(N
) && "Bad GlobalAddressSDNode!");
791 assert(!isa
<FrameIndexSDNode
>(N
) && "Bad FrameIndexSDNode!");
792 assert(!isa
<JumpTableSDNode
>(N
) && "Bad JumpTableSDNode!");
793 assert(!isa
<ConstantPoolSDNode
>(N
) && "Bad ConstantPoolSDNode!");
794 assert(!isa
<BasicBlockSDNode
>(N
) && "Bad BasicBlockSDNode!");
795 assert(!isa
<SrcValueSDNode
>(N
) && "Bad SrcValueSDNode!");
796 assert(!isa
<MDNodeSDNode
>(N
) && "Bad MDNodeSDNode!");
797 assert(!isa
<RegisterSDNode
>(N
) && "Bad RegisterSDNode!");
798 assert(!isa
<BlockAddressSDNode
>(N
) && "Bad BlockAddressSDNode!");
799 assert(!isa
<EHLabelSDNode
>(N
) && "Bad EHLabelSDNode!");
800 assert(!isa
<ExternalSymbolSDNode
>(N
) && "Bad ExternalSymbolSDNode!");
801 assert(!isa
<CondCodeSDNode
>(N
) && "Bad CondCodeSDNode!");
802 assert(!isa
<CvtRndSatSDNode
>(N
) && "Bad CvtRndSatSDNode!");
803 assert(!isa
<VTSDNode
>(N
) && "Bad VTSDNode!");
804 assert(!isa
<MachineSDNode
>(N
) && "Bad MachineSDNode!");
809 /// VerifyMachineNode - Sanity check the given MachineNode. Aborts if it is
811 static void VerifyMachineNode(SDNode
*N
) {
812 // The MachineNode allocators cannot be used to allocate nodes with fields
813 // that are not present in a MachineNode!
814 // Currently there are no such nodes.
820 /// getEVTAlignment - Compute the default alignment value for the
823 unsigned SelectionDAG::getEVTAlignment(EVT VT
) const {
824 const Type
*Ty
= VT
== MVT::iPTR
?
825 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
826 VT
.getTypeForEVT(*getContext());
828 return TLI
.getTargetData()->getABITypeAlignment(Ty
);
831 // EntryNode could meaningfully have debug info if we can find it...
832 SelectionDAG::SelectionDAG(const TargetMachine
&tm
)
833 : TM(tm
), TLI(*tm
.getTargetLowering()), TSI(*tm
.getSelectionDAGInfo()),
834 EntryNode(ISD::EntryToken
, DebugLoc(), getVTList(MVT::Other
)),
835 Root(getEntryNode()), Ordering(0) {
836 AllNodes
.push_back(&EntryNode
);
837 Ordering
= new SDNodeOrdering();
838 DbgInfo
= new SDDbgInfo();
841 void SelectionDAG::init(MachineFunction
&mf
) {
843 Context
= &mf
.getFunction()->getContext();
846 SelectionDAG::~SelectionDAG() {
852 void SelectionDAG::allnodes_clear() {
853 assert(&*AllNodes
.begin() == &EntryNode
);
854 AllNodes
.remove(AllNodes
.begin());
855 while (!AllNodes
.empty())
856 DeallocateNode(AllNodes
.begin());
859 void SelectionDAG::clear() {
861 OperandAllocator
.Reset();
864 ExtendedValueTypeNodes
.clear();
865 ExternalSymbols
.clear();
866 TargetExternalSymbols
.clear();
867 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
868 static_cast<CondCodeSDNode
*>(0));
869 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
870 static_cast<SDNode
*>(0));
872 EntryNode
.UseList
= 0;
873 AllNodes
.push_back(&EntryNode
);
874 Root
= getEntryNode();
879 SDValue
SelectionDAG::getSExtOrTrunc(SDValue Op
, DebugLoc DL
, EVT VT
) {
880 return VT
.bitsGT(Op
.getValueType()) ?
881 getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
) :
882 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
885 SDValue
SelectionDAG::getZExtOrTrunc(SDValue Op
, DebugLoc DL
, EVT VT
) {
886 return VT
.bitsGT(Op
.getValueType()) ?
887 getNode(ISD::ZERO_EXTEND
, DL
, VT
, Op
) :
888 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
891 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, DebugLoc DL
, EVT VT
) {
892 assert(!VT
.isVector() &&
893 "getZeroExtendInReg should use the vector element type instead of "
895 if (Op
.getValueType() == VT
) return Op
;
896 unsigned BitWidth
= Op
.getValueType().getScalarType().getSizeInBits();
897 APInt Imm
= APInt::getLowBitsSet(BitWidth
,
899 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
900 getConstant(Imm
, Op
.getValueType()));
903 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
905 SDValue
SelectionDAG::getNOT(DebugLoc DL
, SDValue Val
, EVT VT
) {
906 EVT EltVT
= VT
.getScalarType();
908 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), VT
);
909 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
912 SDValue
SelectionDAG::getConstant(uint64_t Val
, EVT VT
, bool isT
) {
913 EVT EltVT
= VT
.getScalarType();
914 assert((EltVT
.getSizeInBits() >= 64 ||
915 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
916 "getConstant with a uint64_t value that doesn't fit in the type!");
917 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), VT
, isT
);
920 SDValue
SelectionDAG::getConstant(const APInt
&Val
, EVT VT
, bool isT
) {
921 return getConstant(*ConstantInt::get(*Context
, Val
), VT
, isT
);
924 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, EVT VT
, bool isT
) {
925 assert(VT
.isInteger() && "Cannot create FP integer constant!");
927 EVT EltVT
= VT
.getScalarType();
928 assert(Val
.getBitWidth() == EltVT
.getSizeInBits() &&
929 "APInt size does not match type size!");
931 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
933 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
937 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
939 return SDValue(N
, 0);
942 N
= new (NodeAllocator
) ConstantSDNode(isT
, &Val
, EltVT
);
943 CSEMap
.InsertNode(N
, IP
);
944 AllNodes
.push_back(N
);
947 SDValue
Result(N
, 0);
949 SmallVector
<SDValue
, 8> Ops
;
950 Ops
.assign(VT
.getVectorNumElements(), Result
);
951 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc(), VT
, &Ops
[0], Ops
.size());
956 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, bool isTarget
) {
957 return getConstant(Val
, TLI
.getPointerTy(), isTarget
);
961 SDValue
SelectionDAG::getConstantFP(const APFloat
& V
, EVT VT
, bool isTarget
) {
962 return getConstantFP(*ConstantFP::get(*getContext(), V
), VT
, isTarget
);
965 SDValue
SelectionDAG::getConstantFP(const ConstantFP
& V
, EVT VT
, bool isTarget
){
966 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
968 EVT EltVT
= VT
.getScalarType();
970 // Do the map lookup using the actual bit pattern for the floating point
971 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
972 // we don't have issues with SNANs.
973 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
975 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), 0, 0);
979 if ((N
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)))
981 return SDValue(N
, 0);
984 N
= new (NodeAllocator
) ConstantFPSDNode(isTarget
, &V
, EltVT
);
985 CSEMap
.InsertNode(N
, IP
);
986 AllNodes
.push_back(N
);
989 SDValue
Result(N
, 0);
991 SmallVector
<SDValue
, 8> Ops
;
992 Ops
.assign(VT
.getVectorNumElements(), Result
);
993 // FIXME DebugLoc info might be appropriate here
994 Result
= getNode(ISD::BUILD_VECTOR
, DebugLoc(), VT
, &Ops
[0], Ops
.size());
999 SDValue
SelectionDAG::getConstantFP(double Val
, EVT VT
, bool isTarget
) {
1000 EVT EltVT
= VT
.getScalarType();
1001 if (EltVT
==MVT::f32
)
1002 return getConstantFP(APFloat((float)Val
), VT
, isTarget
);
1003 else if (EltVT
==MVT::f64
)
1004 return getConstantFP(APFloat(Val
), VT
, isTarget
);
1005 else if (EltVT
==MVT::f80
|| EltVT
==MVT::f128
) {
1007 APFloat apf
= APFloat(Val
);
1008 apf
.convert(*EVTToAPFloatSemantics(EltVT
), APFloat::rmNearestTiesToEven
,
1010 return getConstantFP(apf
, VT
, isTarget
);
1012 assert(0 && "Unsupported type in getConstantFP");
1017 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
, DebugLoc DL
,
1018 EVT VT
, int64_t Offset
,
1020 unsigned char TargetFlags
) {
1021 assert((TargetFlags
== 0 || isTargetGA
) &&
1022 "Cannot set target flags on target-independent globals");
1024 // Truncate (with sign-extension) the offset value to the pointer size.
1025 EVT PTy
= TLI
.getPointerTy();
1026 unsigned BitWidth
= PTy
.getSizeInBits();
1028 Offset
= (Offset
<< (64 - BitWidth
) >> (64 - BitWidth
));
1030 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
);
1032 // If GV is an alias then use the aliasee for determining thread-localness.
1033 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
1034 GVar
= dyn_cast_or_null
<GlobalVariable
>(GA
->resolveAliasedGlobal(false));
1038 if (GVar
&& GVar
->isThreadLocal())
1039 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
1041 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
1043 FoldingSetNodeID ID
;
1044 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1046 ID
.AddInteger(Offset
);
1047 ID
.AddInteger(TargetFlags
);
1049 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1050 return SDValue(E
, 0);
1052 SDNode
*N
= new (NodeAllocator
) GlobalAddressSDNode(Opc
, DL
, GV
, VT
,
1053 Offset
, TargetFlags
);
1054 CSEMap
.InsertNode(N
, IP
);
1055 AllNodes
.push_back(N
);
1056 return SDValue(N
, 0);
1059 SDValue
SelectionDAG::getFrameIndex(int FI
, EVT VT
, bool isTarget
) {
1060 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
1061 FoldingSetNodeID ID
;
1062 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1065 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1066 return SDValue(E
, 0);
1068 SDNode
*N
= new (NodeAllocator
) FrameIndexSDNode(FI
, VT
, isTarget
);
1069 CSEMap
.InsertNode(N
, IP
);
1070 AllNodes
.push_back(N
);
1071 return SDValue(N
, 0);
1074 SDValue
SelectionDAG::getJumpTable(int JTI
, EVT VT
, bool isTarget
,
1075 unsigned char TargetFlags
) {
1076 assert((TargetFlags
== 0 || isTarget
) &&
1077 "Cannot set target flags on target-independent jump tables");
1078 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1079 FoldingSetNodeID ID
;
1080 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1082 ID
.AddInteger(TargetFlags
);
1084 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1085 return SDValue(E
, 0);
1087 SDNode
*N
= new (NodeAllocator
) JumpTableSDNode(JTI
, VT
, isTarget
,
1089 CSEMap
.InsertNode(N
, IP
);
1090 AllNodes
.push_back(N
);
1091 return SDValue(N
, 0);
1094 SDValue
SelectionDAG::getConstantPool(const Constant
*C
, EVT VT
,
1095 unsigned Alignment
, int Offset
,
1097 unsigned char TargetFlags
) {
1098 assert((TargetFlags
== 0 || isTarget
) &&
1099 "Cannot set target flags on target-independent globals");
1101 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1102 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1103 FoldingSetNodeID ID
;
1104 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1105 ID
.AddInteger(Alignment
);
1106 ID
.AddInteger(Offset
);
1108 ID
.AddInteger(TargetFlags
);
1110 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1111 return SDValue(E
, 0);
1113 SDNode
*N
= new (NodeAllocator
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
,
1114 Alignment
, TargetFlags
);
1115 CSEMap
.InsertNode(N
, IP
);
1116 AllNodes
.push_back(N
);
1117 return SDValue(N
, 0);
1121 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
1122 unsigned Alignment
, int Offset
,
1124 unsigned char TargetFlags
) {
1125 assert((TargetFlags
== 0 || isTarget
) &&
1126 "Cannot set target flags on target-independent globals");
1128 Alignment
= TLI
.getTargetData()->getPrefTypeAlignment(C
->getType());
1129 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1130 FoldingSetNodeID ID
;
1131 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1132 ID
.AddInteger(Alignment
);
1133 ID
.AddInteger(Offset
);
1134 C
->AddSelectionDAGCSEId(ID
);
1135 ID
.AddInteger(TargetFlags
);
1137 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1138 return SDValue(E
, 0);
1140 SDNode
*N
= new (NodeAllocator
) ConstantPoolSDNode(isTarget
, C
, VT
, Offset
,
1141 Alignment
, TargetFlags
);
1142 CSEMap
.InsertNode(N
, IP
);
1143 AllNodes
.push_back(N
);
1144 return SDValue(N
, 0);
1147 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1148 FoldingSetNodeID ID
;
1149 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), 0, 0);
1152 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1153 return SDValue(E
, 0);
1155 SDNode
*N
= new (NodeAllocator
) BasicBlockSDNode(MBB
);
1156 CSEMap
.InsertNode(N
, IP
);
1157 AllNodes
.push_back(N
);
1158 return SDValue(N
, 0);
1161 SDValue
SelectionDAG::getValueType(EVT VT
) {
1162 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT().SimpleTy
>=
1163 ValueTypeNodes
.size())
1164 ValueTypeNodes
.resize(VT
.getSimpleVT().SimpleTy
+1);
1166 SDNode
*&N
= VT
.isExtended() ?
1167 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
];
1169 if (N
) return SDValue(N
, 0);
1170 N
= new (NodeAllocator
) VTSDNode(VT
);
1171 AllNodes
.push_back(N
);
1172 return SDValue(N
, 0);
1175 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, EVT VT
) {
1176 SDNode
*&N
= ExternalSymbols
[Sym
];
1177 if (N
) return SDValue(N
, 0);
1178 N
= new (NodeAllocator
) ExternalSymbolSDNode(false, Sym
, 0, VT
);
1179 AllNodes
.push_back(N
);
1180 return SDValue(N
, 0);
1183 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, EVT VT
,
1184 unsigned char TargetFlags
) {
1186 TargetExternalSymbols
[std::pair
<std::string
,unsigned char>(Sym
,
1188 if (N
) return SDValue(N
, 0);
1189 N
= new (NodeAllocator
) ExternalSymbolSDNode(true, Sym
, TargetFlags
, VT
);
1190 AllNodes
.push_back(N
);
1191 return SDValue(N
, 0);
1194 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1195 if ((unsigned)Cond
>= CondCodeNodes
.size())
1196 CondCodeNodes
.resize(Cond
+1);
1198 if (CondCodeNodes
[Cond
] == 0) {
1199 CondCodeSDNode
*N
= new (NodeAllocator
) CondCodeSDNode(Cond
);
1200 CondCodeNodes
[Cond
] = N
;
1201 AllNodes
.push_back(N
);
1204 return SDValue(CondCodeNodes
[Cond
], 0);
1207 // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1208 // the shuffle mask M that point at N1 to point at N2, and indices that point
1209 // N2 to point at N1.
1210 static void commuteShuffle(SDValue
&N1
, SDValue
&N2
, SmallVectorImpl
<int> &M
) {
1212 int NElts
= M
.size();
1213 for (int i
= 0; i
!= NElts
; ++i
) {
1221 SDValue
SelectionDAG::getVectorShuffle(EVT VT
, DebugLoc dl
, SDValue N1
,
1222 SDValue N2
, const int *Mask
) {
1223 assert(N1
.getValueType() == N2
.getValueType() && "Invalid VECTOR_SHUFFLE");
1224 assert(VT
.isVector() && N1
.getValueType().isVector() &&
1225 "Vector Shuffle VTs must be a vectors");
1226 assert(VT
.getVectorElementType() == N1
.getValueType().getVectorElementType()
1227 && "Vector Shuffle VTs must have same element type");
1229 // Canonicalize shuffle undef, undef -> undef
1230 if (N1
.getOpcode() == ISD::UNDEF
&& N2
.getOpcode() == ISD::UNDEF
)
1231 return getUNDEF(VT
);
1233 // Validate that all indices in Mask are within the range of the elements
1234 // input to the shuffle.
1235 unsigned NElts
= VT
.getVectorNumElements();
1236 SmallVector
<int, 8> MaskVec
;
1237 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1238 assert(Mask
[i
] < (int)(NElts
* 2) && "Index out of range");
1239 MaskVec
.push_back(Mask
[i
]);
1242 // Canonicalize shuffle v, v -> v, undef
1245 for (unsigned i
= 0; i
!= NElts
; ++i
)
1246 if (MaskVec
[i
] >= (int)NElts
) MaskVec
[i
] -= NElts
;
1249 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1250 if (N1
.getOpcode() == ISD::UNDEF
)
1251 commuteShuffle(N1
, N2
, MaskVec
);
1253 // Canonicalize all index into lhs, -> shuffle lhs, undef
1254 // Canonicalize all index into rhs, -> shuffle rhs, undef
1255 bool AllLHS
= true, AllRHS
= true;
1256 bool N2Undef
= N2
.getOpcode() == ISD::UNDEF
;
1257 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1258 if (MaskVec
[i
] >= (int)NElts
) {
1263 } else if (MaskVec
[i
] >= 0) {
1267 if (AllLHS
&& AllRHS
)
1268 return getUNDEF(VT
);
1269 if (AllLHS
&& !N2Undef
)
1273 commuteShuffle(N1
, N2
, MaskVec
);
1276 // If Identity shuffle, or all shuffle in to undef, return that node.
1277 bool AllUndef
= true;
1278 bool Identity
= true;
1279 for (unsigned i
= 0; i
!= NElts
; ++i
) {
1280 if (MaskVec
[i
] >= 0 && MaskVec
[i
] != (int)i
) Identity
= false;
1281 if (MaskVec
[i
] >= 0) AllUndef
= false;
1283 if (Identity
&& NElts
== N1
.getValueType().getVectorNumElements())
1286 return getUNDEF(VT
);
1288 FoldingSetNodeID ID
;
1289 SDValue Ops
[2] = { N1
, N2
};
1290 AddNodeIDNode(ID
, ISD::VECTOR_SHUFFLE
, getVTList(VT
), Ops
, 2);
1291 for (unsigned i
= 0; i
!= NElts
; ++i
)
1292 ID
.AddInteger(MaskVec
[i
]);
1295 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1296 return SDValue(E
, 0);
1298 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1299 // SDNode doesn't have access to it. This memory will be "leaked" when
1300 // the node is deallocated, but recovered when the NodeAllocator is released.
1301 int *MaskAlloc
= OperandAllocator
.Allocate
<int>(NElts
);
1302 memcpy(MaskAlloc
, &MaskVec
[0], NElts
* sizeof(int));
1304 ShuffleVectorSDNode
*N
=
1305 new (NodeAllocator
) ShuffleVectorSDNode(VT
, dl
, N1
, N2
, MaskAlloc
);
1306 CSEMap
.InsertNode(N
, IP
);
1307 AllNodes
.push_back(N
);
1308 return SDValue(N
, 0);
1311 SDValue
SelectionDAG::getConvertRndSat(EVT VT
, DebugLoc dl
,
1312 SDValue Val
, SDValue DTy
,
1313 SDValue STy
, SDValue Rnd
, SDValue Sat
,
1314 ISD::CvtCode Code
) {
1315 // If the src and dest types are the same and the conversion is between
1316 // integer types of the same sign or two floats, no conversion is necessary.
1318 (Code
== ISD::CVT_UU
|| Code
== ISD::CVT_SS
|| Code
== ISD::CVT_FF
))
1321 FoldingSetNodeID ID
;
1322 SDValue Ops
[] = { Val
, DTy
, STy
, Rnd
, Sat
};
1323 AddNodeIDNode(ID
, ISD::CONVERT_RNDSAT
, getVTList(VT
), &Ops
[0], 5);
1325 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1326 return SDValue(E
, 0);
1328 CvtRndSatSDNode
*N
= new (NodeAllocator
) CvtRndSatSDNode(VT
, dl
, Ops
, 5,
1330 CSEMap
.InsertNode(N
, IP
);
1331 AllNodes
.push_back(N
);
1332 return SDValue(N
, 0);
1335 SDValue
SelectionDAG::getRegister(unsigned RegNo
, EVT VT
) {
1336 FoldingSetNodeID ID
;
1337 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), 0, 0);
1338 ID
.AddInteger(RegNo
);
1340 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1341 return SDValue(E
, 0);
1343 SDNode
*N
= new (NodeAllocator
) RegisterSDNode(RegNo
, VT
);
1344 CSEMap
.InsertNode(N
, IP
);
1345 AllNodes
.push_back(N
);
1346 return SDValue(N
, 0);
1349 SDValue
SelectionDAG::getEHLabel(DebugLoc dl
, SDValue Root
, MCSymbol
*Label
) {
1350 FoldingSetNodeID ID
;
1351 SDValue Ops
[] = { Root
};
1352 AddNodeIDNode(ID
, ISD::EH_LABEL
, getVTList(MVT::Other
), &Ops
[0], 1);
1353 ID
.AddPointer(Label
);
1355 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1356 return SDValue(E
, 0);
1358 SDNode
*N
= new (NodeAllocator
) EHLabelSDNode(dl
, Root
, Label
);
1359 CSEMap
.InsertNode(N
, IP
);
1360 AllNodes
.push_back(N
);
1361 return SDValue(N
, 0);
1365 SDValue
SelectionDAG::getBlockAddress(const BlockAddress
*BA
, EVT VT
,
1367 unsigned char TargetFlags
) {
1368 unsigned Opc
= isTarget
? ISD::TargetBlockAddress
: ISD::BlockAddress
;
1370 FoldingSetNodeID ID
;
1371 AddNodeIDNode(ID
, Opc
, getVTList(VT
), 0, 0);
1373 ID
.AddInteger(TargetFlags
);
1375 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1376 return SDValue(E
, 0);
1378 SDNode
*N
= new (NodeAllocator
) BlockAddressSDNode(Opc
, VT
, BA
, TargetFlags
);
1379 CSEMap
.InsertNode(N
, IP
);
1380 AllNodes
.push_back(N
);
1381 return SDValue(N
, 0);
1384 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1385 assert((!V
|| V
->getType()->isPointerTy()) &&
1386 "SrcValue is not a pointer?");
1388 FoldingSetNodeID ID
;
1389 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), 0, 0);
1393 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1394 return SDValue(E
, 0);
1396 SDNode
*N
= new (NodeAllocator
) SrcValueSDNode(V
);
1397 CSEMap
.InsertNode(N
, IP
);
1398 AllNodes
.push_back(N
);
1399 return SDValue(N
, 0);
1402 /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1403 SDValue
SelectionDAG::getMDNode(const MDNode
*MD
) {
1404 FoldingSetNodeID ID
;
1405 AddNodeIDNode(ID
, ISD::MDNODE_SDNODE
, getVTList(MVT::Other
), 0, 0);
1409 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
1410 return SDValue(E
, 0);
1412 SDNode
*N
= new (NodeAllocator
) MDNodeSDNode(MD
);
1413 CSEMap
.InsertNode(N
, IP
);
1414 AllNodes
.push_back(N
);
1415 return SDValue(N
, 0);
1419 /// getShiftAmountOperand - Return the specified value casted to
1420 /// the target's desired shift amount type.
1421 SDValue
SelectionDAG::getShiftAmountOperand(EVT LHSTy
, SDValue Op
) {
1422 EVT OpTy
= Op
.getValueType();
1423 MVT ShTy
= TLI
.getShiftAmountTy(LHSTy
);
1424 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1426 ISD::NodeType Opcode
= OpTy
.bitsGT(ShTy
) ? ISD::TRUNCATE
: ISD::ZERO_EXTEND
;
1427 return getNode(Opcode
, Op
.getDebugLoc(), ShTy
, Op
);
1430 /// CreateStackTemporary - Create a stack temporary, suitable for holding the
1431 /// specified value type.
1432 SDValue
SelectionDAG::CreateStackTemporary(EVT VT
, unsigned minAlign
) {
1433 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1434 unsigned ByteSize
= VT
.getStoreSize();
1435 const Type
*Ty
= VT
.getTypeForEVT(*getContext());
1436 unsigned StackAlign
=
1437 std::max((unsigned)TLI
.getTargetData()->getPrefTypeAlignment(Ty
), minAlign
);
1439 int FrameIdx
= FrameInfo
->CreateStackObject(ByteSize
, StackAlign
, false);
1440 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1443 /// CreateStackTemporary - Create a stack temporary suitable for holding
1444 /// either of the specified value types.
1445 SDValue
SelectionDAG::CreateStackTemporary(EVT VT1
, EVT VT2
) {
1446 unsigned Bytes
= std::max(VT1
.getStoreSizeInBits(),
1447 VT2
.getStoreSizeInBits())/8;
1448 const Type
*Ty1
= VT1
.getTypeForEVT(*getContext());
1449 const Type
*Ty2
= VT2
.getTypeForEVT(*getContext());
1450 const TargetData
*TD
= TLI
.getTargetData();
1451 unsigned Align
= std::max(TD
->getPrefTypeAlignment(Ty1
),
1452 TD
->getPrefTypeAlignment(Ty2
));
1454 MachineFrameInfo
*FrameInfo
= getMachineFunction().getFrameInfo();
1455 int FrameIdx
= FrameInfo
->CreateStackObject(Bytes
, Align
, false);
1456 return getFrameIndex(FrameIdx
, TLI
.getPointerTy());
1459 SDValue
SelectionDAG::FoldSetCC(EVT VT
, SDValue N1
,
1460 SDValue N2
, ISD::CondCode Cond
, DebugLoc dl
) {
1461 // These setcc operations always fold.
1465 case ISD::SETFALSE2
: return getConstant(0, VT
);
1467 case ISD::SETTRUE2
: return getConstant(1, VT
);
1479 assert(!N1
.getValueType().isInteger() && "Illegal setcc for integer!");
1483 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode())) {
1484 const APInt
&C2
= N2C
->getAPIntValue();
1485 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
1486 const APInt
&C1
= N1C
->getAPIntValue();
1489 default: llvm_unreachable("Unknown integer setcc!");
1490 case ISD::SETEQ
: return getConstant(C1
== C2
, VT
);
1491 case ISD::SETNE
: return getConstant(C1
!= C2
, VT
);
1492 case ISD::SETULT
: return getConstant(C1
.ult(C2
), VT
);
1493 case ISD::SETUGT
: return getConstant(C1
.ugt(C2
), VT
);
1494 case ISD::SETULE
: return getConstant(C1
.ule(C2
), VT
);
1495 case ISD::SETUGE
: return getConstant(C1
.uge(C2
), VT
);
1496 case ISD::SETLT
: return getConstant(C1
.slt(C2
), VT
);
1497 case ISD::SETGT
: return getConstant(C1
.sgt(C2
), VT
);
1498 case ISD::SETLE
: return getConstant(C1
.sle(C2
), VT
);
1499 case ISD::SETGE
: return getConstant(C1
.sge(C2
), VT
);
1503 if (ConstantFPSDNode
*N1C
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode())) {
1504 if (ConstantFPSDNode
*N2C
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode())) {
1505 // No compile time operations on this type yet.
1506 if (N1C
->getValueType(0) == MVT::ppcf128
)
1509 APFloat::cmpResult R
= N1C
->getValueAPF().compare(N2C
->getValueAPF());
1512 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
1513 return getUNDEF(VT
);
1515 case ISD::SETOEQ
: return getConstant(R
==APFloat::cmpEqual
, VT
);
1516 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
1517 return getUNDEF(VT
);
1519 case ISD::SETONE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1520 R
==APFloat::cmpLessThan
, VT
);
1521 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
1522 return getUNDEF(VT
);
1524 case ISD::SETOLT
: return getConstant(R
==APFloat::cmpLessThan
, VT
);
1525 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
1526 return getUNDEF(VT
);
1528 case ISD::SETOGT
: return getConstant(R
==APFloat::cmpGreaterThan
, VT
);
1529 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
1530 return getUNDEF(VT
);
1532 case ISD::SETOLE
: return getConstant(R
==APFloat::cmpLessThan
||
1533 R
==APFloat::cmpEqual
, VT
);
1534 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
1535 return getUNDEF(VT
);
1537 case ISD::SETOGE
: return getConstant(R
==APFloat::cmpGreaterThan
||
1538 R
==APFloat::cmpEqual
, VT
);
1539 case ISD::SETO
: return getConstant(R
!=APFloat::cmpUnordered
, VT
);
1540 case ISD::SETUO
: return getConstant(R
==APFloat::cmpUnordered
, VT
);
1541 case ISD::SETUEQ
: return getConstant(R
==APFloat::cmpUnordered
||
1542 R
==APFloat::cmpEqual
, VT
);
1543 case ISD::SETUNE
: return getConstant(R
!=APFloat::cmpEqual
, VT
);
1544 case ISD::SETULT
: return getConstant(R
==APFloat::cmpUnordered
||
1545 R
==APFloat::cmpLessThan
, VT
);
1546 case ISD::SETUGT
: return getConstant(R
==APFloat::cmpGreaterThan
||
1547 R
==APFloat::cmpUnordered
, VT
);
1548 case ISD::SETULE
: return getConstant(R
!=APFloat::cmpGreaterThan
, VT
);
1549 case ISD::SETUGE
: return getConstant(R
!=APFloat::cmpLessThan
, VT
);
1552 // Ensure that the constant occurs on the RHS.
1553 return getSetCC(dl
, VT
, N2
, N1
, ISD::getSetCCSwappedOperands(Cond
));
1557 // Could not fold it.
1561 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
1562 /// use this predicate to simplify operations downstream.
1563 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
1564 // This predicate is not safe for vector operations.
1565 if (Op
.getValueType().isVector())
1568 unsigned BitWidth
= Op
.getValueType().getScalarType().getSizeInBits();
1569 return MaskedValueIsZero(Op
, APInt::getSignBit(BitWidth
), Depth
);
1572 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1573 /// this predicate to simplify operations downstream. Mask is known to be zero
1574 /// for bits that V cannot have.
1575 bool SelectionDAG::MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
1576 unsigned Depth
) const {
1577 APInt KnownZero
, KnownOne
;
1578 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
1579 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1580 return (KnownZero
& Mask
) == Mask
;
1583 /// ComputeMaskedBits - Determine which of the bits specified in Mask are
1584 /// known to be either zero or one and return them in the KnownZero/KnownOne
1585 /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1587 void SelectionDAG::ComputeMaskedBits(SDValue Op
, const APInt
&Mask
,
1588 APInt
&KnownZero
, APInt
&KnownOne
,
1589 unsigned Depth
) const {
1590 unsigned BitWidth
= Mask
.getBitWidth();
1591 assert(BitWidth
== Op
.getValueType().getScalarType().getSizeInBits() &&
1592 "Mask size mismatches value type size!");
1594 KnownZero
= KnownOne
= APInt(BitWidth
, 0); // Don't know anything.
1595 if (Depth
== 6 || Mask
== 0)
1596 return; // Limit search depth.
1598 APInt KnownZero2
, KnownOne2
;
1600 switch (Op
.getOpcode()) {
1602 // We know all of the bits for a constant!
1603 KnownOne
= cast
<ConstantSDNode
>(Op
)->getAPIntValue() & Mask
;
1604 KnownZero
= ~KnownOne
& Mask
;
1607 // If either the LHS or the RHS are Zero, the result is zero.
1608 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1609 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownZero
,
1610 KnownZero2
, KnownOne2
, Depth
+1);
1611 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1612 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1614 // Output known-1 bits are only known if set in both the LHS & RHS.
1615 KnownOne
&= KnownOne2
;
1616 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1617 KnownZero
|= KnownZero2
;
1620 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1621 ComputeMaskedBits(Op
.getOperand(0), Mask
& ~KnownOne
,
1622 KnownZero2
, KnownOne2
, Depth
+1);
1623 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1624 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1626 // Output known-0 bits are only known if clear in both the LHS & RHS.
1627 KnownZero
&= KnownZero2
;
1628 // Output known-1 are known to be set if set in either the LHS | RHS.
1629 KnownOne
|= KnownOne2
;
1632 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
1633 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1634 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1635 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1637 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1638 APInt KnownZeroOut
= (KnownZero
& KnownZero2
) | (KnownOne
& KnownOne2
);
1639 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1640 KnownOne
= (KnownZero
& KnownOne2
) | (KnownOne
& KnownZero2
);
1641 KnownZero
= KnownZeroOut
;
1645 APInt Mask2
= APInt::getAllOnesValue(BitWidth
);
1646 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero
, KnownOne
, Depth
+1);
1647 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1648 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1649 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1651 // If low bits are zero in either operand, output low known-0 bits.
1652 // Also compute a conserative estimate for high known-0 bits.
1653 // More trickiness is possible, but this is sufficient for the
1654 // interesting case of alignment computation.
1655 KnownOne
.clearAllBits();
1656 unsigned TrailZ
= KnownZero
.countTrailingOnes() +
1657 KnownZero2
.countTrailingOnes();
1658 unsigned LeadZ
= std::max(KnownZero
.countLeadingOnes() +
1659 KnownZero2
.countLeadingOnes(),
1660 BitWidth
) - BitWidth
;
1662 TrailZ
= std::min(TrailZ
, BitWidth
);
1663 LeadZ
= std::min(LeadZ
, BitWidth
);
1664 KnownZero
= APInt::getLowBitsSet(BitWidth
, TrailZ
) |
1665 APInt::getHighBitsSet(BitWidth
, LeadZ
);
1670 // For the purposes of computing leading zeros we can conservatively
1671 // treat a udiv as a logical right shift by the power of 2 known to
1672 // be less than the denominator.
1673 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
1674 ComputeMaskedBits(Op
.getOperand(0),
1675 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1676 unsigned LeadZ
= KnownZero2
.countLeadingOnes();
1678 KnownOne2
.clearAllBits();
1679 KnownZero2
.clearAllBits();
1680 ComputeMaskedBits(Op
.getOperand(1),
1681 AllOnes
, KnownZero2
, KnownOne2
, Depth
+1);
1682 unsigned RHSUnknownLeadingOnes
= KnownOne2
.countLeadingZeros();
1683 if (RHSUnknownLeadingOnes
!= BitWidth
)
1684 LeadZ
= std::min(BitWidth
,
1685 LeadZ
+ BitWidth
- RHSUnknownLeadingOnes
- 1);
1687 KnownZero
= APInt::getHighBitsSet(BitWidth
, LeadZ
) & Mask
;
1691 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero
, KnownOne
, Depth
+1);
1692 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1693 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1694 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1696 // Only known if known in both the LHS and RHS.
1697 KnownOne
&= KnownOne2
;
1698 KnownZero
&= KnownZero2
;
1700 case ISD::SELECT_CC
:
1701 ComputeMaskedBits(Op
.getOperand(3), Mask
, KnownZero
, KnownOne
, Depth
+1);
1702 ComputeMaskedBits(Op
.getOperand(2), Mask
, KnownZero2
, KnownOne2
, Depth
+1);
1703 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1704 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1706 // Only known if known in both the LHS and RHS.
1707 KnownOne
&= KnownOne2
;
1708 KnownZero
&= KnownZero2
;
1716 if (Op
.getResNo() != 1)
1718 // The boolean result conforms to getBooleanContents. Fall through.
1720 // If we know the result of a setcc has the top bits zero, use this info.
1721 if (TLI
.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent
&&
1723 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1726 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1727 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1728 unsigned ShAmt
= SA
->getZExtValue();
1730 // If the shift count is an invalid immediate, don't do anything.
1731 if (ShAmt
>= BitWidth
)
1734 ComputeMaskedBits(Op
.getOperand(0), Mask
.lshr(ShAmt
),
1735 KnownZero
, KnownOne
, Depth
+1);
1736 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1737 KnownZero
<<= ShAmt
;
1739 // low bits known zero.
1740 KnownZero
|= APInt::getLowBitsSet(BitWidth
, ShAmt
);
1744 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1745 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1746 unsigned ShAmt
= SA
->getZExtValue();
1748 // If the shift count is an invalid immediate, don't do anything.
1749 if (ShAmt
>= BitWidth
)
1752 ComputeMaskedBits(Op
.getOperand(0), (Mask
<< ShAmt
),
1753 KnownZero
, KnownOne
, Depth
+1);
1754 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1755 KnownZero
= KnownZero
.lshr(ShAmt
);
1756 KnownOne
= KnownOne
.lshr(ShAmt
);
1758 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1759 KnownZero
|= HighBits
; // High bits known zero.
1763 if (ConstantSDNode
*SA
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1764 unsigned ShAmt
= SA
->getZExtValue();
1766 // If the shift count is an invalid immediate, don't do anything.
1767 if (ShAmt
>= BitWidth
)
1770 APInt InDemandedMask
= (Mask
<< ShAmt
);
1771 // If any of the demanded bits are produced by the sign extension, we also
1772 // demand the input sign bit.
1773 APInt HighBits
= APInt::getHighBitsSet(BitWidth
, ShAmt
) & Mask
;
1774 if (HighBits
.getBoolValue())
1775 InDemandedMask
|= APInt::getSignBit(BitWidth
);
1777 ComputeMaskedBits(Op
.getOperand(0), InDemandedMask
, KnownZero
, KnownOne
,
1779 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1780 KnownZero
= KnownZero
.lshr(ShAmt
);
1781 KnownOne
= KnownOne
.lshr(ShAmt
);
1783 // Handle the sign bits.
1784 APInt SignBit
= APInt::getSignBit(BitWidth
);
1785 SignBit
= SignBit
.lshr(ShAmt
); // Adjust to where it is now in the mask.
1787 if (KnownZero
.intersects(SignBit
)) {
1788 KnownZero
|= HighBits
; // New bits are known zero.
1789 } else if (KnownOne
.intersects(SignBit
)) {
1790 KnownOne
|= HighBits
; // New bits are known one.
1794 case ISD::SIGN_EXTEND_INREG
: {
1795 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1796 unsigned EBits
= EVT
.getScalarType().getSizeInBits();
1798 // Sign extension. Compute the demanded bits in the result that are not
1799 // present in the input.
1800 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
) & Mask
;
1802 APInt InSignBit
= APInt::getSignBit(EBits
);
1803 APInt InputDemandedBits
= Mask
& APInt::getLowBitsSet(BitWidth
, EBits
);
1805 // If the sign extended bits are demanded, we know that the sign
1807 InSignBit
= InSignBit
.zext(BitWidth
);
1808 if (NewBits
.getBoolValue())
1809 InputDemandedBits
|= InSignBit
;
1811 ComputeMaskedBits(Op
.getOperand(0), InputDemandedBits
,
1812 KnownZero
, KnownOne
, Depth
+1);
1813 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1815 // If the sign bit of the input is known set or clear, then we know the
1816 // top bits of the result.
1817 if (KnownZero
.intersects(InSignBit
)) { // Input sign bit known clear
1818 KnownZero
|= NewBits
;
1819 KnownOne
&= ~NewBits
;
1820 } else if (KnownOne
.intersects(InSignBit
)) { // Input sign bit known set
1821 KnownOne
|= NewBits
;
1822 KnownZero
&= ~NewBits
;
1823 } else { // Input sign bit unknown
1824 KnownZero
&= ~NewBits
;
1825 KnownOne
&= ~NewBits
;
1832 unsigned LowBits
= Log2_32(BitWidth
)+1;
1833 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- LowBits
);
1834 KnownOne
.clearAllBits();
1838 if (ISD::isZEXTLoad(Op
.getNode())) {
1839 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
1840 EVT VT
= LD
->getMemoryVT();
1841 unsigned MemBits
= VT
.getScalarType().getSizeInBits();
1842 KnownZero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
) & Mask
;
1846 case ISD::ZERO_EXTEND
: {
1847 EVT InVT
= Op
.getOperand(0).getValueType();
1848 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1849 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1850 APInt InMask
= Mask
.trunc(InBits
);
1851 KnownZero
= KnownZero
.trunc(InBits
);
1852 KnownOne
= KnownOne
.trunc(InBits
);
1853 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1854 KnownZero
= KnownZero
.zext(BitWidth
);
1855 KnownOne
= KnownOne
.zext(BitWidth
);
1856 KnownZero
|= NewBits
;
1859 case ISD::SIGN_EXTEND
: {
1860 EVT InVT
= Op
.getOperand(0).getValueType();
1861 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1862 APInt InSignBit
= APInt::getSignBit(InBits
);
1863 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- InBits
) & Mask
;
1864 APInt InMask
= Mask
.trunc(InBits
);
1866 // If any of the sign extended bits are demanded, we know that the sign
1867 // bit is demanded. Temporarily set this bit in the mask for our callee.
1868 if (NewBits
.getBoolValue())
1869 InMask
|= InSignBit
;
1871 KnownZero
= KnownZero
.trunc(InBits
);
1872 KnownOne
= KnownOne
.trunc(InBits
);
1873 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1875 // Note if the sign bit is known to be zero or one.
1876 bool SignBitKnownZero
= KnownZero
.isNegative();
1877 bool SignBitKnownOne
= KnownOne
.isNegative();
1878 assert(!(SignBitKnownZero
&& SignBitKnownOne
) &&
1879 "Sign bit can't be known to be both zero and one!");
1881 // If the sign bit wasn't actually demanded by our caller, we don't
1882 // want it set in the KnownZero and KnownOne result values. Reset the
1883 // mask and reapply it to the result values.
1884 InMask
= Mask
.trunc(InBits
);
1885 KnownZero
&= InMask
;
1888 KnownZero
= KnownZero
.zext(BitWidth
);
1889 KnownOne
= KnownOne
.zext(BitWidth
);
1891 // If the sign bit is known zero or one, the top bits match.
1892 if (SignBitKnownZero
)
1893 KnownZero
|= NewBits
;
1894 else if (SignBitKnownOne
)
1895 KnownOne
|= NewBits
;
1898 case ISD::ANY_EXTEND
: {
1899 EVT InVT
= Op
.getOperand(0).getValueType();
1900 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1901 APInt InMask
= Mask
.trunc(InBits
);
1902 KnownZero
= KnownZero
.trunc(InBits
);
1903 KnownOne
= KnownOne
.trunc(InBits
);
1904 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1905 KnownZero
= KnownZero
.zext(BitWidth
);
1906 KnownOne
= KnownOne
.zext(BitWidth
);
1909 case ISD::TRUNCATE
: {
1910 EVT InVT
= Op
.getOperand(0).getValueType();
1911 unsigned InBits
= InVT
.getScalarType().getSizeInBits();
1912 APInt InMask
= Mask
.zext(InBits
);
1913 KnownZero
= KnownZero
.zext(InBits
);
1914 KnownOne
= KnownOne
.zext(InBits
);
1915 ComputeMaskedBits(Op
.getOperand(0), InMask
, KnownZero
, KnownOne
, Depth
+1);
1916 assert((KnownZero
& KnownOne
) == 0 && "Bits known to be one AND zero?");
1917 KnownZero
= KnownZero
.trunc(BitWidth
);
1918 KnownOne
= KnownOne
.trunc(BitWidth
);
1921 case ISD::AssertZext
: {
1922 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1923 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
1924 ComputeMaskedBits(Op
.getOperand(0), Mask
& InMask
, KnownZero
,
1926 KnownZero
|= (~InMask
) & Mask
;
1930 // All bits are zero except the low bit.
1931 KnownZero
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
1935 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))) {
1936 // We know that the top bits of C-X are clear if X contains less bits
1937 // than C (i.e. no wrap-around can happen). For example, 20-X is
1938 // positive if we can prove that X is >= 0 and < 16.
1939 if (CLHS
->getAPIntValue().isNonNegative()) {
1940 unsigned NLZ
= (CLHS
->getAPIntValue()+1).countLeadingZeros();
1941 // NLZ can't be BitWidth with no sign bit
1942 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
1943 ComputeMaskedBits(Op
.getOperand(1), MaskV
, KnownZero2
, KnownOne2
,
1946 // If all of the MaskV bits are known to be zero, then we know the
1947 // output top bits are zero, because we now know that the output is
1949 if ((KnownZero2
& MaskV
) == MaskV
) {
1950 unsigned NLZ2
= CLHS
->getAPIntValue().countLeadingZeros();
1951 // Top bits known zero.
1952 KnownZero
= APInt::getHighBitsSet(BitWidth
, NLZ2
) & Mask
;
1960 // Output known-0 bits are known if clear or set in both the low clear bits
1961 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1962 // low 3 bits clear.
1963 APInt Mask2
= APInt::getLowBitsSet(BitWidth
,
1964 BitWidth
- Mask
.countLeadingZeros());
1965 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1966 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1967 unsigned KnownZeroOut
= KnownZero2
.countTrailingOnes();
1969 ComputeMaskedBits(Op
.getOperand(1), Mask2
, KnownZero2
, KnownOne2
, Depth
+1);
1970 assert((KnownZero2
& KnownOne2
) == 0 && "Bits known to be one AND zero?");
1971 KnownZeroOut
= std::min(KnownZeroOut
,
1972 KnownZero2
.countTrailingOnes());
1974 if (Op
.getOpcode() == ISD::ADD
) {
1975 KnownZero
|= APInt::getLowBitsSet(BitWidth
, KnownZeroOut
);
1979 // With ADDE, a carry bit may be added in, so we can only use this
1980 // information if we know (at least) that the low two bits are clear. We
1981 // then return to the caller that the low bit is unknown but that other bits
1983 if (KnownZeroOut
>= 2) // ADDE
1984 KnownZero
|= APInt::getBitsSet(BitWidth
, 1, KnownZeroOut
);
1988 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1989 const APInt
&RA
= Rem
->getAPIntValue().abs();
1990 if (RA
.isPowerOf2()) {
1991 APInt LowBits
= RA
- 1;
1992 APInt Mask2
= LowBits
| APInt::getSignBit(BitWidth
);
1993 ComputeMaskedBits(Op
.getOperand(0), Mask2
,KnownZero2
,KnownOne2
,Depth
+1);
1995 // The low bits of the first operand are unchanged by the srem.
1996 KnownZero
= KnownZero2
& LowBits
;
1997 KnownOne
= KnownOne2
& LowBits
;
1999 // If the first operand is non-negative or has all low bits zero, then
2000 // the upper bits are all zero.
2001 if (KnownZero2
[BitWidth
-1] || ((KnownZero2
& LowBits
) == LowBits
))
2002 KnownZero
|= ~LowBits
;
2004 // If the first operand is negative and not all low bits are zero, then
2005 // the upper bits are all one.
2006 if (KnownOne2
[BitWidth
-1] && ((KnownOne2
& LowBits
) != 0))
2007 KnownOne
|= ~LowBits
;
2012 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
2017 if (ConstantSDNode
*Rem
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2018 const APInt
&RA
= Rem
->getAPIntValue();
2019 if (RA
.isPowerOf2()) {
2020 APInt LowBits
= (RA
- 1);
2021 APInt Mask2
= LowBits
& Mask
;
2022 KnownZero
|= ~LowBits
& Mask
;
2023 ComputeMaskedBits(Op
.getOperand(0), Mask2
, KnownZero
, KnownOne
,Depth
+1);
2024 assert((KnownZero
& KnownOne
) == 0&&"Bits known to be one AND zero?");
2029 // Since the result is less than or equal to either operand, any leading
2030 // zero bits in either operand must also exist in the result.
2031 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
2032 ComputeMaskedBits(Op
.getOperand(0), AllOnes
, KnownZero
, KnownOne
,
2034 ComputeMaskedBits(Op
.getOperand(1), AllOnes
, KnownZero2
, KnownOne2
,
2037 uint32_t Leaders
= std::max(KnownZero
.countLeadingOnes(),
2038 KnownZero2
.countLeadingOnes());
2039 KnownOne
.clearAllBits();
2040 KnownZero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & Mask
;
2043 case ISD::FrameIndex
:
2044 case ISD::TargetFrameIndex
:
2045 if (unsigned Align
= InferPtrAlignment(Op
)) {
2046 // The low bits are known zero if the pointer is aligned.
2047 KnownZero
= APInt::getLowBitsSet(BitWidth
, Log2_32(Align
));
2053 if (Op
.getOpcode() < ISD::BUILTIN_OP_END
)
2056 case ISD::INTRINSIC_WO_CHAIN
:
2057 case ISD::INTRINSIC_W_CHAIN
:
2058 case ISD::INTRINSIC_VOID
:
2059 // Allow the target to implement this method for its nodes.
2060 TLI
.computeMaskedBitsForTargetNode(Op
, Mask
, KnownZero
, KnownOne
, *this,
2066 /// ComputeNumSignBits - Return the number of times the sign bit of the
2067 /// register is replicated into the other bits. We know that at least 1 bit
2068 /// is always equal to the sign bit (itself), but other cases can give us
2069 /// information. For example, immediately after an "SRA X, 2", we know that
2070 /// the top 3 bits are all equal to each other, so we return 3.
2071 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const{
2072 EVT VT
= Op
.getValueType();
2073 assert(VT
.isInteger() && "Invalid VT!");
2074 unsigned VTBits
= VT
.getScalarType().getSizeInBits();
2076 unsigned FirstAnswer
= 1;
2079 return 1; // Limit search depth.
2081 switch (Op
.getOpcode()) {
2083 case ISD::AssertSext
:
2084 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2085 return VTBits
-Tmp
+1;
2086 case ISD::AssertZext
:
2087 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
2090 case ISD::Constant
: {
2091 const APInt
&Val
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
2092 return Val
.getNumSignBits();
2095 case ISD::SIGN_EXTEND
:
2096 Tmp
= VTBits
-Op
.getOperand(0).getValueType().getScalarType().getSizeInBits();
2097 return ComputeNumSignBits(Op
.getOperand(0), Depth
+1) + Tmp
;
2099 case ISD::SIGN_EXTEND_INREG
:
2100 // Max of the input and what this extends.
2102 cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getScalarType().getSizeInBits();
2105 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2106 return std::max(Tmp
, Tmp2
);
2109 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2110 // SRA X, C -> adds C sign bits.
2111 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2112 Tmp
+= C
->getZExtValue();
2113 if (Tmp
> VTBits
) Tmp
= VTBits
;
2117 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2118 // shl destroys sign bits.
2119 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2120 if (C
->getZExtValue() >= VTBits
|| // Bad shift.
2121 C
->getZExtValue() >= Tmp
) break; // Shifted all sign bits out.
2122 return Tmp
- C
->getZExtValue();
2127 case ISD::XOR
: // NOT is handled here.
2128 // Logical binary ops preserve the number of sign bits at the worst.
2129 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2131 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2132 FirstAnswer
= std::min(Tmp
, Tmp2
);
2133 // We computed what we know about the sign bits as our first
2134 // answer. Now proceed to the generic code that uses
2135 // ComputeMaskedBits, and pick whichever answer is better.
2140 Tmp
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2141 if (Tmp
== 1) return 1; // Early out.
2142 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), Depth
+1);
2143 return std::min(Tmp
, Tmp2
);
2151 if (Op
.getResNo() != 1)
2153 // The boolean result conforms to getBooleanContents. Fall through.
2155 // If setcc returns 0/-1, all bits are sign bits.
2156 if (TLI
.getBooleanContents() ==
2157 TargetLowering::ZeroOrNegativeOneBooleanContent
)
2162 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
2163 unsigned RotAmt
= C
->getZExtValue() & (VTBits
-1);
2165 // Handle rotate right by N like a rotate left by 32-N.
2166 if (Op
.getOpcode() == ISD::ROTR
)
2167 RotAmt
= (VTBits
-RotAmt
) & (VTBits
-1);
2169 // If we aren't rotating out all of the known-in sign bits, return the
2170 // number that are left. This handles rotl(sext(x), 1) for example.
2171 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2172 if (Tmp
> RotAmt
+1) return Tmp
-RotAmt
;
2176 // Add can have at most one carry bit. Thus we know that the output
2177 // is, at worst, one more bit than the inputs.
2178 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2179 if (Tmp
== 1) return 1; // Early out.
2181 // Special case decrementing a value (ADD X, -1):
2182 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2183 if (CRHS
->isAllOnesValue()) {
2184 APInt KnownZero
, KnownOne
;
2185 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2186 ComputeMaskedBits(Op
.getOperand(0), Mask
, KnownZero
, KnownOne
, Depth
+1);
2188 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2190 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2193 // If we are subtracting one from a positive number, there is no carry
2194 // out of the result.
2195 if (KnownZero
.isNegative())
2199 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2200 if (Tmp2
== 1) return 1;
2201 return std::min(Tmp
, Tmp2
)-1;
2205 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
2206 if (Tmp2
== 1) return 1;
2209 if (ConstantSDNode
*CLHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0)))
2210 if (CLHS
->isNullValue()) {
2211 APInt KnownZero
, KnownOne
;
2212 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2213 ComputeMaskedBits(Op
.getOperand(1), Mask
, KnownZero
, KnownOne
, Depth
+1);
2214 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2216 if ((KnownZero
| APInt(VTBits
, 1)) == Mask
)
2219 // If the input is known to be positive (the sign bit is known clear),
2220 // the output of the NEG has the same number of sign bits as the input.
2221 if (KnownZero
.isNegative())
2224 // Otherwise, we treat this like a SUB.
2227 // Sub can have at most one carry bit. Thus we know that the output
2228 // is, at worst, one more bit than the inputs.
2229 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
2230 if (Tmp
== 1) return 1; // Early out.
2231 return std::min(Tmp
, Tmp2
)-1;
2234 // FIXME: it's tricky to do anything useful for this, but it is an important
2235 // case for targets like X86.
2239 // Handle LOADX separately here. EXTLOAD case will fallthrough.
2240 if (Op
.getOpcode() == ISD::LOAD
) {
2241 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2242 unsigned ExtType
= LD
->getExtensionType();
2245 case ISD::SEXTLOAD
: // '17' bits known
2246 Tmp
= LD
->getMemoryVT().getScalarType().getSizeInBits();
2247 return VTBits
-Tmp
+1;
2248 case ISD::ZEXTLOAD
: // '16' bits known
2249 Tmp
= LD
->getMemoryVT().getScalarType().getSizeInBits();
2254 // Allow the target to implement this method for its nodes.
2255 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2256 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2257 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2258 Op
.getOpcode() == ISD::INTRINSIC_VOID
) {
2259 unsigned NumBits
= TLI
.ComputeNumSignBitsForTargetNode(Op
, Depth
);
2260 if (NumBits
> 1) FirstAnswer
= std::max(FirstAnswer
, NumBits
);
2263 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2264 // use this information.
2265 APInt KnownZero
, KnownOne
;
2266 APInt Mask
= APInt::getAllOnesValue(VTBits
);
2267 ComputeMaskedBits(Op
, Mask
, KnownZero
, KnownOne
, Depth
);
2269 if (KnownZero
.isNegative()) { // sign bit is 0
2271 } else if (KnownOne
.isNegative()) { // sign bit is 1;
2278 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
2279 // the number of identical bits in the top of the input value.
2281 Mask
<<= Mask
.getBitWidth()-VTBits
;
2282 // Return # leading zeros. We use 'min' here in case Val was zero before
2283 // shifting. We don't want to return '64' as for an i32 "0".
2284 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
2287 /// isBaseWithConstantOffset - Return true if the specified operand is an
2288 /// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2289 /// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2290 /// semantics as an ADD. This handles the equivalence:
2291 /// X|Cst == X+Cst iff X&Cst = 0.
2292 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op
) const {
2293 if ((Op
.getOpcode() != ISD::ADD
&& Op
.getOpcode() != ISD::OR
) ||
2294 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
2297 if (Op
.getOpcode() == ISD::OR
&&
2298 !MaskedValueIsZero(Op
.getOperand(0),
2299 cast
<ConstantSDNode
>(Op
.getOperand(1))->getAPIntValue()))
2306 bool SelectionDAG::isKnownNeverNaN(SDValue Op
) const {
2307 // If we're told that NaNs won't happen, assume they won't.
2311 // If the value is a constant, we can obviously see if it is a NaN or not.
2312 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
))
2313 return !C
->getValueAPF().isNaN();
2315 // TODO: Recognize more cases here.
2320 bool SelectionDAG::isKnownNeverZero(SDValue Op
) const {
2321 // If the value is a constant, we can obviously see if it is a zero or not.
2322 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
))
2323 return !C
->isZero();
2325 // TODO: Recognize more cases here.
2326 switch (Op
.getOpcode()) {
2329 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2330 return !C
->isNullValue();
2337 bool SelectionDAG::isEqualTo(SDValue A
, SDValue B
) const {
2338 // Check the obvious case.
2339 if (A
== B
) return true;
2341 // For for negative and positive zero.
2342 if (const ConstantFPSDNode
*CA
= dyn_cast
<ConstantFPSDNode
>(A
))
2343 if (const ConstantFPSDNode
*CB
= dyn_cast
<ConstantFPSDNode
>(B
))
2344 if (CA
->isZero() && CB
->isZero()) return true;
2346 // Otherwise they may not be equal.
2350 /// getNode - Gets or creates the specified node.
2352 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
) {
2353 FoldingSetNodeID ID
;
2354 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), 0, 0);
2356 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2357 return SDValue(E
, 0);
2359 SDNode
*N
= new (NodeAllocator
) SDNode(Opcode
, DL
, getVTList(VT
));
2360 CSEMap
.InsertNode(N
, IP
);
2362 AllNodes
.push_back(N
);
2366 return SDValue(N
, 0);
2369 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
2370 EVT VT
, SDValue Operand
) {
2371 // Constant fold unary operations with an integer constant operand.
2372 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
.getNode())) {
2373 const APInt
&Val
= C
->getAPIntValue();
2376 case ISD::SIGN_EXTEND
:
2377 return getConstant(Val
.sextOrTrunc(VT
.getSizeInBits()), VT
);
2378 case ISD::ANY_EXTEND
:
2379 case ISD::ZERO_EXTEND
:
2381 return getConstant(Val
.zextOrTrunc(VT
.getSizeInBits()), VT
);
2382 case ISD::UINT_TO_FP
:
2383 case ISD::SINT_TO_FP
: {
2384 // No compile time operations on ppcf128.
2385 if (VT
== MVT::ppcf128
) break;
2386 APFloat
apf(APInt::getNullValue(VT
.getSizeInBits()));
2387 (void)apf
.convertFromAPInt(Val
,
2388 Opcode
==ISD::SINT_TO_FP
,
2389 APFloat::rmNearestTiesToEven
);
2390 return getConstantFP(apf
, VT
);
2393 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
2394 return getConstantFP(Val
.bitsToFloat(), VT
);
2395 else if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
2396 return getConstantFP(Val
.bitsToDouble(), VT
);
2399 return getConstant(Val
.byteSwap(), VT
);
2401 return getConstant(Val
.countPopulation(), VT
);
2403 return getConstant(Val
.countLeadingZeros(), VT
);
2405 return getConstant(Val
.countTrailingZeros(), VT
);
2409 // Constant fold unary operations with a floating point constant operand.
2410 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
.getNode())) {
2411 APFloat V
= C
->getValueAPF(); // make copy
2412 if (VT
!= MVT::ppcf128
&& Operand
.getValueType() != MVT::ppcf128
) {
2416 return getConstantFP(V
, VT
);
2419 return getConstantFP(V
, VT
);
2421 case ISD::FP_EXTEND
: {
2423 // This can return overflow, underflow, or inexact; we don't care.
2424 // FIXME need to be more flexible about rounding mode.
2425 (void)V
.convert(*EVTToAPFloatSemantics(VT
),
2426 APFloat::rmNearestTiesToEven
, &ignored
);
2427 return getConstantFP(V
, VT
);
2429 case ISD::FP_TO_SINT
:
2430 case ISD::FP_TO_UINT
: {
2433 assert(integerPartWidth
>= 64);
2434 // FIXME need to be more flexible about rounding mode.
2435 APFloat::opStatus s
= V
.convertToInteger(x
, VT
.getSizeInBits(),
2436 Opcode
==ISD::FP_TO_SINT
,
2437 APFloat::rmTowardZero
, &ignored
);
2438 if (s
==APFloat::opInvalidOp
) // inexact is OK, in fact usual
2440 APInt
api(VT
.getSizeInBits(), 2, x
);
2441 return getConstant(api
, VT
);
2444 if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
2445 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), VT
);
2446 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
2447 return getConstant(V
.bitcastToAPInt().getZExtValue(), VT
);
2453 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
2455 case ISD::TokenFactor
:
2456 case ISD::MERGE_VALUES
:
2457 case ISD::CONCAT_VECTORS
:
2458 return Operand
; // Factor, merge or concat of one node? No need.
2459 case ISD::FP_ROUND
: llvm_unreachable("Invalid method to make FP_ROUND node");
2460 case ISD::FP_EXTEND
:
2461 assert(VT
.isFloatingPoint() &&
2462 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
2463 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
2464 assert((!VT
.isVector() ||
2465 VT
.getVectorNumElements() ==
2466 Operand
.getValueType().getVectorNumElements()) &&
2467 "Vector element count mismatch!");
2468 if (Operand
.getOpcode() == ISD::UNDEF
)
2469 return getUNDEF(VT
);
2471 case ISD::SIGN_EXTEND
:
2472 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2473 "Invalid SIGN_EXTEND!");
2474 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2475 assert(Operand
.getValueType().getScalarType().bitsLT(VT
.getScalarType()) &&
2476 "Invalid sext node, dst < src!");
2477 assert((!VT
.isVector() ||
2478 VT
.getVectorNumElements() ==
2479 Operand
.getValueType().getVectorNumElements()) &&
2480 "Vector element count mismatch!");
2481 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
2482 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2483 else if (OpOpcode
== ISD::UNDEF
)
2484 // sext(undef) = 0, because the top bits will all be the same.
2485 return getConstant(0, VT
);
2487 case ISD::ZERO_EXTEND
:
2488 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2489 "Invalid ZERO_EXTEND!");
2490 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2491 assert(Operand
.getValueType().getScalarType().bitsLT(VT
.getScalarType()) &&
2492 "Invalid zext node, dst < src!");
2493 assert((!VT
.isVector() ||
2494 VT
.getVectorNumElements() ==
2495 Operand
.getValueType().getVectorNumElements()) &&
2496 "Vector element count mismatch!");
2497 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
2498 return getNode(ISD::ZERO_EXTEND
, DL
, VT
,
2499 Operand
.getNode()->getOperand(0));
2500 else if (OpOpcode
== ISD::UNDEF
)
2501 // zext(undef) = 0, because the top bits will be zero.
2502 return getConstant(0, VT
);
2504 case ISD::ANY_EXTEND
:
2505 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2506 "Invalid ANY_EXTEND!");
2507 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
2508 assert(Operand
.getValueType().getScalarType().bitsLT(VT
.getScalarType()) &&
2509 "Invalid anyext node, dst < src!");
2510 assert((!VT
.isVector() ||
2511 VT
.getVectorNumElements() ==
2512 Operand
.getValueType().getVectorNumElements()) &&
2513 "Vector element count mismatch!");
2515 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2516 OpOpcode
== ISD::ANY_EXTEND
)
2517 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
2518 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2519 else if (OpOpcode
== ISD::UNDEF
)
2520 return getUNDEF(VT
);
2522 // (ext (trunx x)) -> x
2523 if (OpOpcode
== ISD::TRUNCATE
) {
2524 SDValue OpOp
= Operand
.getNode()->getOperand(0);
2525 if (OpOp
.getValueType() == VT
)
2530 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
2531 "Invalid TRUNCATE!");
2532 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
2533 assert(Operand
.getValueType().getScalarType().bitsGT(VT
.getScalarType()) &&
2534 "Invalid truncate node, src < dst!");
2535 assert((!VT
.isVector() ||
2536 VT
.getVectorNumElements() ==
2537 Operand
.getValueType().getVectorNumElements()) &&
2538 "Vector element count mismatch!");
2539 if (OpOpcode
== ISD::TRUNCATE
)
2540 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2541 else if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
2542 OpOpcode
== ISD::ANY_EXTEND
) {
2543 // If the source is smaller than the dest, we still need an extend.
2544 if (Operand
.getNode()->getOperand(0).getValueType().getScalarType()
2545 .bitsLT(VT
.getScalarType()))
2546 return getNode(OpOpcode
, DL
, VT
, Operand
.getNode()->getOperand(0));
2547 else if (Operand
.getNode()->getOperand(0).getValueType().bitsGT(VT
))
2548 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getNode()->getOperand(0));
2550 return Operand
.getNode()->getOperand(0);
2554 // Basic sanity checking.
2555 assert(VT
.getSizeInBits() == Operand
.getValueType().getSizeInBits()
2556 && "Cannot BITCAST between types of different sizes!");
2557 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
2558 if (OpOpcode
== ISD::BITCAST
) // bitconv(bitconv(x)) -> bitconv(x)
2559 return getNode(ISD::BITCAST
, DL
, VT
, Operand
.getOperand(0));
2560 if (OpOpcode
== ISD::UNDEF
)
2561 return getUNDEF(VT
);
2563 case ISD::SCALAR_TO_VECTOR
:
2564 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
2565 (VT
.getVectorElementType() == Operand
.getValueType() ||
2566 (VT
.getVectorElementType().isInteger() &&
2567 Operand
.getValueType().isInteger() &&
2568 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
2569 "Illegal SCALAR_TO_VECTOR node!");
2570 if (OpOpcode
== ISD::UNDEF
)
2571 return getUNDEF(VT
);
2572 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2573 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
2574 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
2575 Operand
.getConstantOperandVal(1) == 0 &&
2576 Operand
.getOperand(0).getValueType() == VT
)
2577 return Operand
.getOperand(0);
2580 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2581 if (UnsafeFPMath
&& OpOpcode
== ISD::FSUB
)
2582 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getNode()->getOperand(1),
2583 Operand
.getNode()->getOperand(0));
2584 if (OpOpcode
== ISD::FNEG
) // --X -> X
2585 return Operand
.getNode()->getOperand(0);
2588 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
2589 return getNode(ISD::FABS
, DL
, VT
, Operand
.getNode()->getOperand(0));
2594 SDVTList VTs
= getVTList(VT
);
2595 if (VT
!= MVT::Glue
) { // Don't CSE flag producing nodes
2596 FoldingSetNodeID ID
;
2597 SDValue Ops
[1] = { Operand
};
2598 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 1);
2600 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
2601 return SDValue(E
, 0);
2603 N
= new (NodeAllocator
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2604 CSEMap
.InsertNode(N
, IP
);
2606 N
= new (NodeAllocator
) UnarySDNode(Opcode
, DL
, VTs
, Operand
);
2609 AllNodes
.push_back(N
);
2613 return SDValue(N
, 0);
2616 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
,
2618 ConstantSDNode
*Cst1
,
2619 ConstantSDNode
*Cst2
) {
2620 const APInt
&C1
= Cst1
->getAPIntValue(), &C2
= Cst2
->getAPIntValue();
2623 case ISD::ADD
: return getConstant(C1
+ C2
, VT
);
2624 case ISD::SUB
: return getConstant(C1
- C2
, VT
);
2625 case ISD::MUL
: return getConstant(C1
* C2
, VT
);
2627 if (C2
.getBoolValue()) return getConstant(C1
.udiv(C2
), VT
);
2630 if (C2
.getBoolValue()) return getConstant(C1
.urem(C2
), VT
);
2633 if (C2
.getBoolValue()) return getConstant(C1
.sdiv(C2
), VT
);
2636 if (C2
.getBoolValue()) return getConstant(C1
.srem(C2
), VT
);
2638 case ISD::AND
: return getConstant(C1
& C2
, VT
);
2639 case ISD::OR
: return getConstant(C1
| C2
, VT
);
2640 case ISD::XOR
: return getConstant(C1
^ C2
, VT
);
2641 case ISD::SHL
: return getConstant(C1
<< C2
, VT
);
2642 case ISD::SRL
: return getConstant(C1
.lshr(C2
), VT
);
2643 case ISD::SRA
: return getConstant(C1
.ashr(C2
), VT
);
2644 case ISD::ROTL
: return getConstant(C1
.rotl(C2
), VT
);
2645 case ISD::ROTR
: return getConstant(C1
.rotr(C2
), VT
);
2652 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
2653 SDValue N1
, SDValue N2
) {
2654 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
2655 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
.getNode());
2658 case ISD::TokenFactor
:
2659 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
2660 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
2661 // Fold trivial token factors.
2662 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
2663 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
2664 if (N1
== N2
) return N1
;
2666 case ISD::CONCAT_VECTORS
:
2667 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2668 // one big BUILD_VECTOR.
2669 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
2670 N2
.getOpcode() == ISD::BUILD_VECTOR
) {
2671 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(),
2672 N1
.getNode()->op_end());
2673 Elts
.append(N2
.getNode()->op_begin(), N2
.getNode()->op_end());
2674 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
2678 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2679 assert(N1
.getValueType() == N2
.getValueType() &&
2680 N1
.getValueType() == VT
&& "Binary operator types must match!");
2681 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2682 // worth handling here.
2683 if (N2C
&& N2C
->isNullValue())
2685 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
2692 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2693 assert(N1
.getValueType() == N2
.getValueType() &&
2694 N1
.getValueType() == VT
&& "Binary operator types must match!");
2695 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
2696 // it's worth handling here.
2697 if (N2C
&& N2C
->isNullValue())
2707 assert(VT
.isInteger() && "This operator does not apply to FP types!");
2708 assert(N1
.getValueType() == N2
.getValueType() &&
2709 N1
.getValueType() == VT
&& "Binary operator types must match!");
2717 if (Opcode
== ISD::FADD
) {
2719 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N1
))
2720 if (CFP
->getValueAPF().isZero())
2723 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2724 if (CFP
->getValueAPF().isZero())
2726 } else if (Opcode
== ISD::FSUB
) {
2728 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N2
))
2729 if (CFP
->getValueAPF().isZero())
2733 assert(VT
.isFloatingPoint() && "This operator only applies to FP types!");
2734 assert(N1
.getValueType() == N2
.getValueType() &&
2735 N1
.getValueType() == VT
&& "Binary operator types must match!");
2737 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
2738 assert(N1
.getValueType() == VT
&&
2739 N1
.getValueType().isFloatingPoint() &&
2740 N2
.getValueType().isFloatingPoint() &&
2741 "Invalid FCOPYSIGN!");
2748 assert(VT
== N1
.getValueType() &&
2749 "Shift operators return type must be the same as their first arg");
2750 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
2751 "Shifts only work on integers");
2752 // Verify that the shift amount VT is bit enough to hold valid shift
2753 // amounts. This catches things like trying to shift an i1024 value by an
2754 // i8, which is easy to fall into in generic code that uses
2755 // TLI.getShiftAmount().
2756 assert(N2
.getValueType().getSizeInBits() >=
2757 Log2_32_Ceil(N1
.getValueType().getSizeInBits()) &&
2758 "Invalid use of small shift amount with oversized value!");
2760 // Always fold shifts of i1 values so the code generator doesn't need to
2761 // handle them. Since we know the size of the shift has to be less than the
2762 // size of the value, the shift/rotate count is guaranteed to be zero.
2765 if (N2C
&& N2C
->isNullValue())
2768 case ISD::FP_ROUND_INREG
: {
2769 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2770 assert(VT
== N1
.getValueType() && "Not an inreg round!");
2771 assert(VT
.isFloatingPoint() && EVT
.isFloatingPoint() &&
2772 "Cannot FP_ROUND_INREG integer types");
2773 assert(EVT
.isVector() == VT
.isVector() &&
2774 "FP_ROUND_INREG type should be vector iff the operand "
2776 assert((!EVT
.isVector() ||
2777 EVT
.getVectorNumElements() == VT
.getVectorNumElements()) &&
2778 "Vector element counts must match in FP_ROUND_INREG");
2779 assert(EVT
.bitsLE(VT
) && "Not rounding down!");
2780 if (cast
<VTSDNode
>(N2
)->getVT() == VT
) return N1
; // Not actually rounding.
2784 assert(VT
.isFloatingPoint() &&
2785 N1
.getValueType().isFloatingPoint() &&
2786 VT
.bitsLE(N1
.getValueType()) &&
2787 isa
<ConstantSDNode
>(N2
) && "Invalid FP_ROUND!");
2788 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
2790 case ISD::AssertSext
:
2791 case ISD::AssertZext
: {
2792 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2793 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2794 assert(VT
.isInteger() && EVT
.isInteger() &&
2795 "Cannot *_EXTEND_INREG FP types");
2796 assert(!EVT
.isVector() &&
2797 "AssertSExt/AssertZExt type should be the vector element type "
2798 "rather than the vector type!");
2799 assert(EVT
.bitsLE(VT
) && "Not extending!");
2800 if (VT
== EVT
) return N1
; // noop assertion.
2803 case ISD::SIGN_EXTEND_INREG
: {
2804 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
2805 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
2806 assert(VT
.isInteger() && EVT
.isInteger() &&
2807 "Cannot *_EXTEND_INREG FP types");
2808 assert(EVT
.isVector() == VT
.isVector() &&
2809 "SIGN_EXTEND_INREG type should be vector iff the operand "
2811 assert((!EVT
.isVector() ||
2812 EVT
.getVectorNumElements() == VT
.getVectorNumElements()) &&
2813 "Vector element counts must match in SIGN_EXTEND_INREG");
2814 assert(EVT
.bitsLE(VT
) && "Not extending!");
2815 if (EVT
== VT
) return N1
; // Not actually extending
2818 APInt Val
= N1C
->getAPIntValue();
2819 unsigned FromBits
= EVT
.getScalarType().getSizeInBits();
2820 Val
<<= Val
.getBitWidth()-FromBits
;
2821 Val
= Val
.ashr(Val
.getBitWidth()-FromBits
);
2822 return getConstant(Val
, VT
);
2826 case ISD::EXTRACT_VECTOR_ELT
:
2827 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2828 if (N1
.getOpcode() == ISD::UNDEF
)
2829 return getUNDEF(VT
);
2831 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2832 // expanding copies of large vectors from registers.
2834 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
2835 N1
.getNumOperands() > 0) {
2837 N1
.getOperand(0).getValueType().getVectorNumElements();
2838 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
2839 N1
.getOperand(N2C
->getZExtValue() / Factor
),
2840 getConstant(N2C
->getZExtValue() % Factor
,
2841 N2
.getValueType()));
2844 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2845 // expanding large vector constants.
2846 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
) {
2847 SDValue Elt
= N1
.getOperand(N2C
->getZExtValue());
2848 EVT VEltTy
= N1
.getValueType().getVectorElementType();
2849 if (Elt
.getValueType() != VEltTy
) {
2850 // If the vector element type is not legal, the BUILD_VECTOR operands
2851 // are promoted and implicitly truncated. Make that explicit here.
2852 Elt
= getNode(ISD::TRUNCATE
, DL
, VEltTy
, Elt
);
2855 // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2856 // result is implicitly extended.
2857 Elt
= getNode(ISD::ANY_EXTEND
, DL
, VT
, Elt
);
2862 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2863 // operations are lowered to scalars.
2864 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
2865 // If the indices are the same, return the inserted element else
2866 // if the indices are known different, extract the element from
2867 // the original vector.
2868 SDValue N1Op2
= N1
.getOperand(2);
2869 ConstantSDNode
*N1Op2C
= dyn_cast
<ConstantSDNode
>(N1Op2
.getNode());
2871 if (N1Op2C
&& N2C
) {
2872 if (N1Op2C
->getZExtValue() == N2C
->getZExtValue()) {
2873 if (VT
== N1
.getOperand(1).getValueType())
2874 return N1
.getOperand(1);
2876 return getSExtOrTrunc(N1
.getOperand(1), DL
, VT
);
2879 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
2883 case ISD::EXTRACT_ELEMENT
:
2884 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2885 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
2886 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
2887 "Wrong types for EXTRACT_ELEMENT!");
2889 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2890 // 64-bit integers into 32-bit parts. Instead of building the extract of
2891 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2892 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
2893 return N1
.getOperand(N2C
->getZExtValue());
2895 // EXTRACT_ELEMENT of a constant int is also very common.
2896 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
2897 unsigned ElementSize
= VT
.getSizeInBits();
2898 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
2899 APInt ShiftedVal
= C
->getAPIntValue().lshr(Shift
);
2900 return getConstant(ShiftedVal
.trunc(ElementSize
), VT
);
2903 case ISD::EXTRACT_SUBVECTOR
: {
2905 if (VT
.isSimple() && N1
.getValueType().isSimple()) {
2906 assert(VT
.isVector() && N1
.getValueType().isVector() &&
2907 "Extract subvector VTs must be a vectors!");
2908 assert(VT
.getVectorElementType() == N1
.getValueType().getVectorElementType() &&
2909 "Extract subvector VTs must have the same element type!");
2910 assert(VT
.getSimpleVT() <= N1
.getValueType().getSimpleVT() &&
2911 "Extract subvector must be from larger vector to smaller vector!");
2913 if (isa
<ConstantSDNode
>(Index
.getNode())) {
2914 assert((VT
.getVectorNumElements() +
2915 cast
<ConstantSDNode
>(Index
.getNode())->getZExtValue()
2916 <= N1
.getValueType().getVectorNumElements())
2917 && "Extract subvector overflow!");
2920 // Trivial extraction.
2921 if (VT
.getSimpleVT() == N1
.getValueType().getSimpleVT())
2930 SDValue SV
= FoldConstantArithmetic(Opcode
, VT
, N1C
, N2C
);
2931 if (SV
.getNode()) return SV
;
2932 } else { // Cannonicalize constant to RHS if commutative
2933 if (isCommutativeBinOp(Opcode
)) {
2934 std::swap(N1C
, N2C
);
2940 // Constant fold FP operations.
2941 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
.getNode());
2942 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
.getNode());
2944 if (!N2CFP
&& isCommutativeBinOp(Opcode
)) {
2945 // Cannonicalize constant to RHS if commutative
2946 std::swap(N1CFP
, N2CFP
);
2948 } else if (N2CFP
&& VT
!= MVT::ppcf128
) {
2949 APFloat V1
= N1CFP
->getValueAPF(), V2
= N2CFP
->getValueAPF();
2950 APFloat::opStatus s
;
2953 s
= V1
.add(V2
, APFloat::rmNearestTiesToEven
);
2954 if (s
!= APFloat::opInvalidOp
)
2955 return getConstantFP(V1
, VT
);
2958 s
= V1
.subtract(V2
, APFloat::rmNearestTiesToEven
);
2959 if (s
!=APFloat::opInvalidOp
)
2960 return getConstantFP(V1
, VT
);
2963 s
= V1
.multiply(V2
, APFloat::rmNearestTiesToEven
);
2964 if (s
!=APFloat::opInvalidOp
)
2965 return getConstantFP(V1
, VT
);
2968 s
= V1
.divide(V2
, APFloat::rmNearestTiesToEven
);
2969 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2970 return getConstantFP(V1
, VT
);
2973 s
= V1
.mod(V2
, APFloat::rmNearestTiesToEven
);
2974 if (s
!=APFloat::opInvalidOp
&& s
!=APFloat::opDivByZero
)
2975 return getConstantFP(V1
, VT
);
2977 case ISD::FCOPYSIGN
:
2979 return getConstantFP(V1
, VT
);
2985 // Canonicalize an UNDEF to the RHS, even over a constant.
2986 if (N1
.getOpcode() == ISD::UNDEF
) {
2987 if (isCommutativeBinOp(Opcode
)) {
2991 case ISD::FP_ROUND_INREG
:
2992 case ISD::SIGN_EXTEND_INREG
:
2998 return N1
; // fold op(undef, arg2) -> undef
3006 return getConstant(0, VT
); // fold op(undef, arg2) -> 0
3007 // For vectors, we can't easily build an all zero vector, just return
3014 // Fold a bunch of operators when the RHS is undef.
3015 if (N2
.getOpcode() == ISD::UNDEF
) {
3018 if (N1
.getOpcode() == ISD::UNDEF
)
3019 // Handle undef ^ undef -> 0 special case. This is a common
3021 return getConstant(0, VT
);
3031 return N2
; // fold op(arg1, undef) -> undef
3045 return getConstant(0, VT
); // fold op(arg1, undef) -> 0
3046 // For vectors, we can't easily build an all zero vector, just return
3051 return getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), VT
);
3052 // For vectors, we can't easily build an all one vector, just return
3060 // Memoize this node if possible.
3062 SDVTList VTs
= getVTList(VT
);
3063 if (VT
!= MVT::Glue
) {
3064 SDValue Ops
[] = { N1
, N2
};
3065 FoldingSetNodeID ID
;
3066 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 2);
3068 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3069 return SDValue(E
, 0);
3071 N
= new (NodeAllocator
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
3072 CSEMap
.InsertNode(N
, IP
);
3074 N
= new (NodeAllocator
) BinarySDNode(Opcode
, DL
, VTs
, N1
, N2
);
3077 AllNodes
.push_back(N
);
3081 return SDValue(N
, 0);
3084 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3085 SDValue N1
, SDValue N2
, SDValue N3
) {
3086 // Perform various simplifications.
3087 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode());
3089 case ISD::CONCAT_VECTORS
:
3090 // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3091 // one big BUILD_VECTOR.
3092 if (N1
.getOpcode() == ISD::BUILD_VECTOR
&&
3093 N2
.getOpcode() == ISD::BUILD_VECTOR
&&
3094 N3
.getOpcode() == ISD::BUILD_VECTOR
) {
3095 SmallVector
<SDValue
, 16> Elts(N1
.getNode()->op_begin(),
3096 N1
.getNode()->op_end());
3097 Elts
.append(N2
.getNode()->op_begin(), N2
.getNode()->op_end());
3098 Elts
.append(N3
.getNode()->op_begin(), N3
.getNode()->op_end());
3099 return getNode(ISD::BUILD_VECTOR
, DL
, VT
, &Elts
[0], Elts
.size());
3103 // Use FoldSetCC to simplify SETCC's.
3104 SDValue Simp
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
);
3105 if (Simp
.getNode()) return Simp
;
3110 if (N1C
->getZExtValue())
3111 return N2
; // select true, X, Y -> X
3113 return N3
; // select false, X, Y -> Y
3116 if (N2
== N3
) return N2
; // select C, X, X -> X
3118 case ISD::VECTOR_SHUFFLE
:
3119 llvm_unreachable("should use getVectorShuffle constructor!");
3121 case ISD::INSERT_SUBVECTOR
: {
3123 if (VT
.isSimple() && N1
.getValueType().isSimple()
3124 && N2
.getValueType().isSimple()) {
3125 assert(VT
.isVector() && N1
.getValueType().isVector() &&
3126 N2
.getValueType().isVector() &&
3127 "Insert subvector VTs must be a vectors");
3128 assert(VT
== N1
.getValueType() &&
3129 "Dest and insert subvector source types must match!");
3130 assert(N2
.getValueType().getSimpleVT() <= N1
.getValueType().getSimpleVT() &&
3131 "Insert subvector must be from smaller vector to larger vector!");
3132 if (isa
<ConstantSDNode
>(Index
.getNode())) {
3133 assert((N2
.getValueType().getVectorNumElements() +
3134 cast
<ConstantSDNode
>(Index
.getNode())->getZExtValue()
3135 <= VT
.getVectorNumElements())
3136 && "Insert subvector overflow!");
3139 // Trivial insertion.
3140 if (VT
.getSimpleVT() == N2
.getValueType().getSimpleVT())
3146 // Fold bit_convert nodes from a type to themselves.
3147 if (N1
.getValueType() == VT
)
3152 // Memoize node if it doesn't produce a flag.
3154 SDVTList VTs
= getVTList(VT
);
3155 if (VT
!= MVT::Glue
) {
3156 SDValue Ops
[] = { N1
, N2
, N3
};
3157 FoldingSetNodeID ID
;
3158 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3160 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
3161 return SDValue(E
, 0);
3163 N
= new (NodeAllocator
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
3164 CSEMap
.InsertNode(N
, IP
);
3166 N
= new (NodeAllocator
) TernarySDNode(Opcode
, DL
, VTs
, N1
, N2
, N3
);
3169 AllNodes
.push_back(N
);
3173 return SDValue(N
, 0);
3176 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3177 SDValue N1
, SDValue N2
, SDValue N3
,
3179 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
3180 return getNode(Opcode
, DL
, VT
, Ops
, 4);
3183 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
3184 SDValue N1
, SDValue N2
, SDValue N3
,
3185 SDValue N4
, SDValue N5
) {
3186 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
3187 return getNode(Opcode
, DL
, VT
, Ops
, 5);
3190 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3191 /// the incoming stack arguments to be loaded from the stack.
3192 SDValue
SelectionDAG::getStackArgumentTokenFactor(SDValue Chain
) {
3193 SmallVector
<SDValue
, 8> ArgChains
;
3195 // Include the original chain at the beginning of the list. When this is
3196 // used by target LowerCall hooks, this helps legalize find the
3197 // CALLSEQ_BEGIN node.
3198 ArgChains
.push_back(Chain
);
3200 // Add a chain value for each stack argument.
3201 for (SDNode::use_iterator U
= getEntryNode().getNode()->use_begin(),
3202 UE
= getEntryNode().getNode()->use_end(); U
!= UE
; ++U
)
3203 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
3204 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
3205 if (FI
->getIndex() < 0)
3206 ArgChains
.push_back(SDValue(L
, 1));
3208 // Build a tokenfactor for all the chains.
3209 return getNode(ISD::TokenFactor
, Chain
.getDebugLoc(), MVT::Other
,
3210 &ArgChains
[0], ArgChains
.size());
3213 /// SplatByte - Distribute ByteVal over NumBits bits.
3214 static APInt
SplatByte(unsigned NumBits
, uint8_t ByteVal
) {
3215 APInt Val
= APInt(NumBits
, ByteVal
);
3217 for (unsigned i
= NumBits
; i
> 8; i
>>= 1) {
3218 Val
= (Val
<< Shift
) | Val
;
3224 /// getMemsetValue - Vectorized representation of the memset value
3226 static SDValue
getMemsetValue(SDValue Value
, EVT VT
, SelectionDAG
&DAG
,
3228 assert(Value
.getOpcode() != ISD::UNDEF
);
3230 unsigned NumBits
= VT
.getScalarType().getSizeInBits();
3231 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
3232 APInt Val
= SplatByte(NumBits
, C
->getZExtValue() & 255);
3234 return DAG
.getConstant(Val
, VT
);
3235 return DAG
.getConstantFP(APFloat(Val
), VT
);
3238 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Value
);
3240 // Use a multiplication with 0x010101... to extend the input to the
3242 APInt Magic
= SplatByte(NumBits
, 0x01);
3243 Value
= DAG
.getNode(ISD::MUL
, dl
, VT
, Value
, DAG
.getConstant(Magic
, VT
));
3249 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3250 /// used when a memcpy is turned into a memset when the source is a constant
3252 static SDValue
getMemsetStringVal(EVT VT
, DebugLoc dl
, SelectionDAG
&DAG
,
3253 const TargetLowering
&TLI
,
3254 std::string
&Str
, unsigned Offset
) {
3255 // Handle vector with all elements zero.
3258 return DAG
.getConstant(0, VT
);
3259 else if (VT
== MVT::f32
|| VT
== MVT::f64
)
3260 return DAG
.getConstantFP(0.0, VT
);
3261 else if (VT
.isVector()) {
3262 unsigned NumElts
= VT
.getVectorNumElements();
3263 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
3264 return DAG
.getNode(ISD::BITCAST
, dl
, VT
,
3265 DAG
.getConstant(0, EVT::getVectorVT(*DAG
.getContext(),
3268 llvm_unreachable("Expected type!");
3271 assert(!VT
.isVector() && "Can't handle vector type here!");
3272 unsigned NumBits
= VT
.getSizeInBits();
3273 unsigned MSB
= NumBits
/ 8;
3275 if (TLI
.isLittleEndian())
3276 Offset
= Offset
+ MSB
- 1;
3277 for (unsigned i
= 0; i
!= MSB
; ++i
) {
3278 Val
= (Val
<< 8) | (unsigned char)Str
[Offset
];
3279 Offset
+= TLI
.isLittleEndian() ? -1 : 1;
3281 return DAG
.getConstant(Val
, VT
);
3284 /// getMemBasePlusOffset - Returns base and offset node for the
3286 static SDValue
getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
3287 SelectionDAG
&DAG
) {
3288 EVT VT
= Base
.getValueType();
3289 return DAG
.getNode(ISD::ADD
, Base
.getDebugLoc(),
3290 VT
, Base
, DAG
.getConstant(Offset
, VT
));
3293 /// isMemSrcFromString - Returns true if memcpy source is a string constant.
3295 static bool isMemSrcFromString(SDValue Src
, std::string
&Str
) {
3296 unsigned SrcDelta
= 0;
3297 GlobalAddressSDNode
*G
= NULL
;
3298 if (Src
.getOpcode() == ISD::GlobalAddress
)
3299 G
= cast
<GlobalAddressSDNode
>(Src
);
3300 else if (Src
.getOpcode() == ISD::ADD
&&
3301 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
3302 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
3303 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
3304 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
3309 const GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(G
->getGlobal());
3310 if (GV
&& GetConstantStringInfo(GV
, Str
, SrcDelta
, false))
3316 /// FindOptimalMemOpLowering - Determines the optimial series memory ops
3317 /// to replace the memset / memcpy. Return true if the number of memory ops
3318 /// is below the threshold. It returns the types of the sequence of
3319 /// memory ops to perform memset / memcpy by reference.
3320 static bool FindOptimalMemOpLowering(std::vector
<EVT
> &MemOps
,
3321 unsigned Limit
, uint64_t Size
,
3322 unsigned DstAlign
, unsigned SrcAlign
,
3323 bool NonScalarIntSafe
,
3326 const TargetLowering
&TLI
) {
3327 assert((SrcAlign
== 0 || SrcAlign
>= DstAlign
) &&
3328 "Expecting memcpy / memset source to meet alignment requirement!");
3329 // If 'SrcAlign' is zero, that means the memory operation does not need to
3330 // load the value, i.e. memset or memcpy from constant string. Otherwise,
3331 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3332 // is the specified alignment of the memory operation. If it is zero, that
3333 // means it's possible to change the alignment of the destination.
3334 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3335 // not need to be loaded.
3336 EVT VT
= TLI
.getOptimalMemOpType(Size
, DstAlign
, SrcAlign
,
3337 NonScalarIntSafe
, MemcpyStrSrc
,
3338 DAG
.getMachineFunction());
3340 if (VT
== MVT::Other
) {
3341 if (DstAlign
>= TLI
.getTargetData()->getPointerPrefAlignment() ||
3342 TLI
.allowsUnalignedMemoryAccesses(VT
)) {
3343 VT
= TLI
.getPointerTy();
3345 switch (DstAlign
& 7) {
3346 case 0: VT
= MVT::i64
; break;
3347 case 4: VT
= MVT::i32
; break;
3348 case 2: VT
= MVT::i16
; break;
3349 default: VT
= MVT::i8
; break;
3354 while (!TLI
.isTypeLegal(LVT
))
3355 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
3356 assert(LVT
.isInteger());
3362 unsigned NumMemOps
= 0;
3364 unsigned VTSize
= VT
.getSizeInBits() / 8;
3365 while (VTSize
> Size
) {
3366 // For now, only use non-vector load / store's for the left-over pieces.
3367 if (VT
.isVector() || VT
.isFloatingPoint()) {
3369 while (!TLI
.isTypeLegal(VT
))
3370 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3371 VTSize
= VT
.getSizeInBits() / 8;
3373 // This can result in a type that is not legal on the target, e.g.
3374 // 1 or 2 bytes on PPC.
3375 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
3380 if (++NumMemOps
> Limit
)
3382 MemOps
.push_back(VT
);
3389 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3390 SDValue Chain
, SDValue Dst
,
3391 SDValue Src
, uint64_t Size
,
3392 unsigned Align
, bool isVol
,
3394 MachinePointerInfo DstPtrInfo
,
3395 MachinePointerInfo SrcPtrInfo
) {
3396 // Turn a memcpy of undef to nop.
3397 if (Src
.getOpcode() == ISD::UNDEF
)
3400 // Expand memcpy to a series of load and store ops if the size operand falls
3401 // below a certain threshold.
3402 // TODO: In the AlwaysInline case, if the size is big then generate a loop
3403 // rather than maybe a humongous number of loads and stores.
3404 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3405 std::vector
<EVT
> MemOps
;
3406 bool DstAlignCanChange
= false;
3407 MachineFunction
&MF
= DAG
.getMachineFunction();
3408 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
3409 bool OptSize
= MF
.getFunction()->hasFnAttr(Attribute::OptimizeForSize
);
3410 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
3411 if (FI
&& !MFI
->isFixedObjectIndex(FI
->getIndex()))
3412 DstAlignCanChange
= true;
3413 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
3414 if (Align
> SrcAlign
)
3417 bool CopyFromStr
= isMemSrcFromString(Src
, Str
);
3418 bool isZeroStr
= CopyFromStr
&& Str
.empty();
3419 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemcpy(OptSize
);
3421 if (!FindOptimalMemOpLowering(MemOps
, Limit
, Size
,
3422 (DstAlignCanChange
? 0 : Align
),
3423 (isZeroStr
? 0 : SrcAlign
),
3424 true, CopyFromStr
, DAG
, TLI
))
3427 if (DstAlignCanChange
) {
3428 const Type
*Ty
= MemOps
[0].getTypeForEVT(*DAG
.getContext());
3429 unsigned NewAlign
= (unsigned) TLI
.getTargetData()->getABITypeAlignment(Ty
);
3430 if (NewAlign
> Align
) {
3431 // Give the stack frame object a larger alignment if needed.
3432 if (MFI
->getObjectAlignment(FI
->getIndex()) < NewAlign
)
3433 MFI
->setObjectAlignment(FI
->getIndex(), NewAlign
);
3438 SmallVector
<SDValue
, 8> OutChains
;
3439 unsigned NumMemOps
= MemOps
.size();
3440 uint64_t SrcOff
= 0, DstOff
= 0;
3441 for (unsigned i
= 0; i
!= NumMemOps
; ++i
) {
3443 unsigned VTSize
= VT
.getSizeInBits() / 8;
3444 SDValue Value
, Store
;
3447 (isZeroStr
|| (VT
.isInteger() && !VT
.isVector()))) {
3448 // It's unlikely a store of a vector immediate can be done in a single
3449 // instruction. It would require a load from a constantpool first.
3450 // We only handle zero vectors here.
3451 // FIXME: Handle other cases where store of vector immediate is done in
3452 // a single instruction.
3453 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, Str
, SrcOff
);
3454 Store
= DAG
.getStore(Chain
, dl
, Value
,
3455 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3456 DstPtrInfo
.getWithOffset(DstOff
), isVol
,
3459 // The type might not be legal for the target. This should only happen
3460 // if the type is smaller than a legal type, as on PPC, so the right
3461 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
3462 // to Load/Store if NVT==VT.
3463 // FIXME does the case above also need this?
3464 EVT NVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), VT
);
3465 assert(NVT
.bitsGE(VT
));
3466 Value
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, NVT
, Chain
,
3467 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3468 SrcPtrInfo
.getWithOffset(SrcOff
), VT
, isVol
, false,
3469 MinAlign(SrcAlign
, SrcOff
));
3470 Store
= DAG
.getTruncStore(Chain
, dl
, Value
,
3471 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3472 DstPtrInfo
.getWithOffset(DstOff
), VT
, isVol
,
3475 OutChains
.push_back(Store
);
3480 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3481 &OutChains
[0], OutChains
.size());
3484 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, DebugLoc dl
,
3485 SDValue Chain
, SDValue Dst
,
3486 SDValue Src
, uint64_t Size
,
3487 unsigned Align
, bool isVol
,
3489 MachinePointerInfo DstPtrInfo
,
3490 MachinePointerInfo SrcPtrInfo
) {
3491 // Turn a memmove of undef to nop.
3492 if (Src
.getOpcode() == ISD::UNDEF
)
3495 // Expand memmove to a series of load and store ops if the size operand falls
3496 // below a certain threshold.
3497 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3498 std::vector
<EVT
> MemOps
;
3499 bool DstAlignCanChange
= false;
3500 MachineFunction
&MF
= DAG
.getMachineFunction();
3501 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
3502 bool OptSize
= MF
.getFunction()->hasFnAttr(Attribute::OptimizeForSize
);
3503 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
3504 if (FI
&& !MFI
->isFixedObjectIndex(FI
->getIndex()))
3505 DstAlignCanChange
= true;
3506 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
3507 if (Align
> SrcAlign
)
3509 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemmove(OptSize
);
3511 if (!FindOptimalMemOpLowering(MemOps
, Limit
, Size
,
3512 (DstAlignCanChange
? 0 : Align
),
3513 SrcAlign
, true, false, DAG
, TLI
))
3516 if (DstAlignCanChange
) {
3517 const Type
*Ty
= MemOps
[0].getTypeForEVT(*DAG
.getContext());
3518 unsigned NewAlign
= (unsigned) TLI
.getTargetData()->getABITypeAlignment(Ty
);
3519 if (NewAlign
> Align
) {
3520 // Give the stack frame object a larger alignment if needed.
3521 if (MFI
->getObjectAlignment(FI
->getIndex()) < NewAlign
)
3522 MFI
->setObjectAlignment(FI
->getIndex(), NewAlign
);
3527 uint64_t SrcOff
= 0, DstOff
= 0;
3528 SmallVector
<SDValue
, 8> LoadValues
;
3529 SmallVector
<SDValue
, 8> LoadChains
;
3530 SmallVector
<SDValue
, 8> OutChains
;
3531 unsigned NumMemOps
= MemOps
.size();
3532 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3534 unsigned VTSize
= VT
.getSizeInBits() / 8;
3535 SDValue Value
, Store
;
3537 Value
= DAG
.getLoad(VT
, dl
, Chain
,
3538 getMemBasePlusOffset(Src
, SrcOff
, DAG
),
3539 SrcPtrInfo
.getWithOffset(SrcOff
), isVol
,
3541 LoadValues
.push_back(Value
);
3542 LoadChains
.push_back(Value
.getValue(1));
3545 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3546 &LoadChains
[0], LoadChains
.size());
3548 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3550 unsigned VTSize
= VT
.getSizeInBits() / 8;
3551 SDValue Value
, Store
;
3553 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
3554 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3555 DstPtrInfo
.getWithOffset(DstOff
), isVol
, false, Align
);
3556 OutChains
.push_back(Store
);
3560 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3561 &OutChains
[0], OutChains
.size());
3564 static SDValue
getMemsetStores(SelectionDAG
&DAG
, DebugLoc dl
,
3565 SDValue Chain
, SDValue Dst
,
3566 SDValue Src
, uint64_t Size
,
3567 unsigned Align
, bool isVol
,
3568 MachinePointerInfo DstPtrInfo
) {
3569 // Turn a memset of undef to nop.
3570 if (Src
.getOpcode() == ISD::UNDEF
)
3573 // Expand memset to a series of load/store ops if the size operand
3574 // falls below a certain threshold.
3575 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3576 std::vector
<EVT
> MemOps
;
3577 bool DstAlignCanChange
= false;
3578 MachineFunction
&MF
= DAG
.getMachineFunction();
3579 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
3580 bool OptSize
= MF
.getFunction()->hasFnAttr(Attribute::OptimizeForSize
);
3581 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
3582 if (FI
&& !MFI
->isFixedObjectIndex(FI
->getIndex()))
3583 DstAlignCanChange
= true;
3584 bool NonScalarIntSafe
=
3585 isa
<ConstantSDNode
>(Src
) && cast
<ConstantSDNode
>(Src
)->isNullValue();
3586 if (!FindOptimalMemOpLowering(MemOps
, TLI
.getMaxStoresPerMemset(OptSize
),
3587 Size
, (DstAlignCanChange
? 0 : Align
), 0,
3588 NonScalarIntSafe
, false, DAG
, TLI
))
3591 if (DstAlignCanChange
) {
3592 const Type
*Ty
= MemOps
[0].getTypeForEVT(*DAG
.getContext());
3593 unsigned NewAlign
= (unsigned) TLI
.getTargetData()->getABITypeAlignment(Ty
);
3594 if (NewAlign
> Align
) {
3595 // Give the stack frame object a larger alignment if needed.
3596 if (MFI
->getObjectAlignment(FI
->getIndex()) < NewAlign
)
3597 MFI
->setObjectAlignment(FI
->getIndex(), NewAlign
);
3602 SmallVector
<SDValue
, 8> OutChains
;
3603 uint64_t DstOff
= 0;
3604 unsigned NumMemOps
= MemOps
.size();
3606 // Find the largest store and generate the bit pattern for it.
3607 EVT LargestVT
= MemOps
[0];
3608 for (unsigned i
= 1; i
< NumMemOps
; i
++)
3609 if (MemOps
[i
].bitsGT(LargestVT
))
3610 LargestVT
= MemOps
[i
];
3611 SDValue MemSetValue
= getMemsetValue(Src
, LargestVT
, DAG
, dl
);
3613 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
3616 // If this store is smaller than the largest store see whether we can get
3617 // the smaller value for free with a truncate.
3618 SDValue Value
= MemSetValue
;
3619 if (VT
.bitsLT(LargestVT
)) {
3620 if (!LargestVT
.isVector() && !VT
.isVector() &&
3621 TLI
.isTruncateFree(LargestVT
, VT
))
3622 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, MemSetValue
);
3624 Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
3626 assert(Value
.getValueType() == VT
&& "Value with wrong type.");
3627 SDValue Store
= DAG
.getStore(Chain
, dl
, Value
,
3628 getMemBasePlusOffset(Dst
, DstOff
, DAG
),
3629 DstPtrInfo
.getWithOffset(DstOff
),
3630 isVol
, false, Align
);
3631 OutChains
.push_back(Store
);
3632 DstOff
+= VT
.getSizeInBits() / 8;
3635 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
3636 &OutChains
[0], OutChains
.size());
3639 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3640 SDValue Src
, SDValue Size
,
3641 unsigned Align
, bool isVol
, bool AlwaysInline
,
3642 MachinePointerInfo DstPtrInfo
,
3643 MachinePointerInfo SrcPtrInfo
) {
3645 // Check to see if we should lower the memcpy to loads and stores first.
3646 // For cases within the target-specified limits, this is the best choice.
3647 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3649 // Memcpy with size zero? Just return the original chain.
3650 if (ConstantSize
->isNullValue())
3653 SDValue Result
= getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3654 ConstantSize
->getZExtValue(),Align
,
3655 isVol
, false, DstPtrInfo
, SrcPtrInfo
);
3656 if (Result
.getNode())
3660 // Then check to see if we should lower the memcpy with target-specific
3661 // code. If the target chooses to do this, this is the next best.
3663 TSI
.EmitTargetCodeForMemcpy(*this, dl
, Chain
, Dst
, Src
, Size
, Align
,
3664 isVol
, AlwaysInline
,
3665 DstPtrInfo
, SrcPtrInfo
);
3666 if (Result
.getNode())
3669 // If we really need inline code and the target declined to provide it,
3670 // use a (potentially long) sequence of loads and stores.
3672 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
3673 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3674 ConstantSize
->getZExtValue(), Align
, isVol
,
3675 true, DstPtrInfo
, SrcPtrInfo
);
3678 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3679 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3680 // respect volatile, so they may do things like read or write memory
3681 // beyond the given memory regions. But fixing this isn't easy, and most
3682 // people don't care.
3684 // Emit a library call.
3685 TargetLowering::ArgListTy Args
;
3686 TargetLowering::ArgListEntry Entry
;
3687 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3688 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3689 Entry
.Node
= Src
; Args
.push_back(Entry
);
3690 Entry
.Node
= Size
; Args
.push_back(Entry
);
3691 // FIXME: pass in DebugLoc
3692 std::pair
<SDValue
,SDValue
> CallResult
=
3693 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3694 false, false, false, false, 0,
3695 TLI
.getLibcallCallingConv(RTLIB::MEMCPY
), false,
3696 /*isReturnValueUsed=*/false,
3697 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMCPY
),
3698 TLI
.getPointerTy()),
3700 return CallResult
.second
;
3703 SDValue
SelectionDAG::getMemmove(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3704 SDValue Src
, SDValue Size
,
3705 unsigned Align
, bool isVol
,
3706 MachinePointerInfo DstPtrInfo
,
3707 MachinePointerInfo SrcPtrInfo
) {
3709 // Check to see if we should lower the memmove to loads and stores first.
3710 // For cases within the target-specified limits, this is the best choice.
3711 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3713 // Memmove with size zero? Just return the original chain.
3714 if (ConstantSize
->isNullValue())
3718 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
3719 ConstantSize
->getZExtValue(), Align
, isVol
,
3720 false, DstPtrInfo
, SrcPtrInfo
);
3721 if (Result
.getNode())
3725 // Then check to see if we should lower the memmove with target-specific
3726 // code. If the target chooses to do this, this is the next best.
3728 TSI
.EmitTargetCodeForMemmove(*this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
,
3729 DstPtrInfo
, SrcPtrInfo
);
3730 if (Result
.getNode())
3733 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3734 // not be safe. See memcpy above for more details.
3736 // Emit a library call.
3737 TargetLowering::ArgListTy Args
;
3738 TargetLowering::ArgListEntry Entry
;
3739 Entry
.Ty
= TLI
.getTargetData()->getIntPtrType(*getContext());
3740 Entry
.Node
= Dst
; Args
.push_back(Entry
);
3741 Entry
.Node
= Src
; Args
.push_back(Entry
);
3742 Entry
.Node
= Size
; Args
.push_back(Entry
);
3743 // FIXME: pass in DebugLoc
3744 std::pair
<SDValue
,SDValue
> CallResult
=
3745 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3746 false, false, false, false, 0,
3747 TLI
.getLibcallCallingConv(RTLIB::MEMMOVE
), false,
3748 /*isReturnValueUsed=*/false,
3749 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMMOVE
),
3750 TLI
.getPointerTy()),
3752 return CallResult
.second
;
3755 SDValue
SelectionDAG::getMemset(SDValue Chain
, DebugLoc dl
, SDValue Dst
,
3756 SDValue Src
, SDValue Size
,
3757 unsigned Align
, bool isVol
,
3758 MachinePointerInfo DstPtrInfo
) {
3760 // Check to see if we should lower the memset to stores first.
3761 // For cases within the target-specified limits, this is the best choice.
3762 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
3764 // Memset with size zero? Just return the original chain.
3765 if (ConstantSize
->isNullValue())
3769 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
3770 Align
, isVol
, DstPtrInfo
);
3772 if (Result
.getNode())
3776 // Then check to see if we should lower the memset with target-specific
3777 // code. If the target chooses to do this, this is the next best.
3779 TSI
.EmitTargetCodeForMemset(*this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
,
3781 if (Result
.getNode())
3784 // Emit a library call.
3785 const Type
*IntPtrTy
= TLI
.getTargetData()->getIntPtrType(*getContext());
3786 TargetLowering::ArgListTy Args
;
3787 TargetLowering::ArgListEntry Entry
;
3788 Entry
.Node
= Dst
; Entry
.Ty
= IntPtrTy
;
3789 Args
.push_back(Entry
);
3790 // Extend or truncate the argument to be an i32 value for the call.
3791 if (Src
.getValueType().bitsGT(MVT::i32
))
3792 Src
= getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Src
);
3794 Src
= getNode(ISD::ZERO_EXTEND
, dl
, MVT::i32
, Src
);
3796 Entry
.Ty
= Type::getInt32Ty(*getContext());
3797 Entry
.isSExt
= true;
3798 Args
.push_back(Entry
);
3800 Entry
.Ty
= IntPtrTy
;
3801 Entry
.isSExt
= false;
3802 Args
.push_back(Entry
);
3803 // FIXME: pass in DebugLoc
3804 std::pair
<SDValue
,SDValue
> CallResult
=
3805 TLI
.LowerCallTo(Chain
, Type::getVoidTy(*getContext()),
3806 false, false, false, false, 0,
3807 TLI
.getLibcallCallingConv(RTLIB::MEMSET
), false,
3808 /*isReturnValueUsed=*/false,
3809 getExternalSymbol(TLI
.getLibcallName(RTLIB::MEMSET
),
3810 TLI
.getPointerTy()),
3812 return CallResult
.second
;
3815 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3816 SDValue Chain
, SDValue Ptr
, SDValue Cmp
,
3817 SDValue Swp
, MachinePointerInfo PtrInfo
,
3818 unsigned Alignment
) {
3819 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3820 Alignment
= getEVTAlignment(MemVT
);
3822 MachineFunction
&MF
= getMachineFunction();
3823 unsigned Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
3825 // For now, atomics are considered to be volatile always.
3826 Flags
|= MachineMemOperand::MOVolatile
;
3828 MachineMemOperand
*MMO
=
3829 MF
.getMachineMemOperand(PtrInfo
, Flags
, MemVT
.getStoreSize(), Alignment
);
3831 return getAtomic(Opcode
, dl
, MemVT
, Chain
, Ptr
, Cmp
, Swp
, MMO
);
3834 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3836 SDValue Ptr
, SDValue Cmp
,
3837 SDValue Swp
, MachineMemOperand
*MMO
) {
3838 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
&& "Invalid Atomic Op");
3839 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
3841 EVT VT
= Cmp
.getValueType();
3843 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3844 FoldingSetNodeID ID
;
3845 ID
.AddInteger(MemVT
.getRawBits());
3846 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
3847 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 4);
3849 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3850 cast
<AtomicSDNode
>(E
)->refineAlignment(MMO
);
3851 return SDValue(E
, 0);
3853 SDNode
*N
= new (NodeAllocator
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
, Chain
,
3854 Ptr
, Cmp
, Swp
, MMO
);
3855 CSEMap
.InsertNode(N
, IP
);
3856 AllNodes
.push_back(N
);
3857 return SDValue(N
, 0);
3860 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3862 SDValue Ptr
, SDValue Val
,
3863 const Value
* PtrVal
,
3864 unsigned Alignment
) {
3865 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
3866 Alignment
= getEVTAlignment(MemVT
);
3868 MachineFunction
&MF
= getMachineFunction();
3869 unsigned Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
3871 // For now, atomics are considered to be volatile always.
3872 Flags
|= MachineMemOperand::MOVolatile
;
3874 MachineMemOperand
*MMO
=
3875 MF
.getMachineMemOperand(MachinePointerInfo(PtrVal
), Flags
,
3876 MemVT
.getStoreSize(), Alignment
);
3878 return getAtomic(Opcode
, dl
, MemVT
, Chain
, Ptr
, Val
, MMO
);
3881 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, DebugLoc dl
, EVT MemVT
,
3883 SDValue Ptr
, SDValue Val
,
3884 MachineMemOperand
*MMO
) {
3885 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
3886 Opcode
== ISD::ATOMIC_LOAD_SUB
||
3887 Opcode
== ISD::ATOMIC_LOAD_AND
||
3888 Opcode
== ISD::ATOMIC_LOAD_OR
||
3889 Opcode
== ISD::ATOMIC_LOAD_XOR
||
3890 Opcode
== ISD::ATOMIC_LOAD_NAND
||
3891 Opcode
== ISD::ATOMIC_LOAD_MIN
||
3892 Opcode
== ISD::ATOMIC_LOAD_MAX
||
3893 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
3894 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
3895 Opcode
== ISD::ATOMIC_SWAP
) &&
3896 "Invalid Atomic Op");
3898 EVT VT
= Val
.getValueType();
3900 SDVTList VTs
= getVTList(VT
, MVT::Other
);
3901 FoldingSetNodeID ID
;
3902 ID
.AddInteger(MemVT
.getRawBits());
3903 SDValue Ops
[] = {Chain
, Ptr
, Val
};
3904 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, 3);
3906 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3907 cast
<AtomicSDNode
>(E
)->refineAlignment(MMO
);
3908 return SDValue(E
, 0);
3910 SDNode
*N
= new (NodeAllocator
) AtomicSDNode(Opcode
, dl
, VTs
, MemVT
, Chain
,
3912 CSEMap
.InsertNode(N
, IP
);
3913 AllNodes
.push_back(N
);
3914 return SDValue(N
, 0);
3917 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
3918 SDValue
SelectionDAG::getMergeValues(const SDValue
*Ops
, unsigned NumOps
,
3923 SmallVector
<EVT
, 4> VTs
;
3924 VTs
.reserve(NumOps
);
3925 for (unsigned i
= 0; i
< NumOps
; ++i
)
3926 VTs
.push_back(Ops
[i
].getValueType());
3927 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(&VTs
[0], NumOps
),
3932 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
,
3933 const EVT
*VTs
, unsigned NumVTs
,
3934 const SDValue
*Ops
, unsigned NumOps
,
3935 EVT MemVT
, MachinePointerInfo PtrInfo
,
3936 unsigned Align
, bool Vol
,
3937 bool ReadMem
, bool WriteMem
) {
3938 return getMemIntrinsicNode(Opcode
, dl
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
,
3939 MemVT
, PtrInfo
, Align
, Vol
,
3944 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3945 const SDValue
*Ops
, unsigned NumOps
,
3946 EVT MemVT
, MachinePointerInfo PtrInfo
,
3947 unsigned Align
, bool Vol
,
3948 bool ReadMem
, bool WriteMem
) {
3949 if (Align
== 0) // Ensure that codegen never sees alignment 0
3950 Align
= getEVTAlignment(MemVT
);
3952 MachineFunction
&MF
= getMachineFunction();
3955 Flags
|= MachineMemOperand::MOStore
;
3957 Flags
|= MachineMemOperand::MOLoad
;
3959 Flags
|= MachineMemOperand::MOVolatile
;
3960 MachineMemOperand
*MMO
=
3961 MF
.getMachineMemOperand(PtrInfo
, Flags
, MemVT
.getStoreSize(), Align
);
3963 return getMemIntrinsicNode(Opcode
, dl
, VTList
, Ops
, NumOps
, MemVT
, MMO
);
3967 SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, DebugLoc dl
, SDVTList VTList
,
3968 const SDValue
*Ops
, unsigned NumOps
,
3969 EVT MemVT
, MachineMemOperand
*MMO
) {
3970 assert((Opcode
== ISD::INTRINSIC_VOID
||
3971 Opcode
== ISD::INTRINSIC_W_CHAIN
||
3972 Opcode
== ISD::PREFETCH
||
3973 (Opcode
<= INT_MAX
&&
3974 (int)Opcode
>= ISD::FIRST_TARGET_MEMORY_OPCODE
)) &&
3975 "Opcode is not a memory-accessing opcode!");
3977 // Memoize the node unless it returns a flag.
3978 MemIntrinsicSDNode
*N
;
3979 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Glue
) {
3980 FoldingSetNodeID ID
;
3981 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
3983 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
3984 cast
<MemIntrinsicSDNode
>(E
)->refineAlignment(MMO
);
3985 return SDValue(E
, 0);
3988 N
= new (NodeAllocator
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
,
3990 CSEMap
.InsertNode(N
, IP
);
3992 N
= new (NodeAllocator
) MemIntrinsicSDNode(Opcode
, dl
, VTList
, Ops
, NumOps
,
3995 AllNodes
.push_back(N
);
3996 return SDValue(N
, 0);
3999 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4000 /// MachinePointerInfo record from it. This is particularly useful because the
4001 /// code generator has many cases where it doesn't bother passing in a
4002 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4003 static MachinePointerInfo
InferPointerInfo(SDValue Ptr
, int64_t Offset
= 0) {
4004 // If this is FI+Offset, we can model it.
4005 if (const FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
))
4006 return MachinePointerInfo::getFixedStack(FI
->getIndex(), Offset
);
4008 // If this is (FI+Offset1)+Offset2, we can model it.
4009 if (Ptr
.getOpcode() != ISD::ADD
||
4010 !isa
<ConstantSDNode
>(Ptr
.getOperand(1)) ||
4011 !isa
<FrameIndexSDNode
>(Ptr
.getOperand(0)))
4012 return MachinePointerInfo();
4014 int FI
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
4015 return MachinePointerInfo::getFixedStack(FI
, Offset
+
4016 cast
<ConstantSDNode
>(Ptr
.getOperand(1))->getSExtValue());
4019 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4020 /// MachinePointerInfo record from it. This is particularly useful because the
4021 /// code generator has many cases where it doesn't bother passing in a
4022 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4023 static MachinePointerInfo
InferPointerInfo(SDValue Ptr
, SDValue OffsetOp
) {
4024 // If the 'Offset' value isn't a constant, we can't handle this.
4025 if (ConstantSDNode
*OffsetNode
= dyn_cast
<ConstantSDNode
>(OffsetOp
))
4026 return InferPointerInfo(Ptr
, OffsetNode
->getSExtValue());
4027 if (OffsetOp
.getOpcode() == ISD::UNDEF
)
4028 return InferPointerInfo(Ptr
);
4029 return MachinePointerInfo();
4034 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
4035 EVT VT
, DebugLoc dl
, SDValue Chain
,
4036 SDValue Ptr
, SDValue Offset
,
4037 MachinePointerInfo PtrInfo
, EVT MemVT
,
4038 bool isVolatile
, bool isNonTemporal
,
4039 unsigned Alignment
, const MDNode
*TBAAInfo
) {
4040 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
4041 Alignment
= getEVTAlignment(VT
);
4043 unsigned Flags
= MachineMemOperand::MOLoad
;
4045 Flags
|= MachineMemOperand::MOVolatile
;
4047 Flags
|= MachineMemOperand::MONonTemporal
;
4049 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4052 PtrInfo
= InferPointerInfo(Ptr
, Offset
);
4054 MachineFunction
&MF
= getMachineFunction();
4055 MachineMemOperand
*MMO
=
4056 MF
.getMachineMemOperand(PtrInfo
, Flags
, MemVT
.getStoreSize(), Alignment
,
4058 return getLoad(AM
, ExtType
, VT
, dl
, Chain
, Ptr
, Offset
, MemVT
, MMO
);
4062 SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
4063 EVT VT
, DebugLoc dl
, SDValue Chain
,
4064 SDValue Ptr
, SDValue Offset
, EVT MemVT
,
4065 MachineMemOperand
*MMO
) {
4067 ExtType
= ISD::NON_EXTLOAD
;
4068 } else if (ExtType
== ISD::NON_EXTLOAD
) {
4069 assert(VT
== MemVT
&& "Non-extending load from different memory type!");
4072 assert(MemVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
4073 "Should only be an extending load, not truncating!");
4074 assert(VT
.isInteger() == MemVT
.isInteger() &&
4075 "Cannot convert from FP to Int or Int -> FP!");
4076 assert(VT
.isVector() == MemVT
.isVector() &&
4077 "Cannot use trunc store to convert to or from a vector!");
4078 assert((!VT
.isVector() ||
4079 VT
.getVectorNumElements() == MemVT
.getVectorNumElements()) &&
4080 "Cannot use trunc store to change the number of vector elements!");
4083 bool Indexed
= AM
!= ISD::UNINDEXED
;
4084 assert((Indexed
|| Offset
.getOpcode() == ISD::UNDEF
) &&
4085 "Unindexed load with an offset!");
4087 SDVTList VTs
= Indexed
?
4088 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
4089 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
4090 FoldingSetNodeID ID
;
4091 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
, 3);
4092 ID
.AddInteger(MemVT
.getRawBits());
4093 ID
.AddInteger(encodeMemSDNodeFlags(ExtType
, AM
, MMO
->isVolatile(),
4094 MMO
->isNonTemporal()));
4096 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
4097 cast
<LoadSDNode
>(E
)->refineAlignment(MMO
);
4098 return SDValue(E
, 0);
4100 SDNode
*N
= new (NodeAllocator
) LoadSDNode(Ops
, dl
, VTs
, AM
, ExtType
,
4102 CSEMap
.InsertNode(N
, IP
);
4103 AllNodes
.push_back(N
);
4104 return SDValue(N
, 0);
4107 SDValue
SelectionDAG::getLoad(EVT VT
, DebugLoc dl
,
4108 SDValue Chain
, SDValue Ptr
,
4109 MachinePointerInfo PtrInfo
,
4110 bool isVolatile
, bool isNonTemporal
,
4111 unsigned Alignment
, const MDNode
*TBAAInfo
) {
4112 SDValue Undef
= getUNDEF(Ptr
.getValueType());
4113 return getLoad(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
4114 PtrInfo
, VT
, isVolatile
, isNonTemporal
, Alignment
, TBAAInfo
);
4117 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, DebugLoc dl
, EVT VT
,
4118 SDValue Chain
, SDValue Ptr
,
4119 MachinePointerInfo PtrInfo
, EVT MemVT
,
4120 bool isVolatile
, bool isNonTemporal
,
4121 unsigned Alignment
, const MDNode
*TBAAInfo
) {
4122 SDValue Undef
= getUNDEF(Ptr
.getValueType());
4123 return getLoad(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
,
4124 PtrInfo
, MemVT
, isVolatile
, isNonTemporal
, Alignment
,
4130 SelectionDAG::getIndexedLoad(SDValue OrigLoad
, DebugLoc dl
, SDValue Base
,
4131 SDValue Offset
, ISD::MemIndexedMode AM
) {
4132 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
4133 assert(LD
->getOffset().getOpcode() == ISD::UNDEF
&&
4134 "Load is already a indexed load!");
4135 return getLoad(AM
, LD
->getExtensionType(), OrigLoad
.getValueType(), dl
,
4136 LD
->getChain(), Base
, Offset
, LD
->getPointerInfo(),
4138 LD
->isVolatile(), LD
->isNonTemporal(), LD
->getAlignment());
4141 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
4142 SDValue Ptr
, MachinePointerInfo PtrInfo
,
4143 bool isVolatile
, bool isNonTemporal
,
4144 unsigned Alignment
, const MDNode
*TBAAInfo
) {
4145 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
4146 Alignment
= getEVTAlignment(Val
.getValueType());
4148 unsigned Flags
= MachineMemOperand::MOStore
;
4150 Flags
|= MachineMemOperand::MOVolatile
;
4152 Flags
|= MachineMemOperand::MONonTemporal
;
4155 PtrInfo
= InferPointerInfo(Ptr
);
4157 MachineFunction
&MF
= getMachineFunction();
4158 MachineMemOperand
*MMO
=
4159 MF
.getMachineMemOperand(PtrInfo
, Flags
,
4160 Val
.getValueType().getStoreSize(), Alignment
,
4163 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
4166 SDValue
SelectionDAG::getStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
4167 SDValue Ptr
, MachineMemOperand
*MMO
) {
4168 EVT VT
= Val
.getValueType();
4169 SDVTList VTs
= getVTList(MVT::Other
);
4170 SDValue Undef
= getUNDEF(Ptr
.getValueType());
4171 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
4172 FoldingSetNodeID ID
;
4173 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
4174 ID
.AddInteger(VT
.getRawBits());
4175 ID
.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED
, MMO
->isVolatile(),
4176 MMO
->isNonTemporal()));
4178 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
4179 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
4180 return SDValue(E
, 0);
4182 SDNode
*N
= new (NodeAllocator
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
,
4184 CSEMap
.InsertNode(N
, IP
);
4185 AllNodes
.push_back(N
);
4186 return SDValue(N
, 0);
4189 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
4190 SDValue Ptr
, MachinePointerInfo PtrInfo
,
4191 EVT SVT
,bool isVolatile
, bool isNonTemporal
,
4193 const MDNode
*TBAAInfo
) {
4194 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
4195 Alignment
= getEVTAlignment(SVT
);
4197 unsigned Flags
= MachineMemOperand::MOStore
;
4199 Flags
|= MachineMemOperand::MOVolatile
;
4201 Flags
|= MachineMemOperand::MONonTemporal
;
4204 PtrInfo
= InferPointerInfo(Ptr
);
4206 MachineFunction
&MF
= getMachineFunction();
4207 MachineMemOperand
*MMO
=
4208 MF
.getMachineMemOperand(PtrInfo
, Flags
, SVT
.getStoreSize(), Alignment
,
4211 return getTruncStore(Chain
, dl
, Val
, Ptr
, SVT
, MMO
);
4214 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, DebugLoc dl
, SDValue Val
,
4215 SDValue Ptr
, EVT SVT
,
4216 MachineMemOperand
*MMO
) {
4217 EVT VT
= Val
.getValueType();
4220 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
4222 assert(SVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
4223 "Should only be a truncating store, not extending!");
4224 assert(VT
.isInteger() == SVT
.isInteger() &&
4225 "Can't do FP-INT conversion!");
4226 assert(VT
.isVector() == SVT
.isVector() &&
4227 "Cannot use trunc store to convert to or from a vector!");
4228 assert((!VT
.isVector() ||
4229 VT
.getVectorNumElements() == SVT
.getVectorNumElements()) &&
4230 "Cannot use trunc store to change the number of vector elements!");
4232 SDVTList VTs
= getVTList(MVT::Other
);
4233 SDValue Undef
= getUNDEF(Ptr
.getValueType());
4234 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
4235 FoldingSetNodeID ID
;
4236 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
4237 ID
.AddInteger(SVT
.getRawBits());
4238 ID
.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED
, MMO
->isVolatile(),
4239 MMO
->isNonTemporal()));
4241 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
)) {
4242 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
4243 return SDValue(E
, 0);
4245 SDNode
*N
= new (NodeAllocator
) StoreSDNode(Ops
, dl
, VTs
, ISD::UNINDEXED
,
4247 CSEMap
.InsertNode(N
, IP
);
4248 AllNodes
.push_back(N
);
4249 return SDValue(N
, 0);
4253 SelectionDAG::getIndexedStore(SDValue OrigStore
, DebugLoc dl
, SDValue Base
,
4254 SDValue Offset
, ISD::MemIndexedMode AM
) {
4255 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
4256 assert(ST
->getOffset().getOpcode() == ISD::UNDEF
&&
4257 "Store is already a indexed store!");
4258 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
4259 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
4260 FoldingSetNodeID ID
;
4261 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
, 4);
4262 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
4263 ID
.AddInteger(ST
->getRawSubclassData());
4265 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4266 return SDValue(E
, 0);
4268 SDNode
*N
= new (NodeAllocator
) StoreSDNode(Ops
, dl
, VTs
, AM
,
4269 ST
->isTruncatingStore(),
4271 ST
->getMemOperand());
4272 CSEMap
.InsertNode(N
, IP
);
4273 AllNodes
.push_back(N
);
4274 return SDValue(N
, 0);
4277 SDValue
SelectionDAG::getVAArg(EVT VT
, DebugLoc dl
,
4278 SDValue Chain
, SDValue Ptr
,
4281 SDValue Ops
[] = { Chain
, Ptr
, SV
, getTargetConstant(Align
, MVT::i32
) };
4282 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
, 4);
4285 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
4286 const SDUse
*Ops
, unsigned NumOps
) {
4288 case 0: return getNode(Opcode
, DL
, VT
);
4289 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
4290 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
4291 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
4295 // Copy from an SDUse array into an SDValue array for use with
4296 // the regular getNode logic.
4297 SmallVector
<SDValue
, 8> NewOps(Ops
, Ops
+ NumOps
);
4298 return getNode(Opcode
, DL
, VT
, &NewOps
[0], NumOps
);
4301 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, EVT VT
,
4302 const SDValue
*Ops
, unsigned NumOps
) {
4304 case 0: return getNode(Opcode
, DL
, VT
);
4305 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0]);
4306 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
4307 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
4313 case ISD::SELECT_CC
: {
4314 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
4315 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
4316 "LHS and RHS of condition must have same type!");
4317 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
4318 "True and False arms of SelectCC must have same type!");
4319 assert(Ops
[2].getValueType() == VT
&&
4320 "select_cc node must be of same type as true and false value!");
4324 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
4325 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
4326 "LHS/RHS of comparison should match types!");
4333 SDVTList VTs
= getVTList(VT
);
4335 if (VT
!= MVT::Glue
) {
4336 FoldingSetNodeID ID
;
4337 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
, NumOps
);
4340 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4341 return SDValue(E
, 0);
4343 N
= new (NodeAllocator
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
4344 CSEMap
.InsertNode(N
, IP
);
4346 N
= new (NodeAllocator
) SDNode(Opcode
, DL
, VTs
, Ops
, NumOps
);
4349 AllNodes
.push_back(N
);
4353 return SDValue(N
, 0);
4356 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
4357 const std::vector
<EVT
> &ResultTys
,
4358 const SDValue
*Ops
, unsigned NumOps
) {
4359 return getNode(Opcode
, DL
, getVTList(&ResultTys
[0], ResultTys
.size()),
4363 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
,
4364 const EVT
*VTs
, unsigned NumVTs
,
4365 const SDValue
*Ops
, unsigned NumOps
) {
4367 return getNode(Opcode
, DL
, VTs
[0], Ops
, NumOps
);
4368 return getNode(Opcode
, DL
, makeVTList(VTs
, NumVTs
), Ops
, NumOps
);
4371 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4372 const SDValue
*Ops
, unsigned NumOps
) {
4373 if (VTList
.NumVTs
== 1)
4374 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
, NumOps
);
4378 // FIXME: figure out how to safely handle things like
4379 // int foo(int x) { return 1 << (x & 255); }
4380 // int bar() { return foo(256); }
4381 case ISD::SRA_PARTS
:
4382 case ISD::SRL_PARTS
:
4383 case ISD::SHL_PARTS
:
4384 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
4385 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
4386 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
4387 else if (N3
.getOpcode() == ISD::AND
)
4388 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
4389 // If the and is only masking out bits that cannot effect the shift,
4390 // eliminate the and.
4391 unsigned NumBits
= VT
.getScalarType().getSizeInBits()*2;
4392 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
4393 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
4399 // Memoize the node unless it returns a flag.
4401 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Glue
) {
4402 FoldingSetNodeID ID
;
4403 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
4405 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4406 return SDValue(E
, 0);
4409 N
= new (NodeAllocator
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
4410 } else if (NumOps
== 2) {
4411 N
= new (NodeAllocator
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
4412 } else if (NumOps
== 3) {
4413 N
= new (NodeAllocator
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1],
4416 N
= new (NodeAllocator
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
4418 CSEMap
.InsertNode(N
, IP
);
4421 N
= new (NodeAllocator
) UnarySDNode(Opcode
, DL
, VTList
, Ops
[0]);
4422 } else if (NumOps
== 2) {
4423 N
= new (NodeAllocator
) BinarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1]);
4424 } else if (NumOps
== 3) {
4425 N
= new (NodeAllocator
) TernarySDNode(Opcode
, DL
, VTList
, Ops
[0], Ops
[1],
4428 N
= new (NodeAllocator
) SDNode(Opcode
, DL
, VTList
, Ops
, NumOps
);
4431 AllNodes
.push_back(N
);
4435 return SDValue(N
, 0);
4438 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
) {
4439 return getNode(Opcode
, DL
, VTList
, 0, 0);
4442 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4444 SDValue Ops
[] = { N1
};
4445 return getNode(Opcode
, DL
, VTList
, Ops
, 1);
4448 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4449 SDValue N1
, SDValue N2
) {
4450 SDValue Ops
[] = { N1
, N2
};
4451 return getNode(Opcode
, DL
, VTList
, Ops
, 2);
4454 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4455 SDValue N1
, SDValue N2
, SDValue N3
) {
4456 SDValue Ops
[] = { N1
, N2
, N3
};
4457 return getNode(Opcode
, DL
, VTList
, Ops
, 3);
4460 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4461 SDValue N1
, SDValue N2
, SDValue N3
,
4463 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
4464 return getNode(Opcode
, DL
, VTList
, Ops
, 4);
4467 SDValue
SelectionDAG::getNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTList
,
4468 SDValue N1
, SDValue N2
, SDValue N3
,
4469 SDValue N4
, SDValue N5
) {
4470 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
4471 return getNode(Opcode
, DL
, VTList
, Ops
, 5);
4474 SDVTList
SelectionDAG::getVTList(EVT VT
) {
4475 return makeVTList(SDNode::getValueTypeList(VT
), 1);
4478 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
) {
4479 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4480 E
= VTList
.rend(); I
!= E
; ++I
)
4481 if (I
->NumVTs
== 2 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
)
4484 EVT
*Array
= Allocator
.Allocate
<EVT
>(2);
4487 SDVTList Result
= makeVTList(Array
, 2);
4488 VTList
.push_back(Result
);
4492 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
) {
4493 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4494 E
= VTList
.rend(); I
!= E
; ++I
)
4495 if (I
->NumVTs
== 3 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4499 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
4503 SDVTList Result
= makeVTList(Array
, 3);
4504 VTList
.push_back(Result
);
4508 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
) {
4509 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4510 E
= VTList
.rend(); I
!= E
; ++I
)
4511 if (I
->NumVTs
== 4 && I
->VTs
[0] == VT1
&& I
->VTs
[1] == VT2
&&
4512 I
->VTs
[2] == VT3
&& I
->VTs
[3] == VT4
)
4515 EVT
*Array
= Allocator
.Allocate
<EVT
>(4);
4520 SDVTList Result
= makeVTList(Array
, 4);
4521 VTList
.push_back(Result
);
4525 SDVTList
SelectionDAG::getVTList(const EVT
*VTs
, unsigned NumVTs
) {
4527 case 0: llvm_unreachable("Cannot have nodes without results!");
4528 case 1: return getVTList(VTs
[0]);
4529 case 2: return getVTList(VTs
[0], VTs
[1]);
4530 case 3: return getVTList(VTs
[0], VTs
[1], VTs
[2]);
4531 case 4: return getVTList(VTs
[0], VTs
[1], VTs
[2], VTs
[3]);
4535 for (std::vector
<SDVTList
>::reverse_iterator I
= VTList
.rbegin(),
4536 E
= VTList
.rend(); I
!= E
; ++I
) {
4537 if (I
->NumVTs
!= NumVTs
|| VTs
[0] != I
->VTs
[0] || VTs
[1] != I
->VTs
[1])
4540 bool NoMatch
= false;
4541 for (unsigned i
= 2; i
!= NumVTs
; ++i
)
4542 if (VTs
[i
] != I
->VTs
[i
]) {
4550 EVT
*Array
= Allocator
.Allocate
<EVT
>(NumVTs
);
4551 std::copy(VTs
, VTs
+NumVTs
, Array
);
4552 SDVTList Result
= makeVTList(Array
, NumVTs
);
4553 VTList
.push_back(Result
);
4558 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4559 /// specified operands. If the resultant node already exists in the DAG,
4560 /// this does not modify the specified node, instead it returns the node that
4561 /// already exists. If the resultant node does not exist in the DAG, the
4562 /// input node is returned. As a degenerate case, if you specify the same
4563 /// input operands as the node already has, the input node is returned.
4564 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op
) {
4565 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
4567 // Check to see if there is no change.
4568 if (Op
== N
->getOperand(0)) return N
;
4570 // See if the modified node already exists.
4571 void *InsertPos
= 0;
4572 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
4575 // Nope it doesn't. Remove the node from its current place in the maps.
4577 if (!RemoveNodeFromCSEMaps(N
))
4580 // Now we update the operands.
4581 N
->OperandList
[0].set(Op
);
4583 // If this gets put into a CSE map, add it.
4584 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4588 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
) {
4589 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
4591 // Check to see if there is no change.
4592 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
4593 return N
; // No operands changed, just return the input node.
4595 // See if the modified node already exists.
4596 void *InsertPos
= 0;
4597 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
4600 // Nope it doesn't. Remove the node from its current place in the maps.
4602 if (!RemoveNodeFromCSEMaps(N
))
4605 // Now we update the operands.
4606 if (N
->OperandList
[0] != Op1
)
4607 N
->OperandList
[0].set(Op1
);
4608 if (N
->OperandList
[1] != Op2
)
4609 N
->OperandList
[1].set(Op2
);
4611 // If this gets put into a CSE map, add it.
4612 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4616 SDNode
*SelectionDAG::
4617 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4618 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4619 return UpdateNodeOperands(N
, Ops
, 3);
4622 SDNode
*SelectionDAG::
4623 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
4624 SDValue Op3
, SDValue Op4
) {
4625 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
4626 return UpdateNodeOperands(N
, Ops
, 4);
4629 SDNode
*SelectionDAG::
4630 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
4631 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
4632 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
4633 return UpdateNodeOperands(N
, Ops
, 5);
4636 SDNode
*SelectionDAG::
4637 UpdateNodeOperands(SDNode
*N
, const SDValue
*Ops
, unsigned NumOps
) {
4638 assert(N
->getNumOperands() == NumOps
&&
4639 "Update with wrong number of operands");
4641 // Check to see if there is no change.
4642 bool AnyChange
= false;
4643 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
4644 if (Ops
[i
] != N
->getOperand(i
)) {
4650 // No operands changed, just return the input node.
4651 if (!AnyChange
) return N
;
4653 // See if the modified node already exists.
4654 void *InsertPos
= 0;
4655 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, NumOps
, InsertPos
))
4658 // Nope it doesn't. Remove the node from its current place in the maps.
4660 if (!RemoveNodeFromCSEMaps(N
))
4663 // Now we update the operands.
4664 for (unsigned i
= 0; i
!= NumOps
; ++i
)
4665 if (N
->OperandList
[i
] != Ops
[i
])
4666 N
->OperandList
[i
].set(Ops
[i
]);
4668 // If this gets put into a CSE map, add it.
4669 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
4673 /// DropOperands - Release the operands and set this node to have
4675 void SDNode::DropOperands() {
4676 // Unlike the code in MorphNodeTo that does this, we don't need to
4677 // watch for dead nodes here.
4678 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
4684 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4687 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4689 SDVTList VTs
= getVTList(VT
);
4690 return SelectNodeTo(N
, MachineOpc
, VTs
, 0, 0);
4693 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4694 EVT VT
, SDValue Op1
) {
4695 SDVTList VTs
= getVTList(VT
);
4696 SDValue Ops
[] = { Op1
};
4697 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4700 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4701 EVT VT
, SDValue Op1
,
4703 SDVTList VTs
= getVTList(VT
);
4704 SDValue Ops
[] = { Op1
, Op2
};
4705 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4708 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4709 EVT VT
, SDValue Op1
,
4710 SDValue Op2
, SDValue Op3
) {
4711 SDVTList VTs
= getVTList(VT
);
4712 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4713 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4716 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4717 EVT VT
, const SDValue
*Ops
,
4719 SDVTList VTs
= getVTList(VT
);
4720 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4723 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4724 EVT VT1
, EVT VT2
, const SDValue
*Ops
,
4726 SDVTList VTs
= getVTList(VT1
, VT2
);
4727 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4730 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4732 SDVTList VTs
= getVTList(VT1
, VT2
);
4733 return SelectNodeTo(N
, MachineOpc
, VTs
, (SDValue
*)0, 0);
4736 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4737 EVT VT1
, EVT VT2
, EVT VT3
,
4738 const SDValue
*Ops
, unsigned NumOps
) {
4739 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4740 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4743 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4744 EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
,
4745 const SDValue
*Ops
, unsigned NumOps
) {
4746 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4747 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, NumOps
);
4750 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4753 SDVTList VTs
= getVTList(VT1
, VT2
);
4754 SDValue Ops
[] = { Op1
};
4755 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 1);
4758 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4760 SDValue Op1
, SDValue Op2
) {
4761 SDVTList VTs
= getVTList(VT1
, VT2
);
4762 SDValue Ops
[] = { Op1
, Op2
};
4763 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 2);
4766 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4768 SDValue Op1
, SDValue Op2
,
4770 SDVTList VTs
= getVTList(VT1
, VT2
);
4771 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4772 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4775 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4776 EVT VT1
, EVT VT2
, EVT VT3
,
4777 SDValue Op1
, SDValue Op2
,
4779 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4780 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4781 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
, 3);
4784 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
4785 SDVTList VTs
, const SDValue
*Ops
,
4787 N
= MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
, NumOps
);
4788 // Reset the NodeID to -1.
4793 /// MorphNodeTo - This *mutates* the specified node to have the specified
4794 /// return type, opcode, and operands.
4796 /// Note that MorphNodeTo returns the resultant node. If there is already a
4797 /// node of the specified opcode and operands, it returns that node instead of
4798 /// the current one. Note that the DebugLoc need not be the same.
4800 /// Using MorphNodeTo is faster than creating a new node and swapping it in
4801 /// with ReplaceAllUsesWith both because it often avoids allocating a new
4802 /// node, and because it doesn't require CSE recalculation for any of
4803 /// the node's users.
4805 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
4806 SDVTList VTs
, const SDValue
*Ops
,
4808 // If an identical node already exists, use it.
4810 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Glue
) {
4811 FoldingSetNodeID ID
;
4812 AddNodeIDNode(ID
, Opc
, VTs
, Ops
, NumOps
);
4813 if (SDNode
*ON
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
4817 if (!RemoveNodeFromCSEMaps(N
))
4820 // Start the morphing.
4822 N
->ValueList
= VTs
.VTs
;
4823 N
->NumValues
= VTs
.NumVTs
;
4825 // Clear the operands list, updating used nodes to remove this from their
4826 // use list. Keep track of any operands that become dead as a result.
4827 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
4828 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
4830 SDNode
*Used
= Use
.getNode();
4832 if (Used
->use_empty())
4833 DeadNodeSet
.insert(Used
);
4836 if (MachineSDNode
*MN
= dyn_cast
<MachineSDNode
>(N
)) {
4837 // Initialize the memory references information.
4838 MN
->setMemRefs(0, 0);
4839 // If NumOps is larger than the # of operands we can have in a
4840 // MachineSDNode, reallocate the operand list.
4841 if (NumOps
> MN
->NumOperands
|| !MN
->OperandsNeedDelete
) {
4842 if (MN
->OperandsNeedDelete
)
4843 delete[] MN
->OperandList
;
4844 if (NumOps
> array_lengthof(MN
->LocalOperands
))
4845 // We're creating a final node that will live unmorphed for the
4846 // remainder of the current SelectionDAG iteration, so we can allocate
4847 // the operands directly out of a pool with no recycling metadata.
4848 MN
->InitOperands(OperandAllocator
.Allocate
<SDUse
>(NumOps
),
4851 MN
->InitOperands(MN
->LocalOperands
, Ops
, NumOps
);
4852 MN
->OperandsNeedDelete
= false;
4854 MN
->InitOperands(MN
->OperandList
, Ops
, NumOps
);
4856 // If NumOps is larger than the # of operands we currently have, reallocate
4857 // the operand list.
4858 if (NumOps
> N
->NumOperands
) {
4859 if (N
->OperandsNeedDelete
)
4860 delete[] N
->OperandList
;
4861 N
->InitOperands(new SDUse
[NumOps
], Ops
, NumOps
);
4862 N
->OperandsNeedDelete
= true;
4864 N
->InitOperands(N
->OperandList
, Ops
, NumOps
);
4867 // Delete any nodes that are still dead after adding the uses for the
4869 if (!DeadNodeSet
.empty()) {
4870 SmallVector
<SDNode
*, 16> DeadNodes
;
4871 for (SmallPtrSet
<SDNode
*, 16>::iterator I
= DeadNodeSet
.begin(),
4872 E
= DeadNodeSet
.end(); I
!= E
; ++I
)
4873 if ((*I
)->use_empty())
4874 DeadNodes
.push_back(*I
);
4875 RemoveDeadNodes(DeadNodes
);
4879 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
4884 /// getMachineNode - These are used for target selectors to create a new node
4885 /// with specified return type(s), MachineInstr opcode, and operands.
4887 /// Note that getMachineNode returns the resultant node. If there is already a
4888 /// node of the specified opcode and operands, it returns that node instead of
4889 /// the current one.
4891 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
) {
4892 SDVTList VTs
= getVTList(VT
);
4893 return getMachineNode(Opcode
, dl
, VTs
, 0, 0);
4897 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
, SDValue Op1
) {
4898 SDVTList VTs
= getVTList(VT
);
4899 SDValue Ops
[] = { Op1
};
4900 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4904 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4905 SDValue Op1
, SDValue Op2
) {
4906 SDVTList VTs
= getVTList(VT
);
4907 SDValue Ops
[] = { Op1
, Op2
};
4908 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4912 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4913 SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4914 SDVTList VTs
= getVTList(VT
);
4915 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4916 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4920 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT
,
4921 const SDValue
*Ops
, unsigned NumOps
) {
4922 SDVTList VTs
= getVTList(VT
);
4923 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4927 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
, EVT VT2
) {
4928 SDVTList VTs
= getVTList(VT1
, VT2
);
4929 return getMachineNode(Opcode
, dl
, VTs
, 0, 0);
4933 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4934 EVT VT1
, EVT VT2
, SDValue Op1
) {
4935 SDVTList VTs
= getVTList(VT1
, VT2
);
4936 SDValue Ops
[] = { Op1
};
4937 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4941 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4942 EVT VT1
, EVT VT2
, SDValue Op1
, SDValue Op2
) {
4943 SDVTList VTs
= getVTList(VT1
, VT2
);
4944 SDValue Ops
[] = { Op1
, Op2
};
4945 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4949 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4950 EVT VT1
, EVT VT2
, SDValue Op1
,
4951 SDValue Op2
, SDValue Op3
) {
4952 SDVTList VTs
= getVTList(VT1
, VT2
);
4953 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4954 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4958 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4960 const SDValue
*Ops
, unsigned NumOps
) {
4961 SDVTList VTs
= getVTList(VT1
, VT2
);
4962 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4966 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4967 EVT VT1
, EVT VT2
, EVT VT3
,
4968 SDValue Op1
, SDValue Op2
) {
4969 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4970 SDValue Ops
[] = { Op1
, Op2
};
4971 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4975 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4976 EVT VT1
, EVT VT2
, EVT VT3
,
4977 SDValue Op1
, SDValue Op2
, SDValue Op3
) {
4978 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4979 SDValue Ops
[] = { Op1
, Op2
, Op3
};
4980 return getMachineNode(Opcode
, dl
, VTs
, Ops
, array_lengthof(Ops
));
4984 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
4985 EVT VT1
, EVT VT2
, EVT VT3
,
4986 const SDValue
*Ops
, unsigned NumOps
) {
4987 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
4988 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
4992 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
, EVT VT1
,
4993 EVT VT2
, EVT VT3
, EVT VT4
,
4994 const SDValue
*Ops
, unsigned NumOps
) {
4995 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
, VT4
);
4996 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
5000 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc dl
,
5001 const std::vector
<EVT
> &ResultTys
,
5002 const SDValue
*Ops
, unsigned NumOps
) {
5003 SDVTList VTs
= getVTList(&ResultTys
[0], ResultTys
.size());
5004 return getMachineNode(Opcode
, dl
, VTs
, Ops
, NumOps
);
5008 SelectionDAG::getMachineNode(unsigned Opcode
, DebugLoc DL
, SDVTList VTs
,
5009 const SDValue
*Ops
, unsigned NumOps
) {
5010 bool DoCSE
= VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Glue
;
5015 FoldingSetNodeID ID
;
5016 AddNodeIDNode(ID
, ~Opcode
, VTs
, Ops
, NumOps
);
5018 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
5019 return cast
<MachineSDNode
>(E
);
5022 // Allocate a new MachineSDNode.
5023 N
= new (NodeAllocator
) MachineSDNode(~Opcode
, DL
, VTs
);
5025 // Initialize the operands list.
5026 if (NumOps
> array_lengthof(N
->LocalOperands
))
5027 // We're creating a final node that will live unmorphed for the
5028 // remainder of the current SelectionDAG iteration, so we can allocate
5029 // the operands directly out of a pool with no recycling metadata.
5030 N
->InitOperands(OperandAllocator
.Allocate
<SDUse
>(NumOps
),
5033 N
->InitOperands(N
->LocalOperands
, Ops
, NumOps
);
5034 N
->OperandsNeedDelete
= false;
5037 CSEMap
.InsertNode(N
, IP
);
5039 AllNodes
.push_back(N
);
5041 VerifyMachineNode(N
);
5046 /// getTargetExtractSubreg - A convenience function for creating
5047 /// TargetOpcode::EXTRACT_SUBREG nodes.
5049 SelectionDAG::getTargetExtractSubreg(int SRIdx
, DebugLoc DL
, EVT VT
,
5051 SDValue SRIdxVal
= getTargetConstant(SRIdx
, MVT::i32
);
5052 SDNode
*Subreg
= getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
,
5053 VT
, Operand
, SRIdxVal
);
5054 return SDValue(Subreg
, 0);
5057 /// getTargetInsertSubreg - A convenience function for creating
5058 /// TargetOpcode::INSERT_SUBREG nodes.
5060 SelectionDAG::getTargetInsertSubreg(int SRIdx
, DebugLoc DL
, EVT VT
,
5061 SDValue Operand
, SDValue Subreg
) {
5062 SDValue SRIdxVal
= getTargetConstant(SRIdx
, MVT::i32
);
5063 SDNode
*Result
= getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
,
5064 VT
, Operand
, Subreg
, SRIdxVal
);
5065 return SDValue(Result
, 0);
5068 /// getNodeIfExists - Get the specified node if it's already available, or
5069 /// else return NULL.
5070 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
5071 const SDValue
*Ops
, unsigned NumOps
) {
5072 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Glue
) {
5073 FoldingSetNodeID ID
;
5074 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
, NumOps
);
5076 if (SDNode
*E
= CSEMap
.FindNodeOrInsertPos(ID
, IP
))
5082 /// getDbgValue - Creates a SDDbgValue node.
5085 SelectionDAG::getDbgValue(MDNode
*MDPtr
, SDNode
*N
, unsigned R
, uint64_t Off
,
5086 DebugLoc DL
, unsigned O
) {
5087 return new (Allocator
) SDDbgValue(MDPtr
, N
, R
, Off
, DL
, O
);
5091 SelectionDAG::getDbgValue(MDNode
*MDPtr
, const Value
*C
, uint64_t Off
,
5092 DebugLoc DL
, unsigned O
) {
5093 return new (Allocator
) SDDbgValue(MDPtr
, C
, Off
, DL
, O
);
5097 SelectionDAG::getDbgValue(MDNode
*MDPtr
, unsigned FI
, uint64_t Off
,
5098 DebugLoc DL
, unsigned O
) {
5099 return new (Allocator
) SDDbgValue(MDPtr
, FI
, Off
, DL
, O
);
5104 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5105 /// pointed to by a use iterator is deleted, increment the use iterator
5106 /// so that it doesn't dangle.
5108 /// This class also manages a "downlink" DAGUpdateListener, to forward
5109 /// messages to ReplaceAllUsesWith's callers.
5111 class RAUWUpdateListener
: public SelectionDAG::DAGUpdateListener
{
5112 SelectionDAG::DAGUpdateListener
*DownLink
;
5113 SDNode::use_iterator
&UI
;
5114 SDNode::use_iterator
&UE
;
5116 virtual void NodeDeleted(SDNode
*N
, SDNode
*E
) {
5117 // Increment the iterator as needed.
5118 while (UI
!= UE
&& N
== *UI
)
5121 // Then forward the message.
5122 if (DownLink
) DownLink
->NodeDeleted(N
, E
);
5125 virtual void NodeUpdated(SDNode
*N
) {
5126 // Just forward the message.
5127 if (DownLink
) DownLink
->NodeUpdated(N
);
5131 RAUWUpdateListener(SelectionDAG::DAGUpdateListener
*dl
,
5132 SDNode::use_iterator
&ui
,
5133 SDNode::use_iterator
&ue
)
5134 : DownLink(dl
), UI(ui
), UE(ue
) {}
5139 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5140 /// This can cause recursive merging of nodes in the DAG.
5142 /// This version assumes From has a single result value.
5144 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
,
5145 DAGUpdateListener
*UpdateListener
) {
5146 SDNode
*From
= FromN
.getNode();
5147 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
5148 "Cannot replace with this method!");
5149 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
5151 // Iterate over all the existing uses of From. New uses will be added
5152 // to the beginning of the use list, which we avoid visiting.
5153 // This specifically avoids visiting uses of From that arise while the
5154 // replacement is happening, because any such uses would be the result
5155 // of CSE: If an existing node looks like From after one of its operands
5156 // is replaced by To, we don't want to replace of all its users with To
5157 // too. See PR3018 for more info.
5158 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
5159 RAUWUpdateListener
Listener(UpdateListener
, UI
, UE
);
5163 // This node is about to morph, remove its old self from the CSE maps.
5164 RemoveNodeFromCSEMaps(User
);
5166 // A user can appear in a use list multiple times, and when this
5167 // happens the uses are usually next to each other in the list.
5168 // To help reduce the number of CSE recomputations, process all
5169 // the uses of this user that we can find this way.
5171 SDUse
&Use
= UI
.getUse();
5174 } while (UI
!= UE
&& *UI
== User
);
5176 // Now that we have modified User, add it back to the CSE maps. If it
5177 // already exists there, recursively merge the results together.
5178 AddModifiedNodeToCSEMaps(User
, &Listener
);
5182 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5183 /// This can cause recursive merging of nodes in the DAG.
5185 /// This version assumes that for each value of From, there is a
5186 /// corresponding value in To in the same position with the same type.
5188 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
,
5189 DAGUpdateListener
*UpdateListener
) {
5191 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
5192 assert((!From
->hasAnyUseOfValue(i
) ||
5193 From
->getValueType(i
) == To
->getValueType(i
)) &&
5194 "Cannot use this version of ReplaceAllUsesWith!");
5197 // Handle the trivial case.
5201 // Iterate over just the existing users of From. See the comments in
5202 // the ReplaceAllUsesWith above.
5203 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
5204 RAUWUpdateListener
Listener(UpdateListener
, UI
, UE
);
5208 // This node is about to morph, remove its old self from the CSE maps.
5209 RemoveNodeFromCSEMaps(User
);
5211 // A user can appear in a use list multiple times, and when this
5212 // happens the uses are usually next to each other in the list.
5213 // To help reduce the number of CSE recomputations, process all
5214 // the uses of this user that we can find this way.
5216 SDUse
&Use
= UI
.getUse();
5219 } while (UI
!= UE
&& *UI
== User
);
5221 // Now that we have modified User, add it back to the CSE maps. If it
5222 // already exists there, recursively merge the results together.
5223 AddModifiedNodeToCSEMaps(User
, &Listener
);
5227 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5228 /// This can cause recursive merging of nodes in the DAG.
5230 /// This version can replace From with any result values. To must match the
5231 /// number and types of values returned by From.
5232 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
,
5234 DAGUpdateListener
*UpdateListener
) {
5235 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
5236 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0], UpdateListener
);
5238 // Iterate over just the existing users of From. See the comments in
5239 // the ReplaceAllUsesWith above.
5240 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
5241 RAUWUpdateListener
Listener(UpdateListener
, UI
, UE
);
5245 // This node is about to morph, remove its old self from the CSE maps.
5246 RemoveNodeFromCSEMaps(User
);
5248 // A user can appear in a use list multiple times, and when this
5249 // happens the uses are usually next to each other in the list.
5250 // To help reduce the number of CSE recomputations, process all
5251 // the uses of this user that we can find this way.
5253 SDUse
&Use
= UI
.getUse();
5254 const SDValue
&ToOp
= To
[Use
.getResNo()];
5257 } while (UI
!= UE
&& *UI
== User
);
5259 // Now that we have modified User, add it back to the CSE maps. If it
5260 // already exists there, recursively merge the results together.
5261 AddModifiedNodeToCSEMaps(User
, &Listener
);
5265 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5266 /// uses of other values produced by From.getNode() alone. The Deleted
5267 /// vector is handled the same way as for ReplaceAllUsesWith.
5268 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
,
5269 DAGUpdateListener
*UpdateListener
){
5270 // Handle the really simple, really trivial case efficiently.
5271 if (From
== To
) return;
5273 // Handle the simple, trivial, case efficiently.
5274 if (From
.getNode()->getNumValues() == 1) {
5275 ReplaceAllUsesWith(From
, To
, UpdateListener
);
5279 // Iterate over just the existing users of From. See the comments in
5280 // the ReplaceAllUsesWith above.
5281 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
5282 UE
= From
.getNode()->use_end();
5283 RAUWUpdateListener
Listener(UpdateListener
, UI
, UE
);
5286 bool UserRemovedFromCSEMaps
= false;
5288 // A user can appear in a use list multiple times, and when this
5289 // happens the uses are usually next to each other in the list.
5290 // To help reduce the number of CSE recomputations, process all
5291 // the uses of this user that we can find this way.
5293 SDUse
&Use
= UI
.getUse();
5295 // Skip uses of different values from the same node.
5296 if (Use
.getResNo() != From
.getResNo()) {
5301 // If this node hasn't been modified yet, it's still in the CSE maps,
5302 // so remove its old self from the CSE maps.
5303 if (!UserRemovedFromCSEMaps
) {
5304 RemoveNodeFromCSEMaps(User
);
5305 UserRemovedFromCSEMaps
= true;
5310 } while (UI
!= UE
&& *UI
== User
);
5312 // We are iterating over all uses of the From node, so if a use
5313 // doesn't use the specific value, no changes are made.
5314 if (!UserRemovedFromCSEMaps
)
5317 // Now that we have modified User, add it back to the CSE maps. If it
5318 // already exists there, recursively merge the results together.
5319 AddModifiedNodeToCSEMaps(User
, &Listener
);
5324 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5325 /// to record information about a use.
5332 /// operator< - Sort Memos by User.
5333 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
5334 return (intptr_t)L
.User
< (intptr_t)R
.User
;
5338 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5339 /// uses of other values produced by From.getNode() alone. The same value
5340 /// may appear in both the From and To list. The Deleted vector is
5341 /// handled the same way as for ReplaceAllUsesWith.
5342 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
5345 DAGUpdateListener
*UpdateListener
){
5346 // Handle the simple, trivial case efficiently.
5348 return ReplaceAllUsesOfValueWith(*From
, *To
, UpdateListener
);
5350 // Read up all the uses and make records of them. This helps
5351 // processing new uses that are introduced during the
5352 // replacement process.
5353 SmallVector
<UseMemo
, 4> Uses
;
5354 for (unsigned i
= 0; i
!= Num
; ++i
) {
5355 unsigned FromResNo
= From
[i
].getResNo();
5356 SDNode
*FromNode
= From
[i
].getNode();
5357 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
5358 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
5359 SDUse
&Use
= UI
.getUse();
5360 if (Use
.getResNo() == FromResNo
) {
5361 UseMemo Memo
= { *UI
, i
, &Use
};
5362 Uses
.push_back(Memo
);
5367 // Sort the uses, so that all the uses from a given User are together.
5368 std::sort(Uses
.begin(), Uses
.end());
5370 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
5371 UseIndex
!= UseIndexEnd
; ) {
5372 // We know that this user uses some value of From. If it is the right
5373 // value, update it.
5374 SDNode
*User
= Uses
[UseIndex
].User
;
5376 // This node is about to morph, remove its old self from the CSE maps.
5377 RemoveNodeFromCSEMaps(User
);
5379 // The Uses array is sorted, so all the uses for a given User
5380 // are next to each other in the list.
5381 // To help reduce the number of CSE recomputations, process all
5382 // the uses of this user that we can find this way.
5384 unsigned i
= Uses
[UseIndex
].Index
;
5385 SDUse
&Use
= *Uses
[UseIndex
].Use
;
5389 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
5391 // Now that we have modified User, add it back to the CSE maps. If it
5392 // already exists there, recursively merge the results together.
5393 AddModifiedNodeToCSEMaps(User
, UpdateListener
);
5397 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5398 /// based on their topological order. It returns the maximum id and a vector
5399 /// of the SDNodes* in assigned order by reference.
5400 unsigned SelectionDAG::AssignTopologicalOrder() {
5402 unsigned DAGSize
= 0;
5404 // SortedPos tracks the progress of the algorithm. Nodes before it are
5405 // sorted, nodes after it are unsorted. When the algorithm completes
5406 // it is at the end of the list.
5407 allnodes_iterator SortedPos
= allnodes_begin();
5409 // Visit all the nodes. Move nodes with no operands to the front of
5410 // the list immediately. Annotate nodes that do have operands with their
5411 // operand count. Before we do this, the Node Id fields of the nodes
5412 // may contain arbitrary values. After, the Node Id fields for nodes
5413 // before SortedPos will contain the topological sort index, and the
5414 // Node Id fields for nodes At SortedPos and after will contain the
5415 // count of outstanding operands.
5416 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
5419 unsigned Degree
= N
->getNumOperands();
5421 // A node with no uses, add it to the result array immediately.
5422 N
->setNodeId(DAGSize
++);
5423 allnodes_iterator Q
= N
;
5425 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
5426 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
5429 // Temporarily use the Node Id as scratch space for the degree count.
5430 N
->setNodeId(Degree
);
5434 // Visit all the nodes. As we iterate, moves nodes into sorted order,
5435 // such that by the time the end is reached all nodes will be sorted.
5436 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ++I
) {
5439 // N is in sorted position, so all its uses have one less operand
5440 // that needs to be sorted.
5441 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
5444 unsigned Degree
= P
->getNodeId();
5445 assert(Degree
!= 0 && "Invalid node degree");
5448 // All of P's operands are sorted, so P may sorted now.
5449 P
->setNodeId(DAGSize
++);
5451 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
5452 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
5455 // Update P's outstanding operand count.
5456 P
->setNodeId(Degree
);
5459 if (I
== SortedPos
) {
5462 dbgs() << "Overran sorted position:\n";
5465 llvm_unreachable(0);
5469 assert(SortedPos
== AllNodes
.end() &&
5470 "Topological sort incomplete!");
5471 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
5472 "First node in topological sort is not the entry token!");
5473 assert(AllNodes
.front().getNodeId() == 0 &&
5474 "First node in topological sort has non-zero id!");
5475 assert(AllNodes
.front().getNumOperands() == 0 &&
5476 "First node in topological sort has operands!");
5477 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
5478 "Last node in topologic sort has unexpected id!");
5479 assert(AllNodes
.back().use_empty() &&
5480 "Last node in topologic sort has users!");
5481 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
5485 /// AssignOrdering - Assign an order to the SDNode.
5486 void SelectionDAG::AssignOrdering(const SDNode
*SD
, unsigned Order
) {
5487 assert(SD
&& "Trying to assign an order to a null node!");
5488 Ordering
->add(SD
, Order
);
5491 /// GetOrdering - Get the order for the SDNode.
5492 unsigned SelectionDAG::GetOrdering(const SDNode
*SD
) const {
5493 assert(SD
&& "Trying to get the order of a null node!");
5494 return Ordering
->getOrder(SD
);
5497 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5498 /// value is produced by SD.
5499 void SelectionDAG::AddDbgValue(SDDbgValue
*DB
, SDNode
*SD
, bool isParameter
) {
5500 DbgInfo
->add(DB
, SD
, isParameter
);
5502 SD
->setHasDebugValue(true);
5505 /// TransferDbgValues - Transfer SDDbgValues.
5506 void SelectionDAG::TransferDbgValues(SDValue From
, SDValue To
) {
5507 if (From
== To
|| !From
.getNode()->getHasDebugValue())
5509 SDNode
*FromNode
= From
.getNode();
5510 SDNode
*ToNode
= To
.getNode();
5511 ArrayRef
<SDDbgValue
*> DVs
= GetDbgValues(FromNode
);
5512 SmallVector
<SDDbgValue
*, 2> ClonedDVs
;
5513 for (ArrayRef
<SDDbgValue
*>::iterator I
= DVs
.begin(), E
= DVs
.end();
5515 SDDbgValue
*Dbg
= *I
;
5516 if (Dbg
->getKind() == SDDbgValue::SDNODE
) {
5517 SDDbgValue
*Clone
= getDbgValue(Dbg
->getMDPtr(), ToNode
, To
.getResNo(),
5518 Dbg
->getOffset(), Dbg
->getDebugLoc(),
5520 ClonedDVs
.push_back(Clone
);
5523 for (SmallVector
<SDDbgValue
*, 2>::iterator I
= ClonedDVs
.begin(),
5524 E
= ClonedDVs
.end(); I
!= E
; ++I
)
5525 AddDbgValue(*I
, ToNode
, false);
5528 //===----------------------------------------------------------------------===//
5530 //===----------------------------------------------------------------------===//
5532 HandleSDNode::~HandleSDNode() {
5536 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc
, DebugLoc DL
,
5537 const GlobalValue
*GA
,
5538 EVT VT
, int64_t o
, unsigned char TF
)
5539 : SDNode(Opc
, DL
, getSDVTList(VT
)), Offset(o
), TargetFlags(TF
) {
5543 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
, EVT memvt
,
5544 MachineMemOperand
*mmo
)
5545 : SDNode(Opc
, dl
, VTs
), MemoryVT(memvt
), MMO(mmo
) {
5546 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, MMO
->isVolatile(),
5547 MMO
->isNonTemporal());
5548 assert(isVolatile() == MMO
->isVolatile() && "Volatile encoding error!");
5549 assert(isNonTemporal() == MMO
->isNonTemporal() &&
5550 "Non-temporal encoding error!");
5551 assert(memvt
.getStoreSize() == MMO
->getSize() && "Size mismatch!");
5554 MemSDNode::MemSDNode(unsigned Opc
, DebugLoc dl
, SDVTList VTs
,
5555 const SDValue
*Ops
, unsigned NumOps
, EVT memvt
,
5556 MachineMemOperand
*mmo
)
5557 : SDNode(Opc
, dl
, VTs
, Ops
, NumOps
),
5558 MemoryVT(memvt
), MMO(mmo
) {
5559 SubclassData
= encodeMemSDNodeFlags(0, ISD::UNINDEXED
, MMO
->isVolatile(),
5560 MMO
->isNonTemporal());
5561 assert(isVolatile() == MMO
->isVolatile() && "Volatile encoding error!");
5562 assert(memvt
.getStoreSize() == MMO
->getSize() && "Size mismatch!");
5565 /// Profile - Gather unique data for the node.
5567 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
5568 AddNodeIDNode(ID
, this);
5573 std::vector
<EVT
> VTs
;
5576 VTs
.reserve(MVT::LAST_VALUETYPE
);
5577 for (unsigned i
= 0; i
< MVT::LAST_VALUETYPE
; ++i
)
5578 VTs
.push_back(MVT((MVT::SimpleValueType
)i
));
5583 static ManagedStatic
<std::set
<EVT
, EVT::compareRawBits
> > EVTs
;
5584 static ManagedStatic
<EVTArray
> SimpleVTArray
;
5585 static ManagedStatic
<sys::SmartMutex
<true> > VTMutex
;
5587 /// getValueTypeList - Return a pointer to the specified value type.
5589 const EVT
*SDNode::getValueTypeList(EVT VT
) {
5590 if (VT
.isExtended()) {
5591 sys::SmartScopedLock
<true> Lock(*VTMutex
);
5592 return &(*EVTs
->insert(VT
).first
);
5594 assert(VT
.getSimpleVT() < MVT::LAST_VALUETYPE
&&
5595 "Value type out of range!");
5596 return &SimpleVTArray
->VTs
[VT
.getSimpleVT().SimpleTy
];
5600 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5601 /// indicated value. This method ignores uses of other values defined by this
5603 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
5604 assert(Value
< getNumValues() && "Bad value!");
5606 // TODO: Only iterate over uses of a given value of the node
5607 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
5608 if (UI
.getUse().getResNo() == Value
) {
5615 // Found exactly the right number of uses?
5620 /// hasAnyUseOfValue - Return true if there are any use of the indicated
5621 /// value. This method ignores uses of other values defined by this operation.
5622 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
5623 assert(Value
< getNumValues() && "Bad value!");
5625 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
5626 if (UI
.getUse().getResNo() == Value
)
5633 /// isOnlyUserOf - Return true if this node is the only use of N.
5635 bool SDNode::isOnlyUserOf(SDNode
*N
) const {
5637 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
5648 /// isOperand - Return true if this node is an operand of N.
5650 bool SDValue::isOperandOf(SDNode
*N
) const {
5651 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
5652 if (*this == N
->getOperand(i
))
5657 bool SDNode::isOperandOf(SDNode
*N
) const {
5658 for (unsigned i
= 0, e
= N
->NumOperands
; i
!= e
; ++i
)
5659 if (this == N
->OperandList
[i
].getNode())
5664 /// reachesChainWithoutSideEffects - Return true if this operand (which must
5665 /// be a chain) reaches the specified operand without crossing any
5666 /// side-effecting instructions on any chain path. In practice, this looks
5667 /// through token factors and non-volatile loads. In order to remain efficient,
5668 /// this only looks a couple of nodes in, it does not do an exhaustive search.
5669 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
5670 unsigned Depth
) const {
5671 if (*this == Dest
) return true;
5673 // Don't search too deeply, we just want to be able to see through
5674 // TokenFactor's etc.
5675 if (Depth
== 0) return false;
5677 // If this is a token factor, all inputs to the TF happen in parallel. If any
5678 // of the operands of the TF does not reach dest, then we cannot do the xform.
5679 if (getOpcode() == ISD::TokenFactor
) {
5680 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
5681 if (!getOperand(i
).reachesChainWithoutSideEffects(Dest
, Depth
-1))
5686 // Loads don't have side effects, look through them.
5687 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
5688 if (!Ld
->isVolatile())
5689 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
5694 /// hasPredecessor - Return true if N is a predecessor of this node.
5695 /// N is either an operand of this node, or can be reached by recursively
5696 /// traversing up the operands.
5697 /// NOTE: This is an expensive method. Use it carefully.
5698 bool SDNode::hasPredecessor(const SDNode
*N
) const {
5699 SmallPtrSet
<const SDNode
*, 32> Visited
;
5700 SmallVector
<const SDNode
*, 16> Worklist
;
5701 return hasPredecessorHelper(N
, Visited
, Worklist
);
5704 bool SDNode::hasPredecessorHelper(const SDNode
*N
,
5705 SmallPtrSet
<const SDNode
*, 32> &Visited
,
5706 SmallVector
<const SDNode
*, 16> &Worklist
) const {
5707 if (Visited
.empty()) {
5708 Worklist
.push_back(this);
5710 // Take a look in the visited set. If we've already encountered this node
5711 // we needn't search further.
5712 if (Visited
.count(N
))
5716 // Haven't visited N yet. Continue the search.
5717 while (!Worklist
.empty()) {
5718 const SDNode
*M
= Worklist
.pop_back_val();
5719 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
5720 SDNode
*Op
= M
->getOperand(i
).getNode();
5721 if (Visited
.insert(Op
))
5722 Worklist
.push_back(Op
);
5731 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
5732 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
5733 return cast
<ConstantSDNode
>(OperandList
[Num
])->getZExtValue();
5736 std::string
SDNode::getOperationName(const SelectionDAG
*G
) const {
5737 switch (getOpcode()) {
5739 if (getOpcode() < ISD::BUILTIN_OP_END
)
5740 return "<<Unknown DAG Node>>";
5741 if (isMachineOpcode()) {
5743 if (const TargetInstrInfo
*TII
= G
->getTarget().getInstrInfo())
5744 if (getMachineOpcode() < TII
->getNumOpcodes())
5745 return TII
->get(getMachineOpcode()).getName();
5746 return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5749 const TargetLowering
&TLI
= G
->getTargetLoweringInfo();
5750 const char *Name
= TLI
.getTargetNodeName(getOpcode());
5751 if (Name
) return Name
;
5752 return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5754 return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5757 case ISD::DELETED_NODE
:
5758 return "<<Deleted Node!>>";
5760 case ISD::PREFETCH
: return "Prefetch";
5761 case ISD::MEMBARRIER
: return "MemBarrier";
5762 case ISD::ATOMIC_CMP_SWAP
: return "AtomicCmpSwap";
5763 case ISD::ATOMIC_SWAP
: return "AtomicSwap";
5764 case ISD::ATOMIC_LOAD_ADD
: return "AtomicLoadAdd";
5765 case ISD::ATOMIC_LOAD_SUB
: return "AtomicLoadSub";
5766 case ISD::ATOMIC_LOAD_AND
: return "AtomicLoadAnd";
5767 case ISD::ATOMIC_LOAD_OR
: return "AtomicLoadOr";
5768 case ISD::ATOMIC_LOAD_XOR
: return "AtomicLoadXor";
5769 case ISD::ATOMIC_LOAD_NAND
: return "AtomicLoadNand";
5770 case ISD::ATOMIC_LOAD_MIN
: return "AtomicLoadMin";
5771 case ISD::ATOMIC_LOAD_MAX
: return "AtomicLoadMax";
5772 case ISD::ATOMIC_LOAD_UMIN
: return "AtomicLoadUMin";
5773 case ISD::ATOMIC_LOAD_UMAX
: return "AtomicLoadUMax";
5774 case ISD::PCMARKER
: return "PCMarker";
5775 case ISD::READCYCLECOUNTER
: return "ReadCycleCounter";
5776 case ISD::SRCVALUE
: return "SrcValue";
5777 case ISD::MDNODE_SDNODE
: return "MDNode";
5778 case ISD::EntryToken
: return "EntryToken";
5779 case ISD::TokenFactor
: return "TokenFactor";
5780 case ISD::AssertSext
: return "AssertSext";
5781 case ISD::AssertZext
: return "AssertZext";
5783 case ISD::BasicBlock
: return "BasicBlock";
5784 case ISD::VALUETYPE
: return "ValueType";
5785 case ISD::Register
: return "Register";
5787 case ISD::Constant
: return "Constant";
5788 case ISD::ConstantFP
: return "ConstantFP";
5789 case ISD::GlobalAddress
: return "GlobalAddress";
5790 case ISD::GlobalTLSAddress
: return "GlobalTLSAddress";
5791 case ISD::FrameIndex
: return "FrameIndex";
5792 case ISD::JumpTable
: return "JumpTable";
5793 case ISD::GLOBAL_OFFSET_TABLE
: return "GLOBAL_OFFSET_TABLE";
5794 case ISD::RETURNADDR
: return "RETURNADDR";
5795 case ISD::FRAMEADDR
: return "FRAMEADDR";
5796 case ISD::FRAME_TO_ARGS_OFFSET
: return "FRAME_TO_ARGS_OFFSET";
5797 case ISD::EXCEPTIONADDR
: return "EXCEPTIONADDR";
5798 case ISD::LSDAADDR
: return "LSDAADDR";
5799 case ISD::EHSELECTION
: return "EHSELECTION";
5800 case ISD::EH_RETURN
: return "EH_RETURN";
5801 case ISD::EH_SJLJ_SETJMP
: return "EH_SJLJ_SETJMP";
5802 case ISD::EH_SJLJ_LONGJMP
: return "EH_SJLJ_LONGJMP";
5803 case ISD::EH_SJLJ_DISPATCHSETUP
: return "EH_SJLJ_DISPATCHSETUP";
5804 case ISD::ConstantPool
: return "ConstantPool";
5805 case ISD::ExternalSymbol
: return "ExternalSymbol";
5806 case ISD::BlockAddress
: return "BlockAddress";
5807 case ISD::INTRINSIC_WO_CHAIN
:
5808 case ISD::INTRINSIC_VOID
:
5809 case ISD::INTRINSIC_W_CHAIN
: {
5810 unsigned OpNo
= getOpcode() == ISD::INTRINSIC_WO_CHAIN
? 0 : 1;
5811 unsigned IID
= cast
<ConstantSDNode
>(getOperand(OpNo
))->getZExtValue();
5812 if (IID
< Intrinsic::num_intrinsics
)
5813 return Intrinsic::getName((Intrinsic::ID
)IID
);
5814 else if (const TargetIntrinsicInfo
*TII
= G
->getTarget().getIntrinsicInfo())
5815 return TII
->getName(IID
);
5816 llvm_unreachable("Invalid intrinsic ID");
5819 case ISD::BUILD_VECTOR
: return "BUILD_VECTOR";
5820 case ISD::TargetConstant
: return "TargetConstant";
5821 case ISD::TargetConstantFP
:return "TargetConstantFP";
5822 case ISD::TargetGlobalAddress
: return "TargetGlobalAddress";
5823 case ISD::TargetGlobalTLSAddress
: return "TargetGlobalTLSAddress";
5824 case ISD::TargetFrameIndex
: return "TargetFrameIndex";
5825 case ISD::TargetJumpTable
: return "TargetJumpTable";
5826 case ISD::TargetConstantPool
: return "TargetConstantPool";
5827 case ISD::TargetExternalSymbol
: return "TargetExternalSymbol";
5828 case ISD::TargetBlockAddress
: return "TargetBlockAddress";
5830 case ISD::CopyToReg
: return "CopyToReg";
5831 case ISD::CopyFromReg
: return "CopyFromReg";
5832 case ISD::UNDEF
: return "undef";
5833 case ISD::MERGE_VALUES
: return "merge_values";
5834 case ISD::INLINEASM
: return "inlineasm";
5835 case ISD::EH_LABEL
: return "eh_label";
5836 case ISD::HANDLENODE
: return "handlenode";
5839 case ISD::FABS
: return "fabs";
5840 case ISD::FNEG
: return "fneg";
5841 case ISD::FSQRT
: return "fsqrt";
5842 case ISD::FSIN
: return "fsin";
5843 case ISD::FCOS
: return "fcos";
5844 case ISD::FTRUNC
: return "ftrunc";
5845 case ISD::FFLOOR
: return "ffloor";
5846 case ISD::FCEIL
: return "fceil";
5847 case ISD::FRINT
: return "frint";
5848 case ISD::FNEARBYINT
: return "fnearbyint";
5849 case ISD::FEXP
: return "fexp";
5850 case ISD::FEXP2
: return "fexp2";
5851 case ISD::FLOG
: return "flog";
5852 case ISD::FLOG2
: return "flog2";
5853 case ISD::FLOG10
: return "flog10";
5856 case ISD::ADD
: return "add";
5857 case ISD::SUB
: return "sub";
5858 case ISD::MUL
: return "mul";
5859 case ISD::MULHU
: return "mulhu";
5860 case ISD::MULHS
: return "mulhs";
5861 case ISD::SDIV
: return "sdiv";
5862 case ISD::UDIV
: return "udiv";
5863 case ISD::SREM
: return "srem";
5864 case ISD::UREM
: return "urem";
5865 case ISD::SMUL_LOHI
: return "smul_lohi";
5866 case ISD::UMUL_LOHI
: return "umul_lohi";
5867 case ISD::SDIVREM
: return "sdivrem";
5868 case ISD::UDIVREM
: return "udivrem";
5869 case ISD::AND
: return "and";
5870 case ISD::OR
: return "or";
5871 case ISD::XOR
: return "xor";
5872 case ISD::SHL
: return "shl";
5873 case ISD::SRA
: return "sra";
5874 case ISD::SRL
: return "srl";
5875 case ISD::ROTL
: return "rotl";
5876 case ISD::ROTR
: return "rotr";
5877 case ISD::FADD
: return "fadd";
5878 case ISD::FSUB
: return "fsub";
5879 case ISD::FMUL
: return "fmul";
5880 case ISD::FDIV
: return "fdiv";
5881 case ISD::FMA
: return "fma";
5882 case ISD::FREM
: return "frem";
5883 case ISD::FCOPYSIGN
: return "fcopysign";
5884 case ISD::FGETSIGN
: return "fgetsign";
5885 case ISD::FPOW
: return "fpow";
5887 case ISD::FPOWI
: return "fpowi";
5888 case ISD::SETCC
: return "setcc";
5889 case ISD::VSETCC
: return "vsetcc";
5890 case ISD::SELECT
: return "select";
5891 case ISD::SELECT_CC
: return "select_cc";
5892 case ISD::INSERT_VECTOR_ELT
: return "insert_vector_elt";
5893 case ISD::EXTRACT_VECTOR_ELT
: return "extract_vector_elt";
5894 case ISD::CONCAT_VECTORS
: return "concat_vectors";
5895 case ISD::INSERT_SUBVECTOR
: return "insert_subvector";
5896 case ISD::EXTRACT_SUBVECTOR
: return "extract_subvector";
5897 case ISD::SCALAR_TO_VECTOR
: return "scalar_to_vector";
5898 case ISD::VECTOR_SHUFFLE
: return "vector_shuffle";
5899 case ISD::CARRY_FALSE
: return "carry_false";
5900 case ISD::ADDC
: return "addc";
5901 case ISD::ADDE
: return "adde";
5902 case ISD::SADDO
: return "saddo";
5903 case ISD::UADDO
: return "uaddo";
5904 case ISD::SSUBO
: return "ssubo";
5905 case ISD::USUBO
: return "usubo";
5906 case ISD::SMULO
: return "smulo";
5907 case ISD::UMULO
: return "umulo";
5908 case ISD::SUBC
: return "subc";
5909 case ISD::SUBE
: return "sube";
5910 case ISD::SHL_PARTS
: return "shl_parts";
5911 case ISD::SRA_PARTS
: return "sra_parts";
5912 case ISD::SRL_PARTS
: return "srl_parts";
5914 // Conversion operators.
5915 case ISD::SIGN_EXTEND
: return "sign_extend";
5916 case ISD::ZERO_EXTEND
: return "zero_extend";
5917 case ISD::ANY_EXTEND
: return "any_extend";
5918 case ISD::SIGN_EXTEND_INREG
: return "sign_extend_inreg";
5919 case ISD::TRUNCATE
: return "truncate";
5920 case ISD::FP_ROUND
: return "fp_round";
5921 case ISD::FLT_ROUNDS_
: return "flt_rounds";
5922 case ISD::FP_ROUND_INREG
: return "fp_round_inreg";
5923 case ISD::FP_EXTEND
: return "fp_extend";
5925 case ISD::SINT_TO_FP
: return "sint_to_fp";
5926 case ISD::UINT_TO_FP
: return "uint_to_fp";
5927 case ISD::FP_TO_SINT
: return "fp_to_sint";
5928 case ISD::FP_TO_UINT
: return "fp_to_uint";
5929 case ISD::BITCAST
: return "bitcast";
5930 case ISD::FP16_TO_FP32
: return "fp16_to_fp32";
5931 case ISD::FP32_TO_FP16
: return "fp32_to_fp16";
5933 case ISD::CONVERT_RNDSAT
: {
5934 switch (cast
<CvtRndSatSDNode
>(this)->getCvtCode()) {
5935 default: llvm_unreachable("Unknown cvt code!");
5936 case ISD::CVT_FF
: return "cvt_ff";
5937 case ISD::CVT_FS
: return "cvt_fs";
5938 case ISD::CVT_FU
: return "cvt_fu";
5939 case ISD::CVT_SF
: return "cvt_sf";
5940 case ISD::CVT_UF
: return "cvt_uf";
5941 case ISD::CVT_SS
: return "cvt_ss";
5942 case ISD::CVT_SU
: return "cvt_su";
5943 case ISD::CVT_US
: return "cvt_us";
5944 case ISD::CVT_UU
: return "cvt_uu";
5948 // Control flow instructions
5949 case ISD::BR
: return "br";
5950 case ISD::BRIND
: return "brind";
5951 case ISD::BR_JT
: return "br_jt";
5952 case ISD::BRCOND
: return "brcond";
5953 case ISD::BR_CC
: return "br_cc";
5954 case ISD::CALLSEQ_START
: return "callseq_start";
5955 case ISD::CALLSEQ_END
: return "callseq_end";
5958 case ISD::LOAD
: return "load";
5959 case ISD::STORE
: return "store";
5960 case ISD::VAARG
: return "vaarg";
5961 case ISD::VACOPY
: return "vacopy";
5962 case ISD::VAEND
: return "vaend";
5963 case ISD::VASTART
: return "vastart";
5964 case ISD::DYNAMIC_STACKALLOC
: return "dynamic_stackalloc";
5965 case ISD::EXTRACT_ELEMENT
: return "extract_element";
5966 case ISD::BUILD_PAIR
: return "build_pair";
5967 case ISD::STACKSAVE
: return "stacksave";
5968 case ISD::STACKRESTORE
: return "stackrestore";
5969 case ISD::TRAP
: return "trap";
5972 case ISD::BSWAP
: return "bswap";
5973 case ISD::CTPOP
: return "ctpop";
5974 case ISD::CTTZ
: return "cttz";
5975 case ISD::CTLZ
: return "ctlz";
5978 case ISD::TRAMPOLINE
: return "trampoline";
5981 switch (cast
<CondCodeSDNode
>(this)->get()) {
5982 default: llvm_unreachable("Unknown setcc condition!");
5983 case ISD::SETOEQ
: return "setoeq";
5984 case ISD::SETOGT
: return "setogt";
5985 case ISD::SETOGE
: return "setoge";
5986 case ISD::SETOLT
: return "setolt";
5987 case ISD::SETOLE
: return "setole";
5988 case ISD::SETONE
: return "setone";
5990 case ISD::SETO
: return "seto";
5991 case ISD::SETUO
: return "setuo";
5992 case ISD::SETUEQ
: return "setue";
5993 case ISD::SETUGT
: return "setugt";
5994 case ISD::SETUGE
: return "setuge";
5995 case ISD::SETULT
: return "setult";
5996 case ISD::SETULE
: return "setule";
5997 case ISD::SETUNE
: return "setune";
5999 case ISD::SETEQ
: return "seteq";
6000 case ISD::SETGT
: return "setgt";
6001 case ISD::SETGE
: return "setge";
6002 case ISD::SETLT
: return "setlt";
6003 case ISD::SETLE
: return "setle";
6004 case ISD::SETNE
: return "setne";
6009 const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM
) {
6018 return "<post-inc>";
6020 return "<post-dec>";
6024 std::string
ISD::ArgFlagsTy::getArgFlagsString() {
6025 std::string S
= "< ";
6039 if (getByValAlign())
6040 S
+= "byval-align:" + utostr(getByValAlign()) + " ";
6042 S
+= "orig-align:" + utostr(getOrigAlign()) + " ";
6044 S
+= "byval-size:" + utostr(getByValSize()) + " ";
6048 void SDNode::dump() const { dump(0); }
6049 void SDNode::dump(const SelectionDAG
*G
) const {
6054 void SDNode::print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const {
6055 OS
<< (void*)this << ": ";
6057 for (unsigned i
= 0, e
= getNumValues(); i
!= e
; ++i
) {
6059 if (getValueType(i
) == MVT::Other
)
6062 OS
<< getValueType(i
).getEVTString();
6064 OS
<< " = " << getOperationName(G
);
6067 void SDNode::print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const {
6068 if (const MachineSDNode
*MN
= dyn_cast
<MachineSDNode
>(this)) {
6069 if (!MN
->memoperands_empty()) {
6072 for (MachineSDNode::mmo_iterator i
= MN
->memoperands_begin(),
6073 e
= MN
->memoperands_end(); i
!= e
; ++i
) {
6075 if (llvm::next(i
) != e
)
6080 } else if (const ShuffleVectorSDNode
*SVN
=
6081 dyn_cast
<ShuffleVectorSDNode
>(this)) {
6083 for (unsigned i
= 0, e
= ValueList
[0].getVectorNumElements(); i
!= e
; ++i
) {
6084 int Idx
= SVN
->getMaskElt(i
);
6092 } else if (const ConstantSDNode
*CSDN
= dyn_cast
<ConstantSDNode
>(this)) {
6093 OS
<< '<' << CSDN
->getAPIntValue() << '>';
6094 } else if (const ConstantFPSDNode
*CSDN
= dyn_cast
<ConstantFPSDNode
>(this)) {
6095 if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEsingle
)
6096 OS
<< '<' << CSDN
->getValueAPF().convertToFloat() << '>';
6097 else if (&CSDN
->getValueAPF().getSemantics()==&APFloat::IEEEdouble
)
6098 OS
<< '<' << CSDN
->getValueAPF().convertToDouble() << '>';
6101 CSDN
->getValueAPF().bitcastToAPInt().dump();
6104 } else if (const GlobalAddressSDNode
*GADN
=
6105 dyn_cast
<GlobalAddressSDNode
>(this)) {
6106 int64_t offset
= GADN
->getOffset();
6108 WriteAsOperand(OS
, GADN
->getGlobal());
6111 OS
<< " + " << offset
;
6113 OS
<< " " << offset
;
6114 if (unsigned int TF
= GADN
->getTargetFlags())
6115 OS
<< " [TF=" << TF
<< ']';
6116 } else if (const FrameIndexSDNode
*FIDN
= dyn_cast
<FrameIndexSDNode
>(this)) {
6117 OS
<< "<" << FIDN
->getIndex() << ">";
6118 } else if (const JumpTableSDNode
*JTDN
= dyn_cast
<JumpTableSDNode
>(this)) {
6119 OS
<< "<" << JTDN
->getIndex() << ">";
6120 if (unsigned int TF
= JTDN
->getTargetFlags())
6121 OS
<< " [TF=" << TF
<< ']';
6122 } else if (const ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(this)){
6123 int offset
= CP
->getOffset();
6124 if (CP
->isMachineConstantPoolEntry())
6125 OS
<< "<" << *CP
->getMachineCPVal() << ">";
6127 OS
<< "<" << *CP
->getConstVal() << ">";
6129 OS
<< " + " << offset
;
6131 OS
<< " " << offset
;
6132 if (unsigned int TF
= CP
->getTargetFlags())
6133 OS
<< " [TF=" << TF
<< ']';
6134 } else if (const BasicBlockSDNode
*BBDN
= dyn_cast
<BasicBlockSDNode
>(this)) {
6136 const Value
*LBB
= (const Value
*)BBDN
->getBasicBlock()->getBasicBlock();
6138 OS
<< LBB
->getName() << " ";
6139 OS
<< (const void*)BBDN
->getBasicBlock() << ">";
6140 } else if (const RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(this)) {
6141 OS
<< ' ' << PrintReg(R
->getReg(), G
? G
->getTarget().getRegisterInfo() :0);
6142 } else if (const ExternalSymbolSDNode
*ES
=
6143 dyn_cast
<ExternalSymbolSDNode
>(this)) {
6144 OS
<< "'" << ES
->getSymbol() << "'";
6145 if (unsigned int TF
= ES
->getTargetFlags())
6146 OS
<< " [TF=" << TF
<< ']';
6147 } else if (const SrcValueSDNode
*M
= dyn_cast
<SrcValueSDNode
>(this)) {
6149 OS
<< "<" << M
->getValue() << ">";
6152 } else if (const MDNodeSDNode
*MD
= dyn_cast
<MDNodeSDNode
>(this)) {
6154 OS
<< "<" << MD
->getMD() << ">";
6157 } else if (const VTSDNode
*N
= dyn_cast
<VTSDNode
>(this)) {
6158 OS
<< ":" << N
->getVT().getEVTString();
6160 else if (const LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(this)) {
6161 OS
<< "<" << *LD
->getMemOperand();
6164 switch (LD
->getExtensionType()) {
6165 default: doExt
= false; break;
6166 case ISD::EXTLOAD
: OS
<< ", anyext"; break;
6167 case ISD::SEXTLOAD
: OS
<< ", sext"; break;
6168 case ISD::ZEXTLOAD
: OS
<< ", zext"; break;
6171 OS
<< " from " << LD
->getMemoryVT().getEVTString();
6173 const char *AM
= getIndexedModeName(LD
->getAddressingMode());
6178 } else if (const StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(this)) {
6179 OS
<< "<" << *ST
->getMemOperand();
6181 if (ST
->isTruncatingStore())
6182 OS
<< ", trunc to " << ST
->getMemoryVT().getEVTString();
6184 const char *AM
= getIndexedModeName(ST
->getAddressingMode());
6189 } else if (const MemSDNode
* M
= dyn_cast
<MemSDNode
>(this)) {
6190 OS
<< "<" << *M
->getMemOperand() << ">";
6191 } else if (const BlockAddressSDNode
*BA
=
6192 dyn_cast
<BlockAddressSDNode
>(this)) {
6194 WriteAsOperand(OS
, BA
->getBlockAddress()->getFunction(), false);
6196 WriteAsOperand(OS
, BA
->getBlockAddress()->getBasicBlock(), false);
6198 if (unsigned int TF
= BA
->getTargetFlags())
6199 OS
<< " [TF=" << TF
<< ']';
6203 if (unsigned Order
= G
->GetOrdering(this))
6204 OS
<< " [ORD=" << Order
<< ']';
6206 if (getNodeId() != -1)
6207 OS
<< " [ID=" << getNodeId() << ']';
6209 DebugLoc dl
= getDebugLoc();
6210 if (G
&& !dl
.isUnknown()) {
6212 Scope(dl
.getScope(G
->getMachineFunction().getFunction()->getContext()));
6214 // Omit the directory, since it's usually long and uninteresting.
6216 OS
<< Scope
.getFilename();
6219 OS
<< ':' << dl
.getLine();
6220 if (dl
.getCol() != 0)
6221 OS
<< ':' << dl
.getCol();
6225 void SDNode::print(raw_ostream
&OS
, const SelectionDAG
*G
) const {
6227 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
6228 if (i
) OS
<< ", "; else OS
<< " ";
6229 OS
<< (void*)getOperand(i
).getNode();
6230 if (unsigned RN
= getOperand(i
).getResNo())
6233 print_details(OS
, G
);
6236 static void printrWithDepthHelper(raw_ostream
&OS
, const SDNode
*N
,
6237 const SelectionDAG
*G
, unsigned depth
,
6250 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
6251 // Don't follow chain operands.
6252 if (N
->getOperand(i
).getValueType() == MVT::Other
)
6255 printrWithDepthHelper(OS
, N
->getOperand(i
).getNode(), G
, depth
-1, indent
+2);
6259 void SDNode::printrWithDepth(raw_ostream
&OS
, const SelectionDAG
*G
,
6260 unsigned depth
) const {
6261 printrWithDepthHelper(OS
, this, G
, depth
, 0);
6264 void SDNode::printrFull(raw_ostream
&OS
, const SelectionDAG
*G
) const {
6265 // Don't print impossibly deep things.
6266 printrWithDepth(OS
, G
, 10);
6269 void SDNode::dumprWithDepth(const SelectionDAG
*G
, unsigned depth
) const {
6270 printrWithDepth(dbgs(), G
, depth
);
6273 void SDNode::dumprFull(const SelectionDAG
*G
) const {
6274 // Don't print impossibly deep things.
6275 dumprWithDepth(G
, 10);
6278 static void DumpNodes(const SDNode
*N
, unsigned indent
, const SelectionDAG
*G
) {
6279 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
6280 if (N
->getOperand(i
).getNode()->hasOneUse())
6281 DumpNodes(N
->getOperand(i
).getNode(), indent
+2, G
);
6283 dbgs() << "\n" << std::string(indent
+2, ' ')
6284 << (void*)N
->getOperand(i
).getNode() << ": <multiple use>";
6288 dbgs().indent(indent
);
6292 SDValue
SelectionDAG::UnrollVectorOp(SDNode
*N
, unsigned ResNE
) {
6293 assert(N
->getNumValues() == 1 &&
6294 "Can't unroll a vector with multiple results!");
6296 EVT VT
= N
->getValueType(0);
6297 unsigned NE
= VT
.getVectorNumElements();
6298 EVT EltVT
= VT
.getVectorElementType();
6299 DebugLoc dl
= N
->getDebugLoc();
6301 SmallVector
<SDValue
, 8> Scalars
;
6302 SmallVector
<SDValue
, 4> Operands(N
->getNumOperands());
6304 // If ResNE is 0, fully unroll the vector op.
6307 else if (NE
> ResNE
)
6311 for (i
= 0; i
!= NE
; ++i
) {
6312 for (unsigned j
= 0, e
= N
->getNumOperands(); j
!= e
; ++j
) {
6313 SDValue Operand
= N
->getOperand(j
);
6314 EVT OperandVT
= Operand
.getValueType();
6315 if (OperandVT
.isVector()) {
6316 // A vector operand; extract a single element.
6317 EVT OperandEltVT
= OperandVT
.getVectorElementType();
6318 Operands
[j
] = getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
6321 getConstant(i
, TLI
.getPointerTy()));
6323 // A scalar operand; just use it as is.
6324 Operands
[j
] = Operand
;
6328 switch (N
->getOpcode()) {
6330 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
,
6331 &Operands
[0], Operands
.size()));
6338 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
, Operands
[0],
6339 getShiftAmountOperand(Operands
[0].getValueType(),
6342 case ISD::SIGN_EXTEND_INREG
:
6343 case ISD::FP_ROUND_INREG
: {
6344 EVT ExtVT
= cast
<VTSDNode
>(Operands
[1])->getVT().getVectorElementType();
6345 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
,
6347 getValueType(ExtVT
)));
6352 for (; i
< ResNE
; ++i
)
6353 Scalars
.push_back(getUNDEF(EltVT
));
6355 return getNode(ISD::BUILD_VECTOR
, dl
,
6356 EVT::getVectorVT(*getContext(), EltVT
, ResNE
),
6357 &Scalars
[0], Scalars
.size());
6361 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6362 /// location that is 'Dist' units away from the location that the 'Base' load
6363 /// is loading from.
6364 bool SelectionDAG::isConsecutiveLoad(LoadSDNode
*LD
, LoadSDNode
*Base
,
6365 unsigned Bytes
, int Dist
) const {
6366 if (LD
->getChain() != Base
->getChain())
6368 EVT VT
= LD
->getValueType(0);
6369 if (VT
.getSizeInBits() / 8 != Bytes
)
6372 SDValue Loc
= LD
->getOperand(1);
6373 SDValue BaseLoc
= Base
->getOperand(1);
6374 if (Loc
.getOpcode() == ISD::FrameIndex
) {
6375 if (BaseLoc
.getOpcode() != ISD::FrameIndex
)
6377 const MachineFrameInfo
*MFI
= getMachineFunction().getFrameInfo();
6378 int FI
= cast
<FrameIndexSDNode
>(Loc
)->getIndex();
6379 int BFI
= cast
<FrameIndexSDNode
>(BaseLoc
)->getIndex();
6380 int FS
= MFI
->getObjectSize(FI
);
6381 int BFS
= MFI
->getObjectSize(BFI
);
6382 if (FS
!= BFS
|| FS
!= (int)Bytes
) return false;
6383 return MFI
->getObjectOffset(FI
) == (MFI
->getObjectOffset(BFI
) + Dist
*Bytes
);
6387 if (isBaseWithConstantOffset(Loc
) && Loc
.getOperand(0) == BaseLoc
&&
6388 cast
<ConstantSDNode
>(Loc
.getOperand(1))->getSExtValue() == Dist
*Bytes
)
6391 const GlobalValue
*GV1
= NULL
;
6392 const GlobalValue
*GV2
= NULL
;
6393 int64_t Offset1
= 0;
6394 int64_t Offset2
= 0;
6395 bool isGA1
= TLI
.isGAPlusOffset(Loc
.getNode(), GV1
, Offset1
);
6396 bool isGA2
= TLI
.isGAPlusOffset(BaseLoc
.getNode(), GV2
, Offset2
);
6397 if (isGA1
&& isGA2
&& GV1
== GV2
)
6398 return Offset1
== (Offset2
+ Dist
*Bytes
);
6403 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6404 /// it cannot be inferred.
6405 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr
) const {
6406 // If this is a GlobalAddress + cst, return the alignment.
6407 const GlobalValue
*GV
;
6408 int64_t GVOffset
= 0;
6409 if (TLI
.isGAPlusOffset(Ptr
.getNode(), GV
, GVOffset
)) {
6410 // If GV has specified alignment, then use it. Otherwise, use the preferred
6412 unsigned Align
= GV
->getAlignment();
6414 if (const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(GV
)) {
6415 if (GVar
->hasInitializer()) {
6416 const TargetData
*TD
= TLI
.getTargetData();
6417 Align
= TD
->getPreferredAlignment(GVar
);
6421 return MinAlign(Align
, GVOffset
);
6424 // If this is a direct reference to a stack slot, use information about the
6425 // stack slot's alignment.
6426 int FrameIdx
= 1 << 31;
6427 int64_t FrameOffset
= 0;
6428 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
6429 FrameIdx
= FI
->getIndex();
6430 } else if (isBaseWithConstantOffset(Ptr
) &&
6431 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
6433 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
6434 FrameOffset
= Ptr
.getConstantOperandVal(1);
6437 if (FrameIdx
!= (1 << 31)) {
6438 const MachineFrameInfo
&MFI
= *getMachineFunction().getFrameInfo();
6439 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
6447 void SelectionDAG::dump() const {
6448 dbgs() << "SelectionDAG has " << AllNodes
.size() << " nodes:";
6450 for (allnodes_const_iterator I
= allnodes_begin(), E
= allnodes_end();
6452 const SDNode
*N
= I
;
6453 if (!N
->hasOneUse() && N
!= getRoot().getNode())
6454 DumpNodes(N
, 2, this);
6457 if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6462 void SDNode::printr(raw_ostream
&OS
, const SelectionDAG
*G
) const {
6464 print_details(OS
, G
);
6467 typedef SmallPtrSet
<const SDNode
*, 128> VisitedSDNodeSet
;
6468 static void DumpNodesr(raw_ostream
&OS
, const SDNode
*N
, unsigned indent
,
6469 const SelectionDAG
*G
, VisitedSDNodeSet
&once
) {
6470 if (!once
.insert(N
)) // If we've been here before, return now.
6473 // Dump the current SDNode, but don't end the line yet.
6474 OS
<< std::string(indent
, ' ');
6477 // Having printed this SDNode, walk the children:
6478 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
6479 const SDNode
*child
= N
->getOperand(i
).getNode();
6484 if (child
->getNumOperands() == 0) {
6485 // This child has no grandchildren; print it inline right here.
6486 child
->printr(OS
, G
);
6488 } else { // Just the address. FIXME: also print the child's opcode.
6490 if (unsigned RN
= N
->getOperand(i
).getResNo())
6497 // Dump children that have grandchildren on their own line(s).
6498 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
6499 const SDNode
*child
= N
->getOperand(i
).getNode();
6500 DumpNodesr(OS
, child
, indent
+2, G
, once
);
6504 void SDNode::dumpr() const {
6505 VisitedSDNodeSet once
;
6506 DumpNodesr(dbgs(), this, 0, 0, once
);
6509 void SDNode::dumpr(const SelectionDAG
*G
) const {
6510 VisitedSDNodeSet once
;
6511 DumpNodesr(dbgs(), this, 0, G
, once
);
6515 // getAddressSpace - Return the address space this GlobalAddress belongs to.
6516 unsigned GlobalAddressSDNode::getAddressSpace() const {
6517 return getGlobal()->getType()->getAddressSpace();
6521 const Type
*ConstantPoolSDNode::getType() const {
6522 if (isMachineConstantPoolEntry())
6523 return Val
.MachineCPVal
->getType();
6524 return Val
.ConstVal
->getType();
6527 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
,
6529 unsigned &SplatBitSize
,
6531 unsigned MinSplatBits
,
6533 EVT VT
= getValueType(0);
6534 assert(VT
.isVector() && "Expected a vector type");
6535 unsigned sz
= VT
.getSizeInBits();
6536 if (MinSplatBits
> sz
)
6539 SplatValue
= APInt(sz
, 0);
6540 SplatUndef
= APInt(sz
, 0);
6542 // Get the bits. Bits with undefined values (when the corresponding element
6543 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6544 // in SplatValue. If any of the values are not constant, give up and return
6546 unsigned int nOps
= getNumOperands();
6547 assert(nOps
> 0 && "isConstantSplat has 0-size build vector");
6548 unsigned EltBitSize
= VT
.getVectorElementType().getSizeInBits();
6550 for (unsigned j
= 0; j
< nOps
; ++j
) {
6551 unsigned i
= isBigEndian
? nOps
-1-j
: j
;
6552 SDValue OpVal
= getOperand(i
);
6553 unsigned BitPos
= j
* EltBitSize
;
6555 if (OpVal
.getOpcode() == ISD::UNDEF
)
6556 SplatUndef
|= APInt::getBitsSet(sz
, BitPos
, BitPos
+ EltBitSize
);
6557 else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
6558 SplatValue
|= CN
->getAPIntValue().zextOrTrunc(EltBitSize
).
6559 zextOrTrunc(sz
) << BitPos
;
6560 else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
6561 SplatValue
|= CN
->getValueAPF().bitcastToAPInt().zextOrTrunc(sz
) <<BitPos
;
6566 // The build_vector is all constants or undefs. Find the smallest element
6567 // size that splats the vector.
6569 HasAnyUndefs
= (SplatUndef
!= 0);
6572 unsigned HalfSize
= sz
/ 2;
6573 APInt HighValue
= SplatValue
.lshr(HalfSize
).trunc(HalfSize
);
6574 APInt LowValue
= SplatValue
.trunc(HalfSize
);
6575 APInt HighUndef
= SplatUndef
.lshr(HalfSize
).trunc(HalfSize
);
6576 APInt LowUndef
= SplatUndef
.trunc(HalfSize
);
6578 // If the two halves do not match (ignoring undef bits), stop here.
6579 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
6580 MinSplatBits
> HalfSize
)
6583 SplatValue
= HighValue
| LowValue
;
6584 SplatUndef
= HighUndef
& LowUndef
;
6593 bool ShuffleVectorSDNode::isSplatMask(const int *Mask
, EVT VT
) {
6594 // Find the first non-undef value in the shuffle mask.
6596 for (i
= 0, e
= VT
.getVectorNumElements(); i
!= e
&& Mask
[i
] < 0; ++i
)
6599 assert(i
!= e
&& "VECTOR_SHUFFLE node with all undef indices!");
6601 // Make sure all remaining elements are either undef or the same as the first
6603 for (int Idx
= Mask
[i
]; i
!= e
; ++i
)
6604 if (Mask
[i
] >= 0 && Mask
[i
] != Idx
)
6610 static void checkForCyclesHelper(const SDNode
*N
,
6611 SmallPtrSet
<const SDNode
*, 32> &Visited
,
6612 SmallPtrSet
<const SDNode
*, 32> &Checked
) {
6613 // If this node has already been checked, don't check it again.
6614 if (Checked
.count(N
))
6617 // If a node has already been visited on this depth-first walk, reject it as
6619 if (!Visited
.insert(N
)) {
6620 dbgs() << "Offending node:\n";
6622 errs() << "Detected cycle in SelectionDAG\n";
6626 for(unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
)
6627 checkForCyclesHelper(N
->getOperand(i
).getNode(), Visited
, Checked
);
6634 void llvm::checkForCycles(const llvm::SDNode
*N
) {
6636 assert(N
&& "Checking nonexistant SDNode");
6637 SmallPtrSet
<const SDNode
*, 32> visited
;
6638 SmallPtrSet
<const SDNode
*, 32> checked
;
6639 checkForCyclesHelper(N
, visited
, checked
);
6643 void llvm::checkForCycles(const llvm::SelectionDAG
*DAG
) {
6644 checkForCycles(DAG
->getRoot().getNode());